
CRMWeaver: Building Powerful Business Agent via
Agentic RL and Shared Memories

Yilong Lai1,2∗, Yipin Yang1, Jialong Wu2, Zhenglin Wang2, Ting Liang1,
Jianguo Lin1, Keping Yang1†

1 Taobao & Tmall Group of Alibaba 2 Southeast University, China
laiyilong0@gmail.com, {uipin.yang, kuiyu.lt, tengxiao, shaoyao}@alibaba-inc.com

Abstract

Recent years have witnessed the rapid development of LLM-based agents, which
shed light on using language agents to solve complex real-world problems. A
prominent application lies in business agents, which interact with databases and
internal knowledge bases via tool calls to fulfill diverse user requirements. How-
ever, this domain is characterized by intricate data relationships and a wide range
of heterogeneous tasks, from statistical data queries to knowledge-based question-
answering.
To address these challenges, we propose CRMWeaver, a novel approach that en-
hances business agents in such complex settings. To acclimate the agentic model
to intricate business environments, we employ a synthesis data generation and RL-
based paradigm during training, which significantly improves the model’s ability
to handle complex data and varied tasks. During inference, a shared memories
mechanism is introduced, prompting the agent to learn from task guidelines in
similar problems, thereby further boosting its effectiveness and generalization, es-
pecially in unseen scenarios. We validate the efficacy of our approach on the
CRMArena-Pro dataset, where our lightweight model achieves competitive re-
sults in both B2B and B2C business scenarios, underscoring its practical value
for real-world applications.

1 Introduction

With the advanced reasoning and decision-making capabilities, large language model (LLM)-based
agents [1, 2], are poised to advance artificial intelligence toward more human-like intelligence by
autonomously interacting with external environments to accomplish complex goals. A large number
of tasks have proven to be effective using an agent-based framework, including coding [3, 4], web
browsing [5, 6], science discovery [7, 8], and deep research [9, 10].

In business applications, agents are increasingly expected to interact with complex environments
through multiple tool calls to address diverse user needs. However, deploying such agents in real-
world scenarios remains highly challenging. Their effectiveness is often constrained by the intricate
nature of domain-specific data dependencies (e.g., large-scale interconnected tables) as well as the
wide variability of user demands (e.g., queries ranging from domain-specific QA to complex data
analysis). As a result, only proficient but prohibitively costly models have been able to achieve
satisfactory performance in these contexts.

∗Work done during interned at Alibaba Group.
† Corresponding Author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Multi-Turn Interac-
tions in Large Language Models.

Which states had the
quickest case closures
in Q4 of 2021?

Can we qualify this
lead based on their
recent discussions?

API Call

Observation

Database Agent

Response

Query

Memory

Retrieval Injected

Figure 1: An overview of CRMWeaver.

To address these challenges, we propose CRMWeaver, a novel framework for building robust busi-
ness agents through a two-fold optimization strategy. First, to adapt the model to the intricacies
of business environments while mitigating the scarcity of high-quality training data, we employ
large language models to synthesize complex and diverse training data. Based on the synthesis data,
we introduce a two-stage training paradigm. In the first stage, we utilize rejection sampling and
trajectory distillation to bootstrap the model, enabling it to solve the queries through multi-turn in-
teraction. In the second stage, we employ reinforcement learning with Decoupled Clip and Dynamic
Sampling Policy Optimization(DAPO) [11] to further enhance the models generalization in complex
business environments3. Second, to cope with the diversity of user queries and the continual evolu-
tion of business schemas, we introduce a long-term memory module to improve the agents stability
across multiple tasks, particularly for previously unseen tasks. Specifically, we construct an index of
task-specific guidelines built from successful training trajectories. At inference time, when similar
tasks are identified, relevant memories are retrieved and injected into the current context, enabling
the agent to leverage prior knowledge and improve task performance. Figure 1 is an overview of
CRMWeaver.

Our contributions are threefold:

1. We address the scarcity of high-quality training data and the need to adapt to complex
business environments by combining synthetic data generation with a two-stage training
pipeline.

2. We introduce a long-term memory module that improves robustness and generalization
by enabling the agent to learn from solution guidelines produced by a stronger reasoning
model on related problems, thereby enhancing the agents capabilities on diverse, complex
tasks.

3. A lightweight model built on Qwen3-4B achieves performance comparable to Qwen3-
235B-A22B-Instruct and Gemini 2.5-Pro on the business-agent benchmark CRMArena-Pro
across B2B and B2C scenarios, demonstrating the effectiveness of CRMWeaver.

2 Preliminaries

To demonstrate the effectiveness of CRMWeaver, we choose to train and test on CRMArena [12]
and CRMArena-Pro [13]. Both provide realistic sandbox environments for evaluating LLM agents
in a business environment, with a particular emphasis on complex multi-table dependencies and
diverse enterprise tasks. CRMArena models 16 interconnected Salesforce objects with latent vari-
ables that capture hidden causal relations across thousands of records, enabling nine expert-validated
customer service tasks covering service managers, analysts, and agents. Building upon this founda-
tion, CRMArena-Pro substantially expands both the structural and functional scope: it integrates
25 Salesforce objects across Service, Sales, and Configure-Price-Quote schemas, resulting in over

3To rigorously assess generalizability while mitigating data leakage, we conduct model training on CR-
MArena and evaluation on CRMArena-Pro, which encompass entirely distinct environments.

2

80,000 records across B2B and B2C organizations, and introduces nineteen tasks spanning four core
business skills (database querying, textual reasoning, workflow execution, and policy compliance).
These benchmarks collectively stress-test agents’ abilities to navigate highly interconnected enter-
prise data, reason across both structured and unstructured records, and handle complex tasks through
multi-turn interactions, thereby offering a uniquely challenging and diverse evaluation ground for
advancing business-oriented LLM agents.

The task-solving agent in business environments follows the standard agent-environment interaction
paradigm. At each time step t, the agent receives an observation ot ∈ O from the business environ-
ment and selects an action at ∈ A based on the context ct = (o1, a1, · · · , ot−1, at−1, ot), where
O and A denote the observation and action spaces, respectively. This interaction process can be
naturally formulated as a Markov Decision Process, characterized by the tuple ⟨U ,S,A,O, T ,R⟩.
Here, U denotes the space of initial user queries, S the latent state space, T : S × A → S the
state transition function, and R denotes the reward function, which indicates task completion. The
action space A corresponds to the set of tools the agent uses to interact with the business environ-
ments. In this work, we define three actions: 1) Execute, which employs SQL or Salesforce Object
Search Language (SOSL) to retrieve relevant records or articles for problem solving. 2) Date Calcu-
lation, which computes precise temporal information given the current date and an interval count. 3)
Answer, which allows the agent to finalize and submit a response once it has identified the solution.

The above setup defines the environments, tasks, and interaction paradigm that ground our work. We
next introduce CRMWeaver, outlining its methodology for enhancing the problem-solving business-
oriented tasks.

3 Methodology

In this section, we outline the methodology of CRMWeaver in four parts. We first introduce our
data synthesis approach in § 3.1, designed to support cold-start training by synthesizing challenging
query and QA tasks that foster the models ability to reason over complex and heterogeneous data.
Then, we introduce the overall paradigm and setup of CRMWeaver in § 3.2. § 3.3 presents a two-
stage training pipeline, consisting of supervised fine-tuning (SFT) for initialization, followed by
a reinforcement learning phase with DAPO to enhance generalization in complex environments.
Lastly, § 3.4 describes the integration of long-term memory at inference, which further strengthens
the models robustness and adaptability across diverse tasks, particularly when addressing previously
unseen scenarios.

3.1 Synthesis Data Construction

Given that CRMArena provides only a limited set of task-specific test queries targeting particular
objects, we aim to enhance the model’s generalization and reasoning capabilities over complex,
multi-relational, and heterogeneous data. Inspired by recent work leveraging synthetic complex
QA datasets to improve deep reasoning agents [9, 10, 14], we construct a graph G, where nodes
correspond to records and edges represent inter-table relationships, thereby capturing the relational
structure inherent in CRMArena. For each synthesis data sample X = (Q,A), we first extract a
path Ψ through a random walk on the graph G:

Ψ = (e1, e2, · · · , ek) ∼ RandomWalk(G) (1)
where Q is the synthesis query, A is the corresponding answer, ei is the sampled record in the path
Ψ, and k is the length of the sample path Ψ.

For each pair {ei−1, ei} along the path Ψ, the connection is established through a specific field both
in the records ei−1 and ei. Starting from the initial node e1, we take the unique identifier of e1
as the final answer A. We then define qi as a synthetic sub-query, derived from the partial path
(e1, e2, · · · , ei). To construct these sub-queries, we employ a prompt-based LLM strategy, where
the LLM generates a more complex query qi given the preceding query qi−1 and the corresponding
record pair {ei−1, ei}:

qi = LLM({ei−1, ei}|qi−1, A) (2)

After k iterations, we obtain a high-quality synthetic data X = (Q,A). In addition, to broaden the
scope and diversity of training tasks, we further construct synthetic datasets targeting statistical anal-
ysis and knowledge-base question answering, by exploiting tabular statistical features and internal

3

knowledge resources. The detailed prompts used for constructing synthesis data are provided in the
Appendix B.

Overall, our training corpus encompasses three categories:

• Complex synthetic data: crafted using the method in Eq. (1) and Eq. (2) to strengthen the
models ability to search, integrate, and reason over multi-relational queries across intercon-
nected tables. We provide some examples of complex synthesis queries in Appendix B.1.

• Simple synthetic data: designed to instill basic business QA and data analysis skills, serving
as a foundation for business problem-solving. (e.g.How long after purchase can Shoes &
Clothings customers claim store credit for an overcharged order?)

• Task-specific data: consisting of nine well-defined tasks from CRMArena. (e.g.Which
states had the quickest case closures in Q4 of 2021?)

3.2 Agent Setup of CRMWeaver

We build CRMWeaver on top of the ReAct framework [2], which integrates reasoning and acting
through the ThoughtActionObservation paradigm.

Unlike purely reactive agents that rely solely on observed states, or purely deliberative agents that
operate only through internal reasoning, ReAct interleaves natural language reasoning traces with
environment interactions. Formally, given a query Q, the ReAct agent addresses the task through
iterative cycles conditioned on the action space A and observation space S . At time step t, with his-
torical trajectory Ht = (Q, τ1, α1, o1, · · · , τt−1, αt−1, ot−1), the agent derives the current thought
τt and action αt according to the following equation:

(τt, αt) = πθ(τt, αt|Ht) (3)

where πθ is the policy of the model θ, and αt ∈ A. As mentioned in Section 2, the Action Space
A comprises three tools: execute, date calculation, and answer, which enable the agent to interact
with external business environments, perform precise temporal computations, and submit the final
answers.

For practical supervised fine-tuning(SFT) and reinforcement learning described in the following sec-
tion, for each time step t, we restrict the thought τt, action αt and observation ot must be enclosed in
<think> ... </think> , <tool_call> ... </tool_call> and <tool_response> ... </tool_response> tags,

respectively, while the answer tool content is wrapped within <answer> ... </answer> tags. We pro-
vide a detailed trajectories example of CRMWeaver in Appendix A.

3.3 Two-stage Training Recipe

3.3.1 SFT for Agentic Model Cold Starts

To equip the model with the fundamental capability to address business tasks and ensure it follows
the Thought-Action-Observation paradigm during problem-solving, we first leverage a powerful
language model, GPT-4.1. Using the ReAct framework, we apply Reject Sampling [15, 16] to the
training data mentioned in Section 3.1, generating multiple candidate execution trajectories. Subse-
quently, we filter these trajectories based on two primary criteria:

• Correctness of results: To ensure the accuracy of the trajectory data, we first exclude any
trajectories where the final answer does not match the gold answer.

• Correctness of process: A portion of the training data has "None" as the answer. To ensure
the model does not arrive at the result through simple guesswork, we discard trajectories
with a very short number of execution turns.

This process yields a high-quality training dataset, DSFT, which contains a large number
of execution trajectories. Each sample in the dataset is a high-quality trajectory H =
(Q, τ1, α1, o1, · · · , τt, αt, ot). Following this, we train the model θ using supervised fine-tuning
(SFT). It is important to note that, consistent with prior work [17, 9], we mask the loss for the

4

observation part of the trajectories:

LSFT = − 1∑|H|
i=1 I [xi ̸= o]

|H|∑
i=1

I [xi ̸= o] · log pθ (xi | S, x<i; θ) (4)

where I(·) is the indicator function, xi is the i-th token of trajectory sample H, pθ is the output
probability of model θ and S is the system description for solving business tasks.

3.3.2 Reinforcement Learning to Generalization

To further enhance the agentic model’s capabilities, particularly its generalization in complex busi-
ness environments, we employed a training strategy based on Reinforcement Learning, which allows
the model to refine its policy through multi-turn interactions with an external environment.

In details, for each sample (Q,A) from our training dataset D, we rollout a group of trajectories,
denoted as {Hi}Gi=1. Subsequently, we optimize the policy of model θ through Decouple Clip and
Dynamic Sampling Policy(DAPO) [11]:

JRL(θ) = E(Q,A)∼D,{Hi}G
i=1∼πθold (·|q) 1∑G

i=1 |Hi|

G∑
i=1

|Hi|∑
t=1

min
(
ri,t(θ)Âi,t, clip (ri,t(θ), 1− εlow , 1 + εhigh) Âi,t

)
s.t. 0 <

∣∣∣{Hi | is_equivalent(A,Hi)}
∣∣∣ < G

(5)

where

ri,t(θ) =
πθ(Hi,t | Q,Hi,<t)

πθold(Hi,t | Q,Hi,<t)
, Âi,t =

Ri −mean({Ri}Gi=1)

std({Ri}Gi=1)
(6)

We use a rule-based reward function R, defined as follows:

R(âi, a) = 0.1× scoreformat + 0.9× scoreanswer (7)

where the scoreformat is the format score, which is awarded to the model θ only when its output
contains complete and valid pairs of <think> ... </think> , <tool_call> ... </tool_call> tags, and
ended with a valid <answer> ... </answer> tag. The formatanswer is the answer score. For data
analysis tasks, this reward is given only if the final answer âi exactly matches the gold answer a.
For QA tasks, we use the F1 score as the answer reward.

3.4 Improving Reasoning with Long-term Memory

For business-oriented tasks in CRMArena and CRMArena-Pro, we observe that while the surface
forms of many problems vary, they often share common underlying solution strategies(e.g."Find
the agent with the shortest handle time who managed more than one case in Winter 2021" and
"In the past 3 months, which agent achieved the lowest average handle time while handling more
than 2 cases?"). Moreover, the tasks in business settings are diverse and cover various tasks, often
comprising novel, unseen combinations of tasks.

To improve model performance on such heterogeneous business tasks, particularly in generalizing
to unseen task types, we draw inspiration from recent work on long-term memory [18, 19]. We
propose augmenting the inference process of our agent with a memory module that stores and re-
trieves workflow guidelines from similar past tasks. Specifically, our method employs an indexed
memory of workflow information to guide inference toward empirically proven solution patterns
for analogous problems. For tasks that do not have a direct precedent in the indexed memories, we
employ an offline refinement step. In this step, a more powerful reasoning model attempts to solve
the query and generates a detailed corresponding workflow guideline. This guideline is then added
to the memory index, thereby enhancing the model’s capacity to handle future, novel task types.
Algorithm 1 details the specific procedure for solving tasks with the long-term memory module.

5

Key: Can we qualify this lead based on their recent discussions?...
Value:

1. Always use the execute tool to pull every relevant transcript and pricing/
knowledge record before judging any BANT factor, ensuring no critical data is
missed.
2. After data retrieval, perform an explicit cost−vs−budget calculation inside the
analysis step to avoid incorrect 'Budget' conclusions.
3. When Authority is not clearly confirmed in the transcript, trigger an additional
execute search (e.g., manager titles, purchasing roles) before deciding it is
fulfilled or unmet.
4. Parse Timeline details quantitatively (days, dates) rather than qualitatively; if
uncertain, run another execute query for scheduling constraints to improve
accuracy.
5. Maintain a consistent workflow order −> execute −> analyze −> respond to
increase reliability and reproducibility across similar tasks.

Table 1: An example of Memory Unit E , where the Key is the indexed query used to match
similar queries, and Value is the corresponding guideline.

Algorithm 1: Procedural Steps of the Long-term Memory Module
Input: Query Q, Indexed MemoriesM, Threshold Φ, System Prompt P
Output: Execution trajectory S
function INFERENCEWITHMEMORIES(Q,M)
E , ϕ← Top1-Retrieval(Q,M) ▷ Obtain guideline information and corresponding

similarity.
if ϕ ≥ Φ then
P ← Concat(P, E) ▷ Append guideline in the system prompt.

else
Update(Q,M) ▷ Offline update indexed memories using advanced reasoning model.

S ← Solve(Q | P ; θ) ▷ Solve the query based on the agentic model θ.
return S
end function

It is noteworthy that during the update operation, we employ an advanced reasoning model twice.
The final output’s consistency determines whether the indexed memories M are updated. When
storing information in memories, we use an LLM to convert specific trajectories into high-level
guidelines, which then constitute the memory unit E :

E = LLM(Hadv, Q) (8)

where the Hadv is the trajectories of advanced reasoning model. Table 1 shows an example of the
memory unit E , and we also provide the details for generating and indexing for the memory unit in
Appendix C.

4 Experiments

4.1 Experiments Setup

Implementation Details The backbone for our model θ is Qwen3-4B-Instruct-2507. Sepa-
rately, the retrieval model discussed in § 3.4 is BGE-small-en-v1.5. We used the llama-factory
framework [20] for Supervised Fine-Tuning (SFT) on nearly 3k trajectories. After this, we pro-
ceeded with reinforcement learning, employing the verl4 framework and 3.5k question-answer pairs.
In our RL training, we set the rollout size G = 16, with εlow at 0.2 and εhigh at 0.28. Moreover, to sup-
port stable model training during RL, we employ the official, locally deployable SQLite database5

4https://github.com/volcengine/verl
5https://github.com/SalesforceAIResearch/CRMArena/tree/main/local_data

6

https://github.com/volcengine/verl
https://github.com/SalesforceAIResearch/CRMArena/tree/main/local_data

B2B B2C
Model Workflow Policy Text Database Avg Workflow Policy Text Database Avg

OpenAI-o1 67.0 43.3 23.4 56.3 47.5 74.5 34.5 29.5 59.6 49.5
GPT-4o 26.0 27.5 22.1 31.3 26.7 29.0 32.5 22.2 33.1 29.2
GPT-4o-mini 19.5 33.8 12.6 19.3 21.3 13.5 25.6 11.7 23.8 18.6
Gemini-2.5-Pro 83.0 41.0 34.7 57.6 54.1 90.0 42.0 36.2 64.9 58.3
Gemini-2.5-Flash 67.5 33.5 25.1 41.6 41.9 80.0 31.0 26.3 49.3 46.7
Qwen3-235B-A22B-Instruct 90.0 37.7 30.1 49.8 51.9 87.5 42.0 33.5 50.0 53.3
Kimi-K2 92.0 42.5 34.5 48.0 54.3 93.0 41.8 36.2 52.2 55.8

CRMWeaver 90.0 27.3 32.1 73.0 55.6 90.5 31.3 33.8 72.8 57.1
w.o Shared Memory 90.5 27.5 27.8 72.0 54.5 89.5 27.5 32.2 72.0 55.3

Table 2: Experiments result on CRMArena-Pro across the B2B and B2C domains. The best average
results among all backbones are bolded, and the second-best results are underlined.

for the SQL tool. In the case of the SOSL tool, we follow the original configuration, which relies on
invoking the Salesforce API. The threshold Φ in Algorithm 1 is set to 0.7. During inference, we set
the temperature to 0.2 and limited the maximum number of interaction turns to 20. For the subse-
quent main experiments, the results of the OpenAI and Gemini series models are taken directly from
the original paper [13]. We have also included results from the Qwen3-235B-A22B-Instruct model,
using the ReAct paradigm, for comparison. All experiments are conducted on 2 nodes equipped
with 8 x Nvidia H20.

Datasets Details The benchmark is composed of nineteen distinct, expert-validated tasks catego-
rized into four core business skills:

• Database Querying & Numerical Computation: This skill assesses an agent’s ability to
formulate structured queries and perform numerical calculations on the retrieved data.

• Information Retrieval & Textual Reasoning: This involves processing and reasoning
over unstructured text from sources such as knowledge bases or call transcripts to extract
insights.

• Workflow Execution: This evaluates the agent’s capacity to follow pre-defined business
processes and execute actions based on specific rules.

• Policy Compliance: This tests an agent’s ability to verify whether business operations
adhere to established company policies and regulations.

The dataset encompasses both Business-to-Business (B2B) and Business-to-Consumer (B2C) sce-
narios. We adopted the single-turn setting, i.e.the user provides the task at once, resulting in a total of
3.8k test data samples. Evaluation in CRMArena-Pro is multifaceted. For sub-tasks such as knowl-
edge QA and sales insight mining, we employed the F1 score as the evaluation metric, following
standard settings. For other tasks, we used exact match as the metric.

4.2 Main Experiments

As depicted in Table 2, we present a comprehensive evaluation of our proposed method,
CRMWeaver, against a suite of robust baseline models. The performance assessment was conducted
on the CRMArena-Pro dataset, encompassing both B2B and B2C domains.

Our model demonstrates superior performance, achieving an average score of 55.6 in the B2B do-
main and a highly competitive score of 57.1 in the B2C domain. Notably, CRMWeaver exhibits a
pronounced advantage in database-related tasks, where it outperforms all baselines with scores of
73.0 (B2B) and 72.8 (B2C). These results underscore the model’s enhanced capability in handling
structured data analysis.

To further investigate the contribution of the shared memory component, we conducted an ablation
study by removing this module from the agentic model, a variant denoted as "w.o. Shared Memory".
The experimental results reveal a discernible degradation in performance, with the average scores
declining to 54.5 in the B2B domain and 55.3 in the B2C domain. This outcome indicates that the
shared memory module plays a crucial role in facilitating the model’s overall performance. However,
it is also important to note that even without the aid of shared memories, the agentic model still
yielded competitive results, suggesting that the training-time optimization of CRMWeaver remains
robust.

7

5 Analysis

5.1 Impact of Reinforcement Learning with Agents

To study the impact of reinforcement learning on a model’s capacity, we compare a model trained
with only supervised fine-tuning (SFT) to one trained with both SFT and reinforcement learning.
The experimental results are shown in Figure 2, which demonstrate that the application of RL con-
sistently enhances model performance and generalization across diverse tasks. Notably, the RL-
based model demonstrated superior outcomes in both B2B and B2C scenarios, suggesting that RL
facilitates a more robust understanding of underlying task dynamics.

The most substantial gains are observed in the Workflow tasks, with the model’s performance in-
creasing from 67.5% to 90.5% in the B2B domain and from 64.5% to 89.5% in the B2C domain.
This improvement is attributed to the sequential nature of these tasks, as the RL approach effectively
trained the model to follow a correct action sequence, thereby instilling greater confidence in its
reasoning and reducing errors.

Conversely, a minor performance decrease was observed on Policy tasks, which was traced to the
Solution Violation Identification sub-task. Further analysis revealed that the SFT model frequently
outputs ’None’ after only a few simple attempts, leading to quick, albeit unreasoned, correct pre-
dictions. In contrast, the RL-trained model pursued a more semantically grounded, step-by-step
reasoning process. While this behavior demonstrates superior reasoning, it resulted in a lower score
on a metric that inadvertently rewards such shortcuts. Potential solutions to these challenges could
include synthesizing a more diverse set of similar tasks or designing more robust evaluation mecha-
nisms that reward nuanced reasoning over quick, shortcut-based predictions.

Workflow Policy Text Database
Task

0

20

40

60

80

Sc
or

e
(%

)

67.5

34.3

23.7

68.6

90.5

27.5 27.8

72.0

B2B

Workflow Policy Text Database
Task

64.5

29.5 28.5

66.5

89.5

27.5
32.2

72.0

B2C

Method
SFT
RL

Figure 2: Performance comparison with SFT and RL on CRMArena-Pro.

5.2 The Frequency of Updates to Long-Term Memory

Our analysis indicates that updates to the Long-term Memory module are relatively infrequent,
whereas its indexed memories exhibit consistently high utilization across a broad range of tasks.

In the CRMArena-Pro B2B scenario, the average update frequency is close to 3%, indicating that
only 3 out of 100 business tasks, on average, trigger an indexed memories update. We do observe
that for a small subset of tasks, such as Knowledge QA, the low similarity among questions results
in a low probability of hitting the Long-term Memory. This can lead to the issue of frequent updates.
To mitigate this, we employ a few-shot prompting approach with an LLM to classify whether a
given query constitutes a knowledge-based question. This mechanism effectively prevents memory
updates for QA tasks, thereby avoiding an excessive update frequency.

6 Related Works

Business Agents & Benchmarks The evaluation of business agents has evolved from simplified,
synthetic benchmarks to more realistic, high-fidelity platforms that simulate real-world professional
environments. Initial efforts, such as Webshop [21], were constrained by their reliance on simplified
webpages. A shift toward more realistic enterprise software was observed with WorkArena [22],
which utilized platforms like ServiceNow to assess agents on knowledge work tasks. Similarly,

8

WorkBench [23] introduced an outcome-centric evaluation approach for tasks like email drafting
and meeting scheduling within a controlled, sandboxed setting. Further developments include Tau-
bench [24], which created a user-agent environment where both the agent and a simulated user could
interact to complete tasks such as retail and flight booking. More recently, CRMArena [12] was in-
troduced, a benchmark constructed on a realistic Salesforce CRM system. This dataset was carefully
built using a data synthesis and expert verification methodology to generate complex, high-quality
tasks that reflect real-world business scenarios. CRMArena includes 16 Salesforce objects and 9 sub-
tasks, integrating textual information from various sources, including data records, knowledge bases,
and transcripts. Building on this foundation, CRMArena-Pro [13] was subsequently proposed. This
enhanced version expands the number of Salesforce objects to 25 and includes 19 sub-tasks, which
are further categorized into four distinct types: Workflow Execution, Policy Compliance, Database
Querying, and Information Retrieval. Compared to previous benchmarks, both CRMArena and
CRMArena-Pro offer a more comprehensive and realistic range of task scenarios, providing a closer
approximation to real-world business tasks.

Long-term Memory of Language Agent The integration of long-term memory has emerged as
a critical approach to enhancing the performance of agents by enabling them to learn from past
tasks and historical trajectories within specific domains [25]. Several recent studies have explored
various aspects of this concept. Inspired by the Ebbinghaus Forgetting Curve, MemoryBank [26]
introduced a long-term memory mechanism that enables large language models (LLMs) to selec-
tively store, retrieve, and update information, fostering more human-like interactions and person-
alized outputs. Similarly, MemoryLLM [27] advanced this area by representing knowledge in a
latent space, which has been shown to improve model performance on knowledge-editing tasks.
Later research has focused on leveraging different knowledge structures. For instance, Agent Work-
flow Memory(AWM) [28] enhances model capabilities through the automatic induction and reuse
of sub-workflows, while KnowAgent improves performance by augmenting prompts with action-
knowledge bases. A notable recent approach is Agent KB [18], which addresses the challenge of
knowledge transfer across diverse tasks and frameworks by proposing a shared knowledge base. This
work leverages a unique "teacher-student" dual-phase retrieval mechanism: a "student" agent first
retrieves high-level workflow patterns for strategic guidance, while a "teacher" agent subsequently
identifies execution-level patterns for detailed refinement. Furthermore, Mem0 [29] addresses the
limitations of fixed context windows in LLMs by dynamically extracting and leveraging graph-based
memory representations to capture complex relational structures.

Agentic Reinforcement Learning Agentic RL aims to enhance model capabilities through multi-
turn interactions within complex, real-world environments. With the advent of Deepseek-R1 [30],
rule-based RL has emerged as a dominant paradigm. A representative example is Search-R1 [31],
which leverages end-to-end optimization of a large language model to improve its performance in
multi-turn Retrieval-Augmented Generation (RAG) systems. Subsequently, ReTool [32] adopted a
"Think-Code-Observation" approach, utilizing Python program code to enable multi-turn interac-
tions with external code runtimes, thereby enhancing the model’s mathematical reasoning abilities.
The efficacy of Agentic RL is further demonstrated by landmark works in the field, such as Web-
Dancer [9], Websailor [10], and WebShaper [33]. These projects utilize data synthesis and end-
to-end agentic RL methods to build powerful deep research agents. This is accomplished through
multi-turn interactions with web pages and search engines, thereby confirming the effectiveness of
Agentic RL techniques.

7 Conclusion

We presented CRMWeaver, a framework for building powerful business agents capable of operating
in complex business environments and handling diverse domain-specified tasks.

CRMWeaver addresses two core challenges: data scarcity and domain complexity, through a two-
fold optimization strategy. First, we synthesize complex, diverse training data and adopt a two-stage
learning paradigm: (i) rejection sampling and trajectories distillation to bootstrap problem-solving
competency, followed by (ii) reinforcement learning based on DAPO to strengthen generalization
and decision-making in diverse environments. Second, we introduce a long-term memory module
that indexes task-specific guidelines distilled from successful trajectories; at inference time, retrieval-
augmented conditioning enables the agent to reuse prior knowledge and maintain stability across un-
seen tasks and evolving schemas. Together, these components yield a practical recipe for deploying

9

business agents that reduce reliance on prohibitively expensive models while improving reliability
in real-world, complex business settings.

References

[1] Lilian Weng. Llm-powered autonomous agents. lilianweng.github.io, Jun 2023.
[2] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan

Cao. React: Synergizing reasoning and acting in language models. In International Conference
on Learning Representations (ICLR), 2023.

[3] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik Narasimhan. Swe-bench: Can language models resolve real-world github issues?
arXiv preprint arXiv:2310.06770, 2023.

[4] Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi
Pan, Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang
Zheng, Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin,
Robert Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for
AI software developers as generalist agents. In The Thirteenth International Conference on
Learning Representations, 2025.

[5] Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for
building autonomous agents. In The Twelfth International Conference on Learning Represen-
tations.

[6] Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web. Advances in Neural Information
Processing Systems, 36:28091–28114, 2023.

[7] Yilun Zhao, Kaiyan Zhang, Tiansheng Hu, Sihong Wu, Ronan Le Bras, Taira Anderson,
Jonathan Bragg, Joseph Chee Chang, Jesse Dodge, Matt Latzke, et al. Sciarena: An
open evaluation platform for foundation models in scientific literature tasks. arXiv preprint
arXiv:2507.01001, 2025.

[8] Yanzheng Xiang, Hanqi Yan, Shuyin Ouyang, Lin Gui, and Yulan He. Scireplicate-bench:
Benchmarking llms in agent-driven algorithmic reproduction from research papers. arXiv
preprint arXiv:2504.00255, 2025.

[9] Jialong Wu, Baixuan Li, Runnan Fang, Wenbiao Yin, Liwen Zhang, Zhengwei Tao, Dingchu
Zhang, Zekun Xi, Gang Fu, Yong Jiang, et al. Webdancer: Towards autonomous information
seeking agency. arXiv preprint arXiv:2505.22648, 2025.

[10] Kuan Li, Zhongwang Zhang, Huifeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin,
Baixuan Li, Zhengwei Tao, Xinyu Wang, et al. Websailor: Navigating super-human reasoning
for web agent. arXiv preprint arXiv:2507.02592, 2025.

[11] Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai,
Tiantian Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement
learning system at scale. arXiv preprint arXiv:2503.14476, 2025.

[12] Kung-Hsiang Huang, Akshara Prabhakar, Sidharth Dhawan, Yixin Mao, Huan Wang, Silvio
Savarese, Caiming Xiong, Philippe Laban, and Chien-Sheng Wu. CRMArena: Understand-
ing the capacity of LLM agents to perform professional CRM tasks in realistic environments.
In Luis Chiruzzo, Alan Ritter, and Lu Wang, editors, Proceedings of the 2025 Conference of
the Nations of the Americas Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies (Volume 1: Long Papers), pages 3830–3850, Albuquerque, New
Mexico, April 2025. Association for Computational Linguistics.

[13] Kung-Hsiang Huang, Akshara Prabhakar, Onkar Thorat, Divyansh Agarwal, Prafulla Kumar
Choubey, Yixin Mao, Silvio Savarese, Caiming Xiong, and Chien-Sheng Wu. Crmarena-pro:
Holistic assessment of llm agents across diverse business scenarios and interactions. arXiv
preprint arXiv:2505.18878, 2025.

[14] Dingfeng Shi, Jingyi Cao, Qianben Chen, Weichen Sun, Weizhen Li, Hongxuan Lu, Fangchen
Dong, Tianrui Qin, King Zhu, Minghao Liu, et al. Taskcraft: Automated generation of agentic
tasks. arXiv preprint arXiv:2506.10055, 2025.

10

[15] Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang
Zhou, and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large
language models, 2023.

[16] Aaron Grattafiori et.al. The llama 3 herd of models, 2024.

[17] Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei Zhang, Jiangning Liu, Dahua Lin, Kai Chen,
and Feng Zhao. Agent-FLAN: Designing data and methods of effective agent tuning for large
language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Findings of the
Association for Computational Linguistics: ACL 2024, pages 9354–9366, Bangkok, Thailand,
August 2024. Association for Computational Linguistics.

[18] Xiangru Tang, Tianrui Qin, Tianhao Peng, Ziyang Zhou, Daniel Shao, Tingting Du, Xinming
Wei, Peng Xia, Fang Wu, He Zhu, et al. Agent kb: Leveraging cross-domain experience for
agentic problem solving. arXiv preprint arXiv:2507.06229, 2025.

[19] Runnan Fang, Yuan Liang, Xiaobin Wang, Jialong Wu, Shuofei Qiao, Pengjun Xie, Fei Huang,
Huajun Chen, and Ningyu Zhang. Memp: Exploring agent procedural memory. arXiv preprint
arXiv:2508.06433, 2025.

[20] Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 3: System Demonstrations), Bangkok, Thailand, 2024. Association for Computational
Linguistics.

[21] Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information
Processing Systems, 35:20744–20757, 2022.

[22] Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H Laradji, Manuel Del Verme,
Tom Marty, David Vazquez, Nicolas Chapados, and Alexandre Lacoste. Workarena: how
capable are web agents at solving common knowledge work tasks? In Proceedings of the 41st
International Conference on Machine Learning, pages 11642–11662, 2024.

[23] Olly Styles, Sam Miller, Patricio Cerda-Mardini, Tanaya Guha, Victor Sanchez, and Bertie
Vidgen. Workbench: a benchmark dataset for agents in a realistic workplace setting. In First
Conference on Language Modeling.

[24] Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark
for tool-agent-user interaction in real-world domains, 2024.

[25] Zihong He, Weizhe Lin, Hao Zheng, Fan Zhang, Matt W Jones, Laurence Aitchison, Xuhai
Xu, Miao Liu, Per Ola Kristensson, and Junxiao Shen. Human-inspired perspectives: A survey
on ai long-term memory. arXiv preprint arXiv:2411.00489, 2024.

[26] Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing
large language models with long-term memory. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pages 19724–19731, 2024.

[27] Yu Wang, Yifan Gao, Xiusi Chen, Haoming Jiang, Shiyang Li, Jingfeng Yang, Qingyu Yin,
Zheng Li, Xian Li, Bing Yin, et al. Memoryllm: Towards self-updatable large language models.
In Forty-first International Conference on Machine Learning.

[28] Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham Neubig. Agent workflow memory.
In Forty-second International Conference on Machine Learning.

[29] Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. Mem0:
Building production-ready ai agents with scalable long-term memory. arXiv preprint
arXiv:2504.19413, 2025.

[30] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[31] Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Za-
mani, and Jiawei Han. Search-r1: Training llms to reason and leverage search engines with
reinforcement learning. arXiv preprint arXiv:2503.09516, 2025.

11

[32] Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan
Jiang, Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in
llms. arXiv preprint arXiv:2504.11536, 2025.

[33] Zhengwei Tao, Jialong Wu, Wenbiao Yin, Junkai Zhang, Baixuan Li, Haiyang Shen, Kuan Li,
Liwen Zhang, Xinyu Wang, Yong Jiang, et al. Webshaper: Agentically data synthesizing via
information-seeking formalization. arXiv preprint arXiv:2507.15061, 2025.

12

A Case Study of CRMWeaver

Trajectories Example on CRMArena-Pro

Question:

Which agent ought to be designated to handle this lead? Return only the ID of the agent.
Lead Routing Policy
The lead routing policy determines the best agent to assign the given new lead based on the
following criteria:

− Territory Match: First, find the territory that matches the lead's region by comparing it
with the territory description (comma−separated list of states/regions).
− Quote Success: Among agents associated with the matching territory, select those with
the highest number of quotes with status "Accepted" (find the agent ID through the
associated opportunity ID).
− Workload Balance: If there's still a tie, select the agent with the fewest unconverted (open
) leads
Lead's region: WI

Step 1

<think>
I need to find the territory that matches the lead’s region (WI) by checking the Territory2
object. I will look for a territory with "WI" in its Description field.
</think>

<tool_call>
{"name": "execute", "arguments": {"query": "SELECT Id, Name FROM Territory2
WHERE Description LIKE ’%WI%"}}
</tool_call>

<tool_response>
Observation: [(’0MIWt0000007xzROAQ’, ’US-Great Lakes’)]
</tool_response>

Step 2

<think>
I have found the territory that matches the lead’s region (WI), which is "US-Great Lakes"
with ID "0MIWt0000007xzROAQ". Now, I need to find the agents associated with this terri-
tory by checking the UserTerritory2Association object.
</think>

<tool_call>
{"name": "execute", "arguments": {"query": "SELECT UserId FROM
UserTerritory2Association WHERE Territory2Id = ’0MIWt0000007xzROAQ’"}}
</tool_call>

<tool_response>
Observation: [(’005Wt000003NHpdIAG’,), ...]
</tool_response>

Step 3

<think>
I have found the list of agents associated with the territory "US-Great Lakes" (WI). Now,
I need to determine which of these agents has the highest number of quotes with status
"Accepted" by checking the Quote and QuoteLineItem objects.

13

</think>

<tool_call>
{"name": "execute", "arguments": {"query": "SELECT OwnerId, COUNT(*)
AS accepted_quotes FROM Quote WHERE Status = ’Accepted’ AND OwnerId IN
(’005Wt000003NHpdIAG’, · · · , ’005Wt000003NJmcIAG’) GROUP BY OwnerId ORDER
BY accepted_quotes DESC"}}
</tool_call>

<tool_response>
Observation: Error: no such column: OwnerId
</tool_response>

Step 4

<think>
The error occurred because the OwnerId field does not exist directly on the Quote object.
Instead, the agent (OwnerId) is associated with the Opportunity object, and the Quote is
linked to that Opportunity via OpportunityId. I need to check the Opportunity object to find
the OwnerId (agent) associated with each Quote.
</think>

<tool_call>
{"name": "execute", "arguments": {"query": "SELECT o.OwnerId, COUNT(*) AS
accepted_quotes FROM Quote q JOIN Opportunity o ON q.OpportunityId = o.Id
WHERE q.Status = ’Accepted’ AND o.OwnerId IN (’005Wt000003NHpdIAG’, · · · ,
’005Wt000003NJmcIAG’) GROUP BY o.OwnerId ORDER BY accepted_quotes DESC"}}
</tool_call>

<tool_response>
Observation: [(’005Wt000003NIowIAG’, 5), (’005Wt000003NJmcIAG’, 4),· · · ,
(’005Wt000003NDXaIAO’, 1)]
</tool_response>

Step 5

<think>
The agent with ID ’005Wt000003NIowIAG’ has the highest number of accepted quotes (5),
which is more than any other agent in the list. Since this agent has the highest quote success,
they should be allocated to the lead according to the routing policy.
</think>

<answer>
005Wt000003NIowIAG
</answer>

Table 3: A Trajectories Example on CRMArena-Pro.

B Synthesis Data Construction

B.1 Complex Synthesis Data Examples

Here are some examples of complex synthesis data:

1. Which live chat transcript documents a case where a Portland-based customer, previously
known for resolving product and sizing complaints in 2022, reached out on November 30,
2023, to request an immediate exchange after receiving a blue hoodie instead of black run-
ning shoes, and successfully initiated the return process with photo documentation through
interactions involving three different support agents? Return only the chat transcript’s ID.
If no such records exist, return ’None’.

14

2. During the second week of January 2022, a customer with an account connected to a contact
named Isabella Adams, who has an email address of isabella.morgan@example.com and a
shipping address in Austin, Texas, placed an order that was activated and used a price book
featuring the promotion ’Start 2022 with unbeatable deals on sports gear.’ Which price
book was referenced in this transaction? Return only the price book’s id. If no such records
exist, return ’None’.

3. Identify the durable and waterproof item, ideal for harsh weather conditions, that was added
as a new selection by the customer whose previous order item was related to outdoor hiking,
after a warranty issue with defective equipment was resolved in Portland and resulted in a
successful transaction activation on March 19, 2022. What is the unique catalog reference
for that item within the product listings? Return only the product’s ID. If no such records
exist, return ’None’.

B.2 Prompt for Complex Queries Generation
We provide the prompt used to generate the complex queries in Table 4 and Table 5.

C Long Term Memory Indexing
To generate the long-term memory unit E , we use o3-mini as the advanced reasoning model. Af-
ter obtain the trajectories Hadv, we use GPT4.1 with prompt described in Table 6 to generate the
guideline for the given task:

15

Prompt for Initialize Seed Query

You are a synthesis data generator. I will give you two schema and two corresponding data
records. The two records are connected by a foreign key relationship. Your task is to
generate a complex natural language question that includes the information from the
records implicitly. Apart from this, the question's answer should be the id I provided with
you. The question should be complex and not directly related to the id.

Input/Output Specifications:
Input:
− Source Schema: A description of the source schema.
− Source Record: A record from the source schema.
− Target Schema: A description of the target schema.
− Target Record: A record from the target schema.
− Connect Key: The connect relationship between the two records.
− Answer: Known correct answer.

Output:
− Must be in strict JSON format: {"Q": "generated question"}
− No explanations or extra fields allowed

Q must satisfy:
1. Be a complete natural language question
2. Allow deriving answer A by using the source and target records and connect key

Question Generation Principles:
1. Exact correspondence − Each question must fully base on the original conclusion, with
the answer being its core content.
2. Derivability − The original conclusion must be directly derivable from the question and
be the only correct answer.
3. Self−containment − Questions must be complete and independent, not relying on
external references or unspecified context.
4. Information hiding − Do not reveal specific sources or data paths, but can include search
hints.
5. Specificity and clarity − Questions should include details like specific times to ensure
unique answers.
6. Single question − Generate only one question per conclusion.
7. If the conclusion can only be obtained from input content, include hints via data source
identifiers in the question.
8. Language consistency − The language of each question must be the same as the
conclusion's language.

Table 4: Prompt for Generating Seed Query

16

Prompt for Initialize Seed Query

You are a synthesis data generator. I will give you an existing question and its question.
Apart from this, I will also give you a schema and a record. The schema and record
includes a foreign key exactly the same as the answer of the giving question. Your task is to
generate a more complex question that merges the information from the record and the

current given record implicitly. Apart from this, the question's answer should be the id I
provided with you. The question should be complex and not directly related to the ID. And
the question should not include explicit information such as id of the record or the name of
the user.

Input/Output Specifications:
Input:
− Existing Question: A complex natural language question that has been previously
generated.
− Existing Question's Answer: The answer to the existing question.
− Target Schema: A description of the target schema.
− Target Record: A record from the target schema.
− Connect Key: The connect relationship between the two records.
− Answer: Known correct answer.

Output:
− Must be in strict JSON format: {"Q": "generated question"}
− No explanations or extra fields allowed

Q must satisfy:
1. Be a complete natural language question
2. Allow deriving answer A by using the source and target records and the connect key

Question Generation Principles:
1. Exact correspondence − Each question must be fully based on the original conclusion,
with the answer being its core content.
2. Derivability − The original conclusion must be directly derivable from the question and
be the only correct answer.
3. Self−containment − Questions must be complete and independent, not relying on
external references or unspecified context.
4. Information hiding − Do not reveal specific sources or data paths, but can include search
hints.
5. Specificity and clarity − Questions should include details like specific times to ensure
unique answers.
6. Single question − Generate only one question per conclusion.
7. If the conclusion can only be obtained from input content, include hints via data source
identifiers in the question.
8. Language consistency − The language of each question must be the same as the
conclusion's language.

Table 5: Prompt for Generating Deeper Challenge Queries

17

Prompt for Generating Guideline

Please provide a concise guideline for the following execution log.
Break down the guideline into individual steps, and for each step, briefly describe what
action was taken (note that it must be report the tool's name explicitly) and its outcome.
Ensure the summary is clear, structured, and captures all key actions in the order they
occurred.

Key Requirements
1. Focus exclusively on behavioral improvements derived from similar task patterns and
experience.
2. Format output strictly as:

1. [Specific suggestion 1]
2. [Specific suggestion 2]
...

3. No headings, explanations, or markdown.

Detailed Schema Information
{schema_information}

Execution logs:
{successful_trajectories}

Table 6: The prompt used to generating the guideline of memory unit E .

18

	Introduction
	Preliminaries
	Methodology
	Synthesis Data Construction
	Agent Setup of CRMWeaver
	Two-stage Training Recipe
	SFT for Agentic Model Cold Starts
	Reinforcement Learning to Generalization

	Improving Reasoning with Long-term Memory

	Experiments
	Experiments Setup
	Main Experiments

	Analysis
	Impact of Reinforcement Learning with Agents
	The Frequency of Updates to Long-Term Memory

	Related Works
	Conclusion
	References
	Case Study of CRMWeaver
	Synthesis Data Construction
	Complex Synthesis Data Examples
	Prompt for Complex Queries Generation

	Long Term Memory Indexing

