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ABSTRACT

Attribute reconstruction is used to predict node or edge features in the pre-training1

of graph neural networks. Given a large number of molecules, they learn to cap-2

ture structural knowledge, which is transferable for various downstream property3

prediction tasks and vital in chemistry, biomedicine, and material science. Pre-4

vious strategies that randomly select nodes to do attribute masking leverage the5

information of local neighbors. However, the over-reliance of these neighbors6

inhibits the model’s ability to learn long-range dependencies from higher-level7

substructures. For example, the model would learn little from predicting three8

carbon atoms in a benzene ring based on the other three but could learn more from9

the inter-connections between the functional groups, or called chemical motifs. To10

explicitly determine inter-motif knowledge transfer of pre-trained model, we define11

inter-motif node influence measures. Then, we propose and investigate motif-12

aware attribute masking strategies to capture long-range inter-motif structures by13

leveraging the information of atoms in neighboring motifs. Once each graph is14

decomposed into disjoint motifs, the features for every node within a sample motif15

are masked. The graph decoder then predicts the masked features of each node16

within the motif for reconstruction. We evaluate our approach on eight molecular17

property prediction datasets and demonstrate its advantages.18

1 INTRODUCTION19

Molecular property prediction has been an important topic of study in fields such as physical chemistry,20

physiology, and biophysics (Wu et al., 2017). It can be defined as a graph label prediction problem21

and addressed by machine learning. However, graph learning models such as graph neural networks22

(GNNs) must overcome issues in data scarcity, as the creation and testing of real-world molecules is23

an expensive endeavor (Chang et al., 2022). To address labeled data scarcity, model pre-training has24

been utilized as a fruitful strategy for improving a model’s predictive performance on downstream25

tasks, as pre-training allows for the transfer of knowledge from large amounts of unlabeled data. The26

selection of pre-training strategy is still an open question, with contrastive tasks (Zhu et al., 2021)27

and predictive/generative tasks (Hu et al., 2020a) being the most popular methods.28

Attribute reconstruction is one predictive method for graphs that utilizes masked autoencoders to29

predict node or edge features (Hu et al., 2020a; Kipf & Welling, 2016; Xia et al., 2022). Masked30

autoencoders have found success in vision and language domains (He et al., 2022; Devlin et al., 2018)31

and have been adopted as a pre-training objective for graphs as the reconstruction task is able to32

transfer structural pattern knowledge (Hu et al., 2020a), which is vital for learning specific domain33

knowledge such as valency in material science. Additional domain knowledge which is important for34

molecular property prediction is that of functional groups, also called chemical motifs (Pope et al.,35

2019). The presence and interactions between chemical motifs directly influence molecular properties,36

such as reactivity and solubility (Frechet, 1994; Plaza et al., 2014). Prior work in message passing for37

quantum chemistry has shown that long-range dependencies are important for downstream prediction38

in chemical domains (Gilmer et al., 2017). Therefore, to capture the interaction information between39

motifs, it is important to transfer inter-motif structural knowledge and other long-range dependencies40

during the pre-training of graph neural networks.41

Unfortunately, the random attribute masking strategies used in previous work for graph pre-training42

were not able to capture the long-range dependencies inherent in inter-motif knowledge (Kipf &43
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Figure 1: Our MoAMa masks every node in sampled motifs to pre-train GNNs. The full masking
of a motif forces the GNNs to learn to (1) pass feature information across motifs and (2) pass
local structural information within the motif. Compared to the traditional random attribute masking
strategies, the motif-aware masking captures the most essential information to learn graph embeddings.
Random masking would put most of the pre-training effort on passing the feature information within
a motif, e.g., predicting two carbon nodes in a benzene ring based on the other four.

Welling, 2016; Hu et al., 2020b; Pan et al., 2019). That is because they rely on neighboring node44

feature information for reconstruction (Hu et al., 2020a; Hou et al., 2022). Notably, leveraging45

the features of local neighbors can contribute to learning important local information, including46

valency and atomic bonding. However, GNNs heavily rely on the neighboring node’s features rather47

than graph structure (Yun et al., 2021), and this over-reliance inhibits the model’s ability to learn48

from motif structures as message aggregation will prioritize local node feature information due to49

the propagation bottleneck (Alon & Yahav, 2021). For example, as shown on the left-hand side of50

Figure 1, if only a (small) partial set of nodes were masked in several motifs, the pre-trained GNNs51

would learn to predict the node types (i.e., carbon) of two atoms in the benzene ring based on the52

features and structure of the other four carbon atoms in the ring, limiting the knowledge transfer53

of long-range dependencies. To measure the inter-motif knowledge transfer of graph pre-training54

strategies, we define five inter-motif influence measurements and report our findings in Sec. 6.55

Recent successes in vision and language domains have shown the utility of masking semantically56

related regions, such as pixel batches (Li et al., 2022; Xie et al., 2022; He et al., 2021) and multi-token57

spans (Levine et al., 2020; Sun et al., 2019; Joshi et al., 2020), and have demonstrated that a random58

masking strategy is not guaranteed to transfer necessary inter-part relations and intra-part patterns59

(Li et al., 2022). To better enable the transfer of long-range inter-part relations downstream, we60

propose a novel semantically-guided masking strategy based on chemical motifs. In Figure 1, we61

visually demonstrate our method for motif-aware attribute masking, where each molecular graph62

is decomposed into disjoint motifs. Then the node features for each node within the motif will be63

masked by a mask token. A graph decoder will predict the masked features of each node within the64

motif as the reconstruction task. The benefits of this strategy are twofold. First, because all features65

of the nodes within the motif are masked, our strategy reduces the amount of feature information66

being passed within the motif and relieves the propagation bottleneck, allowing for the greater67

transfer of inter-motif feature and structural information. Second, the masking of all intra-motif node68

features explicitly forces the decoder to transfer intra-motif structural information. A novel graph69

pre-training solution based on the Motif-aware Attribute Masking strategy, called MoAMa, is able70

to learn long-range inter-motif dependencies with knowledge of intra-motif structure. We evaluate71

our strategy on eight molecular property prediction datasets and demonstrate its improvement to72

inter-motif knowledge transfer as compared to previous strategies.73

2 RELATED WORK74

Molecular graph pre-training The prediction of molecular properties based on graphs is impor-75

tant (Wu et al., 2017). Molecules are scientific data that are time- and computation-intensive to76

collect and annotate for different property prediction tasks (Liu et al., 2023). Many self-supervised77

learning methods (Hu et al., 2020a; Hou et al., 2022; Zhang et al., 2021; Kim et al., 2022; Xia et al.,78

2023) were proposed to capture the transferable knowledge from another large scale of molecules79

without annotations. For example, AttrMask (Hu et al., 2020a) randomly masked atom attributes for80
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prediction. GraphMAE (Hou et al., 2022) pre-trained the prediction model with generative tasks to81

reconstruct node and edge attributes. D-SLA (Kim et al., 2022) used contrastive learning based on82

graph edit distance. These pre-training tasks could not well capture useful knowledge for various83

domain-specific tasks since they fail to incorporate important domain knowledge in pre-training. A84

great line of prior work (Zhang et al., 2021; Rong et al., 2020; Sun et al., 2021) used graph motifs85

which are the recurrent and statistically significant subgraphs to characterize the domain knowledge86

contained in molecular graph structures, e.g., functional groups. However, their solutions were87

tailored to specific frameworks for either generation-based or contrast-based molecular pre-training.88

Additionally, explicit motif type generation/prediction inherently does not transfer intra-motif struc-89

tural information and is computationally expensive due to the large number of prediction classes. In90

this work, we study on the strategies of attribute masking with the awareness of domain knowledge91

(i.e., motifs), which plays an essential role in self-supervised learning frameworks (Xia et al., 2023).92

Masking strategies on molecules Attribute masking of atom nodes is a popular method in graph93

pre-training given its broad usage in predictive, generative, and contrastive self-supervised tasks (Hu94

et al., 2020a;b; Hou et al., 2022; You et al., 2020; 2021). For example, predictive and generative95

pre-training tasks (Hu et al., 2020a; Hou et al., 2022; Xia et al., 2023) mask atom attributes for96

prediction and reconstruction. Contrastive pre-training tasks (You et al., 2020; 2021) mask nodes to97

create another data view for alignment. Despite the widespread use of attribute masking in molecular98

pre-training, there is a notable absence of comprehensive research on its strategy and effectiveness.99

Previous studies have largely adopted strategies from the vision and language domains (He et al.,100

2022; Devlin et al., 2018), where atom attributes are randomly masked with a predetermined ratio.101

Since molecules are atoms held together by strict chemical rules, the data modality of molecular102

graphs is essentially different from natural images and languages. For molecular graphs, random103

attribute masking results in either over-reliance on intra-motif neighbors (Dwivedi et al., 2023)104

or breaking the inter-motif connections via random edge masking. In this work, we introduce a105

novel strategy of attribute masking, which turns out to capture and transfer useful knowledge from106

intra-motif structures and long-range inter-motif node features.107

3 PRELIMINARIES108

Graph property prediction Given a graph G = (V, E) ∈ G with the node set V for atoms and109

the edge set E ⊂ V × V for bonds, we have a d-dimensional node attribute matrix X ∈ R|V|×d that110

represents atom features such as atom type and chirality. We use y ∈ Y as the graph-level property111

label for G, where Y represents the label space. For graph property prediction, a predictor with112

the encoder-decoder architecture is trained to encode G into a representation vector in the latent113

space and decode the representation to predict ŷ. The training process optimizes the parameters to114

make ŷ to be the same as the true label value y. A GNN is a commonly used encoder that generates115

k-dimensional node representation vectors, denoted as hv ∈ Rk, for any node v ∈ V:116

H = {hv : v ∈ V} = GNN(G) ∈ R|V|×k. (1)
Here H is the node representation matrix for the graph G. Without loss of generality, we implement117

Graph Isomorphism Networks (GIN) (Xu et al., 2019) as the choice of GNN in accordance with118

previous work (Hu et al., 2020a). Once the set of node representations are created, a READOUT(·)119

function (such as max, mean, or sum) is used to summarize the node-level representation into120

graph-level representation hG for any G:121

hG = READOUT(H) ∈ Rk. (2)
The graph-level representation vector hG is subsequently passed through a multi-layer perceptron122

(MLP) to generate the label prediction ŷ, which exists in the label space Y:123

ŷ = MLP(hG) ∈ Y. (3)

GNN pre-training Random initialization of the predictor’s parameters would easily result in124

suboptimal solutions for graph property prediction. This is because the number of labeled graphs125

is usually small. It prevents a proper coverage of task-specific graph and label spaces (Hu et al.,126

2020a; Liu et al., 2023). To improve generalization, GNN pre-training is often used to warm-up the127

model parameters based on a much larger set of molecules without labels. In this work, we focus on128

the attribute masking strategy for GNN pre-training that aims to predict the masked values of node129

attributes given the unlabeled graphs.130
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4 INTER-MOTIF INFLUENCE131

To measure the influence generally from (either intra-motif or inter-motif) source nodes on a target132

node v, we design a measure that quantifies the influence from any source node u in the same133

graph G, denoted by s(u, v). hv was learned by Eq. (1) and was influenced by node u. When the134

embedding of u is eliminated from GNN initialization, i.e., set h(0)
u = 0⃗, Eq. (1) would produce a135

new representation vector of node v, denoted by hv,w/o u. We use the L2-norm to define the influence:136

s(u, v) = ∥hv − hv,w/o u∥2. (4)

The collective influence from a group of nodes in a motif M = (VM , EM ) is measured as follows:137

smotif(v,M) =
1

|VM \ {v}|
∑

u∈VM\{v}

s(u, v). (5)

Suppose the target node v is in the motif Mv = (VMv , EMv ). Using Mv as the target motif, the138

influence from intra-motif and inter-motif nodes can be calculated as:139

sintra(v) = smotif(v,Mv); sinter(v) =

∑
M∈M\{Mv} |VM | × smotif(v,M)

|V \ VMv |
. (6)

Usually the number of inter-motif nodes is significantly bigger than the number of intra-motif nodes,140

i.e., |V| ≫ |VMv
|, which reveals two issues in the influence measurements. First, when the target141

motif is too small (e.g., has only one or two nodes), the intra-motif influence cannot be defined or142

is defined on the interaction with only one neighbor node. Second, most inter-motif nodes are not143

expected to have any influence, so the average function in Eq. (5) would lead comparisons to be144

biased to intra-motif influence. To address the two issues, we constrain the influence summation145

to be on the same number of nodes (i.e., top-k) from the intra-motif and inter-motif node groups.146

Explicitly, this means u ∈ VM/{v} in Eq. (5) is sampled from the top-k most influencial nodes147

(top-3). The ratio of inter- to intra-motif influence over the graph dataset G is then defined as:148

InfRationode =
1∑

(V,E)∈G |V|
∑

(V,E)∈G

∑
v∈V

sinter(v)

sintra(v)
, (7)

InfRatiograph =
1

|G|
∑

G=(V,E)∈G

1

|V|
∑
v∈V

sinter(v)

sintra(v)
, (8)

where the average function is performed at the node level and graph level, respectively. Eq. (7)149

directly measures the influence ratios of all nodes v within the dataset G. However, this measure may150

include bias due to the distribution of nodes within each graph. We alleviate this bias in Eq. (8) by151

averaging influence ratios across each graph first.152

While the InfRatio measurements are able to compare general inter- and intra-motif influences, these153

measures combine all inter-motif nodes into one set and do not consider the number of motifs in each154

graph. We further define rank-based measures that consider the distribution of motif counts across G.155

Let {M1, ...,Mi, ...,Mn} be an ordered set, where Mi ∈ M and smotif(v,Mi) ≥ smotif(v,Mj) if156

i < j. If Mi = Mv, we define rankv = i. Note that graphs with only one motif are excluded as the157

distinction between inter and intra-motif nodes loses meaning. From this ranking, we define our score158

for inter-motif node influence averaged at the node, motif, and graph levels, derived from a similar159

score measurement used in information retrieval, Mean Reciprocal Rank (MRR) (Craswell, 2009):160

MRRnode =
1∑

(V,E)∈G |V|
∑

(V,E)∈G

∑
v∈V

1

rankv
, (9)

MRRgraph =
1

|G|
∑

(V,E)∈G

1

|V|
∑
v∈V

1

rankv
(10)

MRRmotif =

N∑
n=2

|G(n)|
|G|

∑
(V,E)∈G(n) |V|

∑
(V,E)∈G(n)

∑
v∈V

1

rankv
, (11)

where G(n) ⊂ G is the set of graphs that contain n ∈ [2, ..., N ] motifs.161
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Similar to the InfRatio measurements, MRRnode directly captures the impact of the influence ranks162

for each node within the full graph set, whereas MRRgraph alleviates bias on the number of nodes163

within a graph by averaging across individual graphs first. Because these rank-based measurements164

are intrinsically dependent on the number of motifs within each graph, we additionally define165

MRRmotif which weights the measurement towards popular motif counts within the data distribution.166

In information retrieval, MRR scores are used to quantify how well a system can return the most167

relevant item for a given query. Higher MRR scores indicate that relevant items were returned at168

higher ranks for each query. However, as opposed to traditional MRR measurements, where a higher169

rank for the most relevant item indicates better performance, lower scores are preferred for our MRR170

measurements as lower intra-motif influence rank indicate greater inter-motif node influence.171

In Sec 6, we show the inter-motif node influence measurements of previous pre-trained models.172

5 PROPOSED SOLUTION173

In this section, we present our novel solution named MoAMa for effectively pre-training graph neural174

networks on molecular data. We will give details about the strategy of motif-aware attribute masking175

and reconstruction. Each molecule G will have some portion of their node masked according to176

domain knowledge based motifs. We replace the node attributes of all masked nodes with a special177

mask token. Then, the GNN in Eq. (1) encodes the masked graph to the node representation space,178

and an MLP reconstructs the atom types for the attribute masked molecule.179

5.1 KNOWLEDGE-BASED MOTIF EXTRACTION180

To leverage the expertise from the chemistry domain, we extract motifs for molecules using the181

BRICS (Breaking of Retrosynthetically Interesting Chemical Substructures) algorithm (Degen et al.,182

2008). This algorithm leverages chemical domain knowledge by creating 16 rules for decomposition,183

the rules of which define the bonds that should be cleaved from the molecule in order to create a184

multi-set of disjoint subgraphs. Two key strengths of the BRICS algorithm over a motif-mining185

strategy (Geng et al., 2023) is that no training is required and important structural features, such as186

rings, are inherently preserved.187

For each graph G, the BRICS algorithm decomposes the full graph into separate motifs. We denote188

the decomposition result as MG = {M1,M2, ...,Mn}, which is a set of n motifs. Each motif189

Mi = (Vi, Ei), for i ∈ {1, 2, ..., n}, is a disjoint subgraph of G such that Vi ⊂ V and Ei ⊂ E . For190

each motif multi-set MG, the union of all motifs Mi ∈ MG should equal G. Formally, this means191

V =
⋃

i Vi and E = (
⋃

i Ei)
⋃
Ex, where Ex represents all the edges removed between motifs192

during the BRICS decomposition. Within the ZINC15 dataset (Sterling & Irwin, 2015), used for193

pre-training, each molecule has an average of 9.8 motifs, each of which have an average of 2.4 atoms.194

5.2 MOTIF-AWARE ATTRIBUTE MASKING AND RECONSTRUCTION195

To perform motif-aware attribute masking, m motifs are sampled to form the multi-set M′
G ⊂ MG196

such that (
∑

(Vi,Ei)∈M′
G
|Vi|)/|V| = α, for α is a chosen ratio value. The motifs sampled for M′

G197

must adhere to two criteria: (1) each node within the motif must be within a k-hop neighborhood (k198

equals number of GNN layers) of an inter-motif node, and (2) sampled motifs may not be adjacent.199

These two criteria guarantee inter-motif knowledge access for each masked node. To adhere to the200

above criteria and account for variable motif sizes, we allow for some flexibility in the value for α.201

We choose the bounds 0.15 < α < 0.25 in accordance to those used in previous works (α = 0.15202

(Hu et al., 2020a) and α = 0.25 (Hou et al., 2022)).203

Given a selected motif M ∈ M′
G, nodes within M have their attributes masked by replacing them204

with a mask token [MASK], which is a vector m ∈ Rd. Each element in m is a special value that is not205

present within the attribute space for that particular dimension. For example, we may set the attribute206

for the atom type dimension in m to the value 119, as we totally have 118 atom types (Hu et al.,207

2020a). We use V[MASK] = {v ∈ Vi : Mi = (Vi, Ei) ∈ M′
G} to denote the set of all the masked208

nodes. We then define the input node features in the masked attribute matrix X[MASK] ∈ R|V|×d for209

any v ∈ V using the following equation:210

(X[MASK])v =

{
Xv, v /∈ V[MASK],

m, v ∈ V[MASK],
(12)
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where (X[MASK])v and Xv denote the row of the node v in X[MASK] and X, respectively. With a211

GNN encoder, all nodes with attributes X[MASK] for the masked graph G[MASK] are encoded to the212

latent representation space according to Eq. (1): H = GNN(G[MASK]). H is then used to define the213

reconstruction loss of the node attributes:214

Lrec = Ev∈V[MASK] [log p(X|H)], (13)

where p(X|H) for the reconstruction attribute value is inferred by a decoder. In practice, recon-215

struction loss is measured using the scaled cosine error (SCE) (Hou et al., 2022), which calculates216

the difference between the probability distribution for the reconstruction attributes and the one-hot217

encoded target label vector. This choice of reconstruction loss is further discussed in later sections.218

5.3 DESIGN SPACE OF THE ATTRIBUTE MASKING STRATEGY219

The design space of the motif-aware node attribute masking includes the following four parts:220

Masking distribution We investigate the influence of masking distribution to the masking strategy221

using two factors to control the distribution of masked attributes:222

• Percentage of nodes within a motif selected for masking: we propose to mask nodes from the223

selected motifs at different percentages. The percentage indicates the strength of the masked224

domain knowledge, which affects the hardness of the pre-training task of the attribute225

reconstruction.226

• Dimension of the attributes: We propose to conduct either node-wise or element-wise227

(dimension-wise) masking. Element-wise masking selects different nodes for masking in228

different dimensions according to the percentage, while node-wise masking selects different229

nodes for all-dimensional attribute masking in different motifs.230

Reconstruction target Existing molecular graph pre-training methods heavily rely on two atom231

attributes: atom type and chirality. Therefore, the reconstructive task could include one or both232

attributes using one or two different decoders. Experiments will find the most effective task definition.233

Reconstruction loss We study different implementations of reconstruction loss functions for Lrec.234

They include cross entropy (CE), scaled cosine error (SCE) (Hou et al., 2022), and mean square error235

(MSE). GraphMAE (Hou et al., 2022) suggested that SCE was the best loss function, however, it is236

worth investigating the effect of the loss function choices in the motif-based study.237

Additionally, attribute masking focuses on local graph structures and suffers from representation238

collapse (Hu et al., 2020a; Hou et al., 2022). To address this issue, we use a knowledge-enhanced239

auxiliary loss Laux to complement Lrec. Given any two graphs Gi and Gj from the graph-based240

chemical space G, Laux first calculates the Tanimoto similarity (Bajusz et al., 2015) between Gi and241

Gj as Tanimoto(Gi, Gj) based on the bit-wise fingerprints, which characterizes frequent fragments242

in the molecular graphs. Then Laux aligns the latent representations with the Tanimoto similarity243

using the cosine similarity, inspired by previous work (Atsango et al., 2022). Formally, we define:244

Laux =
∑
i,j

(
Tanimoto(Gi, Gj)− cosine(hGi ,hGj )

)
, 1 ≤ i, j ≤ |G|, i ̸= j, (14)

where hGi
and hGj

are the graph representation of Gi and Gj , respectively. The full pre-training loss245

is L = βLrec + (1− β)Laux, where β is a hyperparameter to balance these two loss terms (β = 0.5).246

Decoder model The decoder trained via Eq. (13) could be a GNN or a MLP. Although the GNN247

decoder might be powerful (Hou et al., 2022), we are curious if the MLP delivers a comparable or248

better performance with higher efficiency.249

6 EXPERIMENTS250

6.1 EXPERIMENTAL SETTINGS251

Datasets Following the setting of previous studies (Hou et al., 2022; Kim et al., 2022; Xia et al.,252

2023), 2 million unlabeled molecules from the ZINC15 dataset (Sterling & Irwin, 2015) was used253

to pre-train the GNN models. To evaluate the performance on downstream tasks, experiments were254

conducted across eight binary classification benchmark datasets from MoleculeNet (Wu et al., 2017).255
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Table 1: Test AUC (%) performance on eight molecular datasets comparing our method with baselines.
The best AUC-ROC values for each dataset are in bold. All models use same GNN architecture
except those indicated by *.

MUV ClinTox SIDER HIV Tox21 BACE ToxCast BBBP Avg
No Pretrain 70.7±1.8 58.4±6.4 58.2±1.7 75.5±0.8 74.6±0.4 72.4±3.8 61.7±0.5 65.7±3.3 67.2

MCM* Wang et al. (2022) 74.4±0.6 64.7±0.5 62.3±0.9 72.7±0.3 74.4±0.1 79.5±1.3 61.0±0.4 71.6±0.6 69.7
MGSSL Zhang et al. (2021) 77.6±0.4 77.1±4.5 61.6±1.0 75.8±0.4 75.2±0.6 78.8±0.9 63.3±0.5 68.8±0.9 72.3

Grover* Rong et al. (2020) 50.6±0.4 75.4±8.6 57.1±1.6 67.1±0.3 76.3±0.6 79.5±1.1 63.4±0.6 68.0±1.5 67.2
AttrMask Hu et al. (2020a) 75.8 ±1.0 73.5±4.3 60.5±0.9 75.3±1.5 75.1±0.9 77.8±1.8 63.3±0.6 65.2±1.4 70.8
ContextPred Hu et al. (2020a) 72.5±1.5 74.0±3.4 59.7±1.8 75.6±1.0 73.6±0.3 78.8±1.2 62.6±0.6 70.6±1.5 70.9
GraphMAE Hou et al. (2022) 76.3±2.4 82.3±1.2 60.3±1.1 77.2±1.0 75.5±0.6 83.1±0.9 64.1±0.3 72.0±0.6 73.9
Mole-BERT Xia et al. (2023) 78.6±1.8 78.9±3.0 62.8±1.1 78.2±0.8 76.8±0.5 80.8±1.4 64.3±0.2 71.9±1.6 74.0

JOAO You et al. (2021) 76.9±0.7 66.6±3.1 60.4±1.5 76.9±0.7 74.8±0.6 73.2±1.6 62.8±0.7 66.4±1.0 71.1
GraphLoG Xu et al. (2021) 76.0±1.1 76.7±3.3 61.2±1.1 77.8±0.8 75.7±0.5 83.5±1.2 63.5±0.7 72.5±0.8 73.4
D-SLA Kim et al. (2022) 76.6±0.9 80.2±1.5 60.2±1.1 78.6±0.4 76.8±0.5 83.8±1.0 64.2±0.5 72.6±0.8 73.9

MoAMa w/o Laux 78.5±0.4 84.2±0.8 61.2±0.2 79.5±0.5 76.2±0.3 84.1±0.2 64.6±0.1 71.8±0.7 75.0
MoAMa 80.0±0.8 85.3±2.2 64.6±0.5 79.3±0.6 76.5±0.1 80.1±0.5 63.0±0.4 72.8±0.9 75.3

Validation methods and evaluation metrics In accordance with previous work, we adopt a scaffold256

splitting approach (Hu et al., 2020a; Zhang et al., 2021). Random splitting may not reflect the actual257

use case, so molecules are divided according to structures into train, validation, and test sets (Wu258

et al., 2017), using a 80:10:10 split for the three sets. We use the area under the ROC curve (AUC) to259

evaluate the test performance of the best validation step during 10 independent runs.260

Model configurations For fair comparison with previous work, a five-layer Graph Isomorphism261

Network (GIN) with an embedding dimension of 300 was chosen for the GNN encoder. The262

READOUT strategy is mean pooling. During pre-training and fine-tuning, models were trained for263

less than 100 epochs using the Adam optimizer and a learning rate of 0.001. The batch sizes for264

pre-training and fine-tuning are 256 and 32, respectively.265

6.2 BASELINES266

There are two general types of baseline graph pre-training strategies that we evaluate our work267

against: contrastive learning tasks, such as D-SLA (Kim et al., 2022), GraphLoG (Xu et al., 2021),268

and JOAO (You et al., 2021), and attribute reconstruction, including Grover (Rong et al., 2020),269

AttrMask (Hu et al., 2020a), ContextPred (Hu et al., 2020a), GraphMAE (Hou et al., 2022), and270

Mole-BERT (Xia et al., 2023). Additionally, we evaluate on motif-based pre-training strategies,271

MGSSL (Zhang et al., 2021), which recurrently generates the motif tree for any molecule, and MCM272

(Wang et al., 2022), which uses a motif-based convolution module to generate embeddings.273

6.3 RESULTS274

We report AUC-ROC of different graph pre-training methods in Table 1. MoAMa outperforms all275

baseline methods on five out of eight datasets. On average, MoAMa outperforms the best baseline276

method Mole-BERT (Xia et al., 2023) by 1.3% and the best contrastive learning methods D-SLA (Kim277

et al., 2022) by 1.4%. Even without the auxiliary loss Laux, our motif-aware masking strategy still278

maintains a performance improvement of 1.0%, which is still competitive with previous methods.279

6.4 ABLATION STUDIES280

To verify motif-aware masking parameters, we conduct ablation studies on the selection of masking281

distributions, reconstruction target attribute(s), reconstruction loss function, and decoder model.282

Study on Masking Distributions For motif-aware masking, there is the choice of masking the283

features of all nodes within the motif or choosing to only mask the features of a percentage of nodes284

within each sampled motif. For our study, we choose a motif coverage parameter to decide what285

percentage of nodes within each motif to mask, ranging from 25%, 50%, 75%, or 100%.286

Furthermore, the masking strategy utilized by previous work performs node-wise masking (Hu et al.,287

2020a; Hou et al., 2022), where all features of a node are masked. An alternative strategy may be288

element-wise masking, where masked elements are chosen over all feature dimensions and implies289

that not all features of a node may necessarily be masked. Note that 100% masking will behave the290

exact same as node-wise masking, as 100% of nodes within a motif will have each feature masked.291
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Table 2: Strategy design for motif-aware attribute masking: (1) masking distribution, (2) reconstruc-
tion target, (3) reconstruction loss, and (4) decoder model. The chosen design is highlighted .

Design Space MUV ClinTox SIDER HIV Tox21 BACE ToxCast BBBP Avg

(1)

100% Motif Coverage 80.0±0.8 85.3±2.2 64.6±0.5 79.3±0.6 76.5±0.1 80.1±0.5 63.0±0.4 72.8±0.9 75.3
75% Node-wise 74.9±1.1 82.3±0.4 60.1±0.3 78.8±0.9 76.1±0.1 82.3±0.4 63.4±0.1 72.1±1.0 73.7
75% Element-wise 74.8±0.7 84.9±1.0 58.7±0.1 79.7±0.7 75.6±0.1 85.7±0.4 63.4±0.2 72.6±0.4 74.4
50% Node-wise 76.6±1.2 86.4±0.6 58.3±0.1 78.1±0.3 75.1±0.2 81.9±0.3 64.6±0.1 72.7±0.1 74.2
50% Element-wise 73.9±0.2 71.2±4.0 61.2±0.4 77.5±0.8 74.9±0.4 81.1±0.7 62.5±0.1 70.6±1.8 71.6
25% Node-wise 76.6±1.5 86.3±0.7 62.4±0.2 78.4±0.2 75.9±0.2 81.8±0.1 65.1±0.1 74.7±0.2 75.1
25% Element-wise 75.2±1.5 82.1±0.4 58.3±0.1 77.8±1.5 75.5±0.2 81.5±0.2 63.1±0.1 71.6±0.3 73.1

(2)

Atom Type 80.0±0.8 85.3±2.2 64.6±0.5 79.3±0.6 76.5±0.1 80.1±0.5 63.0±0.4 72.8±0.9 75.3
Chirality 76.3±1.8 75.1±0.9 59.8±0.5 77.9±0.1 76.6±0.1 79.8±0.5 63.8±0.2 73.8±0.7 72.9
Both w/ one decoder 76.2±1.4 74.4±1.1 62.4±0.9 78.2±1.1 75.5±0.6 82.1±0.4 64.3±0.2 72.9±0.2 73.3
Both w/ two decoders 75.9±0.9 81.5±0.1 60.5±0.1 78.5±0.9 75.8±0.2 82.0±1.0 63.7±0.3 73.4±0.3 73.9

(3)
Scaled Cosine Error 80.0±0.8 85.3±2.2 64.6±0.5 79.3±0.6 76.5±0.1 80.1±0.5 63.0±0.4 72.8±0.9 75.3
Cross Entropy 78.8±1.1 84.5±0.7 65.4±0.2 78.6±0.4 76.3±0.1 82.4±0.2 62.9±0.5 72.3±0.2 75.1
Mean Squared Error 80.0±0.5 84.1±1.4 64.6±0.5 78.3±0.4 76.8±0.2 80.5±0.6 62.8±0.3 71.8±0.6 74.9

(4) GNN decoder 80.0±0.8 85.3±2.2 64.6±0.5 79.3±0.6 76.5±0.1 80.1±0.5 63.0±0.4 72.8±0.9 75.3
MLP decoder 78.8±0.5 85.2±0.1 65.5±0.3 78.1±0.6 76.2±0.2 82.1±0.6 62.8±0.8 71.7±0.4 75.1

We provide the predictive performance within Table 2. The predictive performance for the node-wise292

masking outperforms the element-wise masking for both 25% and 50% node coverage. At 75%293

coverage, element-wise masking outperforms node-wise. However, the full coverage masking strategy294

outperforms all other masking strategies, due to the hardness of the pre-training task, which enables295

greater transfer of inter-motif knowledge.296

Study on Reconstruction Targets The choice of attributes to reconstruct for GNNs towards297

molecular property prediction has traditionally been atom type (Hu et al., 2020a; Hou et al., 2022).298

However, there are other choices for reconstruction that could be explored. We verify the choice299

of reconstruction attrbutes by comparing the performance of the baseline model against models300

trained by reconstructing only chirality, both atom type and chirality using two separate decoders,301

or both properties using one unified decoder. From Table 2, we note that predicting solely atom302

type yields the best pre-training results. The second best strategy was to predict both atom type and303

chirality using two decoders. In this case, the loss of the two decoders are independent, leading to the304

conclusion that the chirality prediction task is ill-suited to be the pre-training task. Because choice of305

chirality is limited to four extremely imbalanced outputs, the useful transferable knowledge may be306

significantly lesser than that of atom prediction, which, for the ZINC15 dataset, has nine types.307

Study on Reconstruction Loss Functions For the pretraining task, we have three choices of error308

functions to calculate training loss. A standard error function used for masked autoencoders within309

computer vision (He et al., 2022; Zhang et al., 2022; Germain et al., 2015) is the cross-entropy loss,310

whereas previous GNN solutions utilize mean squared error (MSE) (Hu et al., 2020b; Park et al.,311

2019; Salehi & Davulcu, 2019; Wang et al., 2017). GraphMAE (Hou et al., 2022) proposed that312

cosine error could mitigate sensitivity and selectivity issues:313

Lrec =
1

|V[MASK]|
∑

v∈V[MASK]

(1− XT
v Hv

||Xv|| · ||Hv||
)γ , γ ≥ 1. (15)

This equation is called the scaled cosine error (SCE). H are the reconstructed features, X are the314

ground-truth node features, and γ is a scaling factor (γ = 1) We investigate the effect these different315

error functions have on downstream predictive performance in Table 2 and find that SCE outperforms316

CE and MSE, in accordance with previous work.317

Study on Decoder Model Choices We follow the GNN decoder settings from previous work (Hou318

et al., 2022) to conduct our study to determine which decoder leads to better downstream predictive319

performance. In Table 2, we show that our method outperforms the MLP-decoder strategy, which320

support previous work that show MLP-based decoders lead to reduced model expressiveness because321

of the inability of MLPs to utilize the high number of embedded features (Hou et al., 2022).322

6.5 INTER-MOTIF INFLUENCE ANALYSIS323

In Table 3, we report the two InfRatio and three MRR measurements for our model and several324

baselines. A higher influence ratio indicates that inter-motif nodes have a greater effect on the target325
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Table 3: Measurements of inter-motif knowledge transfer using pre-trained models. A higher ratio is
preferred for the InfRatio measurements, and a lower score is preferred for the MRR measurements.

Model Avg Test AUC InfRationode ↑ InfRatiograph ↑ MRRnode ↓ MRRgraph ↓ MRRmotif ↓
AttrMask 70.8 0.70 0.44 0.66 0.64 0.51
MGSSL 72.3 0.60 0.38 0.77 0.75 0.64
GraphLoG 73.4 0.79 0.50 0.61 0.59 0.48
D-SLA 73.8 0.76 0.49 0.67 0.66 0.44
GraphMAE 73.9 0.76 0.48 0.64 0.61 0.49
Mole-BERT 74.0 0.66 0.42 0.72 0.70 0.59

MoAMa 75.3 0.80 0.51 0.59 0.55 0.41
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Figure 2: Inter-motif knowledge transfer score by motif count. A higher MRR(n)
inter score denotes

greater inter-motif knowledge transfer.

node. The relatively low values indicate that the intra-motif node influence is still highly important for326

the pre-training task, but our method demostrates the highest inter-motif knowledge transfer amongst327

the baselines. We see that there is a small positive correlation between the average test AUC for each328

model and the InfRatio measurements, which supports our claim that greater inter-motif knowledge329

transfer leads to higher predictive performance. For the MRR measurements, our method boasts330

the lowest scores, which indicates less intra-motif knowledge dependence and greater inter-motif331

knowledge transfer.332

For the sake of clear visualization, we define an inter-motif score which indicates inter-motif knowl-333

edge transfer according to the number of motifs n within a graph:334

MRR(n)
inter = 1− 1∑

(V,E)∈G(n) |V|
∑

(V,E)∈G(n)

∑
v∈V

1

rankv
. (16)

Figure 2 shows that our method outperforms all other models in terms of inter-motif knowledge335

transfer as shown by the higher MRR(n)
inter scores across different motif counts. Additionally, the336

inter-motif knowledge transfer using our method becomes more pronounced on graphs with higher337

numbers of motifs.338

7 CONCLUSIONS339

In this work, we introduced a novel motif-aware attribute masking strategy for attribute reconstruction340

during graph model pre-training. This motif-aware masking strategy outperformed existing methods341

that used random attribute masking, and achieved competitive results with the state-of-the-art methods342

because of the explicit transfer of long-range inter-motif knowledge and intra-motif structural343

information. We quantitatively verify the increase in inter-motif knowledge transfer of our strategy344

over previous works using inter-motif node influence measurements.345
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Table 4: Test RSME performance on three molecular datasets comparing our method with baselines.
The best RMSE values for each dataset are in bold.

ESOL FreeSolv Lipophilicity Avg
No Pretrain 1.388±0.05 2.965±0.14 0.794±0.005 1.716±0.065

MGSSL Zhang et al. (2021) 1.259±0.01 2.519±0.006 0.722±0.002 1.500 ±0.006

AttrMask Hu et al. (2020a) 1.307±0.01 2.699±0.03 0.766±0.002 1.591±0.014

ContextPred Hu et al. (2020a) 1.350±0.08 2.784±0.06 0.777 ±0.008 1.637±0.049

GraphMAE Hou et al. (2022) 1.235±0.05 2.598±0.02 0.755±0.008 1.530±0.026

Mole-BERT Xia et al. (2023) 1.239±0.02 2.504±0.03 0.740±0.006 1.494±0.019

JOAO You et al. (2021) 1.341±0.02 3.243±0.09 0.774±0.008 1.786±0.039

GraphLoG Xu et al. (2021) 1.341±0.01 2.742±0.01 0.739±0.008 1.607±0.009

D-SLA Kim et al. (2022) 1.289±0.02 2.526±0.01 0.730±0.004 1.515±0.011

MoAMa 1.228±0.01 2.552±0.01 0.746±0.001 1.509 ±0.007

A APPENDIX466

A.1 INTER-MOTIF INFLUENCE EVALUATION COMPLEXITY467

In the worst-case, evaluation of inter-motif node influence can be computed between every pair of468

nodes within a molecule, causing an evaluation complexity of O(n2), for n is the number of nodes in469

a graph G. However, GNN message passing is limited by the number of layers used, k. Therefore,470

the node influence calculations will only need to be performed on neighbors within a k-hop radius of471

each other. This means that the time complexity of our evaluation is O(nd̄k), where n is the number472

of nodes in the graph, k is the number of layers of our GNN (k = 5), and d̄ is the average degree of a473

node. d̄k ≤ n as molecular graphs are sparse, so the evaluation is not nearly as inefficient as O(n2).474

A.2 REGRESSION TASKS475

We conducted additional evaluations on three regression datasets from MoleculeNet, ESOL, FreeSolv,476

and Lipophilicty (Wu et al., 2017). We use RMSE to measure the test performance of the best477

validation step during 3 independent runs.478

Our method outperforms all baselines on the ESOL dataset and shows comparative results with479

previous methods when considering average RMSE across all three datasets.480

A.3 CASE STUDY481

In Figure 3 there are two pairs of molecules, colored in blue and purple, that domain experts suggest482

to study. They are pairs because they look similar, have mostly similar properties, and have some483

different properties due to the structural differences. The molecular embedding space is obtained by484

a two-dimensional t-SNE algorithm on the pre-trained embeddings of the methods. The distributions485

and average distance between the graph examples are similar across the methods. However, contrastive486

learning strategies such as GraphLoG and JOAO failed to capture the proximities and put the pairs487

too distantly from each other. AttrMask based on random masking strategy was not able to learn488

from the structural difference at a higher level and put the pairs too close to each other. The proposed489

MoAMa provides a more reasonable set of embeddings for downstream fine-tuning.490
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(a) Pre-trained emb. by GraphLoG (Xu et al., 2021)
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(b) Pre-trained emb. by JOAO (You et al., 2021)
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(c) Pre-trained emb. by AttrMask (Hu et al., 2020a)
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(d) Pre-trained emb. by our MoAMa

Figure 3: Case study: MoAMa in (d) preserves the structural proximities of molecules better than
other methods in (a-c) into pre-trained graph embeddings. The blue pair and purple pair are similar
molecules yet have motif-based structural difference.
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