Under review as a conference paper at ICLR 2025

FUNCTIONAL GRADIENTS AND GENERALIZATIONS
FOR TRANSFORMER IN-CONTEXT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We examine Transformer-based in-context learning for contextual data of the form
{(2i,9i)}i=1.n and query zn41, where 2; € R? and y; ~ p(Y|f(w;)), with
f(z) a latent function. This is analyzed from the perspective of functional gra-
dient descent for f(x). We initially perform this analysis from the perspective
of a reproducing kernel Hilbert space (RKHS), from which an alternative kernel-
averaging perspective is manifested. This leads to a generalization, allowing an
interpretation of softmax attention from the perspective of the Nadaraya-Watson
kernel-weighted average. We show that a single attention layer may be designed
to exactly implement a functional-gradient step in this setting (for RKHS latent
functions), extending prior work for the special case of real-valued Y and Gaus-
sian p(Y|f(x)). This is also generalized for softmax attention and non-RKHS
underlying f(z). Though our results hold in a general setting, we focus on cate-
gorical Y with p(Y'|f(x)) modeled as a generalized linear model (corresponding
specifically to softmax probability). Multi-layered extensions are developed for
this case, and through extensive experimentation we demonstrate that for categor-
ical Y a single-layer model is often highly effective for in-context learning. We
also demonstrate these ideas for real-world data, considering in-context classifica-
tion of ImageNet data, showing the broad applicability of our theory beyond the
commonly-studied settings of synthetic regression data.

1 INTRODUCTION

There has been significant interest recently in understanding the few-shot-learning capabilities of
Transformers (von Oswald et al.| 2023} |Cheng et al., [2024; |Ahn et al.| 2023} |Akyurek et al.| 2022}
Garg et al., 2022} Mahankali et al.l 2023} |Schlag et al., 2021; Zhang et al., [2023). This has been
in part motivated by the impressive few-shot-learning capabilities of large language models (LLMs)
(Brown et al.|[2020). Much of that prior work has focused on the self-attention component in Trans-
formers and its application to modeling real-valued functional outputs conditioned on covariates
(Ahn et al., |2024; \von Oswald et al.l |2023} |Ahn et al., |2023}; |Schlag et al.| 2021), rather than com-
plete Transformer layers (self-attention followed by a feedforward layer with skip connection). Fur-
ther, there has been little consideration of categorical observations, which are relevant for token
prediction in language modeling.

Few-shot learning is here understood as contextual learning with data {C (l)}l:L 1, where C) =
{(x(.l) yEl))}i:LNH, xgl) € R? and y(l) is an outcome (usually assumed real, but here extended

] 7

to categorical). The contextual data {C (l)}l:L 1, are used to learn a model, which employs the con-

text {(xgl), ygl))}izl’ ~ to constitute a prediction of y%)ﬂ (or properties thereof), for corresponding

query xg\l,) +1- Once such a model is learned, it is applied to new contextual data C (L+1) for which

the desired outcome yj(vLj_rll) is not available, thus it needs to be inferred.

There have been two principal approaches to this problem. One direction assumes a parametric

model for the outcomes, and using {C (l)}l:L 1, seeks to learn a good initialization point for these
parameters. For new C“*1), the contextual data {(szH), yi(LH))}i:LN are used for model-
parameter refinement from the aforementioned initialization, and with these refined parameters

yj(\,L:f) is inferred for input x%_tll) (Finn et al.l 2017; [Nicholand et al., |2018). The alternative

Under review as a conference paper at ICLR 2025

approach is to use {C (l)}l:L 1, to learn a meta model, that is applied to C“*1) with no parameter
fine-tuning (Schmidhuber, [1987; Santoro et al., 2016).

The Transformer has been recognized as a few-shot learner of the latter type, i.e., a meta learner.

Specifically, the Transformer learns to infer a latent function fi(l) (x) linked specifically to the real-

izations {f()(2;)}i=1.n+1, and based on the contextual data {(chl), yl(l)}izl,N (von Oswald et al.|

2023} |Ahn et al., [2023}; |[Cheng et al.| [2024). It is usually assumed within the Transformer design
that the latent function f()(z) resides in a particular functional class. For example, f(!)(x) has been
assumed to be a linear model (von Oswald et al., 2023} /Ahn et al.| [2023;Mahankali et al., 2023)), or
more generally, it may reside in a reproducing kernel Hilbert space (RKHS) (Cheng et al., 2024).

Existing work studying the Transformer as an in-context learner has focused on several comple-
mentary directions. For instance, |Garg et al.| (2022)) examined the functional classes admitted by
Transformers, [Muller et al.| (2022)) took a Bayesian analysis perspective, and others considered
Transformers as functional few-shot learners (von Oswald et al., |2023; |Ahn et al., 2023; |Cheng
et al} [2024). However, these studies have simplified the assumptions about the functional class
and model architectures in favor of stronger theoretical foundations. Prominent examples include
reducing the Transformer to linear attention layers (Schlag et al.| 2021} jvon Oswald et al., [2023;
Ahn et al.| 2023} [2024), thus limiting the functional class to linear models (Zhang et al.l 2023}, |von
Oswald et al., 2023; |Ahn et al., 2023). More recently, these ideas have been leveraged to expand
the functional class to smooth functions in an RKHS with associated kernel attention (Cheng et al.,
2024). These studies have provided important insights, but they have limitations in the context of
some Transformer properties and applications. In this work we seek to build upon the above impor-
tant contributions.

* We introduce an analytical framework for in-context learning that is applicable to settings for
which the observations may be modeled as draws from an underlying model p(Y'| f(!) (x)), where
Y may take many forms. We connect the case of real Y and Gaussian p(Y'|f)(z)) to prior
work (Schlag et al., [2021} von Oswald et al., 2023; |Ahn et al., 2023; 2024), while focusing on
categorical Y and softmax p(Y|f) (x)).

* We show that the Transformer’s forward pass can be interpreted as taking steps of kernel averaged
functional gradient descent (Lemma [T] and Section [3). This crucially allows us to analyze the
softmax attention mechanism (Proposition [I)).

* We show that one attention layer may be designed to exactly perform a step along the steepest-
descent direction connected to the functional gradient for categorical ¥ and softmax model
p(Y|f(z)) (Sections [3| and [4). This extends prior work that considered real ¥ and Gaussian
p(Y]f(x)) (Mahankali et al.;[2023).

* We analyze function-space gradient descent dynamics when the gradient-operator is nonlinear,
as it is for categorical and count Y (and likely other cases). This highlights a potential role for a
feedforward (FF) element with skip connections (Section .

* We examine our theoretical results in a series of experiments on both synthetic and real-world
data (Section [5)). Notably, we present a Transformer-based in-context classifier for the ImageNet
dataset to demonstrate its efficacy and scalability.

2 IN-CONTEXT INFERENCE OF A LATENT FUNCTION

Assume we are given contextual data C = {(z;,y;)}i=1,n, Where x; € R? are covariates and
y; is the outcome of interest. As discussed below, y; may take different forms. The goal is the
development of a meta model (Schmidhuber, |1987; [Santoro et al.l 2016) capable of predicting a
desired property of unobserved random variable Y1 given context C and an associated query
2 n41. For example, one may desire the expectation E(Yy1|X = 2y41) (von Oswald et al., 2023}
Cheng et al.,[2024;|Ahn et al., 2023), and in other settings the distribution p(Y = yny41|X = xn+1)-
It is assumed that the probability of Y conditioned on X = x may be expressed as p(Y'| f(x)), where
f(z) is a latent context-dependent function from a family F.

For training the meta learner, it is assumed we are given L examples of contextual data, {C @ Yi=1,L,
where C(V) = {(Jﬂgl), yl(l))}izLNH, and for each there is an associated latent function f)(z) € F.

Under review as a conference paper at ICLR 2025

For notational simplicity, we assume N is the same for each C (@), but that need not be the case
(this issue is discussed in detail below). When training with each C(*), {(a:z(»l), yz(l))}izl, n are used

as context, and (xg\l,) 1 y](\l[)Jrl) are used as the query-outcome pair for which predictions are de-

sired. After the meta learner is trained, it is to make a prediction for query :vg\%ill) connected

x§L+1) (L+1)

to new context-dependent data C(E+1) = {(Y) }i=1,n, With new associated function

fUAD () € F, and for which yj(vlel) is unknown. It is desired that such predictions are made
without model-parameter refinement (Schmidhuber, |1987; |Santoro et al., 2016)); distinct from meth-
ods like MAML, which fine-tune model parameters given new contextual data (Finn et al., 2017}
Nicholand et al., 2018)).

For real Y, one may consider p(Y|f(z)) = N(f(z),0%I), where the output of f(z) is a vec-
tor and [is the identity matrix, both of which have size defined by the dimension of Y. Often

interest is in E(Y|X = =z), and hence the goal is to infer f(z). As discussed below, in this

case o2 need not be inferred explicitly. For categorical Y, a softmax model p(Y = y|f(x)) =

exp (wny(z))/chzl exp (wl f(x)) is typically employed for C categories y € {1,...,C}, and
where {w,}.=1,c represent associated embedding vectors (Vaswani et al.,[2017).

For the categorical case, let w. define column ¢ of embedding matrix W & R *C Often column
C'is set to an all-zeros vector, and category C is a reference. In one design of W, d’ = C' — 1 and
columns ¢ = 1,...,C'—1 are set to one-hot vectors (see Sec. C.4.1 in the Appendix of|[Akyurek et al.
(2022)), with the 1 positioned at component ¢ in column c. In this case the C'— 1 components of f(x)
are used directly within the C-category softmax, and logistic regression is manifested when C' = 2.
For large C, e.g., in a language model, for which C represents the number of tokens (Vaswani et al.|
2017), the above design may be expensive. Hence, the second type of design for W setsd’ < C' — 1

(oftend’ < C'—1) and for columnsc =1,...,C —1eachw, € R is a learned embedding vector.

We begin by assuming F corresponds to an RKHS.

Lemma 1 (RKHS Steepest Descent.) Let (-, -) denote a kernel, and let F be its associated re-
producing kernel Hilbert space (RKHS). Given data {(x;,y;)}i=1.n, consider the log-likelihood
L(f) =+ Z;\le logp(Y = y;|f(z;)). Let { fu }k=0,1,2... denote the gradient descent sequence of
L(f) in F with respect to the RKHS norm, with stepsize a/N. Then

N
fes(@) = fol@) + = 3 Vi logp(Y =yl fula;))n(e;,a) (M)
j=1

where V ;log p(Y = y;|fx(x;)) is the gradient wrt the components of f(x), evaluated at fi(x).

The lemma is proven in the Appendix, where background material on RKHS gradient descent is also
reviewed. The expression 1 Zjvzl Vlogp(Y =y, fx(z;))k(x;, x), which is the overall gradient
responsible for the update of f(z) in , may be interpreted as a kernel-weighted average (Hastie
et al., 2009) of the IV isolated gradients V s log p(Y" = ;| fx(z;)). This interpretation of (1)) will be
used below to motivate a generalization.

Lemmall]is valid for any model for the observations of the form p(Y'| f(z)), and special cases exist
in the literature for real Y and Gaussian p(Y|f(z)). Specifically, Ahn et al.|[(2024); von Oswald
et al.| (2023);|Ahn et al.| (2023); Mahankali et al.| (2023) consider a linear kernel m(xj, x;) = xjxl,
while |Cheng et al.[(2024)) generalized this to any valid kernel in RKHS. Here we generalize the
forms of Y that may be considered.

In particular, for real Y with Gaussian p(Y | f(x)) where f(x) is the mean and the covariance is 01,
and for categorical Y with softmax p(Y'|f(z)), we have

Real Y : Vylogp(Y =y;|X =2;) =y; — fulz;),)
Categorical Y : Vylogp(Y = y;|X = z;) = wy, — E(wc)“k(zj) , 3)

where E(w,)| fe(os) is the expectation over the embedding vectors, using softmax probability based
on f(z;). Equations , and E(w,)|, , , are derived in the Appendix.

Under review as a conference paper at ICLR 2025

From (2), note that for real Y the residual (error) y; — fi(x;) informs the update direction in the
gradient for refinement of fj(x), with the degree to which sample j informs the update for f;(z)
dictated by closeness in covariate space, quantified via the kernel x(z;,x;). For categorical Y,

wy, — E(w,) Fot) plays an analogous role: as f(z;) is more peaked (probable) for category y;,

the expectation will be close to wy;, so w,, — E(w.) , reflects a form of model error wrt the

‘ fr (mj
contextual data, to which the model adapts at inference.

While below we will focus on categorical Y and make connections to real Y for which there is much
prior work, in the Appendix we also show that for count-valued Y modeled as Poisson[exp(f(z)],
the gradients similarly form a model error of the form y; — E(y;)|y, (2,)- and learning consists of
pushing fi(x;) to make the expected counts consistent with observations.

Lemma 1| assumed that each component of vector function f(z) is within the RKHS family with
kernel k(x;,x;). However, having arrived at this form, we note that the overall gradient for f(x)
is effectively a kernel-weighted average over isolated gradients {V ¢ log p(Y = y;|f(z;))}j=1,~
(Hastie et al., [2009). We now seek to employ this insight, and move beyond the assumption that
f(z)isin a RKHS.

Proposition 1 (Nadaraya-Watson Averaged Gradient Descent) Consider data {(x;,y;)}i=1,n
and assume that the y; are drawn from p(Y |f(x;)) for an underlying function f(x). The corre-
sponding Nadaraya-Watson average gradient, for a nonnegative kernel K with parameter A (which
here need not be positive semi-definite) is

N

Ky(z;,x
D W e
= Zj’:l K)\(xj’ax)
This is a direct application of the Nadaraya—Watson kernel-weighted average (Nadaraya, |1964} Wat-
son, [1964; Hastie et al., | 2009) to the sample-dependent gradients {V s log p(Y" = y;|f(z;))}j=1,~>
without assumption on the form of f(x), yielding a generalization of (1). An important special case
is K)(7;,7) = exp(AzTz;) with A > 0, and for which K (z;,z)/ > jr—1 Kx(zj,) corresponds
to softmax attention.

Note that in there is no 1/N, as the average is manifested via the denominator in
Kx(zj,2)/ > 25— Kx(xj, x), which is distinct from . This will be revisited in the experiments.

3 META-LEARNING MODEL CONSTRUCTION

Based on the understanding of functional gradients from above, we now examine the form of our
desired meta learner. We focus on multi-layered models, in which the importance of skip connec-
tions (He et al.,|2015; Drozdzal et al., 2016)) becomes evident. Additionally, in the remainder of the
paper we introduce the notation f; = f(x;) (and related usages will become evident below). We use
this notation to simplify the equations, and hope that this will not cause confusion with the RKHS
notation used earlier.

Let {hge)}i:L ~ represent the hidden inputs to layer £ + 1, with {hz(-e)}i:L ~ output from layer ¢
(the initial inputs correspond to ¢ = 0). The set {hge) }i=1,n 18 collectively analyzed at layer £ + 1,
and at the output of layer ¢ + 1 are emitted {hEHl)}i:L ~. We will show in the next section that
hl(-g) has three sets of components corresponding to the covariates, function evaluations and gradient
(0

9

information, but for now it suffices to assume that a subset of the components of h
)

correspond

to the model of f; after ¢ layers, denoted fi(e), while other components of hy
fz'(£+1)~

play a role in the
computation of

With skip connections, the cumulative representation of ff”l) at the output of layer £+1 s f, }ZH) =

f,»(e) + go(i; {h§e) }i=1,nv), where gg(i; {h;e) }j=1,n) denotes the output of the model at this layer for

representing f; (other parts of hg”l) may also be updated, in addition to fi(Hl), but we focus on
the latter as it is involved in the likelihood fit to the data). The model parameters are represented by

Under review as a conference paper at ICLR 2025

6, and each layer will in general have different parameters (but the same model architecture). We

wish to examine desired properties of the meta learner composed of the models gy (i; {h()} J=1.N)
for performing effective inference of the latent f; given contextual data.

The log-likelihood of the data {(z;, ;) }i=1,~ based on the output at layer £ + 1 is Zf\il logp(Y =
Yil fi(Hl)). From a Taylor series expansion we have

Zlogp =il £ + 90 (i5 (0"} 521) 5)

N

N N

N\1T . 4
Z ogp(Y =yl f£) + 3" [V Y logp(Y =yl £)]" 9065 {hS) }j—1v) + 6,
im1 i=1 j=1

where V¢, Zjvzr log p(Y = y;] fj@)) is defined by the functional gradients from the previous sec-
tions: (¢) from the RKHS perspective, it corresponds to Zjvzr Vilogp(Y =y f;é))/@(xj, x;),
and (z¢) from the Nadaraya-Watson perspective it corresponds to Zjvzr Vilogp(y =
5 f]@))K Az, xi)/ Z;\f:r Kx(zj, ;). In , d represents higher-order terms, related to second
and higher-order gradients of Zjvzl log p(Y = yj| f;z)).

To first order, if we analyze each layer one-by-one as we proceed through inference of the latent
function (stepwise increase of ¢), H indicates that each gy (i; {hgf)} js=1,n') should approximate a

functional gradient step, i.e., go(%; {h%)}j/:l,N) ~ aVy, E;\le logp(Y =y, \fjm), for some scalar
a > 0 (which typically will depend on layer ¢). Hence, to first order, a series of layers may be viewed
as characteristic of multiple steps of functional gradient descent, assuming gg(i; {hy)} j=1,n) 18

designed to have a large inner product (alignment) with V¢, Z;\;l log p(Y =y, f]@).

As developed in |Cheng et al.[(2024); von Oswald et al.| (2023); |/Ahn et al.| (2023)); Mahankali et al.
(2023), and summarized in the Appendix, for real Y and Gaussian p(Y'|f(z)), attention networks

may be designed to implement each gp(¢; {h(}jr=1,n) exactly as a functional gradient step. In
such a setup, each attention layer of a Transformer implements a step of functional gradient descent
on the model’s forward pass. However, when considering multiple layers, better performance can be
achieved by accounting for higher-order terms connected to ¢ in (3)), yielding what has been termed
GD++ (von Oswald et al.l 2023)) and more generally, preconditioned functional gradient descent
(von Oswald et al., 2023 |Ahn et al., |2023)), also implemented in the Transformer’s forward pass
thus constituting the meta learner.

For categorical Y and softmax p(Y'| f(x)), we show below that a one-layer model gy (i; {hgo) ti=1,n)
can be represented by an attention layer to exactly implement one functional gradient step (which
is also true for real Y and Gaussian p(Y'|f(x)) (von Oswald et al., 2023} [Cheng et al., 2024; |Ahn
et al.l 2023} |Akyurek et al, 2022} |Garg et al., 2022; [Mahankali et al.} 2023} Schlag et al., 2021j
Zhang et al. [2023)). For single-layer models and general Y and p(Y|f(x)), the initial direction
of go (i {h;o)}j:LN) along which —V, Zjvzl logp(Y = yj‘fj(O)) decreases fastest corresponds
to the functional gradient. In this sense, that direction may be viewed as optimal. However, the
appropriate size of this gradient step depends on the problem of interest, and it is learned based
on the contextual training data {C('};—; .. We demonstrate in Section [5| that a single layer of
attention (single functional-gradient step) typically yields effective results for categorical Y and
softmax p(Y'| f(x)), with minimal improvement with further layers.

4 TRANSFORMER DESIGN FOR CATEGORICAL OBSERVATIONS

Single-layer of Attention, Exact Single Functional Gradient step A single layer of attention
may be designed to exactly implement one functional-gradient step, under the RKHS assumption
(connected to Lemmam) or under the Nadaraya-Watson representation (connected to Proposition EI),
for real or categorical Y. Real Y has been considered in |Cheng et al.| (2024) for RKHS functions

Under review as a conference paper at ICLR 2025

f(x), and it is readily extended via Nadaraya-Watson to non-RKHS attention. We summarize this
setup in the Appendix. Here we focus on the case of categorical Y’

Consider the encoding hgo) = (2,00, 0y, — & Zf:l we)? fori = 1,...,N, and hg\%rl =
(w4, 004/)T. This form of encoding is similar to that considered previously for real Y (see lvon
Oswald et al.| (2023); |Cheng et al.| (2024) and the Appendix). Specifically, each hz(-o) includes
the covariates x; as well as the initial corresponding functional gradient, the latter represented by

Wy, — % o1 We. Each f; is initialized as a d’-dimensional all-zeros vector (also done in [von

Oswald et al.{(2023)) for real Y of vector dimension d’), represented by Oy in hgo).

The key/query decomposition is the same as for real Y (von Oswald et al., [2023; |Cheng et al.,
2024), i.e., positions ¢ = 1, ..., N are used as keys, and all positions ¢ = 1,..., N + 1 are used as
queries. Using widely used notation from the Transformer literature (Vaswani et al., 2017; [Brown
et al.; 2020; ivon Oswald et al., 2023} |Cheng et al., [2024; |Ahn et al., 2023; |/Akyurek et al., 2022;
Garg et al., |2022; |Mahankali et al.||2023; Schlag et al 2021} |[Zhang et al.| 2023)), for a single-layer
model, consider matrices W = W designed such that WKh(-O) = (2;,0444)T, and matrix Wy
is designed such that thl(o) = (0g, Flwy, — & Z _, we],04)T. Finally, consider the matrix
P = I4404, where I 494 is the corresponding 1dent1ty matrix. The explicit forms of W, Wq,
Wy and P are provided in the Appendix.

For query Wq h§°>, we implement the attention P Zjvzl thg-o)li(Wth(-O), WKh(.O)), as in/Cheng
et al.| (2024). This is added to hl(o) via the skip connection, yielding hgl) = (scz,f(l),wy —

L9 w)T, with £V = 2 SN (wy, — &5 we)k(wi,x;) corresponding to the func-
tional gradient (with a similar representation from the perspective of the Nadaraya—Watson kernel-
weighted average and softmax attention). At the output of this attention layer we specify a
d" x (d + 2d') matrix denoted as Z (and defined explicitly in the Appendix) acting at the output
for position N 4 1 (a similar construct at the output has been used for real Y (von Oswald et al.,
2023)), selecting the desired latent vector from h%)ﬂ as f](\,l)+1 =7 h%)ﬂ. Vector fn 1 is sent to
the softmax layer for the category probabilities. Such an output matrix Z applied at the output in
this manner for all models considered here.

Multi-Layered GD-motivated Transformer, Linear Approximation While for real Y the f; may
be updated as a sum of differential updates (see (8)) in the Appendix), there is a nonlinear dependence
of E(w.), ;0 on f 2 (via the softmax probability over categories). Our simplest approach for ad-

dressing thls complexity considers an additive representatlon of the needed expectation, analogous

toreal Y: E(we)| ,, = ﬁ, ! A(é), where A(O) Yol ZC 1 Wc. Further, we model A() for £ >0
fi

via the linear approximation as Ag) B¢)A() , where A() is the differential update to the under-
lying function manifested by the attention layer. A}i) = ¥ ijl[wyi -y AI(EI_ Nk (xj,x;).
The term A(ff) is updated using attention as in the previous section, via the same Wg, Wi and Wy,

considered there (now used at all layers). In this approximation, there is an additional d’ x d’ matrix
B to be learned at each layer.

While the matrices Wi, Wq, Wy are unchanged from above, P is modified slightly, to place A%/)
in a position to update the model of f; (with the additive skip connection), and the term —B(®)
is multiplied with A() to yield the aforementioned approximation to the differential expectation,

which is added to the posmon of the expectation in the latent vector (again via skip connection). See
the Appendix for the detailed form of P(), and all attention matrices, omitted here for brevity.

Multi-Layered GD-motivated Transformer, Nonlinear Approximation We now consider a non-
linear Transformer block, with each block consisting of an attention layer, followed by identical
feedforward networks that operate individually on each of the vectors output from the attention layer.

This model is motivated by the goal of addressing the nonlinear dependence of f; © on E(w,), ;O

without a linearization, and it yields a model closely linked with the original Transformer demgn
(Vaswani et al.,|2017; |Brown et al., 2020).

Under review as a conference paper at ICLR 2025

We reuse the attention mechanism from above (Wq, Wi, Wy, and P are unchanged), and from that
analysis the output from the first attention layer is hl(l) = (a4, fi(l), Wy, — AI(E?))T, where we use

the notation A](E? from the previous subsection (which for £ = 0 corresponds to the average over
category embedding vectors).

We focus here on the first Transformer block, but the same construction is used at each layer. With

the feedforward element and an associated skip connection, we wish to add (g4, —A]&))T to the
output of the attention. This same type of differential update to the expectation was used above
under a linear approximation, and here we now consider a nonlinear representation.

A multi-layered perceptron (MLP) is used for this nonlinear element, with a skip connection, and
the input is hz(-l) = (x4, fi(l), Wy, — AI(E(:))T. In our GD-motivated construction, we do not anticipate
dependence on x;, so these are “zeroed-out” within the feedforward (FF) design (within the GD
model in which we impose structure), and a d’ dimensional output is placed in the desired location

of fA&), which is made convenient via the skip connection: hl(.l) — hgl) + (Odsar, g (hgl)))T.

The updated hz(-l) is the total output from the first Transformer block. This attention mechanism
followed by FF element is as employed in Transformers (Vaswani et al.,2017), from which it is also
motivated. See the Appendix for more details.

5 EXPERIMENTS

Following [von Oswald et al.| (2023)); |Cheng et al.| (2024)); |/Ahn et al.| (2023), we consider two train-
ing paradigms. The first is termed GD for (functional) gradient descent, in which all Transformer
matrices are set as defined in the previous section (explicit details in the Appendix). For GD, when
the embedding vectors {w. }.=1, ¢ are to be learned (not set as one-hot (Akyurek et al., 2022)), they
are also learned with GD training. The second model design is termed Trained TF (fully trained
Transformer), for which the model construction is as in the previous section, but all parameters are
learned, without constraints. Under the linearization of Section[z_f], the Trained TF counterpart corre-
sponds to attention alone at each layer, with full flexibility in learning the parameters. The Trained
TF version of the model with feedforward (FF) elements consists of a general (learned) attention
layer followed by FF elements (with skip connections for both), like in the original Transformer
(Vaswani et al., 2017). For both the GD and Trained TF setups, when present, the feedforward
element has 10d’ hidden units and GELU activation.

For GD and Trained TF, the training seeks to minimize the cross-entropy loss of predicting y%)ﬂ

for query :ch\l,)+1 based on context {(x,(;l), yz‘(l))}i:LN, for contextual training sets [= 1,..., L. The

softmax representation for p(Y'| f(z)) is used explicitly in this cross-entropy loss. When the embed-
ding vectors for the categories are learned, their role in the softmax probability over categories is
accounted for, as well as the encoding at the embedding vectors at the input (as in language models

(Vaswani et al} |2017)). The performance of the model is assessed based on average prediction ac-

curacy of y\“™ for query X7, and also log-likelihood fit to »'E™ conditioned on 2 1 1, for
YOIl Ynq query 'y q g YN+ +

M distinct test sets, m = 1,..., M (average performance over these is shown). Below we discuss
difficulties observed when training the Trained TF; because of that, for Trained TF training we also
considered a separate validation dataset of size L, and employed early stopping. Computations were
performed on a V100 GPU, and training was done with Adam (Kingma & Bal, 2015)).

There has been significant recent attention directed to the challenges of learning Transformer pa-
rameters, for language models (Liu et al.| 2023). Training challenges have also been examined for
in-context learning applications like studied here (Ahn et al., 2024) (but there for real Y, linear f(x)
and Gaussian p(Y'|f(z))). For Trained TF (but not GD) we observed similar challenges for cate-
gorical Y and softmax p(Y|f(z)), and used methods related to those in|Liu et al.|(2023) to address
them. These issues are discussed in detail below.

We first consider simulated data. Specifically, a softmax generative model p(Y = ¢|f(z)) =
exp[w? f(z)]/ 325 _, exp[w? f ()], for C = 25 and embedding dimension d’ = 5. For data syn-
thesis, w, € R? were generated randomly (and then fixed to generate data), with each component
drawn i.i.d. from A/(0,1). The function f()(z) is different for each contextual set . Specifically,

Under review as a conference paper at ICLR 2025

for each context [, 5 categories are selected uniformly at random from the dictionary of C' = 25 cat-
egories. Let ¢ (1), ..., c)(5) denote these categories for context [. We further randomly generate
5 respective “anchor positions,” Z(1), ..., #(5), each drawn i.i.d. from A (04, I;). The function for
context [is represented as f()(z) = A anzl We(m)KRBF|T — T(M); 0,,], where the RBF kernel
parameter o, is selected such that krpp[r — T(m); o] = exp(—o2, ||z — & |2) equals 0.1 at
the center of the other kernel to which it is closest (in a Euclidean distance sense). We set A = 10
(selected so as to have category ¢(m) be clearly most probable in the region of Z(m)), and d = 10.
This model is designed such that category ¢(m) has relatively high (and context-dependent) priority
in the vicinity of center Z(m), with o,,, defining the region of relevance for that category.

After f)(x) is designed for context [, N + 1 covariates are drawn xgl) ~ N (04, 14), and then

{yfl)}izl’ ~N+1 are drawn from the underlying softmax model (at test yg\l,)ﬂ is the true category, and

the Transformer yields a probability of all categories ¢ € {1,..., N} given xg\l,) 1 1)- When training
N = 125, and in all of these simulated experiments the test contextual data also has N = 125,
except for an experiment that examines the situation for which the training N is different from the
test contextual size. We considered L = 2048 training contextual sets, and tested performance for
M = 2048. Any contextual set C(!) will likely only see a small subset of the total C' = 25 categories,
analogous to how in language contextual data only sees a subset of all tokens.

When training the Transformer, for this experiment the embedding vectors {w. }.=1 ¢ are learned,
with d’ = 5 (although for these simulated data similar results were found for other settings, such as
d’ = 10). Finally, in all cases for which model parameters are initialized at random, results from
five random parameter initializations are shown, to indicate variability in the training process.

Figure E] considers results for a one-layer T 10
Transformer, presenting GD and Trained TF .. S
results; for both of these, all parameters are
initialized at random (drawn from a zero-
mean Gaussian). Note that there is a signifi-
cant difference in the number of parameters
that need be learned for GD and the Trained ol 50— 50— 50—

TF: for GD, the Transformer need only learn remng epocts e gpocts

— GD
—— Trained TF

Accuracy
Accuracy

the attention kernel parameter, the learning
rate, and the embedding matrix W, while for
Trained TF the embedding matrix W and all
the Transformer matrices Wq, Wx, Wy, P

Figure 1: Average accuracy (on test data) of a one-layer
Transformer with C' = 25 categories, trained via GD and
Trained TF, in both cases from a random parameter initial-
ization. Left: softmax attention, right: RBF attention.

and Z are learned. As observed in Figure[l]

the Trained TF model learns relatively well, but it does not achieve the performance of GD. The GD
setting constitutes a subset of all possible parameter settings for Trained TF; the fact that GD results
are notably better than those of the Trained TF reflects that learning of Trained TF starting from
random initialization has significant difficulties. From Section [3] the efficacy of the GD is expected,
which may be viewed as an upper bound on what Trained TF could achieve.

Following Liu et al.|(2023), it is recognized that proper initialization of the Transformer parameters
is critical (when all parameters are free to learn, as in Trained TF). In Figure [2] we next consider
training the Trained TF with parameters initialized as those from GD. We show the full training
trajectory for Trained TF (starting from the final GD parameters) and for GD, and see that the
Trained TF performance barely moves from the final GD performance. Separately, Figure [2] (right)
compares GD performance for a linear kernel attention, showing that it performs significantly worse
than nonlinear RBF and softmax attention (as expected for the highly nonlinear f() () used in data
generation).

We next examine a two-layer model, considering each of the methods discussed in Section [for
addressing the nonlinear expectation E(w..) £ Figure (left) indicates that the GD results converge

to almost the same predictive accuracy, for one and two layers. For the two-layer Trained TF, it was
even more important to initialize the parameters well, doing so from the learned GD parameters. In
Figure[3|we show two-layer results using the linear (attention-layer-only), and the setup that used the
additional feedforward element. Both approaches for multi-layered models give similar results, and
do not vary significantly from the performance of the GD model from which they were initialized.

Under review as a conference paper at ICLR 2025

o 1000 2000 3000 4000 5000] 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000
Training Epochs. Training Epoch: Training Epochs.

Figure 2: The left two figures consider the same case as the in Figure but here the Trained TF is initialized
with the GD model parameters. Right: GD performance for linear, RBF and softmax attention.

o 00
o 1000 2000 3000 4000 5000 [] 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000
aining Epochs Training Epochs Training Epochs.

Figure 3: Left: Average GD performance as a function of training epochs, for one and two Transformer layers
(for 2 layers, we show results with the FF element). The right two figures are GD and Trained TF performance
for two layers, with Trained TF initialized with the GD parameters. Center: two-layer model based on linear
approximation; Right: two-layer model with feedforward element. All results for test data.

Two observations are made from these results: (i) the linear method of approximating E(w.)| ©
fi

(attention alone) yields results comparable to those that include a feedforward element and associ-
ated skip connection, and (i) none of the two-layer results are significantly different from those of
the one-layer model. This phenomenon was observed in all of our experiments. We attribute (i7)
to the fact that the attention layer and skip connection manifest an effective functional gradient step
(Section [3) with one layer. Another factor for (i) concerns the characteristics of categorical Y and
softmax p(Y'|f(x)). Our predictions use the most-probable category as our prediction for query
zn41. Even if the overall softmax function p(Y|f) (x4 1)) changes with increasing layers £, if
the most-probable category is manifested after / = 1 layers, no change in predictive performance
will be observed for more layers.

Thus far we have observed little difference between performance with an RBF or a softmax kernel.
There is therefore a question of whether softmax attention offers advantages. As discussed in com-
paring (1)) and @) the inherent normalization in the softmax avoids the 1/ scaling in ; the 1/N
is needed to achieve a context-dependent average negative-log-likelihood fit.

In Figure [] (left) we compare performance of a GD-based single-layer Transformer trained with
N = 125, and applied to text data with N varying from 25 to 300. For the linear and RBF attention
kernels, we show results for which the 1/N term within the Transformer is left unchanged from
training, and also with the software adjusted appropriately for each test N (all learned parameters the
same, with just an adjustment for IV at test). Note that the kernel attention models perform relatively
stably with varying IV (if there is a rescaling for each test /). While this adjustment could be done
in practice, it adds a complexity. The Transformer based on softmax attention yields relatively stable
results for all test [V, with no parameter adjustment at test time, and softmax-attention performance
is better than all other kernels, with or without rescaling the N.

Our final results consider few-shot learning for classifying image data. Using the ImageNet dataset
(Russakovsky et al.,[2014)), we select 900 classes for Transformer training, and a separate 100 classes
for testing. For each contextual set CcW, 5 distinct classes are selected uniformly at random, and for
each such class 10 specific images are selected at random, and therefore N = 50 (image N + 1 is
selected at random from the 5 class types considered in the context data). When training, L = 2048
and test performance is averaged over M = 2048 contextual sets. The covariates x; (with d = 512)
correspond to features from the VGG network (Simonyan & Zisserman, [2015). We set d’ = 4 and
achieved best results (reported here) with learned {w; }c=1,c-

While this is viewed as an interesting large-scale test, we note that it does not conform to the as-
sumptions of most prior in-context learning with Transformers (von Oswald et al., 2023} |(Cheng
et al.,|2024;|Mahankali et al.,2023)). In most prior work (and in the above experiment with synthetic
data) it is assumed that the covariates are drawn from the same distribution for all contextual data
blocks. Since here each contextual block will be associated with only 5 image classes, and in general

Under review as a conference paper at ICLR 2025

with a different 5 images per contextual block, the covariates (VGG features) will in general be sam-
pled from a different distribution for each contextual block. Even more importantly, when testing
the learned Transformer, it will be applied to contextual sets from entirely different image classes,
thereby being drawn from a different portion of VGG feature space. We compare Transformer re-
sults to “linear probing,” in which a linear model is applied to the VGG features, the outcome from
which is then sent into the softmax for classification. Importantly, with linear probing a model must
be learned anew for each test contextual block, to be contrasted with the Transformer, for which
no fine-tuning of parameters are done after training. The linear probing results should be viewed
as giving a sense of the quality of the Transformer results (providing a likely unachievable upper
bound). While an interesting comparison, it is not an entirely “fair”” comparison, as linear probing is
not learning a single meta model (as the Transformer is).

In the right part of Figure [we w0 200
present top-1 accuracy and the neg-
ative log-likelihood for 1 layer of at-
tention, trained with GD, softmax at-
tention, with test-set results shown as
a function of training iteration (using

Accuracy
S
8
og

— GD Accuracy —— GD Loss 0.25

Negative Log-Likelihood Loss

— Softmax

pal’ameters, at teSt, COI‘I'eSpOHding to 00 o ~— Linear Probing Accuracy == Linear Probing Loss w

25 50 75 100 125 150 175 200 225 250 275 300 03 1000 2000 3000 4000 5000

Context Size (N) Training Epochs

that training step). While the Trans-
former does not achieve the perfor-

. . . Figure 4: Left: GD-based results for a one-layer Transformer,
mance of linear probing, it is close,

and is achieved with no post-training
fine-tuning and with the aforemen-
tioned mismatch in covariate statis-
tics. In the Appendix we also show
similar results for the same Trans-
former, but tested on N = 15.

6 CONCLUSIONS

on the synthetic data. The context size for training is N = 125,
and we test performance for context sizes of N = 25 through
N = 300. Right: Results for ImageNet dataset, with a single-layer
GD Transformer with softmax attention trained with N = 50. For
GD training, 5 random parameter initializations were considered,
and variation is depicted. Results are shown as a function of the
training iterations (tested on the held-out set). Also shown are re-
sults for linear probing, where in that case a new model is trained
for each contextual block. Results are shown for top-1 predictive

accuracy and the negative log-likelihood loss for yn 1.

The above analysis demonstrates the effectiveness of Transformers for performing in-context learn-
ing for data Y drawn from a model of the form p(Y|f(z)) for context-dependent and generally
nonlinear f(x). The analysis was motivated by gaining understanding of Transformer mechanisms,
but we have also found that the simplified representations uncovered may serve as good initializa-
tions of parameters for less constrained Transformer representations. There are several issues that
deserve further study. For inference with categorical Y, we observed that a single-layer model is
often sufficient. For multiple layers, to model the nonlinear E(w.) s,» We considered attention layers
alone (linear approximation to expectation), and Transformer blocks composed of an attention layer
followed by feedforward elements; the latter affording significant modeling flexibility. Nevertheless,
we found a single-layer model sufficient, providing possible explanations.

We also discussed the difficulty of learning the Trained TF Transformer parameters from a random
initialization, consistent with the analysis in|Liu et al.|(2023). Given the difficulty of training Trans-
formers, one may wonder if the lack of observed improvement in performance with more layers may
be caused by training difficulties. While this must be explored further, we note that the GD-based
model, with far fewer parameters to learn than Trained TF, also did not manifest significant improve-
ment with more layers (even when we invoked the modeling sophistication of the FF element).

The fact that the FF element did not yield significant improvements here should not be taken to imply
that it is unimportant in other applications. An aspect of the in-context learning considered here is
the presence of covariates x; (like done previously for real Y (von Oswald et al., 2023;|Cheng et al.}
2024;|Ahn et al.,[2023)). While we encoded our input-data categories with embedding vectors (like
in language models), in language models there are no covariates z; (Vaswani et al.| [2017; [Brown
et al., 2020). One conjecture is that language models may predict the next token using inference
like that considered here (with that inference performed near the output layers of a large language
model). However, if this conjecture is true, it is possible that many of the other (numerous) layers of
the Transformer nearer to the input layer may be performing context-dependent feature generation
(analogous to inferring features that play a role like ;). Much more work is needed to explore this
and other issues uncovered in this research.

10

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

The authors have undertaken to perform the research presented here with the highest level of ethics,
in accordance with the ICLR Code of Ethics. In the paper, it is believed that there are no matters
that arise ethical concerns: there have been no studies that involve human subjects, we have used no
proprietary datasets, we do not believe we have uncovered any harmful insights, methodologies and
applications, there are no potential conflicts of interest and sponsorship, discrimination/bias/fairness
concerns, privacy and security issues, legal compliance, and research integrity issues.

REPRODUCIBILITY

The authors have used no proprietary datasets. All data considered here is in the public domain (e.g.,
the ImageNet dataset), and we have explained in detail how all of our experiments have been done,
so that they may be reproduced. Further, we intend to make public all software we have developed
to implement our experiments. We have included an Appendix, wherein all of the details of the
theoretical developments and models are provided, to enhance understanding and reproducibility.

REFERENCES

K. Ahn, X. Cheng, H. Daneshmand, and S. Sra. Transformers learn to implement preconditioned
gradient descent for in-context learning. arXiv.2306.00297, 2023.

K. Ahn, X. Cheng, M. Song, C. Yun, A. Jadbabaie, and S. Sra. Linear attention is (maybe) all you
need (to understand transformer optimization). International Conference on Learning Represen-
tations, 2024.

E. Akyurek, D. Schuurmans, J. Andreas, T. Ma, and D. Zhou. What learning algorithm is in-context
learning? investigations with linear models. International Conference on Learning Representa-
tions, 2022.

D. Bagnell. Lecture notes: Kernel machines/functional gradient descent. lecture #22, 2012.
URL https://www.cs.cmu.edu/~16831-f14/notes/F12/16831_lecture22_
ewcha.pdf.

T.B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D.M. Ziegler, J. Wu, Cl. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Language models
are few-shot learners. arXiv.2005.14165, 2020.

X. Cheng, Y. Chen, and S. Sra. Transformers implement functional gradient descent to learn non-
linear functions in context. arXiv.2312.06528, 2024.

M. Drozdzal, E. Vorontsov, G. Chartrand, S. Kadoury, and C. Pal. The importance of skip connec-
tions in biomedical image segmentation. Deep Learning and Data Labeling for Medical Appli-
cations, 2016.

C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep net-
works. arXiv:1703.03400v3, 2017.

S. Garg, D. Tsipras, P.S. Liang, and G. Valiant. What can transformers learn in-context? a case
study of simple function classes. Advances in Neural Information Processing Systems, 2022.

T. Hastie, R. Tibshirani, and J. Friedman. Kernel Smoothing Methods, pp. 191-218. Springer New
York, New York, NY, 2009. URL https://doi.org/10.1007/978-0-387-84858-7_
6.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
arXiv:1512.03385, 2015.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. In /CLR, 2015.

11

https://www.cs.cmu.edu/~16831-f14/notes/F12/16831_lecture22_ewcha.pdf
https://www.cs.cmu.edu/~16831-f14/notes/F12/16831_lecture22_ewcha.pdf
https://doi.org/10.1007/978-0-387-84858-7_6
https://doi.org/10.1007/978-0-387-84858-7_6

Under review as a conference paper at ICLR 2025

L. Liu, X. Liu, J. Gao, W. Chen, and J. Han. Understanding the difficulty of training transformers.
arXiv:2004.08249v3, 2023.

A. Mahankali, T.B. Hashimoto, and T. Ma. One step of gradient descent is provably the optimal
in-context learner with one layer of linear self-attention. arXiv:2307.03576, 2023.

S. Muller, N. Hollmann, S. Pineda, J. Grabocka, and F. Hutter. Transformers can do Bayesian
inference. International Conference on Learning Representations, 2022.

E. A. Nadaraya. On estimating regression. Teoriya Veroyatnostei i Ee Primeneniya, 1964.

A. Nicholand, J. Achiam, and J. Schulman. On first-order meta-learning algorithms.
arXiv:1803.02999v3, 2018.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, A. C. Berg, and L. Fei-fei. Imagenet large scale visual recognition challenge. IJCV,
2014.

A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. Meta-learning with memory-
augmented neural networks. International Conference on Machine Learning, 2016.

I. Schlag, K. Irie, and J. Schmidhuber. Linear transformers are secretly fast weight programmers.
International Conference on Machine Learning, 2021.

J. Schmidhuber. Evolutionary principles in selfreferential learning. on learning how to learn.
Diploma thesis, Institut f. Informatik, Tech. Univ. Munich, 1987.

B. Scholkopf and A.J. Smola. Learning with kernels. MIT Press, 2002.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. In /ICLR, 2015.

A. Vaswani, N. Shazeer, N.i Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, and 1. Polo-
sukhin. Attention is all you need. Neural Information Processing Systems, NeurIPS, 2017.

J. von Oswald, E. Niklasson, E. Randazzo, J. Sacramento, A. Mordvintsev, A. Zhmoginov, and
M. Vladymyrov. Transformers learn in-context by gradient descent. arXiv.2212.07677, 2023.

G. S. Watson. Smooth regression analysis. Sankhya, Series A, 1964.

R. Zhang, S. Frei, and PL. Bartlett. Trained transformers learn linear models in-context.
arXiv:2306.09927, 2023.

12

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PROOF oF LEMMA[I]

In the following, we also include background information on functional gradients and gradient de-
scent for functions in an RKHS.

Assume that F corresponds to a reproducing kernel space (RKHS) (Scholkopf & Smola) 2002}
Cheng et al.| |2024)), which includes linear models (Ahn et al., 2024; [von Oswald et al., 2023} |Ahn
et al., 2023; [Mahankali et al.,[2023) as a special case. For input x € R%, we first consider function
f(x) € F with a scalar output, represented as f(x) = (k(x,:), f),,, where H is a Hilbert space, f €
‘H, and there is an associated kernel k(z;, ;) = (k(x;,:), &(:,2;)),,. We briefly review functional
gradients for scalar-output f(x) (Scholkopf & Smolal 2002; [Bagnell, |2012} |Cheng et al., 2024), to
set the stage for the vector outputs of interest here. Defining the evaluation functional E,(f) =
(f,k(:,))q = f(x), the corresponding functional gradient is specified in terms of a scalar € and
g € H. Specifically, we have E,(f + cg) = Eu(f) + cEs(g) = Eulf) + e (r(z,:), 9)y =
E.(f)+€(VEy, g); + O(€?); the last equality effectively defines a functional gradient in terms of
the linear term in a Taylor expansion of E,.(f+¢€g) about f (and here the O(€?) term is exactly zero).
For E,, the corresponding functional gradient in H is VE, = k(x,:), and E, is termed linear, as
the second-order and higher terms are zero. A common nonlinear example used in kernel machines
is E,(f) = 2(y — f(x))? for which via chain rule VE,(f) = (f(z) — y)r(x,:) (Scholkopf &
Smolal [2002). For general F(f), omitting the dependency on « for notational simplicity, VE is
termed the corresponding functional gradient.

Consider E(f) = r(y, f(z)) for general loss function r(-,-). Again via chain rule, the correspond-
ing functional gradient is VE = v/ (y;, f(z;))x(x;,:), where r'(y;, f(x;)) is the usual derivative of
r(yi,) wrty, evaluated at v = f(x;). For data {(x;, ;) }i=1,n. gradient descent in # is represented

as fir1 = fo — & Zjvzl ' (yj, fu(xj))k(xj,), where « is the learning step size. Consequently,
a N
Sror1(x) = (frrr, 60 @) = fol@) — 5 22521 7 (Y5, frl@)))s(z),).

For f(z) with d’-dimensional vector output, each component of which is modeled via the same type
of RKHS setup as above, the derivative r’(y;, f(z;)) becomes a gradient wrt each component of
f(xj). Considering r(y;, f(x;)) = —logp(Y = y;|f(z;)), gradient descent becomes

N
Jia (@) = Jula) + 5 30V 5 logp(Y = sl fila)z 2) ©)
j=1

where V¢ logp(Y = y;|fr(z;)) is a traditional gradient of log p(Y = y;|f(x;)) wrt the compo-
nents of f(-), evaluated at fi(x;). This proves Lemmal[l]

Moving to Proposition the expression Zjv:l Vilogp(Y = y;|fu(x;))r(x;, x), which is the
overall gradient responsible for the update of f(xz;) in @), may be interpreted as a kernel-weighted
average (Hastie et all 2009) of the N isolated gradients Vylogp(Y = y;|fi(z;)). In (6) the
kernel average is implemented wrt RKHS kernels (positive semi-definite). Proposition [T]is a di-
rect application of the Nadaraya-Watson modeling framework Nadaraya| (1964); Watson| (1964);
Hastie et al.|(2009), in which the kernel average is performed over the individual, sample-dependent
gradients V¢ logp(Y = y;|fx(x;)), and the averaging is based on more-general representations
Ky(x;,x;)/ Z;Yzl Ky (z,;). The special case K (z;, ;) = exp[\(a] x;)] yields softmax at-
tention.

A.2 DETAILS ON THE GRADIENT UPDATES FOR REAL Y AND GAUSSIAN p(Y|f(z))

We use the notation f; ; = fi(z;) to represent the function of interest after the kth step of gradient
descent, evaluated at covariates x ;. For real-valued Y and Gaussian p(Y; = y:|f:) (Ahn et al.} 2024
von Oswald et al.| 2023 |Cheng et al., 2024 |Ahn et al., [2023)), we have

1 1
Vi logp(Ys = yil fi) = —thgvfi yi — fill> = g(yi — fi), (N

13

Under review as a conference paper at ICLR 2025

and (T)) yields

Z\Q
Z\Q

fiks1 = fijn+

N
Z fzk xlaxj f]k‘

Afjk

N k
Z Z Afiwls(@nz), (8)

where we typically initialize as f; o = 04, where Oy is a d’-dimensional vector of all zeros. Con-
sequently, we also have A f; o = 04 . The variance o is treated as a constant, and absorbed into the
learning rate (effectively assuming that the variance 0> may be approximated as a constant for all
contextual data of interest (von Oswald et al.,[2023; |Cheng et al.,[2024)).

To make the connection to more-general Y and p(Y'|f(x)), we may re-express (8] as

N
o
fiksr = [+ N Z(yi —E(Y)),, (@i, z5)
i=1
0N k
= fir+ N Z[?Ji - Z Ag, k(i 7;))
i=1 k=

where Ag, , = Af; . Asindicated in , A f; i is the direct result of the attention mechanism.

As discussed above, real Y and Gaussian p(Y'|f(z)) is a special case, and in general E(Y')|, isa

nonlinear function of f; ;.. Moreover, for categorical Y, the expectation over outcomes Y, E(Y)
is replace by an expectation of learned embedding vectors (discussed next).

‘fi‘k’

A.3 DETAILS ON THE GRADIENT UPDATES FOR CATEGORICAL Y AND SOFTMAX p(Y|f(x))

For categorical outcomes Y and p(Y = c|f(z)) = exp[w? f(z)]/ Z(C: exp[wl f(z)],

c

Vf'i logp(Yi = y1|f1) = Vf'i fiTwyi - IOgZexp(szwc) (10)
c=1

C
D1 We exp(f{ we)

- (11)
! 29 s exp(fTwe)
— wy, - Zp — ol f(x)w (12)
= Wy, _E(C)‘fi) (13)
and therefore in this case
N
«
fik+1 = Fix+ N Z[wy = E(we)y,, Jr(@i, ;) - (14)

i=1

Afjk

In general, the embedding vectors connected to the categories, {wc}C:LC are learned. Further,
the expectation E(w.)|, . is a nonlinear function of f; ;, this necessitating approximations in the
context of Transformer implementations of such a functional gradient descent. Stated differently,
the Transformer cannot implement multiple steps of functional gradient descent for categorical Y,
except for a one-layer model. These details are discussed in Sections[A.5]and[A.6]

A.4 DETAILS ON THE GRADIENT UPDATES FOR COUNT Y AND POISSON p(Y'|f(x))

The paper focuses on categorical Y, and seeks to make connections to real Y, to highlight re-
lationships to prior work. Nevertheless, we briefly note one other special case, that underscores
the generality of the approach. Specifically, for count-valued Y and Poisson p(Y; = y;|fi) =
AV exp(—A;)/yi!, where \; = E(Y|X = z) = exp(f(z;)) we can write

14

Under review as a conference paper at ICLR 2025

Vi logp(Ys = il fi) = Vyuifi — Vy, exp(fi) = yi — exp(fi), (15)

and thus

fj,k+1 fgk+ Z -—exp fz k)) (.’bi,.’b] f]k+ Z yz \f k} (xiaxj)v (16)

Afjk

where we made \; = exp(f;) so f; € R. Note that the formulation above readily extends to
multivariate count-valued Y by making the dimension of f; consistent to that of Y.

Concerning the above three subsections, note that for the Gaussian model for real Y, the update of
fj.ke+1 may expressed in terms of a sum of prior {Af; ' }rr=0,1 (see , which as discussed below
has important implications for (simplified) implementation. By contrast, for the categorical case of
(3], the expression E(wc)”i i is a nonlinear function of prior {A f; i/ }x'=0,k—1, and similar issues
hold for categorical Y. This adds significant complications, but as discussed below, it will also allow
us to make explicit connections to all elements of the Transformer network (attention models and
the feedforward elements (Vaswani et al.,[2017)).

A.5 TRANSFORMER IMPLEMENTATION FOR REAL OBSERVATIONS

To make the connection to an attention-layer implementation for categorical Y (Section[A.6|below),
we first design the attention layers for real Y. Further, we consider design of these attention layers
for real Y in a manner that aligns with how we will handle categorical Y. We then show why and
how this can be simplified when considering real Y and Gaussian p(Y|f(x)), thereby recovering
the form used in prior work ivon Oswald et al.|(2023)); \Cheng et al.[(2024).

As the input to the first layer, consider the encoding hEO) = (24,04,y;)T, where we initialize
fi = 04, as done for the categorical case (and as done in [von Oswald et al.| (2023)); Cheng et al.
(2024) forreal).

At each attention layer Wg, Wg, Wy and P are designed such that WQhEO) = WKhEO) =
(x4,004/)T and thl(.o) = (044, Ly;)T. These matrices are explicitly

Ig Ogxar Ogxar
Wo=Wgk =|0sxd Oaxa Oaxa |, (17)
Og'xa Oarxar Ogxar
and
Odxd Ogxar Ogxar
Wy = [0Oarxa Oarxar Oarxa | . (18)
Oarxd Oarxar Fla

The above design of these matrices yields attention layers that implement functional gradient descent
for real Y.

For query ¢ and attention kernel x(x;, x;), attention yields Zjvzl th§0)f~c(WQh§0)7 Wk hg_o)) =

~ Z;\;l yik (24, ;). Note that we provide this exposition for the first layer, but the same concept

holds for all. In addition, we have used RKHS kernel attention, but the corresponding setup holds
for softmax attention, from the perspective of Proposition|[I]

‘We now define
Odxd Oarxar Odqrxar
P=|0axa Oaxa Iz , (19)
Og'xd Oarxar —Ig

15

Under review as a conference paper at ICLR 2025

and with the skip connection we have

N
hY =0+ P Wy nl w(Woh® wich(®) (20)

Jj=1

N
= (21,00, 9:)" + (02, >_ Wb\ k(Woh(® Wich$”), 04)"

Jj=1

N
+ (Ograr,— Y thE'O)K(Wth(‘O)v WKh§O)))T 21

Jj=1

N N
= (a1, Y Wvh P s(Woh” Wich\?),y: = S Wy bl s(Woh® , wich®)T . (22)

j=1 j=1

£ Vi SN logp(Y=y,|£iV)

If we were interested in retaining fi(l) for all inputs, this design would be appropriate. However, we
are only interested in performing an estimate of y; for query ;. Consequently, we only need
SNy

So motivated, the authors of [von Oswald et al.| (2023) had the insight of encoding the query x4
by setting yn41 = Og at the first input layer. Therefore, we observe that in (22) that with such an
encoding the output of this attention layer for position N + 1 is (zn 41, fj(vli_l, —fl(\}il)T. We see
that in the case of real Y, when we are only interested in predictions for the query, it is redundant to
encode f; and Vy, Z;Y:I logp(Y = yj|f;1)). Consequently, the encoding is hEO) = (z4,:)T with
yn+1 = 0. The matrices Wg, Wg, Wy and P are reduced in size and modified accordingly (von

Oswald et al.| 2023)). The output at the final attention layer at position /N + 1 is the negative of the
desired fy 41, the estimate of yx 1 (von Oswald et al.,[2023).

Concerning the above selections for Wg, Wx, Wy, and P, these constitute only one such design, and
many others are possible. For example, within attention kernels (and similarly for softmax attention),
there are often inner products of the form (hz(-é))TWS Wg hy). Any design of Wg and Wi that

yields the same @ = W2 W will manifest identical Transformer implementations. Similar issues
hold wrt the design of I/Igv and P (von Oswald et al., 2023} |Cheng et al.| 2024)).

A.6 DETAILS ON TRANSFORMER IMPLEMENTATION FOR CATEGORICAL OBSERVATIONS

Single Layer of Attention, Steepest-Descent of Functional Gradient For categorical Y and soft-
max p(Y|f(z)), we first detail a single-layer model composed of attention alone, and demonstrate
that it can exactly implement a step in the direction of the functional gradient.

For categorical observations, we encode at the input layer as hz(.o) = (x4, 0gr, Wy, — % Zle we)T.
We must maintain this form, even under the linear approximation of Section 4} because unlike for
real Y, f; is not simply the negative of V, Zjvzl logp(Y = y;|f;) (even if the outcome for z 1
is encoded to the zero vector). At the output of the Transformer the predicted fy 1 is sent into the
softmax operation over categories, and therefore we need to retain fn 1.

For categorical observations, at each layer of the Transformer the matrices W, Wx and Wy, are
the same as discussed in Section[A.5|for real Y with the same form of encoding. For ease of reading,
they are repeated here:

I; Ogxar Ogxar Oaxd Oaxar Oaxar
Wo =Wk = |0axa Oaxa Owxar |, Wy =|0axa Owxa Owxa | . (23)
Oarxd Oarxar Oarxar Oarxd Oarxar Fla

When only considering a single attention layer, which exactly corresponds to one step of functional
gradient descent, we use
Odxd Oarxar Oarxar
P = <Od’ xd Oarxar la) ; 24
Oa'xd Oarxar Oarxar

16

Under review as a conference paper at ICLR 2025

as in this case we only update fl-(o) — fl-(l), because this is all that is needed to feed into the
softmax over categories at the output, to make predictions of categories (there is no need to update
the corresponding functional gradients).

Concerning this single-layer implementation, from (3) recall that a first-order approximation of
Zilil logp(Y = yi|fi(0) + go(3; {hgo)}jzl,N)) indicates that the network gg(i;{hg.o)}jZLN)
should be aligned in the direction of the functional gradient Vy, Zjvzl logp(Y =y f;o));
in p(V = y fi(o) + go(i; {h§0)}j:17 ~)) the additive fi(o) represents the skip connection, and

90 (3; {hgo) }j=1,~) is implemented with an attention network.

Note, however, that the details of the functional gradient V, Z;VZI log p(Y = y;| f;o)) depend on
the choice of kernel, if f(x) is assumed to be within an RKHS family. More generally, softmax
and other forms of attention may be considered from the perspective of Proposition[T]and Nadaraya-
Watson kernel smoothing. We have found in practice, that nonlinear kernels like RBF typically yield
results very similar to softmax attention (see Figure 1, for example). Therefore, from a practical
perspective, the functional gradients appear to be consistent for different and sufficiently rich forms
of nonlinear attention (assuming f(z) is a nonlinear function).

Multiple layers, categorical Y For the multi-layered attention network, we seek to update the
needed expectation iteratively, from layer to layer. Specifically, we express

4 C
¢ . 0 1
E(we)| ,, = S AL, with A = 5§ we. (25)
K =0 c=1

Note that this is consistent with the update equation () associated with real Y, for which the latent
function is updated incrementally with A f; ,, where there £ represents gradient descent step (which
will link to Transformer layers). For real Y and Gaussian p(Y'|f(z)) with mean f(z), the expec-
tation (updated iteratively) is just f(z). The iterative update of the expectation in (25) is the same

idea, except that now E(w,.) is nonlinearly related to fi(é).

| 1
We consider two methods for the incremental update to the expectation:

 Linear approximation: In this approximation, we use
AL ~ BOAFY, (26)

where A fi(e) represents the incremental update to the latent function, manifested via attention.
for categorical data, with a linear approximation to the update of the needed expectations over
categories (Section E[), Wq, Wi and Wy, are unchanged from above at all layers, and

Od>< d Od’ xd’! Od’ xd’
PO = 0wxa Owxar Lu , 27
Otxd Owxa —BY

where B() € R¥*?" matrix to be learned for each layer ¢. Comparing with we see that
this linear approximation is closely related to the attention design for real Y (using the expanded
encoding discussed in Section|A.5). The difference is that for real Y and Gaussian p(Y| f(z)) the
incremental update to the latent expectation is exactly equal to the incremental update to the latent
function. For categorical Y and softmax p(Y'|f(z)), under linearization, we must additionally
learn the matrix B at each layer.

* Nonlinear representation with feedforward element In this setup, each block of the Trans-
former is composed of an attention network, exactly the same as that used for the single-layer
setup introduced above. Specifically, Wg, Wx and Wy remain unchanged, and for P we use
(24). The input at position i into layer ¢ + 1 is

T
¢ 4
Input to layer £ + 1 : hy) = <1:i, Z Afi(z), Wy, — Z Afé_)> . (28)
£'=0 £'=0

17

Under review as a conference paper at ICLR 2025

The output of the attention layer at position 7 is (04, A fi(eﬂ), 04)T; when this is added to the
input hﬁ’” as a result of the skip connection, we have

0+1 ¢ T
output of attention + skip connection : (:ci7 Z A fi(Z), Wy, — Z AI(E{»)> . (29)

We now wish to add A(ZH) to the expectation, based on our updated form of the latent func-

tion f; (E+1) ZZH Af; @). Rather than using the above linear approximation, we consider a
feedforward element with parameters o:
241) ¢)
A = FFy (Z AS wy, = YA >> , (30)
=0 £/=0

where ¢ denote the parameters of the feedforward (FF) element, which is the same for all posi-
tions ¢ at a given layer. Concerning (30), we use the updated representation of f; and the prior

representation of the gradient, w,, — Z?:o Agi), as inputs to a nonlinear FF element, and we

A(e+1)

use this to estimate . Utilizing the skip connection associated with the FF element, the

representation for A(+D) can be placed in the proper position. Consequently, ideally, one Trans-
former block (attentlon plus FF, with skip connections associated with each), will yield the output
of block ¢ + 1:

T
041 (£+1)

output of GD Transformer block £ + 1 : | z;, Z A fi(él), Wy, — Z Ag;) . 3D

A.7 DETAILS ON TRAINED TF DESIGNS

For the Trained TF variants of the above GD-motivated setups, the model is free to learn parameters,
without restrictions. Specifically, the attention matrices Wq, Wg, Wy and P are learned without
restrictions. Additionally, there is the matrix Z at the output, the results of which then feed into
the softmax model at the output; Z is also learned. When they are not set as one-hot vectors, the
category-dependent vectors w, are also learned.

The Trained TF version of the linearized multi-layered model above simple corresponds to multiple
layers of attention, with all parameters learned. While with GD we restrict the form of P() as in
, for Trained TF, the attention matrices have complete freedom wrt the parameters learned.

The Trained TF version of the nonlinear representation corresponds to the original design of the
Transformer (Vaswani et al., |2017), in which the attention layer is followed by FF elements, with
skip connections employed with both. The only element missing from the original Transformer is
layer normalization, which we avoid because it is not evident in the GD-based formulation.

The Trained TF, with attention layers alone (corresponding to the aforementioned linearized multi-
layered GD) or with blocks composed of an attention layer and FF element (corresponding to the
aforementioned multi-layered GD with FF elements) offer significant modeling power. However,
the training of these models via Adam (Kingma & Ba, 2015) was found to be challenging from a
random parameter initialization. As discussed in the main paper, parameter initialization was found
to be very important for Trained TF, consistent with prior work (Liu et al.,|2023)). In particular, to get
good results with Trained TF, we found initialization with the appropriate GD variant is important.

A.8 ADDITIONAL IMAGENET RESULTS

We present in Figure [5] results for the same Transformer considered in the main body of the paper,
which was trained using context sizes N = 50. Here it is tested using context blocks of size N = 15,
with 5 image classes per contextual block, and 3 images selected (uniformly) at random per context
set (no changes were made to the Transformer after training, despite the fact that they are applied
now to much small contextual sets). Results are shown with softmax attention (left in Figure[5) and
with linear attention (right in Figure[5). Because of the high quality of the VGG features representing

18

Under review as a conference paper at ICLR 2025

1.0+ 2.00
175 175
{ |
0.8 B 0.8 B
[150 § I 150 8
£ =
]]
>06 125x >06 125x
® = ® =
= 100 8 5 1.00 B
g g : g
<104, 075 2 SI0Y 075 2
© ®
| > 050 P 1% 050
0.2 z 0.2 z
—— GD Accuracy —— GD Loss 0.25 — D Accuracy —— GD Loss 0.25
= Linear Probing Accuracy === Linear Probing Loss == Linear Probing Accuracy === Linear Probing Loss
0.0 00 0.0 00
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Training Epochs Training Epochs

Figure 5: Results for the ImageNet dataset, considering N = 15 for the test contextual datasets (the Trans-
former was trained with N = 50, and therefore there is a mismatch between the training and test context size
N for the Transformer. Since the Transformer was trained with N = 50, the Transformer (GD) results are
constant for all of what are here shown as training epochs, which are for the linear probing comparison model.
Left: softmax attention; Right: linear attention.

the covariates z;, linear attention works well here. However, as discussed in the main paper, for the
linear attention results the factor 1/N was rescaled within the software at test time, to account for
the change in the context size (from that used when training). In contrast, for softmax attention no
changes were made to the trained model (discussed in the main body of the paper).

In Figure [5] we observe that the Transformer (here based on GD, for one layer) performs well for
both linear attention and softmax attention. While the results do not reach those of linear probing,
they are relatively close. Unlike linear probing, the Transformer is performing few-shot learning
with no parameter refinement when testing (except for the 1/N for linear attention). Further, the
Transformer was trained using different covariate statistics than that seen at testing (recall that it
was trained using images from 900 of the ImageNet classes, and applied here to the remaining 100
image classes). In contrast, linear probing trains on the test data, anew for each contextual block.

19

	Introduction
	In-Context Inference of a Latent Function
	Meta-Learning Model Construction
	Transformer Design for Categorical Observations
	Experiments
	Conclusions
	Appendix
	Proof of Lemma 1
	Details on the gradient updates for real Y and Gaussian p(Y|f(x))
	Details on the gradient updates for categorical Y and softmax p(Y|f(x))
	Details on the gradient updates for count Y and Poisson p(Y|f(x))
	Transformer Implementation for Real Observations
	Details on Transformer implementation for categorical observations
	Details on Trained TF Designs
	Additional ImageNet Results

