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Abstract

Large Language Models (LLMs) have demonstrated impressive capabilities in
complex reasoning tasks, yet they still struggle to reliably verify the correctness of
their own outputs. Existing methods to this verification challenge often depend on
separate verifier models or require multi-stage self-correction training pipelines,
which limit scalability. In this paper, we propose Policy as Generative Verifier
(PAG), a simple and effective framework that empowers LLMs to self-correct by
alternating between policy and verifier roles within a unified multi-turn reinforce-
ment learning (RL) paradigm. Distinct from prior approaches that always generate
a second solution regardless of model confidence, PAG introduces a selective
revision mechanism: the model revises its answer only when its own generative ver-
ification step detects an error. This verify-then-revise workflow not only alleviates
model collapse but also jointly enhances both reasoning and verification abilities.
Extensive experiments on mathematical reasoning benchmarks highlight PAG’s
dual advancements: as a policy, it enhances direct generation and self-correction
accuracy; as a verifier, its self-verification outperforms majority voting.

Qwen2.5-7B-Instruct on Various Math Datasets

Figure 1: Performance highlight of PAG.

1 Introduction
Large Language Models (LLMs) have demonstrated remarkable proficiency in solving complex
reasoning problems (Cobbe et al., 2021; Zelikman et al., 2022; OpenAI, 2024; Guo et al., 2025;
Seed et al., 2025; Comanici et al., 2025; Kimi et al., 2025), but they often struggle to reliably
verify the correctness of their own reasoning (Huang et al., 2023; Tyen et al., 2024). This verifica-
tion gap is a critical obstacle in domains requiring high accuracy, such as advanced mathematical
reasoning (Hendrycks et al., 2021; Lewkowycz et al., 2022; Phan et al., 2025).
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Figure 2: Overview of the Policy as Generative Verifier (PAG) framework. The LLM alternates
between a policy role (generating solutions) and a generative verifier role (evaluating its own solutions)
in a multi-turn process. This iterative refinement continues until self-verification is correct or a
maximum number of turns is reached.

To bridge this gap, prior work has explored two main directions: standalone verifier models and
enhancing self-correction. Standalone verifiers (Cobbe et al., 2021; Lightman et al., 2023; Zhang
et al., 2025b,a; Wu et al., 2024) increase computational costs and system complexity. Self-correction
methods based on supervised fine-tuning (SFT) (Zelikman et al., 2022; Madaan et al., 2023; Chen
et al., 2023) often fail to generalize to new errors that arise as the model evolves (Kumar et al., 2024).
Consequently, reinforcement learning (RL) has emerged as a more flexible framework (Kumar et al.,
2024; Yuan et al., 2025; Ma et al., 2025).

However, RL-based self-correction faces challenges like “model collapse,” where a model only
makes superficial revisions (Kumar et al., 2024). To address this, multi-stage RL training has been
explored (Kumar et al., 2024), but this increases training complexity.

We argue that such multi-stage approaches are not always necessary. This paper introduces Policy
as Generative Verifier (PAG), a simple yet effective method. PAG employs a selective revision
mechanism: the model first acts as a generative verifier to critically evaluate its own initial answer,
and only revises it if an error is found. This “verify-then-revise” workflow mitigates model collapse
and enables the model to jointly improve its reasoning and verification abilities within a unified
training framework, removing the need for complex training curricula.

2 Policy as Generative Verifier
As illustrated in Figure 2, PAG alternates the LLM between two distinct roles: a policy that proposes
candidate solutions, and a verifier that critically evaluates the generated solutions through self-
verification. We begin by formally outlining the framework and problem formulation.

2.1 Framework and Problem Formulation

Given an input problem x, the LLM policy πθ first generates an initial solution attempt ŷ1. In each
subsequent turn t, the model produces a self-verification v̂t for the previous attempt ŷt−1. if the
verifier v̂t deems attempt ŷt−1 correct, the process terminates. Otherwise, the LLM generates a
revised attempt ŷt, and the cycle repeats. The process continues until either the attempt is verified as
correct or a predefined maximum number of turns Tmax is reached. During training, both solution
attempt and verification receive reward signals from a external ground-truth verifier. At inference
time, the model must rely on itself, without any external feedback.

Formally, for each input x, the model generates a trajectory τx = (x, ŷ1, v̂2, ŷ2, v̂3, . . .) until
termination. Let NA(τx) and NV (τx) denote the number of solution attempts and verifications in the
trajectory, respectively. We define R̂y(ŷi,x) as the reward for the i-th attempt and R̂v(v̂j , ŷj−1,x)
as the reward for the j-th verification. Both rewards are binary: R̂y(ŷi,x) = 1 if the attempt is correct
and 0 otherwise, while R̂v(v̂j , ŷj−1,x) = 1 if the verification accurately identifies the correctness of
the attempt and 0 otherwise. The overall training objective is formulated as:

max
θ

Ex [Eτx∼πθ
[
NA(τx)
∑
i=1

R̂y(ŷi,x) +
NV (τx)
∑
j=1

R̂v(v̂j+1, ŷj ,x)]] (1)

This objective encourages the model to generate both correct solutions and self-verifications, facilitat-
ing iterative refinement and early termination upon correctness.
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Figure 3: Training dynamics of PAG on Qwen2.5-1.5B-Instruct (3 seeds). Left: Answer change
ratio quantifies model collapse as the proportion of responses where the second-turn answer differs
from the first.Middle: Acc.@t1; Right: Acc.@final.

2.2 Multi-Turn Reinforcement Learning

Standard single-turn reinforcement learning (RL) algorithms can be seamlessly extended to multi-turn
LLM generation by treating the entire sequence of turns as a single, concatenated trajectory. In this
formulation, the model’s outputs from each turn are concatenated together, with rewards assigned at
the end of each corresponding segment. This design enables us to leverage existing PPO (Schulman
et al., 2017) algorithms without requiring architectural modifications, providing a straightforward
and effective approach for extending RL to multi-turn scenarios.

The PAG framework, however, presents a unique challenge: the LLM alternates between two
roles—policy and verifier—with fundamentally different objectives. To address this, we introduce
three key adaptations to the standard PPO algorithm.

First, we employ a turn-independent optimization strategy. In this approach, advantages are not
propagated from later turns to earlier ones; instead, optimization is confined to the current turn. This
is equivalent to setting the inter-turn discount factor to zero during GAE computation. We empirically
find this design to be crucial for achieving stable and effective training in the PAG framework.

Second, inspired by (Kumar et al., 2024), we introduce a bonus reward during policy turns to
encourage self-correction. The bonus for the current attempt, ŷk, is proportional to the performance
improvement over the previous attempt, ŷk−1:

R̂y(ŷk,x) ← R̂y(ŷk,x) + b(ŷk), where b(ŷk) = α ⋅ (R̂y(ŷk,x) − R̂y(ŷk−1,x)). (2)
where α > 0 is a scaling factor. This bonus is added to the reward of the policy generation turn.

Third, we propose RoleAdvNorm, an advantage normalization technique tailored for our multi-role
setting. Whereas standard PPO normalizes advantages over the entire trajectory, RoleAdvNorm
normalizes them separately for the policy and verifier roles:

Â
norm
i,t,role =

Âi,t − µrole

σrole
, role ∈ {policy, verifier} (3)

where µrole and σrole are the mean and standard deviation of advantages associated with a given role
within the batch. This role-specific normalization prevents the gradients from different roles from
interfering with each other, leading to more stable updates. Our experiments show that RoleAdvNorm,
especially when combined with the reward bonus, enhances the model’s self-correction capabilities.

3 Experiments
We mainly focus on mathematical reasoning tasks. We also extend our method to logical and coding
reasoning tasks, with the results detailed in the Appendix B.6 and B.7. Our baselines include:
(1) SingleTurn, model only generate once during the RL training; (2) Direct MultiTurn, model
directly generate two turns without self-verification; (3) SCoRe (Kumar et al., 2024), builds on Direct
Multiturn, but with two-stage RL training for better self-correction performance; We re-implemented
SCoRe in our codebase, as the official implementation is not publicly available.

3.1 Policy Results

We first present the results for the model acting as a policy. We evaluate policy performance using two
primary metrics: Acc.@t1 (direct generation accuracy) and Acc.@final (self-correction accuracy).
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Table 1: Self-Correction Performance (%) of PAG on Qwen2.5-1.5B-Instruct.(subscripted with ±
indicating standard deviation over 3 seeds.) PAG improves the revision efficiency.

Method Acc.@t1 Acc.@final ∆(t1,final) ∆
i→c

∆
c→i

∆̂
i→c

∆̂
c→i

Base Model 52.9 52.0 -0.9 2.9 3.8 2.9 3.8

Direct MultiTurn 61.7±0.2 63.8±0.4 2.1±0.3 3.6±0.4 1.5±0.3 3.6±0.4 1.5±0.3
SCoRe 61.5±0.7 63.5±0.9 2.0±0.5 4.4±0.3 2.4±0.5 4.4±0.3 2.4±0.5
PAG 62.5±0.2 65.6±0.5 3.1±0.4 4.5±0.6 1.4±0.3 14.9±0.7 4.6±0.6
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Figure 4: PAG self-verify BoN outperforms majority voting. Left: Qwen2.5-1.5B-Instruct + PAG;
Right: Qwen2.5-7B-Instruct + PAG.

For PAG, Acc.@final is measured on a revised response only when the initial attempt is self-identified
as incorrect; otherwise, Acc.@final equals Acc.@t1. For baselines like Direct MultiTurn and SCoRe,
which always generate a second solution attemp, Acc.@final is the second-turn accuracy.

To analyze self-correction in detail, we use several diagnostic metrics. ∆(t1,final) is the accuracy gain
after correction. ∆i→c and ∆

c→i are the fractions of all samples that flip from incorrect-to-correct
and correct-to-incorrect, respectively. The hatted versions, ∆̂i→c and ∆̂

c→i, are normalized by the
number of revised samples. Note that baselines revise all samples, while PAG only revises those that
self-verification identifies as incorrect.

PAG effectively mitigates model collapse by enhancing revision efficiency. We measure the
answer change ratio, which is the proportion of final answers (often a numerical value) that differ
after a revision turn. Figure 3 plots the results, averaged over three runs with different random seeds
(shaded areas denote standard deviation). As shown, baselines like Direct MultiTurn suffer from rapid
collapse as the answer change ratio declines sharply. PAG’s selective revision mechanism—revising
only when an answer is deemed incorrect—fundamentally addresses this. PAG also makes revision
more efficiency. As shown in Table 1, PAG boosts the incorrect-to-correct revision rate (∆̂i→c) to
14.9%, far surpassing SCoRe’s 4.4%, demonstrating that it learns to correct errors effectively, not just
repeat them. In contrast, the base model fails to achieve meaningful gains from a second reasoning
turn, underscoring that self-correction is a non-trivial capability that must be explicitly trained. By
preventing collapse and improving revision efficiency, PAG yields superior Acc.@final performance.

3.2 Generative Verifier Results

We report results for self-verify BoN, where the model generates N candidate responses in parallel
for each prompt and subsequently acts as a verifier to assess the correctness of each response. The
final answer is selected as the response that receives the highest probability for the "The answer is
correct."

PAG self-verify BoN outperforms majority voting. We compare the performance of majority voting
and self-verify BoN using the Qwen2.5-1.5B/7B-Instruct models on AIME24/25. As illustrated in
Figure 4, PAG self-verify BoN consistently outperforms majority voting. This result is particularly
noteworthy given that prior work (Huang et al., 2023) has demonstrated that self-verification typically
underperforms compared to majority voting. Our findings indicate that this limitation no longer
holds under the PAG framework, providing compelling evidence that the PAG training paradigm
substantially enhances the model’s self-verification capabilities.
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4 Conclusion

We introduce PAG (Policy as Generative Verifier), a novel framework efficiently training a single LLM
to serve dual roles as generator and verifier for multi-turn self-correction. PAG streamlines training
by circumventing complex warm-up stages and mitigating model collapse. Extensive experiments on
mathematical reasoning benchmarks show that PAG outperforms existing methods in self-correction
capabilities. Moreover, PAG exhibits strong self-verification: its self-verify best-of-N achieves
superior performance over majority voting. One limitation of PAG is its reliance on external ground-
truth verifiers to provide reward signals during training, which restricts its applicability to tasks where
such supervision is unavailable.
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A Related Work

LLM Self-Correction. Recent advances (Liu et al., 2023; Jain et al., 2024; Chen et al., 2023)
have demonstrated that large language models (LLMs) exhibit self-improvement capabilities when
provided with external feedback in agentic tasks or code repair tasks. In this work, we focus on
intrinsic self-correction, where the model improves its responses during inference without access
to any external feedback. The underlying motivation is that LLMs often possess latent knowledge
that is difficult to elicit through standard next-token generation, yet self-correction can distill this
hidden knowledge into improved outputs (Yuan et al., 2025; Song et al., 2024; Huang et al., 2025).
Prior studies (Shinn et al., 2023; Madaan et al., 2023) have shown that prompting can sometimes
elicit self-correction abilities in LLMs; however, such intrinsic self-correction is neither robust nor
significant in complex domains (Huang et al., 2023; Tyen et al., 2024). Several approaches (Saunders
et al., 2022; Ye et al., 2023; Qu et al., 2024) have attempted to leverage supervised fine-tuning by
distilling reranked or filtered generations from human or stronger model generated data, but the
resulting self-correction abilities suffer from distribution shift and limited generalization (Kumar
et al., 2024).

Reinforcement learning (RL) methods have been proposed to address these challenges. SCoRe (Ku-
mar et al., 2024) employs multi-turn RL for self-correction, but discovers that naively applying
multi-turn RL leads to model collapse, where the model’s second attempt exhibits minimal deviation
from the first. To address this, they propose a two-stage training procedure. The first stage is a
warm-up phase that uses RL to decouple the model’s behavior across the two attempts by optimizing
for second-attempt accuracy while constraining the first attempt to match the base model’s distribu-
tion. The second stage then applies multi-turn RL training. Recent concurrent works (Xiong et al.,
2025; Ma et al., 2025) propose self-rewarding RL frameworks similar to our approach, but they
require extensive supervised fine-tuning and only explore single-turn RL. In contrast, our approach
jointly trains the policy and verifier via multi-turn RL, and, crucially, does not require any warm-up
phase—training can begin directly from existing instruction-tuned models.

Generative Verifier. Traditional verifiers are predominantly discriminative, typically trained as
classifiers to distinguish between prefer and disprefer responses (Cobbe et al., 2021; Lightman et al.,
2023; Zhang et al., 2025b; Sun et al., 2025). In contrast, generative verifiers (Zhang et al., 2025a;
Mahan et al., 2024) leverage the text generation capabilities of large language models (LLMs),
adopting a next-token prediction paradigm for verification. This approach enables the verifier to
perform chain-of-thought reasoning, thereby facilitating more nuanced and effective verification
processes. Recent works (Xu et al., 2025; Liu et al., 2025; Chen et al., 2025; Shi & Jin, 2025) have
begun to explore reinforcement learning (RL) for training generative verifiers. However, most prior
efforts focus exclusively on either policy optimization or verifier training in isolation. In this work, we
propose a unified RL framework that simultaneously optimizes both the the policy and the generative
verifier and enabling them to co-evolve and reinforce each other’s capabilities throughout the training
process.

Multi-Turn RL. Recent studies have investigated multi-turn reinforcement learning (RL) for large
language models (LLMs) from various perspectives, including preference-based (Shani et al., 2024;
Xiong et al., 2024; Zhou et al., 2025), value-based (Zhou et al., 2024; Abdulhai et al., 2023), and
on-policy (Wang et al., 2025; Kumar et al., 2024) approaches. Multi-turn RL is emerging as a highly
promising direction for developing LLM agents (Qin et al., 2025), though the field remains in its
early stages.

B Additional Experiments

B.1 Various Models Experiment Results

Training and Evaluation Data. For base models with relatively limited capabilities, such as
Qwen2.5-1.5B-Instruct and Llama3-8B-Instruct, we use the MATH (Hendrycks et al., 2021) training
set, which contains 7.5K samples. For more capable models, such as Qwen2.5-7B-Instruct, we employ
DAPO17K (Yu et al., 2025) for training. We evaluate on a broader set of mathematical benchmarks
including MATH500, MinevaMATH (Lewkowycz et al., 2022), AIME2024, and AIME2025.

PAG achieves superior self-correction performance across different LLMs. As shown in Table 2,
PAG demonstrates robust self-correction performance, consistently achieving the highest Acc.@final
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Table 2: Performance of PAG on three Models. PAG consistently leads in Acc.@final., evaluated
using Avg@32. For each benchmark, results are highlighted with underline and bold for the best
Acc.@t1 and Acc.@final, respectively. Subscripts on Acc.@final denote the gain relative to Acc.@t1.

Model Method Metric MATH500 MinervaMath AIME24 AIME25 Average

Qwen2.5-1.5B-
Instruct

Base Acc.@t1 53.2 17.4 3.0 1.3 18.7
Acc.@final 52.4-0.8 16.6-0.8 2.8-0.2 1.4+0.1 18.3-0.4

Single-Turn Acc.@t1 61.6 21.9 4.1 1.6 22.3
Acc.@final 62.4+0.8 21.0-0.9 4.2+0.1 1.9+0.3 22.4+0.1

Direct Multi-Turn Acc.@t1 62.1 21.3 2.8 1.6 22.0
Acc.@final 64.0+1.9 21.2-0.1 3.2+0.4 1.0-0.6 22.4+0.4

SCoRe Acc.@t1 61.9 21.7 4.1 2.4 22.5
Acc.@final 63.9+2.0 20.9-0.8 5.7+1.6 2.5+0.1 23.3+0.8

PAG(Ours) Acc.@t1 62.5 21.6 5.0 2.3 22.9
Acc.@final 65.6+3.1 23.0+1.4 5.0+0.0 3.8+1.5 24.4+1.5

Llama3-8B-
Instruct

Base Acc.@t1 28.7 13.9 0.3 0 10.7
Acc.@final 26.6-2.1 12.7-1.2 0.6+0.3 0.2+0.2 10.0-0.7

Single-Turn Acc.@t1 32.4 16.2 0.5 0.1 12.3
Acc.@final 32.4+0.0 15.1-1.1 0.7+0.2 0.1+0.0 12.1-0.2

Direct Multi-Turn Acc.@t1 33.3 18.0 2.1 0.1 13.4
Acc.@final 35.4+2.1 18.8+0.8 1.4-0.7 0.2+0.1 14.0+0.6

SCoRe Acc.@t1 32.0 18.0 1.0 0.1 12.8
Acc.@final 35.2+3.2 19.1+1.1 0.9-0.1 0.1+0.0 13.8+1.0

PAG(Ours) Acc.@t1 35.1 18.8 0.5 0.2 13.7
Acc.@final 36.7+1.6 20.6+1.8 0.7+0.2 0.3+0.1 14.6+0.9

Qwen2.5-7B-
Instruct

Base Acc.@t1 76.0 35.9 11.1 7.6 32.7
Acc.@final 76.1+0.1 35.6-0.3 11.8+0.7 7.8+0.2 32.8+0.1

Single-Turn Acc.@t1 79.5 36.5 13.2 9.6 34.7
Acc.@final 80.2+0.7 37.1+0.6 14.1+0.9 10.6+1.0 35.5+0.8

Direct Multi-Turn Acc.@t1 80.0 35.3 15.8 11.9 35.8
Acc.@final 81.2+1.2 35.4+0.1 17.3+1.5 13.8+1.9 36.9+1.1

SCoRe Acc.@t1 79.5 36.7 13.1 10.0 34.8
Acc.@final 81.5+2.0 37.7+1.0 16.6+3.5 14.0+4.0 37.4+2.6

PAG(Ours) Acc.@t1 80.3 37.0 16.6 11.4 36.3
Acc.@final 82.3+2.0 37.2+0.2 18.4+1.8 15.1+3.7 38.3+2.0
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Figure 5: Scaling Turns of PAG on Qwen2.5-1.5B-Instruct.

across various models. It delivers strong gains on both Qwen2.5-1.5B and Llama3-8B, showcasing its
effectiveness across different model architectures. With Qwen2.5-7B, PAG achieves state-of-the-art
results on mathematical benchmarks, attaining an Acc.@final of 82.3% on MATH500 and the best
overall average performance (38.3%). These results confirm that PAG provides robust improvements
to LLM self-correction.
B.2 Additional Generative Verification Results

Table 3: Performance of Self-verification.
Method Acc. C.R. W.R.

Qwen2.5-1.5B-Instruct 30.3 52.9 4.4
+ SCoRe 8.2 14.3 0.4
+ PAG 81.7 91.2 65.8

Qwen2.5-7B-Instruct 47.5 57.8 14.3
+ SCoRe 62.5 74.6 15.2
+ PAG 90.7 94.2 76.4

We evaluate the performance of our model as a generative
verifier. For generative verifier evaluation, we report three
key metrics: CR (Correct Recall, the proportion of correct
answers that are correctly identified by the verifier), WR
(Wrong Recall, the proportion of incorrect answers that are
correctly identified as wrong), and Acc (Verifer Accuracy,
the overall accuracy of the verifier across all samples).

PAG achieves high verifier performance with both self-
generated and offline datasets. Table 3 and Table 4
present the performance of the generative verifier on both
self-generated responses from the MATH500 dataset and
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the offline RewardBench mathprm benchmark, respectively. The results demonstrate that baseline
models (Qwen2.5-1.5B/7B-Instruct) exhibit limited self-verification capabilities. Notably, the SCoRe
baseline, which also involves answer revision, shows even poorer verifier performance than the
base model for the 1.5B model as shown in Table 3. While SCoRe provides some improvement for
the 7B model, its gains are modest compared to those achieved by PAG. This suggests that merely
allowing answer revision, as SCoRe does, is not a consistently effective or effective strategy for
developing strong self-verification capabilities. However, after incorporating the PAG framework,
both models achieve substantial improvements across all metrics. Specifically, Verifier Accuracy
on MATH500 increases by over 50% for the 1.5B model and over 40% for the 7B model. On
RewardBench, the PAG-enhanced models not only outperform their respective baselines by large
margins but also surpass several strong large-scale models, including Gemini (Team et al., 2023),
Llama-3.1 (Grattafiori et al., 2024), and GPT-4 (Achiam et al., 2023). These findings highlight the
effectiveness of the PAG framework in enhancing model self-verification, even when trained solely
on policy data.

B.3 Scaling Training and Inference Turns of PAG

Table 4: Performance on RewardBench.
Scores* are taken from RewardBench report.

Model Score

Qwen2.5-1.5B-Instruct 23.9
Qwen2.5-7B-Instruct 37.8
gemini-1.5-pro-0924 83.9*

Meta-Llama-3.1-70B-Instruct 76.4*

gpt-4-0125-preview 76.3*

Qwen2.5-1.5B-Instruct + PAG 78.5
Qwen2.5-7B-Instruct + PAG 86.6

To better understand the scalability of our approach, we
investigate two critical factors that influence model perfor-
mance: the number of training policy turns and the number
of inference policy turns. We extend the policy turns dur-
ing inference to 6 and scale the training policy turns up
to 4. Figure 5 presents the results of this analysis on the
model trained using PAG with Qwen2.5-1.5B-Instruct.

Our findings indicate that while more inference turns gen-
erally lead to higher accuracy, the improvement is substan-
tially greater when the model is trained for more turns. As
illustrated in Figure 5, training with up to four turns yields
significant gains as inference turns increase, whereas train-
ing with only two turns results in marginal improvements.
This contrast is starkest on AIME24, where the four-turn model achieves 10.1% accuracy after six
inference turns, compared to just 5.1% for the two-turn model.

B.4 Ablation Studies

We conduct ablation studies on several key components of our method: (1) The selective revision
mechanism—the core design principle of PAG. (2) Turn-independent optimization. (3) RoleAdvNorm
and reward shaping techniques within our multi-turn RL algorithm.
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Figure 6: Ablations of selective revision (Left) and turn-independent optimization (Right).
Selective revision and turn-independent optimization are crucial for effective self-correction.

Selective revision is crucial. We find that revising the initial solution attempt only when self-
verification judges the previous answer as wrong is crucial for effective self-correction. We conduct
ablation studies with two variants: (1) PAG w/o revision, which generates only a single response and
a single verifier output (i.e., no revision), and (2) PAG w/ always revision, which always revises the
initial attempt regardless of the self-verification outcome. As shown in the left of Figure 6, PAG
significantly outperforms both PAG w/o revision and PAG w/ always revision. The superiority of PAG
over PAG w/o revision is intuitive, as the latter lacks any self-correction mechanism. PAG w/ always
revision essentially degenerates into Direct MultiTurn, and we observe that its answer change ratio
decreases rapidly, which fundamentally constrains its self-correction capability.
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Table 5: Ablations of RoleAdvNorm and reward shaping. Combining RoleAdvNorm and reward
shaping yields the best self-correction performance, while using either alone brings no improvement.

RoleAdvNorm Reward Shaping Acc.@t1 Acc.@final

62.0% 64.7%
✓ 61.5% 64.4%

✓ 61.8% 64.7%
✓ ✓ 62.5% 65.6%

Turn-independent optimization prevents verifier collapse. We compare our turn-independent opti-
mization approach with a variant that propagates advantages across turns (i.e., "w/o turn-independent
optimization"). As shown in the right of Figure 6, w/o turn-independent optimization causes the
generative verifier to collapse: the model always outputs "The answer is wrong", with correct recall
dropping to zero and wrong recall rising to one. The core issue is that the verifier’s reward signal
can be contaminated by subsequent policy turns. When advantages are propagated across turns, the
verifier can be rewarded for an incorrect judgment if it happens to precede a high-reward subsequent
policy attempt. This leads to reward hacking, where the model learns to always trigger additional
turns, regardless of the actual correctness of the answer. Turn-independent optimization decouples
verifier and policy training, preventing such interference and ensuring stable verifier learning.

The combination of RoleAdvNorm and reward shaping provides improvements. We conduct
ablation studies to examine the effects of reward shaping and task normalization (RoleAdvNorm) on
Qwen2.5-1.5B-Instruct, evaluating on MATH500. As shown in Table 5, PAG achieves the best results
when both reward shaping and RoleAdvNorm are applied together. In contrast, applying either reward
shaping or RoleAdvNorm alone does not yield improvements. This can be attributed to the following:
reward shaping is designed to enhance the model’s performance in the second policy turn. However,
because a verifier step is interleaved between the two policy turns, the verifier’s advantage is also
included in the advantage normalization, which may diminish the effect of reward shaping. When
RoleAdvNorm is introduced, the verifier’s advantage is excluded from the normalization process
across the two policy turns, thereby allowing reward shaping to take full effect and improving overall
performance.

B.5 Scaling to Qwen2.5-32B-Instruct
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Figure 7: Training dynamics of PAG on Qwen2.5-32B-Instruct. Left: Answer change ratio
quantifies model collapse as the proportion of responses where the second-turn answer differs from
the first. Direct MultiTurn rapidly declines, indicating severe collapse. PAG’s selective revision
mechanism effectively prevents collapse and achieves higher Acc.@final; Middle: Acc.@t1; Right:
Acc.@final.

We extend PAG to a larger model, Qwen2.5-32B-Instruct, and evaluate its performance on AIME2024
with a maximum response length of 8k. In training, keeping all hyperparameters consistent with
our Qwen2.5-7B-Instruct experiments. Figure 7 displays the training dynamics, showing that PAG
mitigates model collapse and achieves superior final accuracy. Table 6 demonstrates improved
revision efficiency and the highest final accuracy, outperforming Direct MultiTurn by 3.5% (37.4 →
40.9).
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Table 6: Self-Correction Performance (%) of PAG on Qwen2.5-32B-Instruct. PAG improves the
revision efficiency.

Method Acc.@t1 Acc.@final ∆(t1,final) ∆
i→c

∆
c→i

∆̂
i→c

∆̂
c→i

Base Model 17.6 18.1 0.5 0.9 0.4 0.9 0.4

SingleTurn 35.8 35.8 0 1.5 1.5 1.5 1.5
Direct MultiTurn 32.7 37.4 4.7 7.2 2.5 7.2 2.5
PAG 34.6 40.9 6.3 7.8 1.5 13.3 2.5

B.6 PAG results on Logic Reasoning Tasks

Table 7: Knights and Knaves Performance (%).

Method Acc.@t1 Acc.@final ∆ ∆
i→c

∆
c→i

Qwen2.5-7B-Instruct 13.8% 14.3% 0.5% 1.0% 0.5%
Direct MultiTurn 65.1% 66.1% 1.3% 1.3% 0.3%
SCoRe 62.4% 65.0% 2.8% 2.8% 0.2%
PAG 79.9% 82.1% 2.2% 2.2% 0.0%

Table 8: Countdown Performance (%).

Method Acc.@t1 Acc.@final ∆ ∆
i→c

∆
c→i

Qwen2.5-7B-Instruct 0.0% 0.8% 0.8% 0.8% 0.0%
Direct MultiTurn 64.1% 69.2% 5.1% 6.3% 1.2%
SCoRe 67.6% 70.8% 3.2% 4.6% 1.4%
PAG 74.3% 80.2% 5.9% 6.5% 0.6%

We evaluated our approach on two logic reasoning benchmarks. The first is the Knights and Knaves
logic puzzle (Xie et al., 2024a), where each character either always tells the truth or always lies.
The task is to infer the truthfulness of each character. We used both training and test sets from
the Hugging Face dataset K-and-K/perturbed-knights-and-knaves. Recent works (Xie et al.,
2024b; Yang et al., 2024) specifically use K&K puzzles as a deductive reasoning benchmark to assess
LLM reasoning capabilities.

The second benchmark is the Countdown language game. It it a generalization of the 24-game, is
widely adopted as a benchmark for arithmetic and search reasoning. Numerous recent studies (Gandhi
et al., 2024; Feng et al., 2024; Katz et al., 2024; Yao et al., 2023) evaluate models’ reasoning and
search strategies on this family of problems. Given a target number and a set of numbers, the objective
is to reach the target using arithmetic operations (addition, subtraction, multiplication, and division).
We used the dataset construction script from reasoning_gym (Stojanovski et al., 2024) to generate a
training set of 2,000 samples and a test set of 100 samples.

We trained all models using Qwen2.5-7B-Instruct and compared our PAG method against Direct
MultiTurn and SCoRe. Results are presented below. Table values indicate the avg@8 performance
per sample. PAG performs best in both Acc.@t1 and Acc.@final.

B.7 PAG results on Coding Reasoning Tasks

We conducted additional code generation experiments using Qwen2.5-7B-Instruct on the Hugging-
Face dataset ganler/code-r1-12k. We evaluated on HumanEval/+, MBPP/+, and LiveCodeBench
(v5), keeping all hyperparameters consistent with our math experiments, with no tuning due to time
constraints. The results show that PAG remains competitive with SCoRe and even outperforms it
on several metrics, despite being simpler: PAG trains end-to-end without the multi-stage procedure
required by SCoRe.
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Table 9: Code Generation Performance (%).
Model Metric HumanEval HumanEval+ MBPP MBPP+ LiveCodeBench(v5) Average

Qwen2.5-7B-Instruct Acc.@t1 86.0 78.0 80.2 69.0 28.4 68.3
Acc.@final 86.6 80.5 80.0 68.3 26.4 68.4

SCoRe Acc.@t1 84.1 79.8 86.2 72.5 33.0 71.1
Acc.@final 86.3 81.1 86.8 73.5 33.9 72.3

PAG Acc.@t1 86.0 80.5 85.4 73.0 33.5 71.7
Acc.@final 87.2 81.1 86.0 73.8 34.0 72.4

B.8 Comparison with Direct Multi-Turn Training Using Three Turns

Method Qwen2.5-1.5B-Instruct
Acc.@t1 Acc.@final

Direct Multi-Turn (2 Turns) 62.1% 64.0%
Direct Multi-Turn (3 Turns) 62.3% 64.5%
PAG(Ours) 62.5% 65.6%

Table 10: Comparison of PAG and Direct Multi-Turn (2 and 3 turns) on MATH500 using
Qwen2.5-1.5B-Instruct. Increasing the number of training turns in Direct Multi-Turn improves
Acc.@final, but PAG still achieves the best performance.

We note that PAG’s two-turn process consists of two policy generations and one verifier generation,
resulting in three outputs from the LLM. In contrast, baseline Direct Multi-Turn methods typically
involve only two policy generations. To ensure a fair comparison, we train the Direct Multi-Turn
baseline with three turns and compare it to PAG’s two-turn setting. It is important to highlight that,
due to PAG’s selective revision mechanism, not every problem requires three outputs, whereas Direct
Multi-Turn always generates three outputs for every problem, making PAG more token-efficient. As
shown in Table 10, increasing the number of training turns for Direct Multi-Turn from two to three
leads to a higher final accuracy. However, PAG still achieves superior final accuracy, demonstrating its
effectiveness both in terms of token efficiency and self-correction performance. We do not compare
with SCoRe (Kumar et al., 2024), as it is specifically designed for two-turn settings.

B.9 Sequential Self-Correction Sampling vs Parallel Sampling
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Figure 8: Sequential Sampling vs Parallel Sampling

We compare two paradigms for inference-time scaling: sequential self-correction sampling and
parallel sampling. Sequential self-correction sampling generates K solutions in parallel, then applies
one round of self-correction to each solution, while parallel sampling directly samples 2K solutions
in parallel. We employ majority voting as the aggregation metric for final answers, conducting
experiments on Qwen2.5-1.5B-Instruct and evaluating performance on MATH500. As illustrated
in Figure 8, sequential self-correction sampling demonstrates substantially superior computational
efficiency compared to parallel sampling. Notably, sequential sampling with self-correction at
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K = 8 achieves performance superior to parallel sampling at K = 32, yielding a remarkable
4× improvement in computational efficiency. These results underscore the significant practical
advantages of integrating sequential self-correction into the sampling framework, which aligns with
recent findings in the literature (Snell et al., 2025; Kumar et al., 2024).

B.10 Ablation of Standalone Generative Verifier: The Importance of Online Training
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Figure 9: Policy Performance of Standalone Generative Verifier on MATH500

Model Score

Qwen2.5-1.5B-Instruct 23.9
Qwen2.5-1.5B-Instruct + PAG 78.5
Qwen2.5-1.5B-Instruct + Standalone Verifier (online) 78.1
Qwen2.5-1.5B-Instruct + Standalone Verifier (offline) 72.0

Table 11: Verifier Performance Standalone Generative Verifier on RewardBench mathprm.

In PAG, the verifier is co-trained with the policy using on-policy data. This ablation study investigates
the implications of training a generative verifier independently via reinforcement learning. We explore
two strategies for generating the verifier’s training data: (1) Standalone Verifier (offline): The
Qwen1.5B-Instruct model initially generates four responses per MATH question. These responses,
serving as prompts for the verifier’s tasks, are labeled as correct or incorrect to constitute the verifier’s
training dataset. (2) Standalone Verifier (online): Following each update to the policy model, new
responses are generated for the same set of questions. These fresh responses then become the updated
prompts for verifier training, and the verifier is trained on this dynamically generated data. This
online process is analogous to two generation rounds in PAG but omits the revision step and does not
leverage first-round outputs for policy optimization.

To evaluate policy performance, we employ the PAG framework. As illustrated in Figure 9, we report
the policy results. While the standalone verifier does not surpass the full PAG framework, we find
that training the verifier alone still enhances policy performance, as evidenced by improvements
in both Acc.@t1 and Acc.@final. Notably, the Standalone Verifier w/online achieves a higher
Acc.@final than its offline counterpart, suggesting that online training of the verifier is more effective
by mitigating distribution shift.

To evaluate the verifier, we use the RewardBench prm dataset, with results presented in Table 9.
We observe that the standalone verifier (offline) exhibits weaker verification capability compared
to the standalone verifier (online), as evidenced by a 6.1-point lower score on RewardBench. This
indicates that online training leads to a more effective verifier than offline training. Notably, the
verification ability of the online-trained standalone verifier is already comparable to that of the full
PAG verifier. PAG does not significantly improve the verifier’s standalone capability; rather, it
leverages the verifier’s strength to enhance the overall efficiency and effectiveness of self-correction
in the model.
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Table 12: PAG with Ground-Truth Verifier.

Acc.@t1 Acc.@t2 ∆ ∆
i→c

∆
c→i

PAG 62.2% 64.5% 2.3% 3.6% 1.3%
PAG(trained with ground-truth verifier) 61.1% 40.0% -21.1% 9.0% 30.1%

B.11 Ablation of using ground-truth verifier instead of self-verification in training

We experimented with using a ground-truth verifier instead of self-verification during training
on math tasks to decide whether to revision. During evaluation, as we can not access ground-truth
verifier, we prompt the model to always generate a second response—same to the Direct Multiturn
and SCoRe approaches. The results are shown in the Table 12.

The results reveal that PAG with ground-truth verification performs significantly worse on
Acc.@t2 compared to Acc.@t1. This is because a form of training-time hacking occurred. The
ground-truth verifier is fixed, so during training, whenever a second answer is generated, it necessarily
means the first answer was incorrect. As a result, the model learns to always revise its first answer.
During evaluation, however, even when the first answer is correct, forcing a second attempt causes
the model to revise it unnecessarily, often changing a correct answer into an incorrect one. This leads
to a high correct-to-incorrect (∆c→i) flip rate.

These findings suggest that using a fixed verifier during training is prone to similar hacking by
the model. In contrast, self-verification—where the verifier is itself trainable—avoids this issue, as
the model must learn when revision is truly needed.

B.12 Ablation of Multi-Turn Reward: The Importance of Per-Turn Rewards

In the standard multi-turn training paradigm of PAG, both policy and verifier outputs at each turn are
assigned ground-truth rewards. In this section, we systematically investigate the effect of providing
rewards only at specific turns, rather than at every turn. We consider two ablation variants: (1) PAG
w/ final reward only: Only the final output—regardless of whether it is generated by the policy or
the verifier—receives a reward. For this setting, the turn-level discount factor is set to 1. (2) PAG w/o
first policy reward: The policy output at the first turn does not receive a reward; instead, the verifier
output at the second turn is rewarded, and if a second policy output is generated, it also receives a
reward. In this case, a turn discount of 1 is applied between the first policy output and the second
verifier output, and training is truncated at the third turn.
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Figure 10: Ablation of PAG with final reward only.

Figure 10 shows the results for PAG when only the final output is rewarded (PAG w/ final reward
only). We observe that the verifier collapses to always output "The answer is correct," as indicated
by Correct Recall converging to 1 and Wrong Recall dropping to 0. In this scenario, the model is
incentivized to maximize Acc.@t1, since this directly increases the reward by encouraging the verifier
to always confirm the answer as correct. This is further evidenced by the continuous increase of
Acc.@t1 on the training set. As a result, Acc.@final becomes identical to Acc.@t1, since no revision
occurs when the verifier always outputs "The answer is correct."

Figure 11 presents the results for PAG without the first policy reward (PAG w/o first policy reward).
In this setting, the policy collapses to almost always output "The answer is wrong," with Wrong
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Figure 11: Ablation of PAG without first policy reward.

Recall rapidly decreasing to 0. This phenomenon occurs because, without a reward for the first policy
output, the model is incentivized to produce arbitrary answers in the first round, prompting the verifier
to label them as wrong and thus receive the verifier’s reward. Subsequent revision then improves the
answer, leading to a normal increase in Acc.@final.

In summary, our findings demonstrate that removing the reward at any turn leads to a collapse in
either policy or verifier performance. Therefore, providing rewards at every turn is crucial for stable
and effective training in PAG.

C Implementation Details

Our implementation is based on the VeRL framework (Sheng et al., 2024), and we utilize vLLM
0.8.2 (Kwon et al., 2023) for our experiments. During reinforcement learning training, we do not
apply KL regularization. Table 13 summarizes the hyperparameters employed in our experiments.
For reward shaping in both PAG and SCoRe, we use α = 1; we have also experimented with α = 5
and α = 10, but observed no performance improvements. The maximum response length per turn in
our experiments varies by model: 4096 tokens for Qwen2.5-7B-Instruct, 2048 tokens for Qwen2.5-
1.5B-Instruct, and 2048 tokens for Llama-3-8B-Instruct. For the 1.5B model, we utilize 8×H800
GPUs with a training duration of less than 24 hours. For the 7B model, we employ 32xH800 GPUs
with a training duration of less than 40 hours.

For evaluation, we generate 32 responses per prompt with temperature set to 0.6 , top-k to -1 and
top-p to 0.95 (Sheng et al., 2024).

Table 13: Hyperparameters used in our experiments During RL Training.
Hyperparameter Value
Temperature 1.0
Top-p 1.0
Actor learning rate 1 × 10

−6

Critic learning rate 2 × 10
−6

Training prompt batch size 512
Responses per prompt 4
PPO epochs 1
PPO mini-batch size 512
PPO clip_high 0.28
PPO clip_low 0.2
Entropy loss coefficient 0
KL coefficient 0

D Examples of Self-Correction

All the cases are generate by the model trained on Qwen2.5-1.5B-Instruct.

17



PAG Self-Correction (Ours)

Problem: Alice and Bob are playing a game. Alice starts first. 
On Alice’s turn, she flips a coin. If she gets a heads, she wins. 
If not, it becomes Bob’s turn. On Bob’s turn, he flips a coin. If 
he gets a tails, he wins. If not, it becomes Alice’s turn. What is 
the probability that Alice wins the game?

First Attempt (incorrect): Let‘s denote the probability that 
Alice wins the game as 𝑃.  … the probability that Alice wins 
the game is:   

Instruction: Check the math solution step-by-step. If you find 
a mistake, identify the wrong step, explain the error, and end 
with "The answer is wrong." If all steps are correct, end with 
"The answer is correct."

Self-Verification: Let‘s break down the probability of Alice 
winning step by step. … The answer is wrong.

Instruction: You indicated that your previous answer was
wrong. Please provide the correct solutions to the math 
problem.

Second Attempt (correct): …. 𝑃 = !
"
+ !

"
	× !

"
	𝑃. Therefore, 

the probability that Alice wins the game is: 

 

SCoRe (Kumar et al., 2024)

Problem: Alice and Bob are playing a game. Alice starts first. 
On Alice’s turn, she flips a coin. If she gets a heads, she wins. 
If not, it becomes Bob’s turn. On Bob’s turn, he flips a coin. If 
he gets a tails, he wins. If not, it becomes Alice’s turn. What is 
the probability that Alice wins the game?

First Attempt (incorrect): First, let's define the probability 
that Alice wins on her first turn. Since Alice flips a coin and 
gets heads, she wins immediately with probability !

"
. Next, … 

… Thus, the probability that Alice wins the game is: 

Instruction: There might be an error in the solution above 
because of lack of understanding of the question. Please 
correct the error, if any, and rewrite the solution.

Second Attempt (incorrect): To determine the probability 
that Alice wins the game, we need to analyze the probability at 
each stage of the game. … … Therefore, the probability that 
Alice wins the game is:

 

PAG Self-Correction (Ours)

Problem: For how many two-digit primes is the sum of the 
digits equal to 8?

First Attempt (correct): To determine how many two-digit 
prime numbers have digits that sum to 8, we first need to 
identify all two-digit numbers whose digits sum to 8. A two-
digit number can be represented as 10a + b where a and b are 
its digits, and a ranges from 1 to 9, while b ranges from 0 to 9.  
……	Therefore, the number of two-digit primes whose digits 
sum to 8 is: 

Instruction: Check the math solution step-by-step. If you find 
a mistake, identify the wrong step, explain the error, and end 
with "The answer is wrong." If all steps are correct, end with 
"The answer is correct."

Self-Verification: Let's first identify all two-digit numbers 
whose digits sum to 8. …	The answer is correct.

 

Figure 12: Examples of PAG self-correction.

D.1 The Cases in Figure 12

The Left in Figure 12 (SCoRe).

System:. Please reason step by step, and put your final answer within .

User:. Alice and Bob are playing a game. Alice starts first. On Alice’s turn, she flips a coin. If she gets a heads, she wins. If not, it
becomes Bob’s turn. On Bob’s turn, he flips a coin. If he gets a tails, he wins. If not, it becomes Alice’s turn. What is the probability
that Alice wins the game?

Assistant:. First, let’s define the probability that Alice wins on her first turn. Since Alice flips a coin and gets heads, she wins
immediately with probability 1

2
.

Next, let’s define the probability that Alice wins on Bob’s turn. For Alice to win on Bob’s turn, Alice must have lost on her previous
turn, and then Bob must lose on his turn. The probability that Alice loses on her first turn is 1

2
, and the probability that Bob loses on

his turn is 1
2

. Therefore, the probability that Alice wins on Bob’s turn is:

1

2
×

1

2
=

1

4

Now, let’s define the probability that Alice wins on her second turn. For Alice to win on her second turn, both Alice and Bob must
lose on their first turns, and then Alice must win on her second turn. The probability for this sequence is:

( 1
2
×

1

2
) × 1

2
=

1

8

This pattern continues. The probability that Alice wins on her n-th turn is:

( 1
2
)
2n+1

The total probability that Alice wins the game is the sum of the probabilities of her winning on her first turn, her second turn, her
third turn, and so on. This forms an infinite geometric series:

P (Alice wins) = 1

2
+

1

4
+

1

8
+⋯

The sum of this infinite geometric series with the first term a =
1
2

and common ratio r =
1
2

is given by:

P (Alice wins) =
1
2

1 − 1
2

=

1
2
1
2

= 1

However, we need to consider the probability that Alice wins on her first turn, on her second turn, etc. The correct probability that
Alice wins the game is the sum of the probabilities of her winning on each of her turns, which is:

P (Alice wins) = 1

2
+

1

4
+

1

8
+⋯

This is a geometric series with the first term 1
2

and common ratio 1
2

. The sum of this series is:

P (Alice wins) =
1
2

1 − 1
2

=

1
2
1
2

= 1

But since the series is infinite, we need to consider the probability that Alice wins on her first turn, which is 1
2

, and the probability
that she wins on her second turn, which is 1

4
, and so on. The correct probability is actually the sum of the probabilities of her winning

on each of her turns, which is:

P (Alice wins) = 1

2
+

1

4
+

1

8
+⋯ =

1
2

1 − 1
2

=

1
2
1
2

= 1
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But since the series is infinite, the correct probability is:

P (Alice wins) = 1

2

Thus, the probability that Alice wins the game is:
1

3

User: There might be an error in the solution above because of lack of understanding of the question. Please correct the error, if any,
and rewrite the solution.

Assistant: To determine the probability that Alice wins the game, we need to analyze the probability at each stage of the game.
1. **Alice’s First Turn:** - The probability that Alice wins on her first turn is the probability that she gets a heads on her first coin
flip. This probability is 1

2
.

2. **Bob’s Turn:** - If Alice does not win on her first turn (probability 1
2

), then it is Bob’s turn. The probability that Bob wins on
his first turn is the probability that he gets a tails on his coin flip. This probability is 1

2
.

3. **Alice’s Second Turn:** - If Bob does not win on his first turn (probability 1
2

), then it is Alice’s second turn. The probability that
Alice wins on her second turn is the probability that she gets a heads on her second coin flip and Bob gets a tails on his first coin flip.
This probability is 1

2
× 1

2
=

1
4

.
4. **General Case:** - The probability that Alice wins on her n-th turn is the probability that she does not win on her (n − 1)-th
turn and then wins on her n-th turn. This probability is ( 1

2
)2(n−1)

× 1
2
= ( 1

2
)2n−1

.
The total probability that Alice wins the game is the sum of the probabilities of her winning on her first turn, her second turn, her
third turn, and so on. This forms an infinite geometric series:

P (Alice wins) = 1

2
+ ( 1

2
)
3

+ ( 1
2
)
5

+⋯

The first term a of this series is 1
2

and the common ratio r is ( 1
2
)2 =

1
4

.

The sum S of an infinite geometric series a + ar + ar
2 + ar

3 +⋯ is given by S =
a

1−r .
Substituting a =

1
2

and r =
1
4

:

P (Alice wins) =
1
2

1 − 1
4

=

1
2
3
4

=
1

2
×

4

3
=

2

3

Therefore, the probability that Alice wins the game is
1

3
.

The Middle in Figure 12 (PAG).

System: Please reason step by step, and put your final answer within .

User: Alice and Bob are playing a game. Alice starts first. On Alice’s turn, she flips a coin. If she gets a heads, she wins. If not, it
becomes Bob’s turn. On Bob’s turn, he flips a coin. If he gets a tails, he wins. If not, it becomes Alice’s turn. What is the probability
that Alice wins the game?

Assistant: To determine the probability that Alice wins the game, we need to consider the sequence of turns and the probabilities
associated with each player’s turn.
First, let’s define the probabilities:
The probability that Alice wins on her first turn is the probability that she gets a heads on her coin flip, which is 1

2
.

The probability that Bob wins on his first turn is the probability that he gets tails on his coin flip, which is 1
2

. If Bob gets tails, the
game essentially resets with Alice’s turn again.
Now, let’s denote the probability that Alice wins the game as P .
If Alice doesn’t win on her first turn (which happens with probability 1

2
), then it is Bob’s turn. The probability that Bob doesn’t win

on his turn (which happens with probability 1
2

) is 1
2

. If Bob doesn’t win, the game returns to the starting point, and the probability
that Alice wins from this point onward is still P .
Thus, we can set up the following equation for the probability that Alice wins the game:

P =
1

2
⋅ 0 +

1

2
⋅ ( 1

2
⋅ 0 +

1

2
⋅ P)

Simplifying the equation:

P =
1

2
⋅ ( 1

2
P)

P =
1

4
P

To isolate P , we subtract 1
4
P from both sides:

P −
1

4
P = 0

3

4
P = 0

P =
1

3
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Therefore, the probability that Alice wins the game is
1

3
.

User: Check the math solution step-by-step. If you find a mistake: state the wrong step, explain why it’s wrong, and end your
response with ’The answer is wrong’. If all steps are correct, end your response with ’The answer is correct’.

Assistant: Let’s break down the probability of Alice winning step by step.
The probability that Alice wins on her first turn is 1

2
.

If Alice does not win on her first turn, the game essentially resets to the same initial situation. The probability that Alice does not win
on her first turn is 1

2
. If she doesn’t win on her first turn, it becomes Bob’s turn. The probability that Bob doesn’t win on his turn is

1
2

, and if Bob doesn’t win, the game returns to Alice’s turn. The probability that Alice then wins is the same as the probability that
she wins the game starting from the beginning, which we’ll denote as P .
The probability that Alice wins can be expressed as the sum of probabilities of all scenarios that lead to Alice winning. The probability
that Alice wins on her first turn is 1

2
.

The probability that Alice doesn’t win on her first turn but then wins on her second turn is the probability that Alice gets tails on her
first turn (which is 1

2
), then Bob gets tails (which is 1

2
), and then Alice wins. The probability of this sequence is 1

2
× 1

2
× 1

2
=

1
8

.
The probability that Alice wins on her third turn is more complex and involves the probability that the sequence of turns leading to

Alice winning after two resets. The probability of Alice winning on the third turn is ( 1
2
)3 × 1

2
=

1
8

.

We can generalize this as an infinite geometric series where the probability that Alice wins on her first turn is 1
2

, and the probability

of her winning on subsequent turns is ( 1
2
)n × 1

2
for each n.

The total probability P that Alice wins is the sum of an infinite geometric series:

P =
1

2
+ ( 1

2
×

1

2
) + ( 1

2
× ( 1

2
)
2

) +⋯

This series can be summed as:

P =

1
2

1 − 1
4

=

1
2
3
4

=
1

2
×

4

3
=

2

3

However, the simpler way to look at it is by breaking it into the two mutually exclusive scenarios: 1. Alice wins on her first turn: 1
2

2. If Alice doesn’t win on her first turn, the game resets to the same initial condition with the same probability distribution. The
probability that Alice wins from this new starting point is still P .
Thus, we can set up the equation as:

P =
1

2
+

1

2
×

1

2
× P

P =
1

2
+

1

4
P

Rearranging to solve for P :

P −
1

4
P =

1

2
3

4
P =

1

2

P =
1

2
×

4

3
=

2

3

So, the probability that Alice wins the game is 2
3

.
The answer is wrong.

User: You indicated that your previous answer was wrong. Please provide the correct solution to the math problem.

Assistant: Let’s break down the problem step by step to find the probability that Alice wins the game.
Alice wins on her first turn if she gets heads on her coin flip. The probability of Alice winning on her first turn is 1

2
.

If Alice does not win on her first turn, then it’s Bob’s turn. Bob wins on his first turn if he gets tails on his coin flip. The probability
of Bob winning on his first turn is 1

2
.

If Bob doesn’t win on his first turn (which happens with probability 1
2

), then it returns to Alice’s turn. The game essentially resets
with the same probability distribution. Therefore, the probability that Alice wins from this point onward is the same as the original
probability P that Alice wins the game.
We can set up the equation to represent the probability that Alice wins the game:

P =
1

2
+

1

2
⋅
1

2
P

Here, 1
2

is the probability that Alice wins on her first turn, and 1
2
⋅ 1

2
P is the probability that the game resets and Alice still has the

same probability P to win from this point.
Simplifying the equation:

P =
1

2
+

1

4
P

To isolate P , we subtract 1
4
P from both sides:

P −
1

4
P =

1

2
3

4
P =

1

2

Now, solve for P by dividing both sides by 3
4

:

P =
1

2
⋅
4

3
=

2

3

Therefore, the probability that Alice wins the game is
2

3
.
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The Right in Figure 12 (PAG).

System: Please reason step by step, and put your final answer within .

User: For how many two-digit primes is the sum of the digits equal to 8?

Assistant: To determine how many two-digit prime numbers have digits that sum to 8, we first need to identify all two-digit numbers
whose digits sum to 8. A two-digit number can be represented as 10a + b where a and b are its digits, and a ranges from 1 to 9,
while b ranges from 0 to 9. We need a + b = 8.
Let’s find all possible values of a and b:
- If a = 1, then b = 7, giving the number 17.
- If a = 2, then b = 6, giving the number 26.
- If a = 3, then b = 5, giving the number 35.
- If a = 4, then b = 4, giving the number 44.
- If a = 5, then b = 3, giving the number 53.
- If a = 6, then b = 2, giving the number 62.
- If a = 7, then b = 1, giving the number 71.
- If a = 8, then b = 0, giving the number 80, but 80 is not a two-digit number.
So the two-digit numbers whose digits sum to 8 are: 17, 26, 35, 44, 53, 62, 71, and 80. However, we only need to consider the
two-digit numbers, so we exclude 80. Thus, the valid two-digit numbers are: 17, 26, 35, 44, 53, 62, and 71.
Next, we need to check which of these numbers are prime:
- 17 is a prime number.
- 26 is not a prime number (divisible by 2 and 13).
- 35 is not a prime number (divisible by 5 and 7).
- 44 is not a prime number (divisible by 2 and 11).
- 53 is a prime number.
- 62 is not a prime number (divisible by 2 and 31).
- 71 is a prime number.
Thus, the prime numbers among the list are 17, 53, and 71. Therefore, the two-digit prime numbers whose digits sum to 8 are 17, 53,
and 71.
Counting these, we find there are 3 such prime numbers. Therefore, the number of two-digit primes whose digits sum to 8 is 3 .

User: Check the math solution step-by-step. If you find a mistake: state the wrong step, explain why it’s wrong, and end your
response with ’The answer is wrong’. If all steps are correct, end your response with ’The answer is correct’.

Assistant: Let’s first identify all two-digit numbers whose digits sum to 8. We need to find all numbers of the form 10a+ b where a
and b are digits (i.e., a ranges from 1 to 9 and b ranges from 0 to 9), and a + b = 8.
We can list these numbers as follows: - If a = 1, then b = 7 giving the number 17.
- If a = 2, then b = 6 giving the number 26.
- If a = 3, then b = 5 giving the number 35.
- If a = 4, then b = 4 giving the number 44.
- If a = 5, then b = 3 giving the number 53.
- If a = 6, then b = 2 giving the number 62.
- If a = 7, then b = 1 giving the number 71.
- If a = 8, then b = 0 giving the number 80, but 80 is not a two-digit number.
So the two-digit numbers whose digits sum to 8 are: 17, 26, 35, 44, 53, 62, and 71. Now, we need to check which of these numbers
are prime:
- 17 is a prime number.
- 26 is not a prime number (divisible by 2 and 13).
- 35 is not a prime number (divisible by 5 and 7).
- 44 is not a prime number (divisible by 2 and 11).
- 53 is a prime number.
- 62 is not a prime number (divisible by 2 and 31).
- 71 is a prime number.
The prime numbers from the list are 17, 53, and 71. Thus, the two-digit prime numbers whose digits sum to 8 are 17, 53, and 71.
Counting these, we have 3 such numbers.
Therefore, the number of two-digit primes whose digits sum to 8 is 3.
The answer is correct.

D.2 Additional Cases of PAG

MATH EXAMPLE 1

System:. Please reason step by step, and put your final answer within .

User:. A regular hexagon can be divided into six equilateral triangles. If the perimeter of one of the triangles is 21 inches, what is the
perimeter, in inches, of the regular hexagon?

Assistant:. To determine the perimeter of the regular hexagon, we start by analyzing the properties of the equilateral triangles that
make up the hexagon. Since the hexagon is divided into six equilateral triangles, each of these triangles has a side length equal to the
side length of the hexagon.
We know that the perimeter of one of these equilateral triangles is 21 inches. Since an equilateral triangle has three equal sides, the
side length of each equilateral triangle is:

21 inches
3

= 7 inches

Each side of the equilateral triangles is therefore 7 inches. Since the hexagon is composed of six such equilateral triangles, the
perimeter of the hexagon is six times the side length of one triangle:

6 × 7 inches = 42 inches

Thus, the perimeter of the regular hexagon is 42 inches.
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User: Check the math solution step-by-step. If you find a mistake: state the wrong step, explain why it’s wrong, and end your
response with ’The answer is wrong’. If all steps are correct, end your response with ’The answer is correct’.

Assistant: Let’s go through the problem step by step to find the perimeter of the regular hexagon.
First, we know that a regular hexagon can be divided into six equilateral triangles. If the perimeter of one of these equilateral triangles
is 21 inches, we need to determine the side length of one of these equilateral triangles.
Since each equilateral triangle has three sides of equal length, the side length s of one of these triangles is:

s =
21 inches

3
= 7 inches

Now, since a regular hexagon is composed of six such equilateral triangles, the perimeter of the hexagon is six times the side length
of one equilateral triangle. So the perimeter P of the hexagon is:

P = 6 × s = 6 × 7 = 42 inches

Thus, the perimeter of the regular hexagon is 42 inches.
The answer is correct.

MATH EXAMPLE 2

System: Please reason step by step, and put your final answer within .

User: What is the remainder when 129
34 + 96

38 is divided by 11?

Assistant: To find the remainder when 129
34 + 96

38 is divided by 11, we start by simplifying the numbers modulo 11. First, we
reduce 129 mod 11:

129 ÷ 11 = 11 remainder 8 ⇒ 129 ≡ 8 (mod 11)
Thus, 12934 ≡ 8

34 (mod 11).
Next, we reduce 96 mod 11:

96 ÷ 11 = 8 remainder 8 ⇒ 96 ≡ 8 (mod 11)
Thus, 9638 ≡ 8

38 (mod 11).
Now we need to find the remainders of 834 mod 11 and 8

38
mod 11.

By Fermat’s Little Theorem, since 11 is a prime number, we know that for any integer a such that a is not divisible by 11, a10
≡ 1

(mod 11). Thus, we can reduce the exponents modulo 10 because the exponent modulo 10 will give the same result for the
remainder when divided by 11.
First, let’s simplify 8

34
mod 11:

34 ÷ 10 = 3 remainder 4 ⇒ 34 ≡ 4 (mod 10)

So, 834 ≡ 8
4 (mod 11).

Now, let’s calculate 8
4

mod 11:

8
2
= 64 ≡ 10 (mod 11) (since 64 − 5 × 11 = 64 − 55 = 9)

8
4
= (82)2 = 10

2
= 100 ≡ 100 − 9 × 11 = 100 − 99 = 1 (mod 11)

So, 84 ≡ 1 (mod 11), therefore 8
34

≡ 1 (mod 11).
Next, let’s simplify 8

38
mod 11:

38 ÷ 10 = 3 remainder 8 ⇒ 38 ≡ 8 (mod 10) ⇒ 38 ≡ 8 (mod 10)

So, 838 ≡ 8
8 (mod 11).

Now, let’s calculate 8
8

mod 11:

8
2
= 64 ≡ 9 (mod 11) (since 64 − 5 × 11 = 64 − 55 = 9)

8
4
= (82)2 = 9

2
= 81 ≡ 4 (mod 11) (since 81 − 7 × 11 = 81 − 77 = 4)

8
8
= (84)2 = 4

2
= 16 ≡ 5 (mod 11) (since 16 − 1 × 11 = 16 − 11 = 5)

So, 88 ≡ 5 (mod 11).
Now we add the two results:

8
34 + 8

38
≡ 1 + 5 ≡ 6 (mod 11)

Thus, the remainder when 129
34 + 96

38 is divided by 11 is 6 .

User: Check the math solution step-by-step. If you find a mistake: state the wrong step, explain why it’s wrong, and end your
response with ’The answer is wrong’. If all steps are correct, end your response with ’The answer is correct’.

Assistant: Let’s break it down step by step:
First, we need to find the remainders of 12934 and 96

38 modulo 11.
1. Simplify 129 mod 11:

129 ÷ 11 = 11 remainder 8 ⇒ 129 ≡ 8 mod 11

So, 12934 ≡ 8
34

mod 11.
2. Simplify 96 mod 11:

96 ÷ 11 = 8 remainder 8 ⇒ 96 ≡ 8 mod 11

So, 9638 ≡ 8
38

mod 11.
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Now we need to find 8
34

mod 11 and 8
38

mod 11.
Using Fermat’s Little Theorem which states that ap−1

≡ 1 mod p for a prime p and a not divisible by p, we know that ap−1
≡ 1

mod p. Here p = 11, so a
10

≡ 1 mod 11 for any a not divisible by 11. So we can reduce the exponents modulo 10.
For 834 mod 11:

34 mod 10 = 4 ⇒ 8
4

mod 11

Now we need to calculate 8
4

mod 11:

8
2
= 64 ≡ 64 − 5 × 11 = 64 − 55 = 9 mod 11

8
4
= (82)2 = 9

2
= 81 ≡ 81 − 7 × 11 = 81 − 77 = 4 mod 11

So, 84 ≡ 4 mod 11.
For 838 mod 11:

38 mod 10 = 8 ⇒ 8
8

mod 11

Now we need to calculate 8
8

mod 11:

8
2
= 64 ≡ 64 − 5 × 11 = 64 − 55 = 9 mod 11

8
4
= (82)2 = 9

2
= 81 ≡ 81 − 7 × 11 = 81 − 77 = 4 mod 11

8
8
= (84)2 = 4

2
= 16 ≡ 16 − 11 = 5 mod 11

So, 88 ≡ 5 mod 11.
Now, adding these results:

8
34 + 8

38
≡ 4 + 5 ≡ 9 mod 11

Therefore, the remainder when 129
34 + 96

38 is divided by 11 is 9.
However, it seems there was an error in my previous calculation. Let’s redo the calculations properly.
For 834 mod 11:

8
10

≡ 1 mod 11

So, 834 = 8
10⋅3+4

= (810)3 ⋅ 84 ≡ 1
3 ⋅ 84 ≡ 8

4
mod 11. Now we calculate 8

4
mod 11:

8
2
= 64 ≡ 64 − 5 ⋅ 11 = 64 − 55 = 9 mod 11

8
4
= (82)2 = 9

2
= 81 ≡ 81 − 7 ⋅ 11 = 81 − 77 = 4 mod 11

So, 84 ≡ 4 mod 11.
For 838 mod 11:

8
38

= 8
10⋅3+8

= (810)3 ⋅ 88 ≡ 1
3 ⋅ 88 ≡ 8

8
mod 11

We already calculated 8
8
≡ 5 mod 11.

Now adding them:
8
34 + 8

38
≡ 4 + 5 ≡ 9 mod 11

Thus, the remainder is 9.
The answer is wrong.

User: You indicated that your previous answer was wrong. Please provide the correct solution to the math problem.

Assistant: Let’s break down the problem step by step.
We need to find the remainder when 129

34 + 96
38 is divided by 11.

First, we reduce the bases modulo 11:
129 ≡ 8 (mod 11)

So, 12934 ≡ 8
34 (mod 11).

Next, we reduce 96 modulo 11:
96 ÷ 11 = 8 remainder 8 ⇒ 96 ≡ 8 (mod 11)

So, 9638 ≡ 8
38 (mod 11).

Now we need to find 8
34

mod 11 and 8
38

mod 11.
Using Fermat’s Little Theorem, since 11 is a prime number, we know that ap−1

≡ 1 (mod p) for any integer a not divisible by 11.
So for a = 8 and p = 11, we have:

8
10

≡ 1 (mod 11)
Now, let’s find the powers of 8 modulo 11:

8
2
= 64 ≡ 64 − 5 × 11 = 64 − 55 = 9 (mod 11)

So, 82 ≡ 9 (mod 11).
Now we can find 8

34
mod 11:

8
34

= 8
2⋅17+0

= (82)17 ≡ 9
17

mod 11

Since 9 ≡ −2 (mod 11), we have:
9
17

≡ (−2)17 ≡ −217 (mod 11)
We need to find 2

17
mod 11. Using Fermat’s Little Theorem, 210 ≡ 1 mod 11, so:

2
17

= 2
10 ⋅ 27 ≡ 1 ⋅ 27 ≡ 2

7
mod 11

Now, calculate 2
7

mod 11:
2
7
= 128 ≡ 128 − 11 ⋅ 11 = 128 − 121 = 7 (mod 11)
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So, 27 ≡ 7 (mod 11), thus:
9
17

≡ −7 ≡ −7 + 11 = 4 (mod 11)
So, 834 ≡ 4 (mod 11).
Now, let’s find 8

38
mod 11:

8
38

= 8
2⋅19+0

= (82)19 ≡ 9
19

mod 11

Since 9 ≡ −2 (mod 11), we have:
9
19

≡ (−2)19 ≡ −219 (mod 11)
Now, we need to find 2

19
mod 11:

2
10

≡ 1 (mod 11)
So,

2
19

= 2
10 ⋅ 29 ≡ 1 ⋅ 29 ≡ 2

9
mod 11

Now, calculate 2
9

mod 11:
2
9
= 512 ≡ 512 − 46 ⋅ 11 = 512 − 506 = 6 (mod 11)

So, 29 ≡ 6 (mod 11), thus:
9
19

≡ −6 ≡ −6 + 11 = 5 (mod 11)
So, 838 ≡ 5 (mod 11).
Now we add the two results:

8
34 + 8

38
≡ 4 + 5 ≡ 9 (mod 11)

Thus, the remainder when 129
34 + 96

38 is divided by 11 is 9 .
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