
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FUNCTIONAL GRADIENTS AND GENERALIZATIONS
FOR TRANSFORMER IN-CONTEXT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We examine Transformer-based in-context learning for contextual data of the form
{(xi, yi)}i=1,N and query xN+1, where xi ∈ Rd and yi ∼ p(Y |f(xi)), with
f(x) a latent function. This is analyzed from the perspective of functional gra-
dient descent for f(x). We initially perform this analysis from the perspective
of a reproducing kernel Hilbert space (RKHS), from which an alternative kernel-
averaging perspective is manifested. This leads to a generalization, allowing an
interpretation of softmax attention from the perspective of the Nadaraya-Watson
kernel-weighted average. We show that a single attention layer may be designed
to exactly implement a functional-gradient step in this setting (for RKHS latent
functions), extending prior work for the special case of real-valued Y and Gaus-
sian p(Y |f(x)). This is also generalized for softmax attention and non-RKHS
underlying f(x). Though our results hold in a general setting, we focus on cate-
gorical Y with p(Y |f(x)) modeled as a generalized linear model (corresponding
specifically to softmax probability). Multi-layered extensions are developed for
this case, and through extensive experimentation we demonstrate that for categor-
ical Y a single-layer model is often highly effective for in-context learning. We
also demonstrate these ideas for real-world data, considering in-context classifica-
tion of ImageNet data, showing the broad applicability of our theory beyond the
commonly-studied settings of synthetic regression data.

1 INTRODUCTION

There has been significant interest recently in understanding the few-shot-learning capabilities of
Transformers (von Oswald et al., 2023; Cheng et al., 2024; Ahn et al., 2023; Akyurek et al., 2022;
Garg et al., 2022; Mahankali et al., 2023; Schlag et al., 2021; Zhang et al., 2023). This has been
in part motivated by the impressive few-shot-learning capabilities of large language models (LLMs)
(Brown et al., 2020). Much of that prior work has focused on the self-attention component in Trans-
formers and its application to modeling real-valued functional outputs conditioned on covariates
(Ahn et al., 2024; von Oswald et al., 2023; Ahn et al., 2023; Schlag et al., 2021), rather than com-
plete Transformer layers (self-attention followed by a feedforward layer with skip connection). Fur-
ther, there has been little consideration of categorical observations, which are relevant for token
prediction in language modeling.

Few-shot learning is here understood as contextual learning with data {C(l)}l=1,L, where C(l) =

{(x(l)
i , y

(l)
i)}i=1,N+1, x(l)

i ∈ Rd and y
(l)
i is an outcome (usually assumed real, but here extended

to categorical). The contextual data {C(l)}l=1,L are used to learn a model, which employs the con-
text {(x(l)

i , y
(l)
i)}i=1,N to constitute a prediction of y(l)N+1 (or properties thereof), for corresponding

query x
(l)
N+1. Once such a model is learned, it is applied to new contextual data C(L+1) for which

the desired outcome y
(L+1)
N+1 is not available, thus it needs to be inferred.

There have been two principal approaches to this problem. One direction assumes a parametric
model for the outcomes, and using {C(l)}l=1,L seeks to learn a good initialization point for these
parameters. For new C(L+1), the contextual data {(x(L+1)

i , y
(L+1)
i)}i=1,N are used for model-

parameter refinement from the aforementioned initialization, and with these refined parameters
y
(L+1)
N+1 is inferred for input x(L+1)

N+1 (Finn et al., 2017; Nicholand et al., 2018). The alternative

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

approach is to use {C(l)}l=1,L to learn a meta model, that is applied to C(L+1) with no parameter
fine-tuning (Schmidhuber, 1987; Santoro et al., 2016).

The Transformer has been recognized as a few-shot learner of the latter type, i.e., a meta learner.
Specifically, the Transformer learns to infer a latent function f

(l)
i (x) linked specifically to the real-

izations {f (l)(xi)}i=1,N+1, and based on the contextual data {(x(l)
i , y

(l)
i }i=1,N (von Oswald et al.,

2023; Ahn et al., 2023; Cheng et al., 2024). It is usually assumed within the Transformer design
that the latent function f (l)(x) resides in a particular functional class. For example, f (l)(x) has been
assumed to be a linear model (von Oswald et al., 2023; Ahn et al., 2023; Mahankali et al., 2023), or
more generally, it may reside in a reproducing kernel Hilbert space (RKHS) (Cheng et al., 2024).

Existing work studying the Transformer as an in-context learner has focused on several comple-
mentary directions. For instance, Garg et al. (2022) examined the functional classes admitted by
Transformers, Muller et al. (2022) took a Bayesian analysis perspective, and others considered
Transformers as functional few-shot learners (von Oswald et al., 2023; Ahn et al., 2023; Cheng
et al., 2024). However, these studies have simplified the assumptions about the functional class
and model architectures in favor of stronger theoretical foundations. Prominent examples include
reducing the Transformer to linear attention layers (Schlag et al., 2021; von Oswald et al., 2023;
Ahn et al., 2023; 2024), thus limiting the functional class to linear models (Zhang et al., 2023; von
Oswald et al., 2023; Ahn et al., 2023). More recently, these ideas have been leveraged to expand
the functional class to smooth functions in an RKHS with associated kernel attention (Cheng et al.,
2024). These studies have provided important insights, but they have limitations in the context of
some Transformer properties and applications. In this work we seek to build upon the above impor-
tant contributions.

• We introduce an analytical framework for in-context learning that is applicable to settings for
which the observations may be modeled as draws from an underlying model p(Y |f (l)(x)), where
Y may take many forms. We connect the case of real Y and Gaussian p(Y |f (l)(x)) to prior
work (Schlag et al., 2021; von Oswald et al., 2023; Ahn et al., 2023; 2024), while focusing on
categorical Y and softmax p(Y |f (l)(x)).

• We show that the Transformer’s forward pass can be interpreted as taking steps of kernel averaged
functional gradient descent (Lemma 1 and Section 3). This crucially allows us to analyze the
softmax attention mechanism (Proposition 1).

• We show that one attention layer may be designed to exactly perform a step along the steepest-
descent direction connected to the functional gradient for categorical Y and softmax model
p(Y |f(x)) (Sections 3 and 4). This extends prior work that considered real Y and Gaussian
p(Y |f(x)) (Mahankali et al., 2023).

• We analyze function-space gradient descent dynamics when the gradient-operator is nonlinear,
as it is for categorical and count Y (and likely other cases). This highlights a potential role for a
feedforward (FF) element with skip connections (Section 4).

• We examine our theoretical results in a series of experiments on both synthetic and real-world
data (Section 5). Notably, we present a Transformer-based in-context classifier for the ImageNet
dataset to demonstrate its efficacy and scalability.

2 IN-CONTEXT INFERENCE OF A LATENT FUNCTION

Assume we are given contextual data C = {(xi, yi)}i=1,N , where xi ∈ Rd are covariates and
yi is the outcome of interest. As discussed below, yi may take different forms. The goal is the
development of a meta model (Schmidhuber, 1987; Santoro et al., 2016) capable of predicting a
desired property of unobserved random variable YN+1 given context C and an associated query
xN+1. For example, one may desire the expectation E(YN+1|X = xN+1) (von Oswald et al., 2023;
Cheng et al., 2024; Ahn et al., 2023), and in other settings the distribution p(Y = yN+1|X = xN+1).
It is assumed that the probability of Y conditioned on X = x may be expressed as p(Y |f(x)), where
f(x) is a latent context-dependent function from a family F .

For training the meta learner, it is assumed we are given L examples of contextual data, {C(l)}l=1,L,
where C(l) = {(x(l)

i , y
(l)
i)}i=1,N+1, and for each there is an associated latent function f (l)(x) ∈ F .

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

For notational simplicity, we assume N is the same for each C(l), but that need not be the case
(this issue is discussed in detail below). When training with each C(l), {(x(l)

i , y
(l)
i)}i=1,N are used

as context, and (x
(l)
N+1, y

(l)
N+1) are used as the query-outcome pair for which predictions are de-

sired. After the meta learner is trained, it is to make a prediction for query x
(L+1)
N+1 connected

to new context-dependent data C(L+1) = {(x(L+1)
i , y

(L+1)
i)}i=1,N , with new associated function

f (L+1)(x) ∈ F , and for which y
(L+1)
N+1 is unknown. It is desired that such predictions are made

without model-parameter refinement (Schmidhuber, 1987; Santoro et al., 2016); distinct from meth-
ods like MAML, which fine-tune model parameters given new contextual data (Finn et al., 2017;
Nicholand et al., 2018).

For real Y , one may consider p(Y |f(x)) = N (f(x), σ2I), where the output of f(x) is a vec-
tor and I is the identity matrix, both of which have size defined by the dimension of Y . Often
interest is in E(Y |X = x), and hence the goal is to infer f(x). As discussed below, in this
case σ2 need not be inferred explicitly. For categorical Y , a softmax model p(Y = y|f(x)) =

exp
(
wT

y f(x)
)
/
∑C

c=1 exp
(
wT

c f(x)
)

is typically employed for C categories y ∈ {1, . . . , C}, and
where {wc}c=1,C represent associated embedding vectors (Vaswani et al., 2017).

For the categorical case, let wc define column c of embedding matrix W ∈ Rd′×C . Often column
C is set to an all-zeros vector, and category C is a reference. In one design of W , d′ = C − 1 and
columns c = 1, . . . , C−1 are set to one-hot vectors (see Sec. C.4.1 in the Appendix of Akyurek et al.
(2022), with the 1 positioned at component c in column c. In this case the C−1 components of f(x)
are used directly within the C-category softmax, and logistic regression is manifested when C = 2.
For large C, e.g., in a language model, for which C represents the number of tokens (Vaswani et al.,
2017), the above design may be expensive. Hence, the second type of design for W sets d′ < C − 1

(often d′ ≪ C−1) and for columns c = 1, . . . , C−1 each wc ∈ Rd′
is a learned embedding vector.

We begin by assuming F corresponds to an RKHS.

Lemma 1 (RKHS Steepest Descent.) Let κ(·, ·) denote a kernel, and let F be its associated re-
producing kernel Hilbert space (RKHS). Given data {(xi, yi)}i=1,N , consider the log-likelihood
L(f) = 1

N

∑N
j=1 log p(Y = yj |f(xj)). Let {fk}k=0,1,2... denote the gradient descent sequence of

L(f) in F with respect to the RKHS norm, with stepsize α/N . Then

fk+1(x) = fk(x) +
α

N

N∑
j=1

∇f log p(Y = yj |fk(xj))κ(xj , x) , (1)

where∇f log p(Y = yj |fk(xj)) is the gradient wrt the components of f(x), evaluated at fk(x).

The lemma is proven in the Appendix, where background material on RKHS gradient descent is also
reviewed. The expression 1

N

∑N
j=1∇f log p(Y = yj |fk(xj))κ(xj , x), which is the overall gradient

responsible for the update of f(x) in (1), may be interpreted as a kernel-weighted average (Hastie
et al., 2009) of the N isolated gradients∇f log p(Y = yj |fk(xj)). This interpretation of (1) will be
used below to motivate a generalization.

Lemma 1 is valid for any model for the observations of the form p(Y |f(x)), and special cases exist
in the literature for real Y and Gaussian p(Y |f(x)). Specifically, Ahn et al. (2024); von Oswald
et al. (2023); Ahn et al. (2023); Mahankali et al. (2023) consider a linear kernel κ(xj , xi) = xT

j xi,
while Cheng et al. (2024) generalized this to any valid kernel in RKHS. Here we generalize the
forms of Y that may be considered.

In particular, for real Y with Gaussian p(Y |f(x)) where f(x) is the mean and the covariance is σ2I ,
and for categorical Y with softmax p(Y |f(x)), we have

Real Y : ∇f log p(Y = yj |X = xj) = yj − fk(xj) , (2)
Categorical Y : ∇f log p(Y = yj |X = xj) = wyj

− E(wc)|fk(xj)
, (3)

where E(wc)|fk(xj)
is the expectation over the embedding vectors, using softmax probability based

on fk(xj). Equations (2), (3) and E(wc)|fk(xj)
are derived in the Appendix.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

From (2), note that for real Y the residual (error) yj − fk(xj) informs the update direction in the
gradient for refinement of fk(x), with the degree to which sample j informs the update for fk(x)
dictated by closeness in covariate space, quantified via the kernel κ(xj , xi). For categorical Y ,
wyj
− E(wc)|fk(xj)

plays an analogous role: as fk(xj) is more peaked (probable) for category yj ,
the expectation will be close to wyj , so wyj − E(wc)|fk(xj)

reflects a form of model error wrt the
contextual data, to which the model adapts at inference.

While below we will focus on categorical Y and make connections to real Y for which there is much
prior work, in the Appendix we also show that for count-valued Y modeled as Poisson[exp(f(x)],
the gradients similarly form a model error of the form yj − E(yj)|fk(xj), and learning consists of
pushing fk(xj) to make the expected counts consistent with observations.

Lemma 1 assumed that each component of vector function f(x) is within the RKHS family with
kernel κ(xj , xi). However, having arrived at this form, we note that the overall gradient for f(x)
is effectively a kernel-weighted average over isolated gradients {∇f log p(Y = yj |f(xj))}j=1,N

(Hastie et al., 2009). We now seek to employ this insight, and move beyond the assumption that
f(x) is in a RKHS.

Proposition 1 (Nadaraya-Watson Averaged Gradient Descent) Consider data {(xi, yi)}i=1,N

and assume that the yi are drawn from p(Y |f(xi)) for an underlying function f(x). The corre-
sponding Nadaraya-Watson average gradient, for a nonnegative kernel Kλ with parameter λ (which
here need not be positive semi-definite) is

fNW
k+1 (x) = fNW

k (x) + α

N∑
j=1

∇f log p(Y = yj |fNW
k (xj))

[
Kλ(xj , x)∑N

j′=1 Kλ(xj′ , x)

]
. (4)

This is a direct application of the Nadaraya–Watson kernel-weighted average (Nadaraya, 1964; Wat-
son, 1964; Hastie et al., 2009) to the sample-dependent gradients {∇f log p(Y = yj |f(xj))}j=1,N ,
without assumption on the form of f(x), yielding a generalization of (1). An important special case
is Kλ(xj , x) = exp(λxTxj) with λ > 0, and for which Kλ(xj , x)/

∑N
j′=1 Kλ(xj′ , x) corresponds

to softmax attention.

Note that in (4) there is no 1/N , as the average is manifested via the denominator in
Kλ(xj , x)/

∑N
j′=1 Kλ(xj′ , x), which is distinct from (1). This will be revisited in the experiments.

3 META-LEARNING MODEL CONSTRUCTION

Based on the understanding of functional gradients from above, we now examine the form of our
desired meta learner. We focus on multi-layered models, in which the importance of skip connec-
tions (He et al., 2015; Drozdzal et al., 2016) becomes evident. Additionally, in the remainder of the
paper we introduce the notation fi = f(xi) (and related usages will become evident below). We use
this notation to simplify the equations, and hope that this will not cause confusion with the RKHS
notation used earlier.

Let {h(ℓ)
i }i=1,N represent the hidden inputs to layer ℓ + 1, with {h(ℓ)

i }i=1,N output from layer ℓ
(the initial inputs correspond to ℓ = 0). The set {h(ℓ)

i }j=1,N is collectively analyzed at layer ℓ+ 1,
and at the output of layer ℓ + 1 are emitted {h(ℓ+1)

i }i=1,N . We will show in the next section that
h
(ℓ)
i has three sets of components corresponding to the covariates, function evaluations and gradient

information, but for now it suffices to assume that a subset of the components of h(ℓ)
i correspond

to the model of fi after ℓ layers, denoted f
(ℓ)
i , while other components of h(ℓ)

i play a role in the
computation of f (ℓ+1)

i .

With skip connections, the cumulative representation of f (ℓ+1)
i at the output of layer ℓ+1 is f (ℓ+1)

i =

f
(ℓ)
i +gθ(i; {h(ℓ)

j }j=1,N), where gθ(i; {h(ℓ)
j }j=1,N) denotes the output of the model at this layer for

representing fi (other parts of h(ℓ+1)
i may also be updated, in addition to f

(ℓ+1)
i , but we focus on

the latter as it is involved in the likelihood fit to the data). The model parameters are represented by

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

θ, and each layer will in general have different parameters (but the same model architecture). We
wish to examine desired properties of the meta learner composed of the models gθ(i; {h(ℓ)

j }j=1,N),
for performing effective inference of the latent fi given contextual data.

The log-likelihood of the data {(xi, yi)}i=1,N based on the output at layer ℓ+1 is
∑N

i=1 log p(Y =

yi|f (ℓ+1)
i). From a Taylor series expansion we have

N∑
i=1

log p(Y = yi|f (ℓ)
i + gθ(i; {h(ℓ)

j }j=1,N)) (5)

=

N∑
i=1

log p(Y = yi|f (ℓ)
i) +

N∑
i=1

[
∇fi

N∑
j=1

log p(Y = yj |f (ℓ)
j)
]T

gθ(i; {h(ℓ)
j′ }j′=1,N) + δ ,

where ∇fi

∑N
j=1 log p(Y = yj |f (ℓ)

j) is defined by the functional gradients from the previous sec-

tions: (i) from the RKHS perspective, it corresponds to
∑N

j=1∇f log p(Y = yj |f (ℓ)
j)κ(xj , xi),

and (ii) from the Nadaraya-Watson perspective it corresponds to
∑N

j=1∇f log p(Y =

yj |f (ℓ)
j)Kλ(xj , xi)/

∑N
j′=1 Kλ(xj′ , xi). In (5), δ represents higher-order terms, related to second

and higher-order gradients of
∑N

j=1 log p(Y = yj |f (ℓ)
j).

To first order, if we analyze each layer one-by-one as we proceed through inference of the latent
function (stepwise increase of ℓ), (5) indicates that each gθ(i; {h(ℓ)

j′ }j′=1,N) should approximate a

functional gradient step, i.e., gθ(i; {h(ℓ)
j′ }j′=1,N) ≈ α∇fi

∑N
j=1 log p(Y = yj |f (ℓ)

j), for some scalar
α > 0 (which typically will depend on layer ℓ). Hence, to first order, a series of layers may be viewed
as characteristic of multiple steps of functional gradient descent, assuming gθ(i; {h(ℓ)

j }j=1,N) is

designed to have a large inner product (alignment) with∇fi

∑N
j=1 log p(Y = yj |f (ℓ)

j).

As developed in Cheng et al. (2024); von Oswald et al. (2023); Ahn et al. (2023); Mahankali et al.
(2023), and summarized in the Appendix, for real Y and Gaussian p(Y |f(x)), attention networks
may be designed to implement each gθ(i; {h(ℓ)

j′ }j′=1,N) exactly as a functional gradient step. In
such a setup, each attention layer of a Transformer implements a step of functional gradient descent
on the model’s forward pass. However, when considering multiple layers, better performance can be
achieved by accounting for higher-order terms connected to δ in (5), yielding what has been termed
GD++ (von Oswald et al., 2023) and more generally, preconditioned functional gradient descent
(von Oswald et al., 2023; Ahn et al., 2023), also implemented in the Transformer’s forward pass
thus constituting the meta learner.

For categorical Y and softmax p(Y |f(x)), we show below that a one-layer model gθ(i; {h(0)
j }j=1,N)

can be represented by an attention layer to exactly implement one functional gradient step (which
is also true for real Y and Gaussian p(Y |f(x)) (von Oswald et al., 2023; Cheng et al., 2024; Ahn
et al., 2023; Akyurek et al., 2022; Garg et al., 2022; Mahankali et al., 2023; Schlag et al., 2021;
Zhang et al., 2023)). For single-layer models and general Y and p(Y |f(x)), the initial direction
of gθ(i; {h(0)

j }j=1,N) along which −∇fi

∑N
j=1 log p(Y = yj |f (0)

j) decreases fastest corresponds
to the functional gradient. In this sense, that direction may be viewed as optimal. However, the
appropriate size of this gradient step depends on the problem of interest, and it is learned based
on the contextual training data {C(l)}l=1,L. We demonstrate in Section 5 that a single layer of
attention (single functional-gradient step) typically yields effective results for categorical Y and
softmax p(Y |f(x)), with minimal improvement with further layers.

4 TRANSFORMER DESIGN FOR CATEGORICAL OBSERVATIONS

Single-layer of Attention, Exact Single Functional Gradient step A single layer of attention
may be designed to exactly implement one functional-gradient step, under the RKHS assumption
(connected to Lemma 1) or under the Nadaraya-Watson representation (connected to Proposition 1),
for real or categorical Y . Real Y has been considered in Cheng et al. (2024) for RKHS functions

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

f(x), and it is readily extended via Nadaraya-Watson to non-RKHS attention. We summarize this
setup in the Appendix. Here we focus on the case of categorical Y

Consider the encoding h
(0)
i = (xi, 0d′ , wyi

− 1
C

∑C
c=1 wc)

T for i = 1, . . . , N , and h
(0)
N+1 =

(xi, 02d′)T . This form of encoding is similar to that considered previously for real Y (see von
Oswald et al. (2023); Cheng et al. (2024) and the Appendix). Specifically, each h

(0)
i includes

the covariates xi as well as the initial corresponding functional gradient, the latter represented by
wyi
− 1

C

∑C
c=1 wc. Each fi is initialized as a d′-dimensional all-zeros vector (also done in von

Oswald et al. (2023) for real Y of vector dimension d′), represented by 0d′ in h
(0)
i .

The key/query decomposition is the same as for real Y (von Oswald et al., 2023; Cheng et al.,
2024), i.e., positions i = 1, . . . , N are used as keys, and all positions i = 1, . . . , N + 1 are used as
queries. Using widely used notation from the Transformer literature (Vaswani et al., 2017; Brown
et al., 2020; von Oswald et al., 2023; Cheng et al., 2024; Ahn et al., 2023; Akyurek et al., 2022;
Garg et al., 2022; Mahankali et al., 2023; Schlag et al., 2021; Zhang et al., 2023), for a single-layer
model, consider matrices WK = WQ designed such that WKh

(0)
i = (xi, 0d′+d)

T , and matrix WV

is designed such that WV h
(0)
i = (0d,

α
N [wyi

− 1
C

∑C
c=1 wc], 0d′)T . Finally, consider the matrix

P = Id+2d′ , where Id+2d′ is the corresponding identity matrix. The explicit forms of WK ,WQ,
WV and P are provided in the Appendix.

For query WQh
(0)
i , we implement the attention P

∑N
j=1 WV h

(0)
j κ(WQh

(0)
i ,WKh

(0)
j), as in Cheng

et al. (2024). This is added to h
(0)
i via the skip connection, yielding h

(1)
i = (xi, f

(1)
i , wyi −

1
C

∑C
c=1 wc)

T , with f
(1)
i = α

N

∑N
j=1(wyj − 1

C

∑C
c=1 wc)κ(xi, xj) corresponding to the func-

tional gradient (with a similar representation from the perspective of the Nadaraya–Watson kernel-
weighted average and softmax attention). At the output of this attention layer we specify a
d′ × (d + 2d′) matrix denoted as Z (and defined explicitly in the Appendix) acting at the output
for position N + 1 (a similar construct at the output has been used for real Y (von Oswald et al.,
2023)), selecting the desired latent vector from h

(1)
N+1 as f (1)

N+1 = Zh
(1)
N+1. Vector fN+1 is sent to

the softmax layer for the category probabilities. Such an output matrix Z applied at the output in
this manner for all models considered here.

Multi-Layered GD-motivated Transformer, Linear Approximation While for real Y the fj may
be updated as a sum of differential updates (see (8) in the Appendix), there is a nonlinear dependence
of E(wc)|

f
(ℓ)
i

on f
(ℓ)
i (via the softmax probability over categories). Our simplest approach for ad-

dressing this complexity considers an additive representation of the needed expectation, analogous
to real Y : E(wc)|

f
(ℓ)
i

=
∑ℓ−1

ℓ′=0 ∆
(ℓ′)
Ei

, where ∆(0)
Ei

= 1
C

∑C
c=1 wc. Further, we model ∆(ℓ)

Ei
for ℓ > 0

via the linear approximation as ∆(ℓ)
Ei

= B(ℓ)∆
(ℓ)
fi

, where ∆
(ℓ)
fi

is the differential update to the under-

lying function manifested by the attention layer: ∆
(ℓ′)
fi

= α
N

∑N
j=1[wyi

−
∑ℓ−1

ℓ′=0 ∆
(ℓ′)
Ei

]κ(xj , xi).

The term ∆
(ℓ)
fi

is updated using attention as in the previous section, via the same WQ, WK and WV

considered there (now used at all layers). In this approximation, there is an additional d′× d′ matrix
B(ℓ) to be learned at each layer.

While the matrices WK , WQ, WV are unchanged from above, P is modified slightly, to place ∆
(ℓ′)
fi

in a position to update the model of fi (with the additive skip connection), and the term −B(ℓ)

is multiplied with ∆
(ℓ)
fi

to yield the aforementioned approximation to the differential expectation,
which is added to the position of the expectation in the latent vector (again via skip connection). See
the Appendix for the detailed form of P (ℓ), and all attention matrices, omitted here for brevity.

Multi-Layered GD-motivated Transformer, Nonlinear Approximation We now consider a non-
linear Transformer block, with each block consisting of an attention layer, followed by identical
feedforward networks that operate individually on each of the vectors output from the attention layer.
This model is motivated by the goal of addressing the nonlinear dependence of f (ℓ)

i on E(wc)|
f
(ℓ)
i

without a linearization, and it yields a model closely linked with the original Transformer design
(Vaswani et al., 2017; Brown et al., 2020).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

We reuse the attention mechanism from above (WQ, WK , WV and P are unchanged), and from that
analysis the output from the first attention layer is h

(1)
i = (xi, f

(1)
i , wyi

− ∆
(0)
Ei

)T , where we use

the notation ∆
(ℓ)
Ei

from the previous subsection (which for ℓ = 0 corresponds to the average over
category embedding vectors).

We focus here on the first Transformer block, but the same construction is used at each layer. With
the feedforward element and an associated skip connection, we wish to add (0d+d′ ,−∆(1)

Ei
)T to the

output of the attention. This same type of differential update to the expectation was used above
under a linear approximation, and here we now consider a nonlinear representation.

A multi-layered perceptron (MLP) is used for this nonlinear element, with a skip connection, and
the input is h(1)

i = (xi, f
(1)
i , wyi −∆

(0)
Ei

)T . In our GD-motivated construction, we do not anticipate
dependence on xi, so these are “zeroed-out” within the feedforward (FF) design (within the GD
model in which we impose structure), and a d′ dimensional output is placed in the desired location
of −∆(1)

Ei
, which is made convenient via the skip connection: h(1)

i ← h
(1)
i + (0d+d′ , gϕ(1)(h

(1)
i))T .

The updated h
(1)
i is the total output from the first Transformer block. This attention mechanism

followed by FF element is as employed in Transformers (Vaswani et al., 2017), from which it is also
motivated. See the Appendix for more details.

5 EXPERIMENTS

Following von Oswald et al. (2023); Cheng et al. (2024); Ahn et al. (2023), we consider two train-
ing paradigms. The first is termed GD for (functional) gradient descent, in which all Transformer
matrices are set as defined in the previous section (explicit details in the Appendix). For GD, when
the embedding vectors {wc}c=1,C are to be learned (not set as one-hot (Akyurek et al., 2022)), they
are also learned with GD training. The second model design is termed Trained TF (fully trained
Transformer), for which the model construction is as in the previous section, but all parameters are
learned, without constraints. Under the linearization of Section 4, the Trained TF counterpart corre-
sponds to attention alone at each layer, with full flexibility in learning the parameters. The Trained
TF version of the model with feedforward (FF) elements consists of a general (learned) attention
layer followed by FF elements (with skip connections for both), like in the original Transformer
(Vaswani et al., 2017). For both the GD and Trained TF setups, when present, the feedforward
element has 10d′ hidden units and GELU activation.

For GD and Trained TF, the training seeks to minimize the cross-entropy loss of predicting y
(l)
N+1

for query x
(l)
N+1 based on context {(x(l)

i , y
(l)
i)}i=1,N , for contextual training sets l = 1, . . . , L. The

softmax representation for p(Y |f(x)) is used explicitly in this cross-entropy loss. When the embed-
ding vectors for the categories are learned, their role in the softmax probability over categories is
accounted for, as well as the encoding at the embedding vectors at the input (as in language models
(Vaswani et al., 2017)). The performance of the model is assessed based on average prediction ac-
curacy of y(L+m)

N+1 for query x
(L+m)
N+1 , and also log-likelihood fit to y

(L+m)
N+1 conditioned on xN+1, for

M distinct test sets, m = 1, . . . ,M (average performance over these is shown). Below we discuss
difficulties observed when training the Trained TF; because of that, for Trained TF training we also
considered a separate validation dataset of size L, and employed early stopping. Computations were
performed on a V100 GPU, and training was done with Adam (Kingma & Ba, 2015).

There has been significant recent attention directed to the challenges of learning Transformer pa-
rameters, for language models (Liu et al., 2023). Training challenges have also been examined for
in-context learning applications like studied here (Ahn et al., 2024) (but there for real Y , linear f(x)
and Gaussian p(Y |f(x))). For Trained TF (but not GD) we observed similar challenges for cate-
gorical Y and softmax p(Y |f(x)), and used methods related to those in Liu et al. (2023) to address
them. These issues are discussed in detail below.

We first consider simulated data. Specifically, a softmax generative model p(Y = c|f(x)) =

exp[wT
c f(x)]/

∑C
c′=1 exp[w

T
c′f(x)], for C = 25 and embedding dimension d′ = 5. For data syn-

thesis, wc ∈ Rd′
were generated randomly (and then fixed to generate data), with each component

drawn i.i.d. from N (0, 1). The function f (l)(x) is different for each contextual set l. Specifically,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

for each context l, 5 categories are selected uniformly at random from the dictionary of C = 25 cat-
egories. Let c(l)(1), . . . , c(l)(5) denote these categories for context l. We further randomly generate
5 respective “anchor positions,” x̃(1), . . . , x̃(5), each drawn i.i.d. from N (0d, Id). The function for
context l is represented as f (l)(x) = λ

∑5
m=1 wc(m)κRBF [x − x̃(m);σm], where the RBF kernel

parameter σm is selected such that κRBF [x − x̃(m);σm] = exp(−σ2
m∥x − x̃m∥2) equals 0.1 at

the center of the other kernel to which it is closest (in a Euclidean distance sense). We set λ = 10
(selected so as to have category c(m) be clearly most probable in the region of x̃(m)), and d = 10.
This model is designed such that category c(m) has relatively high (and context-dependent) priority
in the vicinity of center x̃(m), with σm defining the region of relevance for that category.

After f (l)(x) is designed for context l, N + 1 covariates are drawn x
(l)
i ∼ N (0d, Id), and then

{y(l)i }i=1,N+1 are drawn from the underlying softmax model (at test y(l)N+1 is the true category, and

the Transformer yields a probability of all categories c ∈ {1, . . . , N} given x
(l)
N+1). When training

N = 125, and in all of these simulated experiments the test contextual data also has N = 125,
except for an experiment that examines the situation for which the training N is different from the
test contextual size. We considered L = 2048 training contextual sets, and tested performance for
M = 2048. Any contextual set C(l) will likely only see a small subset of the total C = 25 categories,
analogous to how in language contextual data only sees a subset of all tokens.

When training the Transformer, for this experiment the embedding vectors {wc}c=1,C are learned,
with d′ = 5 (although for these simulated data similar results were found for other settings, such as
d′ = 10). Finally, in all cases for which model parameters are initialized at random, results from
five random parameter initializations are shown, to indicate variability in the training process.

Figure 1: Average accuracy (on test data) of a one-layer
Transformer with C = 25 categories, trained via GD and
Trained TF, in both cases from a random parameter initial-
ization. Left: softmax attention, right: RBF attention.

Figure 1 considers results for a one-layer
Transformer, presenting GD and Trained TF
results; for both of these, all parameters are
initialized at random (drawn from a zero-
mean Gaussian). Note that there is a signifi-
cant difference in the number of parameters
that need be learned for GD and the Trained
TF: for GD, the Transformer need only learn
the attention kernel parameter, the learning
rate, and the embedding matrix W , while for
Trained TF the embedding matrix W and all
the Transformer matrices WQ, WK , WV , P
and Z are learned. As observed in Figure 1,
the Trained TF model learns relatively well, but it does not achieve the performance of GD. The GD
setting constitutes a subset of all possible parameter settings for Trained TF; the fact that GD results
are notably better than those of the Trained TF reflects that learning of Trained TF starting from
random initialization has significant difficulties. From Section 3, the efficacy of the GD is expected,
which may be viewed as an upper bound on what Trained TF could achieve.

Following Liu et al. (2023), it is recognized that proper initialization of the Transformer parameters
is critical (when all parameters are free to learn, as in Trained TF). In Figure 2 we next consider
training the Trained TF with parameters initialized as those from GD. We show the full training
trajectory for Trained TF (starting from the final GD parameters) and for GD, and see that the
Trained TF performance barely moves from the final GD performance. Separately, Figure 2 (right)
compares GD performance for a linear kernel attention, showing that it performs significantly worse
than nonlinear RBF and softmax attention (as expected for the highly nonlinear f (l)(x) used in data
generation).

We next examine a two-layer model, considering each of the methods discussed in Section 4 for
addressing the nonlinear expectation E(wc)f(ℓ)

i
. Figure 3 (left) indicates that the GD results converge

to almost the same predictive accuracy, for one and two layers. For the two-layer Trained TF, it was
even more important to initialize the parameters well, doing so from the learned GD parameters. In
Figure 3 we show two-layer results using the linear (attention-layer-only), and the setup that used the
additional feedforward element. Both approaches for multi-layered models give similar results, and
do not vary significantly from the performance of the GD model from which they were initialized.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 2: The left two figures consider the same case as the in Figure 1, but here the Trained TF is initialized
with the GD model parameters. Right: GD performance for linear, RBF and softmax attention.

Figure 3: Left: Average GD performance as a function of training epochs, for one and two Transformer layers
(for 2 layers, we show results with the FF element). The right two figures are GD and Trained TF performance
for two layers, with Trained TF initialized with the GD parameters. Center: two-layer model based on linear
approximation; Right: two-layer model with feedforward element. All results for test data.

Two observations are made from these results: (i) the linear method of approximating E(wc)|
f
(ℓ)
i

(attention alone) yields results comparable to those that include a feedforward element and associ-
ated skip connection, and (ii) none of the two-layer results are significantly different from those of
the one-layer model. This phenomenon was observed in all of our experiments. We attribute (ii)
to the fact that the attention layer and skip connection manifest an effective functional gradient step
(Section 3) with one layer. Another factor for (ii) concerns the characteristics of categorical Y and
softmax p(Y |f(x)). Our predictions use the most-probable category as our prediction for query
xN+1. Even if the overall softmax function p(Y |f (ℓ)(xN+1)) changes with increasing layers ℓ, if
the most-probable category is manifested after ℓ = 1 layers, no change in predictive performance
will be observed for more layers.

Thus far we have observed little difference between performance with an RBF or a softmax kernel.
There is therefore a question of whether softmax attention offers advantages. As discussed in com-
paring (1) and (4), the inherent normalization in the softmax avoids the 1/N scaling in (1); the 1/N
is needed to achieve a context-dependent average negative-log-likelihood fit.

In Figure 4 (left) we compare performance of a GD-based single-layer Transformer trained with
N = 125, and applied to text data with N varying from 25 to 300. For the linear and RBF attention
kernels, we show results for which the 1/N term within the Transformer is left unchanged from
training, and also with the software adjusted appropriately for each test N (all learned parameters the
same, with just an adjustment for N at test). Note that the kernel attention models perform relatively
stably with varying N (if there is a rescaling for each test N). While this adjustment could be done
in practice, it adds a complexity. The Transformer based on softmax attention yields relatively stable
results for all test N , with no parameter adjustment at test time, and softmax-attention performance
is better than all other kernels, with or without rescaling the N .

Our final results consider few-shot learning for classifying image data. Using the ImageNet dataset
(Russakovsky et al., 2014), we select 900 classes for Transformer training, and a separate 100 classes
for testing. For each contextual set C(l), 5 distinct classes are selected uniformly at random, and for
each such class 10 specific images are selected at random, and therefore N = 50 (image N + 1 is
selected at random from the 5 class types considered in the context data). When training, L = 2048
and test performance is averaged over M = 2048 contextual sets. The covariates xi (with d = 512)
correspond to features from the VGG network (Simonyan & Zisserman, 2015). We set d′ = 4 and
achieved best results (reported here) with learned {wc}c=1,C .

While this is viewed as an interesting large-scale test, we note that it does not conform to the as-
sumptions of most prior in-context learning with Transformers (von Oswald et al., 2023; Cheng
et al., 2024; Mahankali et al., 2023). In most prior work (and in the above experiment with synthetic
data) it is assumed that the covariates are drawn from the same distribution for all contextual data
blocks. Since here each contextual block will be associated with only 5 image classes, and in general

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

with a different 5 images per contextual block, the covariates (VGG features) will in general be sam-
pled from a different distribution for each contextual block. Even more importantly, when testing
the learned Transformer, it will be applied to contextual sets from entirely different image classes,
thereby being drawn from a different portion of VGG feature space. We compare Transformer re-
sults to “linear probing,” in which a linear model is applied to the VGG features, the outcome from
which is then sent into the softmax for classification. Importantly, with linear probing a model must
be learned anew for each test contextual block, to be contrasted with the Transformer, for which
no fine-tuning of parameters are done after training. The linear probing results should be viewed
as giving a sense of the quality of the Transformer results (providing a likely unachievable upper
bound). While an interesting comparison, it is not an entirely “fair” comparison, as linear probing is
not learning a single meta model (as the Transformer is).

Figure 4: Left: GD-based results for a one-layer Transformer,
on the synthetic data. The context size for training is N = 125,
and we test performance for context sizes of N = 25 through
N = 300. Right: Results for ImageNet dataset, with a single-layer
GD Transformer with softmax attention trained with N = 50. For
GD training, 5 random parameter initializations were considered,
and variation is depicted. Results are shown as a function of the
training iterations (tested on the held-out set). Also shown are re-
sults for linear probing, where in that case a new model is trained
for each contextual block. Results are shown for top-1 predictive
accuracy and the negative log-likelihood loss for yN+1.

In the right part of Figure 4 we
present top-1 accuracy and the neg-
ative log-likelihood for 1 layer of at-
tention, trained with GD, softmax at-
tention, with test-set results shown as
a function of training iteration (using
parameters, at test, corresponding to
that training step). While the Trans-
former does not achieve the perfor-
mance of linear probing, it is close,
and is achieved with no post-training
fine-tuning and with the aforemen-
tioned mismatch in covariate statis-
tics. In the Appendix we also show
similar results for the same Trans-
former, but tested on N = 15.

6 CONCLUSIONS

The above analysis demonstrates the effectiveness of Transformers for performing in-context learn-
ing for data Y drawn from a model of the form p(Y |f(x)) for context-dependent and generally
nonlinear f(x). The analysis was motivated by gaining understanding of Transformer mechanisms,
but we have also found that the simplified representations uncovered may serve as good initializa-
tions of parameters for less constrained Transformer representations. There are several issues that
deserve further study. For inference with categorical Y , we observed that a single-layer model is
often sufficient. For multiple layers, to model the nonlinear E(wc)|fi , we considered attention layers
alone (linear approximation to expectation), and Transformer blocks composed of an attention layer
followed by feedforward elements; the latter affording significant modeling flexibility. Nevertheless,
we found a single-layer model sufficient, providing possible explanations.

We also discussed the difficulty of learning the Trained TF Transformer parameters from a random
initialization, consistent with the analysis in Liu et al. (2023). Given the difficulty of training Trans-
formers, one may wonder if the lack of observed improvement in performance with more layers may
be caused by training difficulties. While this must be explored further, we note that the GD-based
model, with far fewer parameters to learn than Trained TF, also did not manifest significant improve-
ment with more layers (even when we invoked the modeling sophistication of the FF element).

The fact that the FF element did not yield significant improvements here should not be taken to imply
that it is unimportant in other applications. An aspect of the in-context learning considered here is
the presence of covariates xi (like done previously for real Y (von Oswald et al., 2023; Cheng et al.,
2024; Ahn et al., 2023)). While we encoded our input-data categories with embedding vectors (like
in language models), in language models there are no covariates xi (Vaswani et al., 2017; Brown
et al., 2020). One conjecture is that language models may predict the next token using inference
like that considered here (with that inference performed near the output layers of a large language
model). However, if this conjecture is true, it is possible that many of the other (numerous) layers of
the Transformer nearer to the input layer may be performing context-dependent feature generation
(analogous to inferring features that play a role like xi). Much more work is needed to explore this
and other issues uncovered in this research.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

The authors have undertaken to perform the research presented here with the highest level of ethics,
in accordance with the ICLR Code of Ethics. In the paper, it is believed that there are no matters
that arise ethical concerns: there have been no studies that involve human subjects, we have used no
proprietary datasets, we do not believe we have uncovered any harmful insights, methodologies and
applications, there are no potential conflicts of interest and sponsorship, discrimination/bias/fairness
concerns, privacy and security issues, legal compliance, and research integrity issues.

REPRODUCIBILITY

The authors have used no proprietary datasets. All data considered here is in the public domain (e.g.,
the ImageNet dataset), and we have explained in detail how all of our experiments have been done,
so that they may be reproduced. Further, we intend to make public all software we have developed
to implement our experiments. We have included an Appendix, wherein all of the details of the
theoretical developments and models are provided, to enhance understanding and reproducibility.

REFERENCES

K. Ahn, X. Cheng, H. Daneshmand, and S. Sra. Transformers learn to implement preconditioned
gradient descent for in-context learning. arXiv.2306.00297, 2023.

K. Ahn, X. Cheng, M. Song, C. Yun, A. Jadbabaie, and S. Sra. Linear attention is (maybe) all you
need (to understand transformer optimization). International Conference on Learning Represen-
tations, 2024.

E. Akyurek, D. Schuurmans, J. Andreas, T. Ma, and D. Zhou. What learning algorithm is in-context
learning? investigations with linear models. International Conference on Learning Representa-
tions, 2022.

D. Bagnell. Lecture notes: Kernel machines/functional gradient descent. lecture #22, 2012.
URL https://www.cs.cmu.edu/˜16831-f14/notes/F12/16831_lecture22_
ewcha.pdf.

T.B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D.M. Ziegler, J. Wu, Cl. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Language models
are few-shot learners. arXiv.2005.14165, 2020.

X. Cheng, Y. Chen, and S. Sra. Transformers implement functional gradient descent to learn non-
linear functions in context. arXiv.2312.06528, 2024.

M. Drozdzal, E. Vorontsov, G. Chartrand, S. Kadoury, and C. Pal. The importance of skip connec-
tions in biomedical image segmentation. Deep Learning and Data Labeling for Medical Appli-
cations, 2016.

C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep net-
works. arXiv:1703.03400v3, 2017.

S. Garg, D. Tsipras, P.S. Liang, and G. Valiant. What can transformers learn in-context? a case
study of simple function classes. Advances in Neural Information Processing Systems, 2022.

T. Hastie, R. Tibshirani, and J. Friedman. Kernel Smoothing Methods, pp. 191–218. Springer New
York, New York, NY, 2009. URL https://doi.org/10.1007/978-0-387-84858-7_
6.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
arXiv:1512.03385, 2015.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

11

https://www.cs.cmu.edu/~16831-f14/notes/F12/16831_lecture22_ewcha.pdf
https://www.cs.cmu.edu/~16831-f14/notes/F12/16831_lecture22_ewcha.pdf
https://doi.org/10.1007/978-0-387-84858-7_6
https://doi.org/10.1007/978-0-387-84858-7_6

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

L. Liu, X. Liu, J. Gao, W. Chen, and J. Han. Understanding the difficulty of training transformers.
arXiv:2004.08249v3, 2023.

A. Mahankali, T.B. Hashimoto, and T. Ma. One step of gradient descent is provably the optimal
in-context learner with one layer of linear self-attention. arXiv:2307.03576, 2023.

S. Muller, N. Hollmann, S. Pineda, J. Grabocka, and F. Hutter. Transformers can do Bayesian
inference. International Conference on Learning Representations, 2022.

E. A. Nadaraya. On estimating regression. Teoriya Veroyatnostei i Ee Primeneniya, 1964.

A. Nicholand, J. Achiam, and J. Schulman. On first-order meta-learning algorithms.
arXiv:1803.02999v3, 2018.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, A. C. Berg, and L. Fei-fei. Imagenet large scale visual recognition challenge. IJCV,
2014.

A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. Meta-learning with memory-
augmented neural networks. International Conference on Machine Learning, 2016.

I. Schlag, K. Irie, and J. Schmidhuber. Linear transformers are secretly fast weight programmers.
International Conference on Machine Learning, 2021.

J. Schmidhuber. Evolutionary principles in selfreferential learning. on learning how to learn.
Diploma thesis, Institut f. Informatik, Tech. Univ. Munich, 1987.

B. Scholkopf and A.J. Smola. Learning with kernels. MIT Press, 2002.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. In ICLR, 2015.

A. Vaswani, N. Shazeer, N.i Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, and I. Polo-
sukhin. Attention is all you need. Neural Information Processing Systems, NeurIPS, 2017.

J. von Oswald, E. Niklasson, E. Randazzo, J. Sacramento, A. Mordvintsev, A. Zhmoginov, and
M. Vladymyrov. Transformers learn in-context by gradient descent. arXiv.2212.07677, 2023.

G. S. Watson. Smooth regression analysis. Sankhyā, Series A, 1964.

R. Zhang, S. Frei, and P.L. Bartlett. Trained transformers learn linear models in-context.
arXiv:2306.09927, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PROOF OF LEMMA 1

In the following, we also include background information on functional gradients and gradient de-
scent for functions in an RKHS.

Assume that F corresponds to a reproducing kernel space (RKHS) (Scholkopf & Smola, 2002;
Cheng et al., 2024), which includes linear models (Ahn et al., 2024; von Oswald et al., 2023; Ahn
et al., 2023; Mahankali et al., 2023) as a special case. For input x ∈ Rd, we first consider function
f(x) ∈ F with a scalar output, represented as f(x) = ⟨κ(x, :), f⟩H, whereH is a Hilbert space, f ∈
H, and there is an associated kernel κ(xi, xj) = ⟨κ(xi, :), κ(:, xj)⟩H. We briefly review functional
gradients for scalar-output f(x) (Scholkopf & Smola, 2002; Bagnell, 2012; Cheng et al., 2024), to
set the stage for the vector outputs of interest here. Defining the evaluation functional Ex(f) =
⟨f, κ(:, x)⟩H = f(x), the corresponding functional gradient is specified in terms of a scalar ϵ and
g ∈ H. Specifically, we have Ex(f + ϵg) = Ex(f) + ϵEx(g) = Ex(f) + ϵ ⟨κ(x, :), g⟩H =
Ex(f)+ ϵ ⟨∇Ex, g⟩H +O(ϵ2); the last equality effectively defines a functional gradient in terms of
the linear term in a Taylor expansion of Ex(f+ϵg) about f (and here the O(ϵ2) term is exactly zero).
For Ex, the corresponding functional gradient in H is ∇Ex = κ(x, :), and Ex is termed linear, as
the second-order and higher terms are zero. A common nonlinear example used in kernel machines
is Ex(f) = 1

2 (y − f(x))2 for which via chain rule ∇Ex(f) = (f(x) − y)κ(x, :) (Scholkopf &
Smola, 2002). For general E(f), omitting the dependency on x for notational simplicity, ∇E is
termed the corresponding functional gradient.

Consider E(f) = r(y, f(x)) for general loss function r(·, ·). Again via chain rule, the correspond-
ing functional gradient is ∇E = r′(yi, f(xi))κ(xi, :), where r′(yi, f(xi)) is the usual derivative of
r(yi, γ) wrt γ, evaluated at γ = f(xi). For data {(xi, yi)}i=1,N , gradient descent inH is represented
as fk+1 = fk − α

N

∑N
j=1 r

′(yj , fk(xj))κ(xj , :), where α is the learning step size. Consequently,

fk+1(x) = ⟨fk+1, κ(:, x)⟩H = fk(x)− α
N

∑N
j=1 r

′(yj , fk(xj))κ(xj , x).

For f(x) with d′-dimensional vector output, each component of which is modeled via the same type
of RKHS setup as above, the derivative r′(yj , f(xj)) becomes a gradient wrt each component of
f(xj). Considering r(yj , f(xj)) = − log p(Y = yj |f(xj)), gradient descent becomes

fk+1(x) = fk(x) +
α

N

N∑
j=1

∇f log p(Y = yj |fk(xj))κ(xj , x) , (6)

where ∇f log p(Y = yj |fk(xj)) is a traditional gradient of log p(Y = yj |f(xj)) wrt the compo-
nents of f(·), evaluated at fk(xj). This proves Lemma 1.

Moving to Proposition 1, the expression 1
N

∑N
j=1∇f log p(Y = yj |fk(xj))κ(xj , x), which is the

overall gradient responsible for the update of f(xj) in (6), may be interpreted as a kernel-weighted
average (Hastie et al., 2009) of the N isolated gradients ∇f log p(Y = yj |fk(xj)). In (6) the
kernel average is implemented wrt RKHS kernels (positive semi-definite). Proposition 1 is a di-
rect application of the Nadaraya-Watson modeling framework Nadaraya (1964); Watson (1964);
Hastie et al. (2009), in which the kernel average is performed over the individual, sample-dependent
gradients ∇f log p(Y = yj |fk(xj)), and the averaging is based on more-general representations
Kλ(xi, xj)/

∑N
j′=1 Kλ(xi, xj′). The special case Kλ(xi, xj) = exp[λ(xT

i xj)] yields softmax at-
tention.

A.2 DETAILS ON THE GRADIENT UPDATES FOR REAL Y AND GAUSSIAN p(Y |f(x))

We use the notation fj,k = fk(xj) to represent the function of interest after the kth step of gradient
descent, evaluated at covariates xj . For real-valued Y and Gaussian p(Yi = yi|fi) (Ahn et al., 2024;
von Oswald et al., 2023; Cheng et al., 2024; Ahn et al., 2023), we have

∇fi log p(Yi = yi|fi) = −
1

2σ2
∇fi∥yi − fi∥2 =

1

σ2
(yi − fi) , (7)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

and (1) yields

fj,k+1 = fj,k +
α

N

N∑
i=1

(yi − fi,k)κ(xi, xj)︸ ︷︷ ︸
∆fj,k

= fj,k +
α

N

N∑
i=1

[yi −
k∑

k′=0

∆fi,k′]κ(xi, xj) , (8)

where we typically initialize as fj,0 = 0d′ , where 0d′ is a d′-dimensional vector of all zeros. Con-
sequently, we also have ∆fi,0 = 0d′ . The variance σ2 is treated as a constant, and absorbed into the
learning rate (effectively assuming that the variance σ2 may be approximated as a constant for all
contextual data of interest (von Oswald et al., 2023; Cheng et al., 2024)).

To make the connection to more-general Y and p(Y |f(x)), we may re-express (8) as

fj,k+1 = fj,k +
α

N

N∑
i=1

(yi − E(Y)|fi,k)κ(xi, xj)

= fj,k +
α

N

N∑
i=1

[yi −
k∑

k′=0

∆Ei,k′]κ(xi, xj) , (9)

where ∆Ei,k′ = ∆fi,k′ . As indicated in (8), ∆fi,k′ is the direct result of the attention mechanism.

As discussed above, real Y and Gaussian p(Y |f(x)) is a special case, and in general E(Y)|fi,k is a
nonlinear function of fi,k. Moreover, for categorical Y , the expectation over outcomes Y , E(Y)|fi,k ,
is replace by an expectation of learned embedding vectors (discussed next).

A.3 DETAILS ON THE GRADIENT UPDATES FOR CATEGORICAL Y AND SOFTMAX p(Y |f(x))

For categorical outcomes Y and p(Y = c|f(x)) = exp[wT
c f(x)]/

∑C
c′ exp[w

T
c′f(x)],

∇fi log p(Yi = yi|fi) = ∇fi

[
fT
i wyi

− log

C∑
c=1

exp(fT
i wc)

]
(10)

= wyi −
∑C

c=1 wc exp(f
T
i wc)∑C

c′=1 exp(f
T
i wc′)

(11)

= wyi
−

C∑
c=1

p(Yi = c|f(xi))wc (12)

= wyi
− E(wc)|fi , (13)

and therefore in this case

fj,k+1 = fj,k +
α

N

N∑
i=1

[wyi − E(wc)|fi,k]κ(xi, xj)︸ ︷︷ ︸
∆fj,k

. (14)

In general, the embedding vectors connected to the categories, {wc}c=1,C are learned. Further,
the expectation E(wc)|fi,k is a nonlinear function of fi,k, this necessitating approximations in the
context of Transformer implementations of such a functional gradient descent. Stated differently,
the Transformer cannot implement multiple steps of functional gradient descent for categorical Y ,
except for a one-layer model. These details are discussed in Sections A.5 and A.6

A.4 DETAILS ON THE GRADIENT UPDATES FOR COUNT Y AND POISSON p(Y |f(x))

The paper focuses on categorical Y , and seeks to make connections to real Y , to highlight re-
lationships to prior work. Nevertheless, we briefly note one other special case, that underscores
the generality of the approach. Specifically, for count-valued Y and Poisson p(Yi = yi|fi) =
λyi

i exp(−λi)/yi!, where λi = E(Y |X = x) = exp(f(xi)) we can write

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

∇fi log p(Yi = yi|fi) = ∇fiyifi −∇fi exp(fi) = yi − exp(fi) , (15)

and thus

fj,k+1 = fj,k +
α

N

N∑
i=1

(yi − exp(fi,k))κ(xi, xj)︸ ︷︷ ︸
∆fj,k

= fj,k +
α

N

N∑
i=1

[yi −E(yi)|fi,k]κ(xi, xj) , (16)

where we made λi = exp(fi) so fi ∈ R. Note that the formulation above readily extends to
multivariate count-valued Y by making the dimension of fi consistent to that of Y .

Concerning the above three subsections, note that for the Gaussian model for real Y , the update of
fj,k+1 may expressed in terms of a sum of prior {∆fj,k′}k′=0,k (see (8), which as discussed below
has important implications for (simplified) implementation. By contrast, for the categorical case of
(3), the expression E(wc)|fi,k is a nonlinear function of prior {∆fj,k′}k′=0,k−1, and similar issues
hold for categorical Y . This adds significant complications, but as discussed below, it will also allow
us to make explicit connections to all elements of the Transformer network (attention models and
the feedforward elements (Vaswani et al., 2017)).

A.5 TRANSFORMER IMPLEMENTATION FOR REAL OBSERVATIONS

To make the connection to an attention-layer implementation for categorical Y (Section A.6 below),
we first design the attention layers for real Y . Further, we consider design of these attention layers
for real Y in a manner that aligns with how we will handle categorical Y . We then show why and
how this can be simplified when considering real Y and Gaussian p(Y |f(x)), thereby recovering
the form used in prior work von Oswald et al. (2023); Cheng et al. (2024).

As the input to the first layer, consider the encoding h
(0)
i = (xi, 0d′ , yi)

T , where we initialize
fi = 0d′ , as done for the categorical case (and as done in von Oswald et al. (2023); Cheng et al.
(2024) for real Y).

At each attention layer WQ, WK , WV and P are designed such that WQh
(0)
i = WKh

(0)
i =

(xi, 02d′)T and WV h
(0)
i = (0d+d′ , α

N yi)
T . These matrices are explicitly

WQ = WK =

(
Id 0d×d′ 0d×d′

0d′×d 0d′×d′ 0d′×d′

0d′×d 0d′×d′ 0d′×d′

)
, (17)

and

WV =

(
0d×d 0d×d′ 0d×d′

0d′×d 0d′×d′ 0d′×d′

0d′×d 0d′×d′
α
N Id′

)
. (18)

The above design of these matrices yields attention layers that implement functional gradient descent
for real Y .

For query i and attention kernel κ(xi, xj), attention yields
∑N

j=1 WV h
(0)
j κ(WQh

(0)
i ,WKh

(0)
j) =

α
N

∑N
j=1 yiκ(xi, xj). Note that we provide this exposition for the first layer, but the same concept

holds for all. In addition, we have used RKHS kernel attention, but the corresponding setup holds
for softmax attention, from the perspective of Proposition 1.

We now define

P =

(
0d×d 0d′×d′ 0d′×d′

0d′×d 0d′×d′ Id′

0d′×d 0d′×d′ −Id′

)
, (19)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

and with the skip connection we have

h
(1)
i = h

(0)
i + P

N∑
j=1

WV h
(0)
j κ(WQh

(0)
i ,WKh

(0)
j) (20)

= (xi, 0d′ , yi)
T + (0d,

N∑
j=1

WV h
(0)
j κ(WQh

(0)
i ,WKh

(0)
j), 0d′)T

+ (0d+d′ ,−
N∑
j=1

WV h
(0)
j κ(WQh

(0)
i ,WKh

(0)
j))T (21)

= (xi,

N∑
j=1

WV h
(0)
j κ(WQh

(0)
i ,WKh

(0)
j)︸ ︷︷ ︸

f
(1)
i

, yi −
N∑
j=1

WV h
(0)
j κ(WQh

(0)
i ,WKh

(0)
j)︸ ︷︷ ︸

∇fi

∑N
j=1 log p(Y=yj |f(1)

j)

)T . (22)

If we were interested in retaining f
(1)
i for all inputs, this design would be appropriate. However, we

are only interested in performing an estimate of yN+1 for query xN+1. Consequently, we only need
fN+1.

So motivated, the authors of von Oswald et al. (2023) had the insight of encoding the query xN+1

by setting yN+1 = 0d′ at the first input layer. Therefore, we observe that in (22) that with such an
encoding the output of this attention layer for position N + 1 is (xN+1, f

(1)
N+1,−f

(1)
N+1)

T . We see
that in the case of real Y , when we are only interested in predictions for the query, it is redundant to
encode fi and ∇fi

∑N
j=1 log p(Y = yj |f (1)

j). Consequently, the encoding is h(0)
i = (xi, yi)

T with
yN+1 = 0. The matrices WQ, WK , WV and P are reduced in size and modified accordingly (von
Oswald et al., 2023). The output at the final attention layer at position N + 1 is the negative of the
desired fN+1, the estimate of yN+1 (von Oswald et al., 2023).

Concerning the above selections for WQ, WK , WV and P , these constitute only one such design, and
many others are possible. For example, within attention kernels (and similarly for softmax attention),
there are often inner products of the form (h

(ℓ)
i)TWT

QWKh
(ℓ)
j . Any design of WQ and WK that

yields the same Q = WT
QWK will manifest identical Transformer implementations. Similar issues

hold wrt the design of WV and P (von Oswald et al., 2023; Cheng et al., 2024).

A.6 DETAILS ON TRANSFORMER IMPLEMENTATION FOR CATEGORICAL OBSERVATIONS

Single Layer of Attention, Steepest-Descent of Functional Gradient For categorical Y and soft-
max p(Y |f(x)), we first detail a single-layer model composed of attention alone, and demonstrate
that it can exactly implement a step in the direction of the functional gradient.

For categorical observations, we encode at the input layer as h(0)
i = (xi, 0d′ , wyi

− 1
C

∑C
c=1 wc)

T .
We must maintain this form, even under the linear approximation of Section 4, because unlike for
real Y , fi is not simply the negative of ∇fi

∑N
j=1 log p(Y = yj |fj) (even if the outcome for xN+1

is encoded to the zero vector). At the output of the Transformer the predicted fN+1 is sent into the
softmax operation over categories, and therefore we need to retain fN+1.

For categorical observations, at each layer of the Transformer the matrices WQ, WK and WV are
the same as discussed in Section A.5 for real Y with the same form of encoding. For ease of reading,
they are repeated here:

WQ = WK =

(
Id 0d×d′ 0d×d′

0d′×d 0d′×d′ 0d′×d′

0d′×d 0d′×d′ 0d′×d′

)
, WV =

(
0d×d 0d×d′ 0d×d′

0d′×d 0d′×d′ 0d′×d′

0d′×d 0d′×d′
α
N Id′

)
. (23)

When only considering a single attention layer, which exactly corresponds to one step of functional
gradient descent, we use

P =

(
0d×d 0d′×d′ 0d′×d′

0d′×d 0d′×d′ Id′

0d′×d 0d′×d′ 0d′×d′

)
, (24)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

as in this case we only update f
(0)
i → f

(1)
i , because this is all that is needed to feed into the

softmax over categories at the output, to make predictions of categories (there is no need to update
the corresponding functional gradients).

Concerning this single-layer implementation, from (5) recall that a first-order approximation of∑N
i=1 log p(Y = yi|f (0)

i + gθ(i; {h(0)
j }j=1,N)) indicates that the network gθ(i; {h(0)

j }j=1,N)

should be aligned in the direction of the functional gradient ∇fi

∑N
j=1 log p(Y = yj |f (0)

j);

in p(Y = yi|f (0)
i + gθ(i; {h(0)

j }j=1,N)) the additive f
(0)
i represents the skip connection, and

gθ(i; {h(0)
j }j=1,N) is implemented with an attention network.

Note, however, that the details of the functional gradient ∇fi

∑N
j=1 log p(Y = yj |f (0)

j) depend on
the choice of kernel, if f(x) is assumed to be within an RKHS family. More generally, softmax
and other forms of attention may be considered from the perspective of Proposition 1 and Nadaraya-
Watson kernel smoothing. We have found in practice, that nonlinear kernels like RBF typically yield
results very similar to softmax attention (see Figure 1, for example). Therefore, from a practical
perspective, the functional gradients appear to be consistent for different and sufficiently rich forms
of nonlinear attention (assuming f(x) is a nonlinear function).

Multiple layers, categorical Y For the multi-layered attention network, we seek to update the
needed expectation iteratively, from layer to layer. Specifically, we express

E(wc)|
f
(ℓ)
i

=

ℓ∑
ℓ′=0

∆
(ℓ′)
Ei

, with ∆
(0)
Ei

=
1

C

C∑
c=1

wc . (25)

Note that this is consistent with the update equation (8) associated with real Y , for which the latent
function is updated incrementally with ∆fi,k, where there k represents gradient descent step (which
will link to Transformer layers). For real Y and Gaussian p(Y |f(x)) with mean f(x), the expec-
tation (updated iteratively) is just f(x). The iterative update of the expectation in (25) is the same
idea, except that now E(wc)|

f
(ℓ)
i

is nonlinearly related to f
(ℓ)
i .

We consider two methods for the incremental update to the expectation:

• Linear approximation: In this approximation, we use

∆
(ℓ)
Ei
≈ B(ℓ)∆f

(ℓ)
i , (26)

where ∆f
(ℓ)
i represents the incremental update to the latent function, manifested via attention.

for categorical data, with a linear approximation to the update of the needed expectations over
categories (Section 4), WQ, WK and WV are unchanged from above at all layers, and

P (ℓ) =

0d×d 0d′×d′ 0d′×d′

0d′×d 0d′×d′ Id′

0d′×d 0d′×d′ −B(ℓ)

 , (27)

where B(ℓ) ∈ Rd′×d′
matrix to be learned for each layer ℓ. Comparing with (19) we see that

this linear approximation is closely related to the attention design for real Y (using the expanded
encoding discussed in Section A.5). The difference is that for real Y and Gaussian p(Y |f(x)) the
incremental update to the latent expectation is exactly equal to the incremental update to the latent
function. For categorical Y and softmax p(Y |f(x)), under linearization, we must additionally
learn the matrix B(ℓ) at each layer.

• Nonlinear representation with feedforward element In this setup, each block of the Trans-
former is composed of an attention network, exactly the same as that used for the single-layer
setup introduced above. Specifically, WQ, WK and WV remain unchanged, and for P we use
(24). The input at position i into layer ℓ+ 1 is

Input to layer ℓ+ 1 : h
(ℓ)
i =

(
xi,

ℓ∑
ℓ′=0

∆f
(ℓ′)
i , wyi −

ℓ∑
ℓ′=0

∆
(ℓ′)
Ei

)T

. (28)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

The output of the attention layer at position i is (0d′ ,∆f
(ℓ+1)
i , 0d′)T ; when this is added to the

input h(ℓ)
i as a result of the skip connection, we have

output of attention + skip connection :

(
xi,

ℓ+1∑
ℓ′=0

∆f
(ℓ′)
i , wyi

−
ℓ∑

ℓ′=0

∆
(ℓ′)
Ei

)T

. (29)

We now wish to add ∆
(ℓ+1)
Ei

to the expectation, based on our updated form of the latent func-

tion f
(ℓ+1)
i =

∑ℓ+1
ℓ′=0 ∆f

(ℓ′)
i . Rather than using the above linear approximation, we consider a

feedforward element with parameters ϕ:

∆
(ℓ+1)
Ei

= FFϕ

(
ℓ+1∑
ℓ′=0

∆f
(ℓ′)
i , wyi −

ℓ∑
ℓ′=0

∆
(ℓ′)
Ei

)
, (30)

where ϕ denote the parameters of the feedforward (FF) element, which is the same for all posi-
tions i at a given layer. Concerning (30), we use the updated representation of fi and the prior
representation of the gradient, wyi −

∑ℓ
ℓ′=0 ∆

(ℓ′)
Ei

, as inputs to a nonlinear FF element, and we

use this to estimate ∆
(ℓ+1)
Ei

. Utilizing the skip connection associated with the FF element, the

representation for ∆(ℓ+1)
Ei

can be placed in the proper position. Consequently, ideally, one Trans-
former block (attention plus FF, with skip connections associated with each), will yield the output
of block ℓ+ 1:

output of GD Transformer block ℓ+ 1 :

xi,

ℓ+1∑
ℓ′=0

∆f
(ℓ′)
i , wyi

−
(ℓ+1)∑
ℓ′=0

∆
(ℓ′)
Ei

T

. (31)

A.7 DETAILS ON TRAINED TF DESIGNS

For the Trained TF variants of the above GD-motivated setups, the model is free to learn parameters,
without restrictions. Specifically, the attention matrices WQ, WK , WV and P are learned without
restrictions. Additionally, there is the matrix Z at the output, the results of which then feed into
the softmax model at the output; Z is also learned. When they are not set as one-hot vectors, the
category-dependent vectors wc are also learned.

The Trained TF version of the linearized multi-layered model above simple corresponds to multiple
layers of attention, with all parameters learned. While with GD we restrict the form of P (ℓ) as in
(27), for Trained TF, the attention matrices have complete freedom wrt the parameters learned.

The Trained TF version of the nonlinear representation corresponds to the original design of the
Transformer (Vaswani et al., 2017), in which the attention layer is followed by FF elements, with
skip connections employed with both. The only element missing from the original Transformer is
layer normalization, which we avoid because it is not evident in the GD-based formulation.

The Trained TF, with attention layers alone (corresponding to the aforementioned linearized multi-
layered GD) or with blocks composed of an attention layer and FF element (corresponding to the
aforementioned multi-layered GD with FF elements) offer significant modeling power. However,
the training of these models via Adam (Kingma & Ba, 2015) was found to be challenging from a
random parameter initialization. As discussed in the main paper, parameter initialization was found
to be very important for Trained TF, consistent with prior work (Liu et al., 2023). In particular, to get
good results with Trained TF, we found initialization with the appropriate GD variant is important.

A.8 ADDITIONAL IMAGENET RESULTS

We present in Figure 5 results for the same Transformer considered in the main body of the paper,
which was trained using context sizes N = 50. Here it is tested using context blocks of size N = 15,
with 5 image classes per contextual block, and 3 images selected (uniformly) at random per context
set (no changes were made to the Transformer after training, despite the fact that they are applied
now to much small contextual sets). Results are shown with softmax attention (left in Figure 5) and
with linear attention (right in Figure 5). Because of the high quality of the VGG features representing

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

1.0

0.8

>- 0.6 u "'
:, u
� 0.4

0.2

t

I
c;

- GD Accuracy - GD Loss
- Linear Probing Accuracy - Linear Probing Loss

2.00

1.75
""C

1.50 8
.c

1.25]
::::i

1.00 g'
...J

0.75 �
.:; "'

0.50 fil'
z

0.25

o.o ��--�---�--�---�--��o.oo

0 1000 2000 3000 4000
Training Epochs

5000

1.0

0.8

>- 0.6 u

:, u u 0.4 <(

0.2

I

I

I
L,

- GD Accuracy - GD Loss
- Linear Probing Accuracy - Linear Probing Loss

2.00

1.75
""C

1.50 8
.c

1.25]
::::i

1.00 g'
...J

0.75 �
.:; "'

0.50 fil'
z

0.25

o.o ��--�---�--�---�--��o.oo

0 1000 2000 3000 4000
Training Epochs

5000

Figure 5: Results for the ImageNet dataset, considering N = 15 for the test contextual datasets (the Trans-
former was trained with N = 50, and therefore there is a mismatch between the training and test context size
N for the Transformer. Since the Transformer was trained with N = 50, the Transformer (GD) results are
constant for all of what are here shown as training epochs, which are for the linear probing comparison model.
Left: softmax attention; Right: linear attention.

the covariates xi, linear attention works well here. However, as discussed in the main paper, for the
linear attention results the factor 1/N was rescaled within the software at test time, to account for
the change in the context size (from that used when training). In contrast, for softmax attention no
changes were made to the trained model (discussed in the main body of the paper).

In Figure 5 we observe that the Transformer (here based on GD, for one layer) performs well for
both linear attention and softmax attention. While the results do not reach those of linear probing,
they are relatively close. Unlike linear probing, the Transformer is performing few-shot learning
with no parameter refinement when testing (except for the 1/N for linear attention). Further, the
Transformer was trained using different covariate statistics than that seen at testing (recall that it
was trained using images from 900 of the ImageNet classes, and applied here to the remaining 100
image classes). In contrast, linear probing trains on the test data, anew for each contextual block.

19

	Introduction
	In-Context Inference of a Latent Function
	Meta-Learning Model Construction
	Transformer Design for Categorical Observations
	Experiments
	Conclusions
	Appendix
	Proof of Lemma 1
	Details on the gradient updates for real Y and Gaussian p(Y|f(x))
	Details on the gradient updates for categorical Y and softmax p(Y|f(x))
	Details on the gradient updates for count Y and Poisson p(Y|f(x))
	Transformer Implementation for Real Observations
	Details on Transformer implementation for categorical observations
	Details on Trained TF Designs
	Additional ImageNet Results

