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ABSTRACT

To provide rigorous uncertainty quantification for online learning models, we
develop a framework for constructing uncertainty sets that provably control risk—
such as coverage of confidence intervals, false negative rate, or F1 score—in
the online setting. This extends conformal prediction to apply to a larger class
of online learning problems. Our method guarantees risk control at any user-
specified level even when the underlying data distribution shifts drastically, even
adversarially, over time in an unknown fashion. The technique we propose is
highly flexible as it can be applied with any base online learning algorithm (e.g.,
a deep neural network trained online), requiring minimal implementation effort
and essentially zero additional computational cost. We further extend our approach
to control multiple risks simultaneously, so the prediction sets we generate are
valid for all given risks. To demonstrate the utility of our method, we conduct
experiments on real-world tabular time-series data sets showing that the proposed
method rigorously controls various natural risks. Furthermore, we show how to
construct valid intervals for an online image-depth estimation problem that previous
sequential calibration schemes cannot handle.

1 INTRODUCTION

To confidently deploy learning models in high-stakes applications, we need both high predictive
accuracy and reliable safeguards to handle unanticipated changes in the underlying data-generating
process. Reasonable accuracy on a fixed validation set is not enough, as raised by Sullivan (2015);
we must also quantify uncertainty to correctly handle hard input points and take into account shifting
distributions. For example, consider the application of autonomous driving, where we have a real-time
view of the surroundings of the car. To successfully operate such an autonomous system, we should
measure the distance between the car and close-by objects, e.g., via a sensor that outputs a depth
image whose pixels represent the distance of the objects in the scene from the camera. Figure 1a
displays a colored image of a road and Figure 1b presents its corresponding depth map. Since
high-resolution depth measurements often require longer acquisition time compared to capturing
a colored image, there were developed online estimation models to predict the depth map from a
given RGB image (Patil et al., 2020; Zhang et al., 2020). The goal of these methods is to artificially
speed-up depth sensing acquisition time. However, making decisions solely based on an estimate of
the depth map is insufficient as the predictive model may not be accurate enough. Furthermore, the
distribution can vary greatly and drastically over time, rendering the online model to output highly
inaccurate and unreliable predictions. In these situations, it is necessary to design a predictive system
that reflects the range of plausible outcomes, reporting the uncertainty in the prediction. To this
end, we encode uncertainty in a rigorous manner via prediction intervals/sets that augment point
predictions and have a long-range error control. In the autonomous driving example, the uncertainty
in the depth map estimate is represented by depth-valued uncertainty intervals. In this paper, we
introduce a novel calibration framework that can wrap any online learning algorithm (e.g., an LSTM
model trained online) to construct prediction sets with guaranteed validity.

Formally, suppose an online learning setting where we are given data stream {(Xt, Yt)}t∈N in a
sequential fashion, where Xt ∈ X is a feature vector and Yt ∈ Y is a target variable. In single-output
regression settings Y = R, while in classification tasks Y is a finite set of all class labels. The input
Xt is commonly a feature vector, i.e., X = Rp, although it may take different forms, as in the depth
sensing task, where Xt ∈ RM×N×3 is an RGB image and Yt ∈ RM×N is the ground truth depth.
Consider a loss function L(Yt, Ĉt(Xt)) ∈ R that measures the error of the estimated prediction
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set Ĉt(Xt) ⊆ Y with respect to the true outcome Yt. Importantly, at each time step t ∈ N, given
all samples previously observed {(Xi, Yi)}t−1

i=1 along with the test feature vector Xt, our goal is to
construct a prediction set Ĉt(Xt) guaranteed to attain any user-specified risk level r:

R(Ĉ) = lim
T→∞

1

T

T∑
t=1

L(Yt, Ĉt(Xt)) = r. (1)

For instance, a natural choice for the loss L in the depth sensing task is the image miscoverage loss:

Limage miscoverage(Yt, Ĉ(Xt)) =
1

MN

∣∣∣(m,n) : Y m,n
t /∈ Ĉm,n(Xt)

∣∣∣ . (2)

In words, Limage miscoverage(Yt, C(Xt)) is the ratio of pixels that were miscovered by the intervals
Ĉm,n(Xt), where (m,n) is the pixel’s location. Hence, the resulting risk for the loss in (2) measures
the average image miscoverage rate across the prediction sets {Ĉt(Xt)}∞t=0, and r = 20% is a
possible choice for the desired miscoverage frequency. Another example of a loss function that is
attractive in multi-label classification problems is the false negative proportion whose corresponding
risk is the false negative rate.

In this work, we introduce rolling risk control (Rolling RC): the first calibration procedure to form
prediction sets in online settings that achieve any pre-specified risk level in the sense of (1) without
making any assumptions on the data distribution, as guaranteed by Theorem 1. We accomplish this
by utilizing the mathematical foundations of adaptive conformal inference (ACI) (Gibbs & Candes,
2021) which is a groundbreaking conformal calibration scheme that constructs prediction sets for any
arbitrary time-varying data distribution. The uncertainty sets generated by ACI are guaranteed to
have valid long-range coverage, being a special case of (1) with the choice of the 0-1 loss (indicator
function) defined in Section 2. Importantly, one cannot simply plug an arbitrary loss function into
ACI and achieve risk control. The reason is that ACI works with conformity scores—a measure of
goodness-of-fit—that are only relevant to the 0-1 loss, but do not exist in the general risk-controlling
setting. Therefore, our Rolling RC broadens the set of problems that ACI can tackle, allowing
the analyst to control an arbitrary loss. Furthermore, the technique we proposed in Section 3.3 is
guaranteed to control multiple risks, and thus constructs sets that are valid for all given risks over
long-range windows in time. Additionally, the proposed online calibration scheme is lightweight and
can be integrated with any online learning model, with essentially zero added complexity. Lastly, in
Section 3.2.1 we carefully investigated design choices of our method to adapt quickly to distributional
shifts. Indeed, the experiments conducted on real benchmark data sets, presented in Section 4,
demonstrate that sophisticated designed choices lead to improved performance.

(a) Input Frame (b) Ground Truth Depth

(c) Estimated Depth (d) Uncertainty Size

Figure 1: Online depth estimation. The input frame, ground truth depth map, estimated depth image,
and interval’s size at time step t = 8020. All values are in meter units.
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1.1 UNCERTAINTY QUANTIFICATION FOR ONLINE DEPTH ESTIMATION

Recall the online depth sensing problem, where our goal is to construct a prediction interval
Cm,n(Xt) ⊂ R for each pixel (m,n) that contains the ground truth depth Y m,n

t at 80% frequency.
That is, we aim at controlling the image miscoverage loss (2) at level r = 20%. To accomplish this,
we apply our Rolling RC framework using a neural network model for depth estimation; in Ap-
pendix C.2.4 we give more information regarding the online training scheme and the implementation
details. At a high level, we fit (offline) an initial predictive model on the first 6000 samples to obtain
a reasonable predictive system. Next, passing time step 6001, we proceed by training the model in an
online fashion while applying our calibration procedure, and then measure the performance on the
data points corresponding to time steps 8001 to 10000.

Figure 1c shows the estimated depth image generated by the base model and Figure 1d displays
the size of the prediction interval of each pixel at timestamp t = 8020. These figures suggest that
the calibrated uncertainty intervals properly reflect the ground truth depth. Furthermore, Figure 2
presents the image coverage rate and average length across the test timestamps, revealing that the
proposed method accurately controls the risk with an average image coverage rate of 80%.

Figure 2: The coverage rate and average interval length (in meters) over each image in the test se-
quence achieved by the proposed uncertainty quantification method. The average coverage
is 80.00% and the average length is 18.04 meters.

2 BACKGROUND

Conformal inference (Angelopoulos & Bates, 2021; Vovk et al., 2005) is a generic approach for
constructing prediction sets in regression or classification tasks that attain any pre-specified coverage
rate, under the assumption that the training and testing points are i.i.d., or exchangeable. One example
of such a method is Split conformal prediction (Lei et al., 2018; Papadopoulos et al., 2008). In a
nutshell, the idea is to split the observed labeled data into training and calibration sets, fit a model on
the training set, and evaluate the model’s goodness-of-fit on the reserved holdout calibration points.
Under the i.i.d assumption stated above, the prediction sets produced by split conformal prediction
are guaranteed to have the following coverage property: 1 − E[1{Y /∈ C(X)}] ≥ 1 − α, where
(X,Y ) is a fresh data point and α is a pre-specified miscoverage rate.

While coverage rate is an important property, in real-world applications, it is often desired to control
metrics other than the binary loss 1{Y /∈ C(X)} that defines the coverage requirement. Such
losses include the F1-score or the false negative rate, where the latter is attractive for data with
high-dimensional Y as in image segmentation tasks or image recovery applications. Indeed, there
have been developed extensions of the conformal approach that go beyond the 0-1 loss, rigorously
controlling more general loss functions (Angelopoulos et al., 2021a; 2022a; Bates et al., 2021).
Analogously to split conformal prediction, these methods provide a risk-controlling guarantee that
holds under the i.i.d. assumption. In particular, such guarantees do not hold for time-varying data
with arbitrary distributional shifts, as the i.i.d. assumption would not hold anymore.

Since the i.i.d assumption of the conformal approach is often violated in real-world applications, there
have been developed extensions to conformal inference that impose relaxed notions of exchangeability
(Cauchois et al., 2020; Chernozhukov et al., 2018; Stankeviciute et al., 2021; Tibshirani et al., 2019;
Xu & Xie, 2021a;b). Such methods, however, are not guaranteed to construct prediction sets with a
valid coverage rate for general time-series data with arbitrary distributional shifts. By contrast, ACI
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(Gibbs & Candes, 2021) generates uncertainty sets that are guaranteed to achieve a user-specified
level of the 0-1 loss:

L0-1(Yt, C(Xt)) = 1{Yt /∈Ct(Xt)} =

{
1, Yt /∈ Ct(Xt),

0, otherwise.
(3)

A recent work by Gibbs & Candès (2022) proposes a more sophisticated approach to track past
coverage rates to better adapt to distributional shifts. In general, this line of research is based on
a common, simple idea—if the past coverage rate is too high, we shorten the intervals, and if it is
too low, we widen them. In this paper, we also rely on the above update rule, however, guarantee
the control of a general risk, standing in contrast with ACI that controls only the binary loss in (3).
Therefore, our approach is the first online calibration scheme that can control risks other than the
coverage frequency.

3 PROPOSED METHOD

3.1 GENERAL FORMULATION

We now turn to present Rolling RC—a general framework for uncertainty quantification in an
online learning setting, which satisfies the risk requirement in (1). Towards that end, we define a set
construction function

Ĉt(Xt) = f(Xt, θt,Mt) ∈ 2Y (4)

that gets as an input (i) the test Xt, (ii) a fitted model Mt trained on all data {Xt′ , Yt′}t−1
t′=1 up to

time t, and (iii) a calibration parameter θt, and returns a prediction set. Above, 2Y is the power set
of Y . For instance, in the depth prediction task in Section 1.1, f constructs a prediction interval for
each pixel in the image, as visualized in Figure 1d. The model Mt(Xt) is used to form a prediction
for Yt given the current feature vector Xt; we will provide soon concrete formulations for the set
constructing function f as well as examples for M. The calibration parameter θt ∈ R controls the
size of the prediction set generated by f : larger θt leads to larger sets, and smaller θt leads to smaller
sets. Under the assumption that larger sets produce a lower loss, θt allows us to control the risk
over long-range windows in time: by increasing (resp. decreasing) θt over time we increase (resp.
decrease) the empirical risk. Once Yt is revealed to us, we tune θt according to the following rule:

θt+1 = θt + γ(lt − r). (5)

This update rule is exactly that of ACI (Gibbs & Candès, 2022), extended to our more general
setting. Above, lt = L(Yt, C(Xt)) is the loss at time t, and γ > 0 is a fixed step size, e.g., 0.05. In
Appendix C.3.3 we study the effect of γ on the resulted sets and provide a suggestion for properly
setting it. The pre-defined constant r is the desired risk level, specified by the user, e.g., 0.2 for the
image miscoverage loss in (2). Lastly, we obtain a new predictive model Mt+1 by updating the
previous Mt with the new labeled pair (Xt, Yt), e.g., by applying a single gradient step to reduce
any given predictive loss function. For convenience, the Rolling RC procedure is summarized in
Algorithm 1. The validity of our proposal is given below, whose proof is deferred to Appendix A.1.
In Appendix A.2 we introduce a more general theorem that extends the domain of Ĉt beyond the
power set 2Y .

Theorem 1. Suppose that f : (X ,R,M) → 2Y is an interval/set constructing function. In addition,
suppose that there exist constants m and M such that for all x ∈ X , y ∈ Y and M ∈ M,
f(x, θ,M) = Y for all θ > M , f(X, θ,M) = ∅ for all θ < m. Further suppose that the loss is
bounded and satisfies L(y,Y) < r and L(y, ∅) > r. Consider the following series of calibrated
intervals: {Ĉt(Xt)}∞t=1, where Ĉt(Xt) is defined according to (4). Then, the calibrated intervals
satisfy the risk requirement in (1).

Crucially, this theorem states that the risk-control guarantee of Rolling RC holds for any distri-
bution {PXt,Yt

}t, any set-valued function f , and any sequence of online-updated predictive models
{Mt}t. The requirements for Theorem 1 to hold are (i) the function f must yield the empty set for
small enough θ and the full label space for large enough θ; and (ii) the loss is smaller than the desired
level r for the full label set Y and exceeds r for the empty set. Also, note that the step size γ and the
bounds m,M must be fixed in order to control the risk.

4



Under review as a conference paper at ICLR 2023

Algorithm 1 Rolling RC

Input:
Data {(Xt, Yt)}Tt=1 ⊆ X × Y , given as a stream, desired risk level r ∈ R, a step size γ > 0, a set
constructing function f : (X ,R,M) → 2Y and an online learning model M.

Process:
1: Initialize θ0 = 0.
2: for t = 1, ..., T do
3: Construct a prediction set for the new point Xt: Ĉt(Xt) = f(Xt, θt,Mt).
4: Obtain Yt.
5: Compute lt = L(Yt, Ĉt(Xt)).
6: Update θt+1 = θt + γ(lt − r).
7: Fit the model Mt on (Xt, Yt) and obtain the updated model Mt+1.
8: end for

Output:
Uncertainty sets Ĉt(Xt) for each time step t ∈ {1, ...T}.

Observe that our method is immune to over-fitting by design even though we use the same data point
twice: the evaluation of θt is conducted by using the predictions produced by an “old” model, before
updating it with the new labeled point. We also note that the proof of Theorem 1 gives finite-sample
bounds for how close the realized risk is to the desired level; the empirical risk falls within a C/T
factor of the desired level r, where C = (M −m+ 4 · γB) is a known constant; see Appendix A.1
for details. Furthermore, our new formulation unlocks new design possibilities: we can define any
prediction set function f while guaranteeing the validity of its output by calibrating any parameter θt.
This parameter can affect f in a highly non-linear fashion to attain the most informative (i.e., small)
prediction sets. Of course, the performance of the proposed scheme is influenced by the design of f ,
which is the primary focus of the next sections.

3.2 ROLLING RC FOR REGRESSION

In this section, we focus on 1-dimensional response variable Y and aim to control the 0-1 loss
in (3). Note that in Section 4.1.3 we will also deal with 1-dimensional responses but show how to
control a more sophisticated notion of error for which the loss is defined on the time-horizon, and in
Appendix B we provide a concrete scheme for handling a multi-dimensional Y .

Suppose we are interested in constructing prediction intervals with 1− α coverage frequency, using a
quantile regression model Mt that produces estimates for the α/2 and 1− α/2 conditional quantiles
of the distribution of Yt | Xt. We denote these estimates as Mt(Xt, α/2) and Mt(Xt, 1 − α/2),
respectively, which can be obtained by fitting an LSTM model that minimizes the pinball loss; see
Appendix C.1.2 for further details. The guiding principle here is that a model that perfectly estimates
the conditional quantiles will form tight intervals with valid risk, attaining 1− α coverage level. In
practice, however, the model Mt may not be accurate, and thus may result in invalid coverage; this is
especially true for data with frequent time-varying distributional shifts. Consequently, to ensure valid
coverage control, we apply Rolling RC. Taking inspiration from the method of conformalized
quantile regression (CQR) (Romano et al., 2019), we use the following interval construction function:

f(Xt, θt,Mt) = [Mt(Xt, α/2)− φ(θt), Mt(Xt, 1− α/2) + φ(θt)]. (6)

Above, the interval endpoints are obtained by augmenting the lower and upper estimates of the
conditional quantiles by an additive calibration term φ(θt). The role of θt is the same as before: the
larger θt, the wider the resulting interval is. Here, however, we introduce an additional stretching
function φ that can scale θt non-linearly, providing us the ability to adapt more quickly to severe
distributional shifts. We now present and review three design options for the stretching function φ.

3.2.1 STRETCHING FUNCTIONS FOR FASTER ADAPTATION

None. The first and perhaps most natural choice is φ(x) = x, which does not stretch the scale of
the interval’s adjustment factor. While this is the most simple choice, it might be sub-optimal when
an aggressive and fast calibration is required. To see this, recall (5), and observe that the step size γ
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used to update θt must be fixed throughout the entire process. As a result, the calibration parameter
θt might be updated too slowly, resulting in an unnecessary delay in the interval’s adjustment.

Exponential. The exponential stretching function, defined as φ(x) = ex − 1 for x > 0 and
φ(x) = −e−x + 1 for x ≤ 0, updates the calibration adjustment factor with an exponential rate:
φ′(x) = ex, even though the step size for θt is fixed. In other words, it updates φ(θt) gently when
the calibration is mild (φ(θt) is close to 0), and faster as the calibration is more aggressive (φ(θt) is
away from zero).

Error adaptive. The following stretching function updates θt more rapidly when the loss of the
previous data point ℓt−1 is farther from the desired risk r. Furthermore, it makes larger updates
when Yt is far from the interval’s boundaries. More formally, denote the CQR non-conformity score
(Romano et al., 2019) by

st = max{Mt(Xt, α/2)− Yt, Yt −Mt(Xt, 1− α/2)},

which measures the signed distance of Yt from its closest boundary. Next, define

φt(θ) = θ + λerror
t , where λerror

t = clip(λerror
t−1 − βscore · st−1 · exp

{
βloss · |ℓt−1 − r|

}
, βlow, βhigh),

where βloss, βscore, βlow and βhigh are hyperparameters. The clipping function clip(x,m,M) =
max{min{x,M},m} is applied to restrain the effect of an outlier Yt that is far from the boundaries.

This discussion above sheds light on the great flexibility of Rolling RC: we can accurately find
the correct adjustment to the uncertainty set while being adaptive to rapid distributional shifts in the
data. Furthermore, Theorem 1 guarantees the risk validity regardless of the choice of the stretching
function. In Appendix D.1.1 we propose an additional stretching function and compare all proposed
stretching functions. This analysis indicates that the ‘error adaptive’ stretching is the best choice.

3.3 CONTROLLING MULTIPLE RISKS

In this section, we show how to control more than one risk and construct intervals that are valid for
all given risks. To motivate the need for such a multiple risks controlling guarantee it may be best to
consider the depth estimation example from Section 1.1. Here, we may wish to control not only the
coverage of the entire depth image, as in Section 1.1, but also the frequency at which the coverage at
the center of the image falls below a certain threshold. This design choice meets reality since the
coverage at the center falls below 60% in more than 17% of the time-steps, as presented in Figure 10
in Appendix D.2. This figure also indicates that controlling the center coverage does not control the
center failure loss. Concretely, we formulate the center failure loss as:

Lcenter failure(Yt, C(Xt)) = 1

{
1

|center|
|(m,n) ∈ center : Y m,n

t ∈ Cm,n(Xt)| ≤ 60%

}
. (7)

We define the center of an image as the middlemost 50x50 grid of pixels. Controlling the center
failure loss at level r = 10% ensures that more than 60% of the center will be covered for 90% of the
images.

More generally, suppose we are given k arbitrary loss functions {Li}ki=1 and aim to control their
corresponding risks, each at level ri. In this setting, the set constructing function f(·) gets as an input
the test Xt, the fitted model Mt, and a calibration vector θt ∈ Rk, and returns a prediction set

Ĉt(Xt) = f(Xt, θt,Mt) ∈ 2Y . (8)

Similarly to the single risk-controlling formulation described in Section 3.1, θt controls the size of
the generated set: by increasing the coordinates in θt we encourage the construction of larger sets
with lower risks, and we tune it likewise:

θit+1 = θit + γi(lit − ri),

where lit = Li(Yt, Ĉt(Xt)) and γi > 0, i = 1, . . . , L is the corresponding step size. We now show
that this procedure is guaranteed to produce uncertainty sets with valid risks.
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Theorem 2. Suppose that f : (X ,R,M) → 2Y is an interval/set constructing function. In addition,
suppose that there exist constants {M i}ki=1 such that for all X and M, f(X, θ,M) = Y if θi > M i

for some i ∈ {1, ...k}. Further suppose that the losses are bounded and satisfy Li(y,Y) < ri for
every y ∈ Y and i ∈ {1, ...k}. Consider the following series of calibrated intervals: {Ĉt(Xt)}∞t=1,
where Ĉt(Xt) is defined according to (8). Then, the calibrated intervals attain valid risk:

∀i ∈ {1, ..., k} ∃Di ∈ R s.t
1

T

T∑
t=1

Li(Yt, Ĉt(Xt)) ≤ ri +
Di

T
−−−−→
T→∞

ri.

If we further assume that the risks are more synchronized with each other, we can achieve an exact
multiple risks control, as stated next.

Theorem 3. Suppose that f is an interval/set constructing function and {Li}ki=1 are loss functions
as in Theorem 2. Further suppose that there exist constants {mi}ki=1 such that f(X, θ,M) = ∅
if θi < mi for some i ∈ {1, ...k} and that the losses satisfy Li(y, ∅) > ri for every y ∈ Y and
i ∈ {1, ...k}. Then, the intervals achieve the exact risk:

∀i ∈ {1, ..., k} : R(Ĉ) = lim
T→∞

1

T

T∑
t=1

Li(Yt, Ĉt(Xt)) = ri

The proofs of the theoretical results are given in Appendix A. In words, Theorem 2 guarantees the
validity of the risks, while Theorem 3 guarantees that all risks are exactly controlled by assuming
that during the calibration process there are no two coordinates in θt such that the first is too low
(requires widening the interval), and the other is too high (requires shrinking the interval). Lastly, we
note that in this section we presented one implementation of Rolling RC to control multiple risks,
although other approaches may be valid as well, e.g., techniques with calibration parameters that are
independent of the number of risks.

4 EXPERIMENTS

4.1 SINGLE RESPONSE: CONTROLLING A SINGLE RISK IN REGRESSION TASKS

In this section, we study the effectiveness of our proposed calibration scheme for time series data
with 1-dimensional response variables. Towards that end, we describe two performance metrics that
we will use in the following numerical simulations to assess conditional/local coverage rate.

4.1.1 TIME-SERIES CONDITIONAL COVERAGE METRICS

MC: The miscoverage counter counts how many miscoverage events happened in a row until time t:

MCt =

{
MCt−1 + 1, Yt ̸∈ Ĉt(Xt)

0, otherwise
,

where MC0 = 0. Similarly to the coverage metric, MCt = 0 at timestamps for which Yt ∈ Ĉt(Xt). By
contrast, when Yt ̸∈ Ĉt(Xt), the value of MCt is the length of the sequence of previous miscoverage
events. Therefore, we can apply Rolling RC to control the MC level and prevent long sequences
of failures. Interestingly, controlling the miscoverage counter immediately grants a control over the
standard coverage metric, as stated next.

Proposition 1. If the MC risk is at most α, then the miscoverage risk is at most α.

In Appendix A.5 we provide the proof of this proposition and in Section E.2 we explain how to
choose the nominal MC level to achieve a given coverage rate 1− α. In a nutshell, we argue that a
model that has access to the true conditional quantiles attains an MC of α/(1− α). Therefore, in our
experiments we seek to form the tightest intervals with an MC risk controlled at this level.

MSL: As implied by its name, the metric miscoverage streak length evaluates the average length of
miscoverage streaks of the constructed prediction intervals. In contrast to MC, which is defined on a
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single timestamp, the MSL is defined over a sequence of uncertainty sets {Ĉt(Xt)}T1

t=T0
⊆ 2Y and

response variables {Yt}T1

t=T0
⊆ Y as:

MSL :=
1

|I|
∑
t∈I

min{i : Yt+i ∈ Ĉt+i(Xt+i) or t = T1},

where I is a set containing the starting times of all miscoverage streaks. The formal description is
given in Appendix E.1, where we also show that an ideal model that has access to the true conditional
quantiles attains an MSL of 1/(1− α). Therefore, we seek to produce the narrowest intervals having
an MSL close to this value.

4.1.2 CONTROLLING THE BINARY LOSS

In this section, we focus on the more standard long-range coverage loss as in ACI (Gibbs & Candes,
2021). We test the performance of Rolling RC on five real-world benchmark data sets with a
1-dimensional Y : Power, Energy, Traffic, Wind, and Prices. We commence by fitting an initial
quantile regression model on the first 5000 data points, to obtain a reasonable predictive system.
Then, passing time step 5001, we start applying the calibration procedure while continuing to fit the
model in an online fashion; we keep doing so until reaching time step 20000. Lastly, we measure the
performance of the deployed calibration method on data points corresponding to time steps 8001 to
20000. In all experiments, we fit an LSTM predictive model (Hochreiter & Schmidhuber, 1997) in
an online fashion, minimizing the pinball loss to estimate the 0.05 and 0.95 conditional quantiles of
Yt | Xt; these estimates are used to construct prediction intervals with target 90% coverage rate. We
calibrate the intervals according to (6) and examine two options for the stretching function: (i) no
stretching, and (ii) ‘error adaptive’ stretching, described in Section 3.2.1. Appendix C.1.1 provides
more details regarding the data sets and this experimental setup.

Figure 3: Performance of Rolling RC on real data sets, aiming to control the coverage rate at level
1− α = 90%. The length of the prediction intervals is scaled per data set by the average length of
the constructed intervals. Results are evaluated on 20 random initializations of the predictive model.

Figure 3 summarizes the performance metrics presented in Section 4.1.1, showing that both stretching
methods attain the desired coverage level; this is guaranteed by Theorem 1. Additionally, this figure
indicates that Rolling RC with the ‘error adaptive’ stretching constructs narrower intervals with
better conditional coverage compared to Rolling RC applied without stretching, as indicated by
the MSL metric. In Appendix D.1 we compare Rolling RC to a calibration-set-based method
and evaluate the methods using another metric for evaluating conditional coverage for time-series
data. These experiments show that constructing uncertainty sets using the conformity scores of a
calibration set performs worse than Rolling RC with or without stretching.

4.1.3 CONTROLLING MISCOVERAGE COUNTER

Figure 4c shows that Rolling RC applied on the real data sets with the goal of controlling the
long-range coverage at level 1 − α = 90% achieves MC risk that is higher than α/(1 − α) = 1/9.
Following the discussion in Section 4.1.1, this indicates that the constructed intervals tend to miscover
one or more response variables in consecutive data points. To alleviate this, we repeat the same
experiment in Section 4.1.2, but apply Rolling RC to control the MC at level r = 1/9. The results
are summarized in Figure 4, revealing that (i) the MC risk is rigorously controlled even though it is
defined over the time horizon, and (ii) by controlling the MC risk we also achieve valid coverage rate.
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(a) MC calibration (b) MC calibration (c) Miscoverage calibration

Figure 4: Performance of Rolling RC on real data sets. In (a) and (b) we aim to control the MC
risk at level r = α/(1 − α) = 1/9. In (c) we aim to control the coverage at level 1 − α = 90%.
Other details are as in Figure 3.

4.2 HIGH DIMENSIONAL RESPONSE: CONTROLLING MULTIPLE RISKS

In this section, we analyze Rolling RC for multiple risks in the depth prediction setting. In
particular, we follow the protocol described in Section 1.1 and apply the multiple risks controlling
method from Section 3.3 to control the image miscoverage rate defined in (2) at level 20% and the
center failure rate from (7) at level 10%. We construct the intervals according to (9) from Appendix B,
using exponential stretching where the vector θt is aggregated into a scalar by taking the maximal
coordinate in this vector. We repeat this experiment for 10 trials. In Appendix C.2 we provide the full
details about this experimental setup.

Figure 5 displays the results of Rolling RC obtained by controlling (i) only the image miscoverage
loss, and (ii) both the image miscoverage loss and the center failure loss. As portrayed, when
Rolling RC is set to control only the image miscoverage risk, it violates the center failure loss;
the center coverage falls below 60% for 17% of the time-steps. However, when applying Rolling
RC to control the two risks, it achieves both a valid image coverage rate, of approximately 85.6%,
and a valid center failure rate, of 9.9%. This is not a surprise, as it is guaranteed by Theorem 2.

Figure 5: Performance of Rolling RC applied to control only the ‘image coverage’ (single risk) or
both ‘image coverage’ and ‘center failure’ (multiple risks).

5 CONCLUSION

In this paper, we introduced Rolling RC, a novel method for quantifying prediction uncertainty
for any time-series data using any online learning model. Our proposal is guaranteed to achieve any
desired level of risk (1) without making assumptions on the data, and can be applied for a broad class
of tasks, such as regression, classification, image-to-image regression, and more. Furthermore, in
Section 3.3 we extended Rolling RC to provably control multiple risks, so that the uncertainty sets
it constructs are valid for all given risks. One limitation of our method is the reliance on a fixed step
size γ, used to tune the raw risk level; improper choice of this parameter may introduce undesired
delays in adapting to distributional shifts. Therefore, it is of great interest to develop a procedure that
would automatically choose γ, e.g., by borrowing ideas from (Gibbs & Candès, 2022; Zaffran et al.,
2022). Meanwhile, we suggested a way to overcome this limitation using a stretching function φ,
which leads to improved performance, as indicated by the experiments.

9
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ETHICS STATEMENT

While valid calibration is an important step toward making learning systems safer, fairer, and more
robust, we emphasize that calibration is not a panacea and one must always treat data with care—
especially when data-driven predictions are used for high-stakes decisions. In particular, the flexibility
of our proposed method is a mixed blessing, in that the system builder has the ability and responsibility
to make important design choices. These choices can have important consequences, so they must
be treated with care. We offer initial guidelines herein, acknowledging that of course, they do not
anticipate the consequences in all possible use cases. Nonetheless, we highlight that uncertainty
quantification is an important component to designing learning systems to have a positive impact
in the real world, where the data are complex and distributions are continually shifting. Our work
makes one step toward this goal.

For reproducibility, our code carrying out the experiments herein is included as Supplementary
Material with this submission.
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Appendices
A THEORETICAL RESULTS

A.1 PROOF OF THEOREM 1

The proof of Theorem 1 is based on that of Proposition 4.1 in (Gibbs & Candes, 2021). While the
proof is similar, our work greatly enlarges the scope of the result.

We begin by showing that θt is bounded throughout the entire calibration process. For this purpose,
we assume that the loss satisfies that for all y ∈ Y and C ∈ 2Y : L(y, C) ∈ [−B,B] where B > 0 is
a real number.
Lemma 1. Under the assumptions of Theorem 1, for all t ∈ N, θt ∈ [m− γ2B,M + γ2B].

Proof. Assume for the sake of contradiction that there exists t ∈ N such that θt > M + 2γB
(the complementary case is similar). Further assume that for all t′ < t: θt′ ≤ M + 2γB. Since
lt, r ∈ [−B,B], we get that:

θt−1 = θt − γ(lt − r) ≥ θt − 2γB > M + 2γB − 2γB = M.

Therefore, θt−1 > M . Since L(y, f(X, θ,M) = Y) < r for θ > M , we get that lt < r. As a result:
θt = θt−1 + γ(lt − r) < θt−1 ≤ M + γ2B.

Which is a contradiction to our assumption.

Next, we prove Theorem 1.

Proof. By applying Lemma 1 we get that θt ∈ [m − γ2B,M + γ2B] for all t ∈ N. Denote
m′ = m− γ2B, and M ′ = M + γ2B. We follow the proof of (Gibbs & Candes, 2021, Proposition
4.1) and expand the recursion defined in (5):

[m′,M ′] ∋ θT+1 = θ1 +

T∑
t=1

γ(lt − r).

By rearranging this we get that:

m′ − θ1
Tγ

≤ 1

T

T∑
t=1

(lt − r) =
θT+1 − θ1

Tγ
≤ M ′ − θ1

Tγ
.

Therefore: ∣∣∣∣∣ 1T
T∑

t=1

(lt − r)

∣∣∣∣∣ ≤ max {θ1 −m′,M ′ − θ1}
Tγ

.

Lastly, the definition of the loss, lt = L(Yt, Ĉt(Xt)), gives us the risk statement in (1).

Notice that the above proof additionally implies a finite-sample bound for the deviation of the
empirical risk from the desired level. In particular, the average loss is within a C/T factor of r, where
C = (M ′ −m′)/γ = (M −m+ 4 · γB)/γ. This bound is deterministic, not probabilistic. Thus,
even for the most erratic input sequences, the method has an average loss very close to the nominal
level.

A.2 GENERAL VERSION OF THEOREM 1

In this section, we provide a general statement with more abstract notations of Theorem 1. The
following notations extend our proposal to a broader class of problems, so that it could be applied for
a larger set of tasks, such as multi-label classification. Here, we assume that the function f generates
variables in Y ′

and that the loss function is defined as L : (Y,Y ′
) → R. Furthermore, we assume

that there exist a minimal value
¯
Y ′ ∈ Y ′

and a maximal value Ȳ ′ ∈ Y ′
for which L(y,

¯
Y ′

) > r and
L(y, Ȳ ′

) < r. In the main text, we set Y ′
= 2Y ,

¯
Y ′

= ∅ and Ȳ ′
= Y . We now show that the risk is

controlled at the desired level even under this general setting.

14
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Theorem 4. Suppose that f : (X ,R,M) → Y ′
is an interval/set constructing function. In addition,

suppose that there exist constants m and M such that for all x ∈ X , y ∈ Y and M ∈ M,
f(x, θ,M) =

¯
Y ′

for all θ > M , f(X, θ,M) = Ȳ ′
for all θ < m. Further suppose that the loss is

bounded and satisfies L(y, Ȳ ′
) < r and L(y,

¯
Y ′

) > r. Consider the following series of calibrated
intervals: {Ĉt(Xt)}∞t=1, where Ĉt(Xt) is defined according to (4). Then, the calibrated intervals
satisfy the risk requirement in (1).

Proof. The proof is similar to the one of Theorem 1 and hence omitted.

A.3 PROOF OF THEOREM 2

The proof of Theorem 2 is similar to the proof of Theorem 1. We assume that all losses {Li}ki=1 are
bounded in the interval [−B,B], as in Section A.1, and begin by showing that all coordinates in θt
are upper bounded.

Lemma 2. Under the assumptions of Theorem 2, for all t ∈ N and i ∈ {1, ..., k}, θit ≤ M + γ2B.

Proof. Assume for the sake of contradiction that there exist t ∈ N and i ∈ {1, ..., k} such that
θit > M + 2γB. Further assume that for all t′ < t: θit′ ≤ M + 2γB. Since lit, r

i ∈ [−B,B], we get
that:

θit−1 = θit − γ(lit − ri) ≥ θit − 2γB > M + 2γB − 2γB = M.

Therefore, θit−1 > M . Since Li(y, f(X, θ,M) = Y) < ri for θi > M , we get that lit < ri. As a
result:

θit = θit−1 + γ(lit − r) < θit−1 ≤ M + γ2B.

Which is a contradiction to our assumption.

Next, we prove Theorem 2.

Proof. By applying Lemma 2 we get that θit ≤ M + γ2B for all t ∈ N and i ∈ {1, ..., k}. Denote
M ′ = M + γ2B. We expand the recursion defined in (5):

θiT+1 = θi1 +

T∑
t=1

γ(lit − ri) ≤ M ′.

By rearranging this we get that:

1

T

T∑
t=1

lit − ri =
1

T

T∑
t=1

(lit − ri) =
θiT+1 − θi1

Tγ
≤ M ′ − θi1

Tγ
.

Therefore:
1

T

T∑
t=1

lit ≤ ri +
M ′ − θi1

Tγ
.

Lastly, by the definition of the loss, lit = Li(Yt, Ĉt(Xt)) and by setting Di =
M ′−θi

1

γ , we get the
statement in Theorem 2.

A.4 PROOF OF THEOREM 3

The proof of Theorem 3 is similar to the proof of Theorem 2. We assume that all losses {Li}ki=1 are
bounded in the interval [−B,B], as in Section A.1, and begin by showing that all coordinates in θt
are lower bounded.

Lemma 3. Under the assumptions of Theorem 3, for all t ∈ N and i ∈ {1, ..., k}, θit ≥ m− γ2B.
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Proof. Assume for the sake of contradiction that there exist t ∈ N and i ∈ {1, ..., k} such that
θit < m− 2γB. Further assume that for all t′ < t: θit′ ≥ m− 2γB. Since lit, r

i ∈ [−B,B], we get
that:

θit−1 = θit − γ(lit − ri) ≤ θit + 2γB < m− 2γB + 2γB = m.

Therefore, θit−1 < m. Since Li(y, f(X, θ,M) = Y) > ri for θi < m, we get that lit > ri. As a
result:

θit = θit−1 + γ(lit − r) > θit−1 > m− γ2B.

Which is a contradiction to our assumption.

Next, we prove Theorem 3.

Proof. By applying Lemma 2 and Lemma 3 we get that θit ∈ [m− γ2B,M + γ2B] for all t ∈ N
and i ∈ {1, ..., k}. Denote m′ = m− γ2B and M ′ = M + γ2B. We expand the recursion defined
in (5):

[m′,M ′] ∋ θiT+1 = θi1 +

T∑
t=1

γ(lit − ri).

By rearranging this we get that:

m′ − θi1
Tγ

≤ 1

T

T∑
t=1

(lit − ri) =
θiT+1 − θi1

Tγ
≤ M ′ − θi1

Tγ
.

Therefore: ∣∣∣∣∣ 1T
T∑

t=1

(lit − ri)

∣∣∣∣∣ ≤ max {θi1 −m′,M ′ − θi1}
Tγ

.

Lastly, the definition of the loss, lit = Li(Yt, Ĉt(Xt)), gives us the statement in Theorem 3.

A.5 PROOF OF PROPOSITION 1

Proof. 1{Yt /∈ Ĉt(Xt)} ≤ MCt for any t ∈ N. Therefore:

lim
T→∞

1

T

T∑
t=1

MCt ≤ α =⇒ lim
T→∞

1

T

T∑
t=1

1{Yt /∈ Ĉt(Xt)} ≤ α

B UNCERTAINTY QUANTIFICATION IN ONLINE IMAGE-TO-IMAGE
REGRESSION PROBLEMS

B.1 GENERAL FORMULATION

Recall the depth estimation problem from Section 1.1, where we construct per-pixel prediction
intervals by online processing an incoming video stream. In what follows, we discuss such image-to-
image regression problems more generally, providing a scheme to construct and calibrate pixel-valued
intervals. Consider a running model Mt(Xt) that maps the input image Xt to a point prediction of
Yt, and we wish to control the image misocverage loss Limage miscoverage from (2). We take inspiration
from Angelopoulos et al. (2022b) and form the prediction intervals around each pixel (m,n) of the
estimated image Mt(Xt) as

Ĉm,n
t (Xt) = fm,n(Xt, θt,Mt) = [Mm,n

t (Xt)− λtl
m,n
t (Xt),Mm,n

t (Xt) + λtu
m,n
t (Xt)]. (9)

Above, lm,n
t (Xt) and um,n

t (Xt) represent the uncertainty in the lower and upper directions, respec-
tively. That is, a large value of lm,n

t (Xt) indicates that the pixel has a high uncertainty in the upper
direction. Similarly, a large value of um,n

t (Xt) indicates that the pixel has a high uncertainty in the
lower direction. A natural choice for the lower and upper uncertainty measures is a model estimating
the absolute residual error per-pixel, given by um,n

t (Xt) = lm,n
t (Xt) = |Y m,n

t −Mm,n
t (Xt)|. We
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provide more sophisticated examples for such uncertainty functions in Section B.2. The parameter
λt = φ(θt) ∈ R in (9) stretches the calibration parameter θt, which we update according to (5).
Importantly, this procedure is an instantiation of Rolling RC and thus attains the correct image
coverage, as guaranteed by Theorem 1. This is also validated in the experiment from Section 1.1.

B.2 UNCERTAINTY QUANTIFICATION HEURISTICS

In this section, we present possible choices for the uncertainty heuristics for the interval constructing
function given in (9).

B.2.1 BASELINE CONSTANT

The most naive choice for an uncertainty heuristic is outputting a constant value for every m,n,X:
lm,n(X) = um,n(X) = 1. In other words, the set constructing function is defined as:

fm,n(Xt, θt,Mt) = [Mm,n
t (Xt)− λt,Mm,n

t (Xt) + λt].

This approach has two main limitations: (i) the calibrated intervals are symmetric, having the same
uncertainty size in both the upper and lower directions, and (ii) all the pixel-valued intervals have
the same length. These limitations lead to unnecessarily wide intervals that are less informative. We
show how to overcome these limitations with the methods presented hereafter.

B.2.2 MAGNITUDE OF THE RESIDUAL

The residual magnitude heuristic was introduced by Angelopoulos et al. (2022b) as a simple uncer-
tainty quantification technique. Here, lm,n(X) = um,n(X) = r̂m,n(x) is an estimate for the residual
|Mm,n(X)− Y m,n| and it is formulated as an online learning model fitted to minimize the squared
residual loss, given by (r̂(x)− |Mm,n(x)− y|)2. An ideal model that minimizes this loss function
outputs the exact residual: r̂(x) = |Mm,n(x)− y| and thus achieves 100% coverage rate for λ = 1.
In practice, however, the fitted model r̂ may not be accurate and thus we apply Rolling RC, to
ensure valid risk control. Observe that, unlike the constant heuristic, here, each pixel is assigned a
different uncertainty size. Nevertheless, both techniques produce symmetric prediction intervals.

B.2.3 PREVIOUS RESIDUALS

In contrast to the residual’s magnitude heuristic, here, we take advantage of the online setting in
which the data set is received as a stream, and use the past residuals to estimate the current one. We
define the positive and negative residuals at time t as:

rm,n
t = Mm,n(Xt)− Y m,n

t ,

rm,n
t

+
= max {rm,n

t , 0},
rm,n
t

−
= max {−rm,n

t , 0}.

The uncertainty heuristic in the lower (upper) direction is formulated as the average of the positive
(negative) residual in the previous p time-steps:

lm,n
t (Xt) =

1

p

t−1∑
t′=t−p

rm,n
t

+
,

um,n
t (Xt) =

1

p

t−1∑
t′=t−p

rm,n
t

−
.

(10)

In our experiments, we set the sliding window’s size to p = 5.

B.2.4 CORRECTING PIXELS DISPLACEMENTS WITH IMAGE REGISTRATION

The ‘previous residuals’ method suffers from the following crucial limitation. Objects in the response
image Y may appear in different positions across time, so that an object that lies in pixel (m,n) at
frame t might appear in a different pixel at time t+ 1, e.g., (m+ 7, n− 11). For example, in our
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depth prediction example the camera and the depth sensor move during the online process, so objects
change their locations and do not remain in a fixed pixel between consecutive frames. Therefore,
to obtain more accurate residual estimates it is better to correct for the displacement of pixels in
consecutive frames. For this purpose, we apply an image registration algorithm before evaluating
the residuals. In particular, we use optical flow (OF) to register the estimated depth images and the
ground truth depth maps. Suppose that OF(im1, im2) receives two images as an input and returns the
result of the registration of the first image im1 to the second one im2. We recursively define optical
flow on a sequence as:

OFseq(im1, ∅) = im1,

OFseq(im1, {imi}ki=2) = OFseq(OF(im1, im2), {imi}ki=3).

Then, we register the previous estimated depth images and ground truth depth maps
Mreg(Xt−i) = OFseq(M(Xt−i), {M(Xt−i+j)}i−1

j=1),

Y reg
t−i = OFseq(Yt−i, {Yt−i}i−1

j=1).

In plain words, we register each image using the next ones in the sequence. We define the registered
residuals as:

r̄t = Mreg(Xt)− Y reg
t ,

r̄m,n+
t = max {r̄m,n

t , 0},
r̄m,n−
t = max {−r̄m,n

t , 0}.
Then, we compute the average residual, as in (10):

lm,n
t (Xt) =

1

p

t−1∑
t′=t−p

r̄m,n+
t ,

um,n
t (Xt) =

1

p

t−1∑
t′=t−p

r̄m,n−
t .

This displacement consideration indeed improves the performance, as indicated by the experiments
in Section D.2.

C EXPERIMENTAL SETUP

C.1 SINGLE-OUTPUT TASKS

C.1.1 THE QUANTILE REGRESSION MODEL’S ARCHITECTURE

The neural network architecture is composed of four parts: an MLP, an LSTM, and another two MLPs.
To estimate the uncertainty of Yt | Xt, we first map the previous k samples {(Xt−i, Yt−i, τ)}ki=1
through the first MLP, denoted as f1,

w1
t−i = f1(xt−i, yt−i, τ),

where we set k to 3 in our experiments. The outputs are then forwarded through the LSTM network,
denoted as f2:

{w2
t−i}ki=1 = f2({w1

t−i}ki=1).

Note that since f2 is an LSTM model, w2
t−i is used to compute w2

t−i+1. The last output w2
t−1 of the

LSTM model, being an aggregation of the previous k samples, is fed, together with (Xt, τ), to the
second MLP model, denoted as f3:

w3
t = f3(w

2
t−1, Xt).

Lastly, we pass w3
t through the third MLP, denoted by f4, with one hidden layer that contains 32

neurons:
q̂τ (Xt) = f4(w

3
t , τ).

The networks contain dropout layers with a parameter equal to 0.1. The model’s optimizer is Adam
(Kingma & Ba, 2015) and the batch size is 512, i.e., the model is fitted on the most recent 512
samples in each time step. Before forwarding the input to the model, the feature vectors and response
variables were normalized to have unit variance and zero mean using the first 8000 samples of the
data stream.
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C.1.2 TRAINING THE QUANTILE REGRESSION MODEL

Estimating the conditional quantile function can be done, for example, by minimizing the pinball
loss in lieu of the standard mean squared error loss used in classic regression; see (Izbicki et al.,
2020; Jia & Jeong, 2022; Koenker & Bassett, 1978; Koenker & Hallock, 2001; Meinshausen, 2006).
Specifically, in our experiments with time-series data we minimize the objective function:

min
Mt

t∑
t′=1

ρα/2(Yt′ ,Mt(Xt′ , α/2)) + ρ1−α/2(Yt′ ,Mt(Xt′ , α/2)),

where

ρα(y, ŷ) =

{
α(y − ŷ) y − ŷ > 0,

(1− α)(ŷ − y) otherwise.
is the pinball loss. Since the data points arrive sequentially, we formulate Mt as an LSTM
model and minimize the above cost function in an online fashion as follows. Given a new la-
beled test point (Xt, Yt), we (i) compute the pinball loss both for the lower and upper quantiles,
i.e., ρα/2(Yt,Mt(Xt, α/2)) and ρ1−α/2(Yt,Mt(Xt, 1 − α/2)), respectively; and (ii) update the
parameters of the LSTM model Mt by applying a few gradient steps with ADAM optimizer. More
details on the network architecture are given in Appendix C.1.1.

C.1.3 HYPER-PARAMETERS TUNING

For both real and synthetic data sets, we examined all combinations of the raw model’s hyperparame-
ters (with no calibration applied) on one initialization of the model, and chose the setting in which
the model attained the smallest pinball loss, evaluated on the validation set, indexed by 6001− 8000.
The combinations we tested are presented in Table 1. Some of the configurations required more than
11GB of memory to train the model, so we did not consider them in our experiments. The chosen
configuration was later used for choosing the calibration’s learning rate γ, as explained next. We note
that using the validation set to tune the hyperparameters and the choice of the stretching function
is a heuristic. Yet, we found this rule of thumb to work well empirically, as visualized in Figure 7
in Appendix D.1.1. Of course, there are situations where this approach would not be most effective
since the data is not i.i.d., but we believe it is a sensible suggestion. Another advantage of tuning the
hyperparameters this way is that it facilitates the comparison between the different methods since
they all follow the same automatic tuning approach.

The updating rates we tested are: γ ∈ {0.025, 0.03, 0.05, 0.09, 0.1, 0.15, 0.2, 0.35}. We chose γ that
attained the smallest pinball loss, evaluated on points 5001− 8000.

In Appendix C.4 we explain how we chose the hyper-parameters for the stretching functions.

C.2 THE DEPTH PREDICTION SETUP

C.2.1 DATA SET AND AUGMENTATIONS

We used the KITTI data set which contains pairs of a colored (RGB) image (Geiger et al., 2013)
and a latent ground truth depth map (Uhrig et al., 2017). We filled the missing depth values with
the colorization algorithm developed by Levin et al. (2004). Then, we scaled the depth values to the
range [0,10]. We augmented the images according to the following protocol. Images and depths
used for training the model were resized using one of the following ratios [0.5, 0.6, 0.7, 0.8, 0.9, 1.0,
1.1, 1.2, 1.3, 1.4, 1.5], chosen with equal probability, cropped randomly and re-scaled to 448× 448,
and then flipped horizontally with a 50% chance. Images and depths used for testing and updating
the calibration model were resized with a ratio of 0.5 and re-scaled to 448× 448. In both cases, we
augmented the colors of the RGB image and blurred it, as described in (Yin et al., 2021). Notice
that the augmentations are deterministic during inference and random during training. Therefore, the
augmentations are chosen randomly in each trial. The main purpose of these augmentations is to
improve the model’s training.

C.2.2 THE DEPTH PREDICTION MODEL

The base prediction model M we used is LeReS (Yin et al., 2021) with ResNeXt101 backbone
initialized with the pre-trained network from https://cloudstor.aarnet.edu.au/plus/
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s/lTIJF4vrvHCAI31. This pre-trained network was not fitted on the KITTI data set used in
our experiments. We fitted the model offline on the first 6000 samples for 60 epochs, to obtain a
reasonable predictive system. Then, passing time step 6001 we start training the model in an online
fashion while applying the calibration procedure. Lastly, we measure the performance of the deployed
calibration method on data points corresponding to time steps 8001 to 10000.

C.2.3 TRAINING THE UNCERTAINTY QUANTIFICATION MODELS

For each uncertainty quantification model presented in Section B.2, we used a pre-trained LeReS
(Yin et al., 2021) network as the base network architecture and initialized the last two components of
the network with random weights. We simultaneously trained the uncertainty quantification model
and the LeReS depth model on the first 6000 samples for 60 epochs, and in an online fashion at
timestamps 6001 to 10000, as mentioned in Section C.2.2.

C.2.4 DEPTH EXAMPLE SETUP

In this section, we describe the setup we used for the depth experiment presented in Section 1.1 in the
main text. As explained in Section C.2.2, we used LeReS (Yin et al., 2021) as the base depth prediction
model. The model’s predictions were calibrated by our Rolling RC, with the design choice for f
given in Section 9. The uncertainty heuristics we used in this experiment are the previous residuals
with registration, as described in Section B.2.4, with a sliding window of size p = 5. We used scikit-
image’s implementation of optical flow. We set the parameter "num_iter" to 2 and the "num_warp" to
1, to reduce the computational complexity. The figures are taken from one trial of the experiment, for
which the random seed value was set to 0. The only hyper-parameter we tuned in this experiment
is the calibration’s learning rate γ which we tuned in the following way. We applied Rolling
RC with the following learning rates: γ ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 10} and chose
the γ that achieved the narrowest intervals among those with coverage greater than 79.9% on the
validation set. The validation samples are those that correspond to timestamps 7001 to 8000. The
value that was finally chosen is γ = 0.2.

C.2.5 MULTIPLE RISKS CONTROLLING SETUP

In this section, we describe the setup we used for the multiple risks controlling experiment presented
in Section 4.2. We followed the experimental protocol described in Section C.2.4 except for the
tuning of γ. When Rolling RC is applied to control multiple risks, the learning rate γ is a vector,
so we examine all possible choices of γ1, γ2 ∈ {0.00001, 0.0001, 0.001, 0.005, 0.01, 0.1, 0.5, 2}.
We chose the vector γ that achieved the narrowest intervals among those with coverage greater than
79.9% and center failure rate lower than 11%, evaluated on the validation samples, corresponding to
timestamps 7001 to 8000. In this experiment, we set λt in (9) to be the maximal value in the vector
θt. That is, we used the ‘max aggregation’ described in Section D.3.

C.2.6 IMPLEMENTATION DETAILS

In this section, we describe the technical details of implementing the depth prediction model and the
uncertainty quantification heuristics. Popular depth prediction models estimate the depth up to an
unknown scale and shift (Li et al., 2022a;b; Yuan et al., 2022). That is, an ideal model M satisfies
that for every Xt ∈ X there exist µX , σX ∈ R such that:

σtM(Xt) + µt = Yt.

We correct the model’s outputs to actual depth estimates in the following way. First, we assume that
we are given the ground truth depth of a small set of pixels. Then, we use this information to estimate
the scale and shift: when Xt is revealed, we uniformly choose 200 pixels of it and assume that their
depth is given along with Xt. Next, we obtain the learning model’s output M(Xt) and apply least
squares polynomial fitting to compute the estimated scale µ̂t and shift σ̂t. Finally, we produce the
following depth estimate:

Ŷt = σ̂tMt(Xt) + µ̂t. (11)
Throughout this paper, we consider the quantity in (11) as the output of the depth model M.

We utilize the sparse ground truth depth map to correct the estimates of the uncertainty heuristics as
well. Recall that the residual heuristic from Section B.2.2 produces an estimate r̂(Xt) for the residual
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|Mm,n(Xt)−Yt|, where M(Xt) is the scaled model’s prediction. We compute the scale and shift for
the residual’s prediction via polynomial fitting, and output the scaled residual, as in (11). Similarly,
we correct the previous residuals heuristic defined in Section B.2.3 by re-scaling the positive and
negative residuals.

Another important technical detail is dealing with invalid pixels. Invalid pixels are pixels with depth
that is too small (below 10−8), or pixels that are padded to the image. We do not consider these pixels
for updating the calibration scheme or for evaluating the methods’ performance. For instance, the
image coverage rate is practically the coverage rate over all valid pixels in a given image.

Lastly, throughout the depth prediction experiments we used the following formulation of the
exponential stretching function for Rolling RC:

φexp.(x) =


ex − 1, x > 0.1,

x, −0.1 ≤ x ≤ 0.1,

−e−x + 1, x < −0.1.

Notice that this stretching function is the identity function around 0, and therefore it updates φ(θt)
gently when the calibration is mild (θt is close to 0), and faster (exponentially) as the calibration is
more aggressive (θt is away from zero).

C.3 THE CALIBRATION’S HYPERPARAMETERS

C.3.1 THE BOUNDS m,M

the lower and upper bounds–m and M are predefined constants serve as safeguards against extreme
situations where the data change adversarially over time. In such extreme cases, these bounds allow
controlling the coverage: once θ exceeds the upper bound we return the infinite interval (the full
label space) and once it exceeds the lower bound we return the empty set. By outputting the full
label space, we can guarantee to control the risk at any user-specified level, as the full label space
is assumed to attain loss lower than the nominal level. In practice, however, we do not expect a
reasonable predictive model to reach the safeguard induced by m and M . In fact, in our experiments,
we set m = −9999, and M = 9999 to be extremely large values relative to the scale of Y , and the
coverage we obtained is exactly 90%.

For classification problems, we can set the bounds to be (0, 1), similarly to ACI. For regression
problems, it depends on the interval constructing function f . If the intervals are constructed in the
quantile scale, according to Section F of the main text, we can set the bounds to be (0, 1) since θ
is bounded in this range, as in ACI. If the intervals are constructed in the Y scale, according to
Section 3.2 of the main text, we can set them to be 100 times the difference between the lowest and
highest values of the response variables in the training data.

C.3.2 THE INITIAL VALUE OF θ

The recommended way to set the initial value of θ depends on the design of the interval constructing
function f : for example, for the interval constructing function in Y scale, presented in Section 3.2
in the main text, we set the initial θ to zero as this is the right choice for a model that correctly
estimates the conditional quantiles. If the model is inaccurate, θ will be updated over time, in a way
that guarantees that the desired long-range coverage will be achieved.

C.3.3 THE LEARNING RATE γ

In this section, we analyze the effect of the learning rate γ on the performance of the calibration
scheme. Figure 6 presents the results of our Rolling RC with a linear stretching function applied
with different step-size γ on the synthetic data described in Section C.6.1 of the main manuscript.
We choose the linear stretching instead of the exponential one to better isolate the effect of γ on the
performance. Following that figure, observe that by increasing γ we increase the adaptivity of the
method to changes in the distribution of the data, as indicated by the MSL. Recall that (i) the lower
the MSL the smaller the average streak of miscoverage events; and (ii) the MSL for the ideal model
is ≈ 1.11. On the other hand, the improvement in MSL comes at the cost of increasing the intervals’
lengths: observe how the largest γ results in too conservative intervals, as their MSL is equal to 1.
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To set a proper value for γ in regression problems, we suggest evaluating the pinball loss of the
calibrated intervals, using a validation set. With this approach, one can choose the value of γ that
yields the smallest loss. We note that our method is guaranteed to attain valid coverage for any choice
of γ, so the trade-off here is between the intervals’ lengths and faster adaptivity to distributional
shifts.

Figure 6: Rolling RC with linear stretching applied to control the 0-1 loss at level r = 10% with
different learning rates on the synthetic described in Section C.6.1.

C.4 THE HYPER-PARAMETERS FOR THE STRETCHING FUNCTIONS

The ‘score adaptive’ φ function has three hyper-parameters, and the ‘error adaptive’ has four. Choos-
ing them wisely greatly affects the performance of the method. To do so, we used SMAC3 (Lindauer
et al., 2022), which is a hyper-parameter tuning library written in python. We let it find a combination
of βscore ∈ [0.01, 0.4], βloss ∈ [0.1, 0.2] that minimizes the pinball loss (or to be exact, the average of
the pinball losses of the 0.95 and 0.05 quantiles), with runcount-limit of 40. We chose βlow, βhigh to
be −∆mean,+∆mean (respectively) where:

∆mean =
1

|Ival|
∑
t∈Ival

|Yt − Yt−1|,

where Ival are indices 5001− 8000. The rationale behind this choice is that we want the clipping to
be on the scale of an average change in the intervals’ lengths.

C.5 MACHINE’S SPEC

The resources used for the experiments are:

• CPU: Intel(R) Xeon(R) E5-2650 v4.

• GPU: Nvidia titanx, 1080ti, 2080ti.

• OS: Ubuntu 18.04.

C.6 DATA SETS DETAILS

C.6.1 SYNTHETIC DATA SET

In this section, we define a synthetic data set that we use in our ablation study. First, we define a
group indication vector, denoted as gt:

g = 1m1 · 2m2 · 3m3 · 4m4 ...
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Table 1: Hyperparameters tested for each data set

Parameter Options

f1 - LSTM input layers [32], [32, 64], [32, 64, 128]
f2 -LSTM layers [64], [128]

f3 -LSTM output layers [32], [64, 32]
learning rate 10−4, 5 · 10−4

where wn is a vector of the number w repeated n times, · is a concatenation of two vectors, mi ∼
N (500, 102) and N (µ, σ2) is the normal distribution with mean µ and variance σ2. In words, each
group lasts for approximately 500 time steps, and the vector is a concatenation of the group’s indexes.
The generation of the feature vectors and the response variable is done in the following way:

β̂i ∼ Uniform(0, 1)p,

βi =
β̂i

∥β̂i∥1
,

ωi =

{
N (20, 10), gt ≡ 0 mod 2,

1, otherwise,
,

Xt ∼ Uniform(0, 1)5,

εt ∼ N (0, 1),

Yt =
1

2
Yt−1 + ω2

gt |β
T
gtXt|+ 2 sin(2Xt,1 · εt),

where Uniform(a, b) is a uniform distribution on the interval (a, b).

C.6.2 REAL DATA SETS

In addition to the features given in the raw data set, we added for each sample the day, month, year,
hours, minutes, and the day of the week. Table 2 presents the number of samples in each data set, the
number of samples we used in the quantile regression experiments 4.1.2, and the dimension of the
feature vector.

Table 2: Information about the real data sets.

Data Set Total Number of Samples Number of Used Samples Feature Dimension

power (Power) 52416 20000 11

energy (Energy) 19735 20000 33

traffic (Traffic) 48204 20000 12

wind (Wind) 385565 20000 6

prices (Prices) 34895 20000 61

D ADDITIONAL EXPERIMENTS

D.1 SINGLE RESPONSE QUANTILE REGRESSION

D.1.1 ABLATION STUDY ON THE STRETCHING FUNCTION

In this section, we evaluate Rolling RC in the regression setting for different stretching functions.
We follow the procedure described in Section 3.2 and use the following stretching functions:

None.
φ(x) = x
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Exponential.

φ(x) =

{
ex − 1, x > 0,

−e−x + 1, x ≤ 0,

Score adaptive. The following stretching function makes a larger update to θt the farther the test
Yt from the interval’s boundaries. This is in contrast with the exponential function described above,
which does not take into account the quality of the constructed interval. More formally, denote the
CQR non-conformity score (Romano et al., 2019) by

st = max{Mt(Xt, α/2)− Yt, Yt −Mt(Xt, 1− α/2)},

which measures the signed distance of Yt from the its closest boundary. Next, define

φt(θ) = θ + λscore
t , where λscore

t = clip(λscore
t−1 − βscore · st−1, β

low, βhigh),

where βscore, βlow and βhigh are hyperparameters. Similarly to the ‘error adaptive’ stretching function
presented in Section 3.2.1, the clipping function is used to restrain the effect of an outlier Yt that is
far from the boundaries.

Error adaptive. By adding awareness of previous points’ loss to the ‘score adaptive’ stretching, we
forge a stretching function that is aware of both the error margin and the constructed intervals’ loss:

φt(θ) = θ + λerror
t , where λerror

t = clip(λerror
t−1 − βscore · st−1 · exp

{
βloss · |ℓt−1 − r|

}
, βlow, βhigh).

Figure 7 displays the performance of Rolling RC aiming to control coverage rate at level 1−α =
90% with the stretching functions described above, and Figure 8 presents the results of Rolling
RC applied to control the MC risk at level α/(1− α) = 1/9. Following these figures, we can see that
Rolling RC with each stretching function performs well on most of the metrics on most of the
data sets.

Although the ‘no stretching’ and the ‘exponential stretching’ functions converge faster to the desired
risk level, it is clear from the results that the ‘score adaptive’ and the ‘error adaptive’ stretching
functions construct narrower intervals. Moreover, the ‘error adaptive’ approach is superior in several
terms:

• It constructs the shortest intervals.

• It achieves MSL that is closer to the ideal level 1.111..., which means that consecutive
miscoverage events are less likely to occur (see Appendix E.1).

• It achieves MC that is closer to the desired level 0.111... when aiming to control the coverage
rate, and its coverage rate is closer to 90% when aiming to control the MC risk level, which
is a desired outcome (see Appendix E.2).

• Rolling RC with ‘error adaptive’ stretching performs similarly to the competitive stretch-
ings in terms of ∆Coverage.

D.1.2 CONSTRUCTING UNCERTAINTY SETS WITH A CALIBRATION SET

In this section, we analyze an instantiation of ACI (Gibbs & Candes, 2021), which we refer to as
calibration with cal that constructs uncertainty sets with a controlled miscoverage rate
using a calibration set. It is more out-of-the-box because it allows the user to take any conformal
score function from the conformal prediction literature to get a confidence set function f . Many
conformal scores have been developed and extensively studied, so this approach directly inherits all
of the progress made on this topic. calibration with cal uses calibration points, but does
not hold out a large block. Rather, previous points are simultaneously used both for calibration and
model fitting.

Turning to the details, denote by S(Mt(Xt), Yt) ∈ R a non-conformity score function that takes
as an input the model’s prediction Mt(Xt) at time t and the corresponding label Yt, and returns
a measure for the model’s goodness-of-fit or prediction error. Here, the convention is that smaller
scores imply a better fit. For instance, adopting the same notations from (6), the quantile regression
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Figure 7: Performance of Rolling RC on real data sets, aiming to control the coverage rate at level
1− α = 90%. The length of the prediction intervals is scaled per data set by the average length of
the constructed intervals. Results are evaluated on 20 random initializations of the predictive model.
The ∆Coverage metric is scaled between 0 to 100.

score presented in (Romano et al., 2019) are given by S(Mt(Xt), Yt) = max{Mt(Xt, α/2) −
Yt, Yt −Mt(Xt, 1− α/2)}. Next, define the prediction set constructing function in (4) as:

f(Xt, θt,Mt) = {y ∈ Y : S(Mt(Xt), y) ≤ Q1+θt(Scal)}, (12)

where Scal = {S(Mt′(Xt′), Yt′) : t′ = t − n, . . . , t − 1} is a set containing the n most recent
non-conformity scores. The function Q1+θt(Scal) returns the (1 + θt)-th empirical quantile of the
scores in Scal, being the ⌈(1 + θt)(n + 1)⌉ largest element in that set. Here, −1 ≤ θt ≤ 0 is the
calibration parameter we tune recursively, as in (5). The reason for having the negative sign, is to
form larger prediction sets as θ increases. In plain words, f in (12) returns all the candidate target
values y for the test label, whose score S(Mt(Xt), y) is smaller than (1 + θt)× 100% of the scores
in Scal, which are evaluated on truly labeled historical data S(Mt′(Xt′), Yt′). As such, the size of
the set in (12) gets smaller (larger) as 1 + θt gets smaller (larger).

For reference, calibration with cal procedure is summarized in Algorithm 2. The reason
for this method’s name is to emphasize that we now use calibration scores to formulate the prediction
set function f . In fact, the coverage guarantee of calibration with cal follows directly from
Theorem 1 for f(Xt, θt,Mt) defined in (12).

We run Rolling RC with either ‘error adaptive’ stretching and without stretching, as described in
Section 3.2.1, and calibration with cal, as presented in Algorithm 2 on the real data sets
detailed in Appendix C.6.2. Figure 9 summarizes the results, showing that all methods attain the
desired coverage level; this is guaranteed by Theorem 1. This figure also shows that Rolling RC
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Figure 8: Performance of Rolling RC on real data sets, where we aim to control the MC risk at
level α/(1− α) = 1/9. The length of the prediction intervals is scaled per data set by the average
length of the constructed intervals. Results are evaluated on 20 random initializations of the predictive
model. The ∆Coverage metric is scaled between 0 to 100.

with ‘error adaptive’ stretching constructs the narrowest intervals while attaining the best conditional
coverage metrics. Furthermore, one can see that even without stretching, Rolling RC performs
better than calibration with cal, as indicated by the intervals’ lengths and the conditional
coverage metrics.

D.2 UNCERTAINTY QUANTIFICATION FOR ONLINE DEPTH ESTIMATION

In this section we analyze the performance of the uncertainty quantification heuristics described
in Section 3.2.1. We follow the experimental protocol explained in Section C.2.4, and display the
results in Figure 10. This figure shows that all heuristics attain the nominal image coverage level, as
guaranteed by Theorem 1. Furthermore, the figure suggests that estimating the current residual with
the five most recent ones outperforms the baseline constant technique, while estimating the residual
with a neural network, does not, as indicated by the average length and center coverage metrics. We
propose two possible explanations for this phenomenon. First, since the residual model’s architecture
is huge, it may require further offline fitting, on a larger data set. For comparison, we trained it for
60 epochs on 6000 samples, while the base depth prediction model, LeReS Yin et al. (2021), was
trained over 300k samples. Second, since one can extract a depth estimate from a residual estimate,
the problem of estimating the residual r is equivalent to estimating the depth:

Ŷt = r(Xt) +M(Xt).
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Algorithm 2 calibration with cal

Input:
Data {(Xt, Yt)}Tt=1 ⊆ X × Y , given as a stream, miscoverage level α ∈ (0, 1), a score function
S, a calibration set size n2, a step size γ > 0, and an online learning model M.

Process:
1: Initialize α0 = α and a set of the previous conformity scores: Scal = ∅.
2: for t = 1, ..., T do
3: Construct a prediction set for the new point Xt:

ĈWC
t (Xt) = {y ∈ Y : S(Mt(Xt), y) ≤ Q1−αt

(Scal)}.

4: Obtain Yt.
5: Compute the current conformity score: st = S(Mt(Xt), Yt).
6: Add the current conformity score to the set: Scal = Scal ∪ {st}.
7: Remove the oldest calibration point from the set: Scal = Scal − {st−n2}.
8: Compute errt = 1{Yt /∈ ĈWC

t (Xt)}.
9: Update αt+1 = αt + γ(α− errt).

10: Fit the model Mt on (Xt, Yt) and obtain the updated model Mt+1.
11: end for
Output:

Uncertainty sets ĈWC
t (Xt) for each time step t ∈ {1, ..., T}.

Therefore, the fact that estimating a depth map is extremely difficult, as explained in Section C.2.6,
turns the task of estimating the residual to be difficult as well. As a consequence, the residual
estimates may be inaccurate.

D.3 MULTIPLE RISKS CONTROL: ANALYZING THE AGGREGATION FUNCTIONS

In this section we examine two options for aggregating the vector θt into a scalar through λt:

Mean. λmean
t = 1

2 (φ(θ
1
t ) + φ(θ2t )). Taking the average of the entries compromises between the

different risks and results in intervals that are not too conservative and not too liberal.

Max. λmax
t = max {φ(θ1t ), φ(θ

2
t )}. Since the maximal coordinate corresponds to the most conser-

vative loss, the constructed intervals may be too conservative.

The third possible aggregation is the minimum function λmin
t = min(θt) that consistently follows

the minimal entry in θt. Since the minimal coordinate in θt corresponds to the most liberal loss,
this approach is likely to result in intervals that are too liberal, as it ignores the conservative losses.
Therefore, we do not examine this aggregation in our experiments.

We follow the experimental setup described in Section 4.2 and display in Figure 11 the performance
of the mean and max aggregation for θt. This figure shows that the two methods perform similarly,
and using mean aggregation leads to slightly narrower intervals compared to the mean aggregation
approach.

E TIME-SERIES CONDITIONAL COVERAGE METRICS

E.1 AVERAGE MISCOVERAGE STREAK LENGTH

Following Section 4.1.1, recall that the miscoverage streak length of a series of intervals {Ĉt(Xt)}T1

T0

is defined as:
MSL :=

1

|I|
∑
t∈I

min{i : Yt+i ∈ Ĉt+i(Xt+i) or t = T1},

where I is a set containing the starting times of all miscoverage streaks:

I =
{
t ∈ [T0, T1] :

(
t = T0 or Yt−1 ∈ Ĉt−1(xt−1)

)
and Yt /∈ Ĉt(Xt)

}
.
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Figure 9: Performance of calibration with cal (Algorithm 2) (blue), Rolling RC with-
out stretching (orange), and Rolling RC with ‘error adaptive’ stretching (green). Results are
evaluated on 20 random initializations of the predictive model. The ∆Coverage metric is scaled
between 0 to 100.

Above, [T0, T1] is the set of all integers between T0 and T1.

To clarify this definition of the MSL, we now analyze the MSL in two concrete examples. Denote by
“1” a coverage event and by “0” a miscoverage event, and consider a sequence of 15 observations. A
method that results in the following coverage sequence:

1, 1, 1, 1, 1, 1, 0, 1, 0,0, 1, 1, 1, 1, 1,

has an MSL = (2 + 1)/2 = 1.5, and coverage = 12/15 = 80%. By contrast, a method that results in
the following sequence

1, 1, 1, 1, 1, 1, 1, 1, 1, 0,0,0,
has the same average coverage of 80% but much larger MSL = 3/1 = 3. This emphasizes the role of
MSL: while the two methods cover the response in 12 out of 15 events, the second is inferior as it has,
on average, longer streaks of miscoverage events.

We now compute the MSL of intervals constructed by the true conditional quantiles {C(Xt)}T1

t=T0
.

By construction, these intervals satisfy:

P(Yt ∈ C(Xt) | Xt = xt) = 1− α.

Therefore, Zt = min{i : yt+i ∈ Ĉ(Xt+i) or t = T1} is a geometric random variable with success
probability 1 − α. The average miscoverage streak length of the true quantiles is the mean of Zt,
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Figure 10: Performance of Rolling RC applied to control the image coverage rate with the
following uncertainty quantification heuristics that are described in Section B.2: ‘constant value’
(blue), ‘magnitude of the residual’ (orange), ‘previous residuals’ (green) and ‘previous residuals with
optical flow registration’ (red). All methods use the exponential stretching function introduced in
Section 3.2.1.

Figure 11: Performance of Rolling RC applied to control both ‘image miscoverage’ and ‘center
failure’ risks. All methods use the exponential stretching function introduced in Section 3.2.1.

which is:
MSL =

1

1− α
≈

α=0.1
1.111.

Therefore, having MSL = 1 is not necessarily equivalent to an optimal conditional coverage, as it
indicates for undesired anti-correlation between two consecutive time steps: after a miscoverage event
follows a coverage event with probability one. Consequently, we would desire to have MSL = 1

1−α ,
which is the MSL attained by the true conditional quantiles.

E.2 THE MISCOVERAGE COUNTER

How should one choose the risk level for the MC risk? If we aim at 1 − α = 90% coverage, we
argue that the right choice is r = α/(1− α) = 1/9. To see this, suppose we have an ideal model
that attains a perfect coverage rate 1− α conditional on t. In this case, the coverage events are i.i.d.
realizations of Bernoulli experiments and so MC acts as a geometric random variable that counts
the number of failures until reaching a success, where the success probability is 1− α. Hence, we
define the MC risk level r to be the expected value of such a geometric random variable, which is
α/(1− α). By Proposition 1 we know that if we control MC at level r = 1/9, the coverage will be
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at least 1 − α ≈ 88.89%, where an ideal model will reach an exact 90% coverage. This stands in
striking contrast with a method that only controls the coverage metric, as the constructed prediction
intervals may result in a large MC risk.

Note that Theorem 1 assumes that the loss is bounded, while MC is not bounded. To guarantee that
Rolling RC will converge to the desired risk level of MC, we can use the following loss instead:
MC′ = min {MC, B} for some large B ∈ N. In the experiments, however, we used the regular MC as
we observed that its value does not get too high in practice.

E.3 ∆COVERAGE

The time-series data sets we use in the experiments in Section 4.1.2 include the day of the week as an
element in the feature vector. Therefore, we assess the violation of day-stratified coverage (Feldman
et al., 2021; Zaffran et al., 2022), as a proxy for conditional coverage. That is, we measure the average
deviation of the coverage on each day of the week from the nominal coverage level. Formally, given
a series of intervals {Ĉt(Xt)}T1

T0
, their ∆Coverage is defined as:

∆Coverage =
1

7

∑
i∈{1,2,...,7}

∣∣∣∣∣ 1

|Di|
∑
t∈Di

1Yt∈Ĉt(Xt)
− (1− α)

∣∣∣∣∣,
where Di is a set of samples that belong to the i-th day of the week. Since a lower value of this metric
indicates for a better conditional coverage, we desire to have a minimal ∆Coverage.

F CALIBRATING ON THE QUANTILE SCALE IN REGRESSION TASKS

As an alternative for (6), where the calibration coefficient φ(θt) is added to each of the interval
endpoints, one can modify the interval’s length by tuning the raw miscoverage level τt = φ(θt)
requested from the model:

f(Xt, θt,Mt) = [Mt(Xt, τt/2), Mt(Xt, 1− τt/2)].

This formulation is inspired by the work of (Chernozhukov et al., 2021) that suggested tuning the
nominal miscoverage level τ , based on a calibration set. In contrast to (6), where we estimate only
the lower α/2 and upper 1− α/2 conditional quantiles, here, we need to estimate all the quantiles
simultaneously. To accomplish this, one can apply the methods proposed in (Chung et al., 2021;
Park et al., 2021; Sesia & Romano, 2021). Turning to the choice of the stretching function φ: the
straightforward option is to set φ(θ) = −τ , where θt is bounded in the range: −1 ≤ θt ≤ 0. The
reason for having the negative sign in φ, is to form larger prediction sets (resulted by smaller values
of τ ) as θ increases.

G CONSTRUCTING PREDICTION SETS FOR CLASSIFICATION TASKS

Consider a multi-class classification problem, where the target variable is discrete and unordered
y ∈ Y = {1, 2, ...,K}. Suppose we are handed a classifier that estimates the conditional probability
of PYt|Xt

(Yt = y | Xt = x) for each class y, i.e., Mt(Xt, y) ∈ [0, 1] and
∑

y∈Y Mt(Xt, y) = 1.
With this in place, we follow (Papadopoulos et al., 2002) and define the prediction set constructing
function as:

f(Xt, θt,Mt) = {y : Mt(Xt, y) ≥ φ(θt)} , (13)
where one can choose φ(x) = −x, for instance. While this procedure is guaranteed to attain the
pre-specified risk level r, according to Theorem 1, the function f in (13) may have unbalanced
coverage across different sub-populations in the data (Angelopoulos et al., 2021b; Cauchois et al.,
2021). To overcome this, we recommend using the function f presented next, which is capable of
constructing prediction sets that better adapt to the underlying uncertainty. The idea, inspired by the
work of (Angelopoulos et al., 2021b; Romano et al., 2020), is to initialize an empty prediction set
and add class labels to it, ordered by scores produced by the model. We keep adding class labels until
the total score exceeds 1− α. Formally, the confidence set function is defined as:

f(Xt, θt,Mt) = {π1, ..., πk}, where k = inf

k :

k∑
j=1

(Mt(Xt, πj)) ≥ 1− φ(θt)

 ,
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and π is the permutation of {1, 2, ...K} sorted by the scores {Mt(Xt, y) : t ∈ Y} from the highest
to lowest. As for the stretching function φ, we recommend using φ(x) = x.
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