
Under review as submission to TMLR

[RE] A Reproducibility Study on Scene-Graph Generation
from 3D Point Clouds: Hybrid Approach with Clip, 2D Im-
age Semantics, and 3D Geometry

Anonymous authors
Paper under double-blind review

Abstract

Reproducibility Summary

Scope of Reproducibility

This paper scrutinizes the reproducibility of VL-SAT and multimodal learning systems for 3D semantic
scene graph prediction. Leveraging visual (ViT, CLIP) and linguistic semantics, our study replicates top-k
accuracy results and explores models like SGFN, and SGGPoint. We assess the impact of the CLIP adapter,
2D image semantics, and conduct hyperparameter tuning. Additionally, the ablation study investigates
node and edge collaboration, and the influence of a multi-head self-attention network within the VL-SAT
architecture, enhancing understanding of these critical components.

Methodology

We use the open-source code released by the authors to generate datasets, create point cloud data, and
train and validate samples for VL-SAT. Our implementation covers 150 3D reconstructed indoor scenes
from the original 1553, maintaining the 160 object classes and 26 predicate types as outlined in the paper.
Additionally, we collaborate with the authors to integrate code for models SGFN, and SGGPoint into our ex-
isting code-base. Expanding upon the methodology, we meticulously implement the provided specifications,
addressing any gaps to ensure a comprehensive pipeline supporting all experiments. Our experimentation
uses computational resources provided by an NVIDIA GeForce GTX 3090 GPU, totalling 100 GPU hours
for training. Moreover, we secure access to GPU compute resources through collaboration with the ML
Collective team.

Results

Upon executing the authors’ provided code, we encountered the necessity for substantial modifications and
additions, including the incorporation of numerous files. Following these adjustments and the addition of
essential segments, we conducted reproducibility tests, ablation studies, and hyperparameter tuning. Conse-
quently, our results largely support the main claims of the paper within a significant subset of experiments.
However, there are notable discrepancies in many of the actual values obtained compared to those reported.
Hence, we conclude that while the paper’s findings are largely replicable, achieving precise reproducibility of
results requires additional efforts due to the extensive changes and additions required in the provided code.

What was easy

We found it easy to discern the primary assertions of the paper and the corresponding experimental evidence.
Furthermore, the availability of the authors’ open-source implementation facilitated ease in training the
model, conducting ablation studies, and fine-tuning hyperparameters.

1

Under review as submission to TMLR

What was difficult

Configuring the datasets presented challenges primarily due to the absence of pinned dependencies, and the
lack of code for generating 3D datasets resulted in delays in conducting experiments. Additionally, identifying
the sources of discrepancies in our findings proved challenging, compounded by the inaccessibility of training
curves and model weights or checkpoints. These limitations hindered our ability to precisely replicate the
reported results and necessitated additional efforts in troubleshooting and refining our implementation.

Communication with original authors

At the initiation of our research endeavour, we diligently maintained ongoing communication with the authors
through email channels which benefited us with their valuable insights and resources, thereby enhancing
the depth and scope of our study. However, subsequent to the integration of code for the models under
investigation, our attempts to engage in further correspondence with the authors were met with silence.

1 Introduction

Scene understanding (1, 2, 3, 9, 5, 6, 9, 8, 10, 11, 8) plays a pivotal role in various fields such as
computer vision, robotics, and augmented reality (AR). It involves the comprehension and interpretation of
complex visual scenes, enabling machines to extract meaningful information from images or videos. This
capability is crucial for tasks such as object recognition, scene segmentation, and activity recognition. One
fundamental concept in scene understanding is the scene graph, a data structure representing objects in
a scene and their relationships. It provides a structured representation of visual scenes, capturing not
only the objects present but also the spatial relationships between them. This hierarchical representation
allows for richer semantic understanding and facilitates high-level reasoning about the scene. Initially, scene
graph generation from images involved detecting and classifying objects in the scene and then detecting and
classifying relationships given an image and predicted objects. But now, the most common and effective
way for scene graph generation is detecting objects and then evaluating edge and node features to infer
relationships between them. All the models, such as MMGNet, SGFN, and SGGPoint, employed in Wang
et al. 1, adopt the latter approach for scene graph generation. The process can be succinctly described as
follows: an input image undergoes processing through a Faster R-CNN to detect objects, which then form a
complete graph. Subsequent message passing and classification layers (for node and edge classes) yield the
scene graph P (G|I), where G represents the graph and I the input image.

Formally, the generation of a scene graph is given by:

P (G|I) = P (O, R|I) = P (O|I) · P (R|I, O) (1)

This equation denotes the initial detection and classification of objects O within a point cloud, followed by
the detection and classification of relationships R, given the point cloud and predicted objects.

Further refining, the process involves:

P (G|I) = P (V, E|I) · P (O, R|V, E, I) (2)

Here, objects are first detected, then object features V and edge features E are classified, leading to the
classification of objects and their edges.

Predicting 3D semantic scene graphs in point clouds is challenging due to limited semantic information
and skewed relation distributions. Wang et al. 1 propose VL-SAT, leveraging transformer-based techniques
for capturing dependencies and contextual details, enhancing accuracy. Integration of visual and linguistic
cues improves performance. The fusion of 2D visual images with 3D point cloud features enables a com-
prehensive analysis, enhancing semantic-based multi-modal prediction via a frozen CLIP adapter. Recent
advancements in large-scale cross-modal pretraining, like CLIP, align 2D image semantics with linguistic
semantics, effectively addressing long-tailed issues in tasks related to 2D scene graphs and human-object
interaction. However, adapting such assistance to the 3D scenario remains ambiguous. The authors claim
that: Proposal of VL-SAT: Introducing a novel Visual-Linguistic Semantics Assisted Training scheme to

2

Under review as submission to TMLR

enhance discrimination of long-tailed and ambiguous semantic relation triplets in point cloud-based 3DSSG
prediction model.

Integration of Multi-Modal Prediction Model: Simultaneously training a powerful multi-modal prediction
model (oracle model) aligned with the 3D model, capturing reliable structural semantics through vision data,
language signals, and geometric features, and efficiently embedding these benefits into the 3D model through
back-propagated gradient flows.

2 Scope of Reproducibility

Wang et al. 1, focuses on computing the following metrics (check Appendix B for detailed explanation on
the metrics used) on MMGNet (VL-SAT) model to validate their claims:

1. Evaluation of Object and Predicate Prediction: The experimental methodology adheres to
the protocol outlined in 3DSSG [36], ensuring consistency by placing 3D scenes within the same
coordinate system for both training and testing phases.

• Object and predicate prediction are evaluated using the top-k accuracy (A@k) metric. This
metric gauges prediction accuracy by considering the top-k predictions generated by the model.
Specifically, the scores for subjects, predicates, and objects are multiplied to derive triplet
scores, upon which the top-k accuracy is computed. A triplet is deemed correct only if all three
components (subject, predicate, and object) are accurately predicted.

2. Evaluation of Scene Graph and Predicate Classification: Two 2D scene graph tasks are
adapted for the 3D context following the methodology proposed by Zhang et al. 12. These tasks
encompass Scene Graph Classification (SGCls) and Predicate Classification (PredCls). SGCls eval-
uates triplets holistically, while PredCls focuses solely on predicate correctness against ground-truth
object labels.

• Recall at the top-k (R@k) triplets serves as the evaluation metric for these tasks, wherein a
triplet is considered correct if all components (subject, predicate, and object) are valid.

• Furthermore, mean recall (mR@k) is employed to gauge performance across unevenly sampled
relations, akin to mA@k. This comprehensive assessment ensures the model’s competence in
handling long-tailed predicate distributions.

To evaluate the claims made regarding the performance of the VL-SAT method and its sensitivity to critical
design choices and hyperparameters, we conducted experiments using a subset of the dataset and various
models as outlined in Wang et al. 1. The experiments were carried out with hyperparameters specified by
the authors, employing k-fold cross-validation over 100 epochs with validation conducted every 10 epochs.

Our findings indicate that the results obtained for all evaluated metrics are consistently 5-10% lower in
performance compared to the reported results in the paper. While we couldn’t replicate the exact results
reported by the authors across all experiments, it is noteworthy that VL-SAT demonstrates robustness and
generally achieves the goals outlined in the paper.

In addition to reproducing the previous work, we thoroughly assessed critical design choices and claims,
focusing on two key questions:

1. Relevance of Proposed Components: We investigated whether all proposed components, such
as the utilization of 2D visual features and the Clip adapter of the VL-SAT architecture, significantly
contribute to the performance of the MMGNet model.

2. Sensitivity to Hyperparameters: We examined the sensitivity of VL-SAT to critical hyperpa-
rameters such as learning rate (lr), weight decay, use of AMSGrad optimizer, and the dimensionality
of the clip features (clip_feat_dim). This analysis sheds light on how variations in hyperparameters
impact the performance and stability of the VL-SAT method.

3

Under review as submission to TMLR

Our assessment provides insights into the effectiveness of VL-SAT, the relevance of its design choices, and
the impact of hyperparameter tuning on its performance, contributing to a better understanding of its
capabilities and limitations.

3 Experimental Setup and Code

3.1 Generating 3D Indoor Scene Datasets

As per the authors, we are using the 3DSSG indoor scene datasets for scene graph generation. Setting up
the environment for generating datasets was provided and was pretty straightforward as we used Ubuntu, a
Linux based OS for setting up the conda environment. After setting up the environment, we need to generate
some code-specific files such as relationships.json, objects.json, train_scans.txt, and so on, which
will be later used for object detection and for classifying the object-predicate-object triplets/relationships.
The files generated were stored in the main folder. Then, we requested for 3RScan dataset (for identifying
the 3D scans) access which we got pretty soon. We got a download.py file which helps to download all the
various different types of files needed for setting the 3D scans dataset.

Instead of preparing 1553 data scan folders, we downloaded and prepared 150 data scan folders due
to less compute resources. We added in our own bash script for downloading and preparing the data
scan folders. The script provided by the authors was erroneous and it took us a really long time to
figure this out as initially we thought, we couldn’t download and prepare because of low speed inter-
net issues. After downloading the corresponding files, we added code for unzipping the sequence.zip
folders and added in our bash script for generating aligned instances point cloud information. The file
CVPR2023-VLSAT-reproducibility/data_processing/transform_ply.py file is used for generating the
corresponding aligned instances for all the 150 scan folders. This is required to align the position, color and
sets of point cloud data that helps in determining the optimal transformation that maximizes the overlap
(IoU; intersection over union)

Generate aligned instance ply
logger_py.info(’generate aligned instance ply’)
cmd = [

CVPR2023-VLSAT-reproducibility/data_processing/transform_ply.py,
"-c", args.config,
"--thread", str(args.thread)

]

Since we are using 150 scan folders, we needed to redefine the rescans.txt (file contain-
ing all the scan-ids), train_scans.txt, validation_scans.txt, relationships_train.json, and
relationships_validation.json. We used the files relationships.json and objects.json. to filter
out the 132 scan folders for training and 18 scan folders for validation (the authors also used the same ratio
of training:validation). We used our own code (provided in GitHub) to redefine the mentioned files.

We redefined the training data source location, output location and few other file locations in the
magnet.json (the configuration file used for training the model MMGNet) to start the training. We used
the MMGNet model for training that was provided by the authors. As per our request, the authors added
SGFN, SGPN and SGGPoint models in the original GitHub code.

3.2 Model(s) Architecture

VL-SAT along with SGFN, SGGPoint models uses the PointNet 3D feature detection algorithm MMGNet
uses PointNet (Appendix A) architecture for 3D object classification and semantic segmentation. The Point-
Net architecture is modified by the authors in the pointnet network algorithm that uses a Graph convolutional
network for object(s) detection, classification and segmentation. We faced some issues while training the
model MMGNet as the GraphTripleConvNet wasn’t available under the src/lib directory. We found the
particular graph convolutional network in Google’s sg2im (Generating Scene Graphs from 2D images) and

4

Under review as submission to TMLR

used the same graph convolutional neural network defined in their graph.py file in our code for implementing
the PointNet architecture.

Figure 1: Overview of the Visual-Linguistic Semantics Assisted Training (VL-SAT) framework for 3D scene
graph prediction. Adapted from Wang et al. 1 VL-SAT incorporates 2D visual data and linguistic semantics
during training to enhance 3D scene graph predictions through node and edge-level collaboration and triplet-
level regularization. During inference, VL-SAT utilizes only 3D point cloud data to generate reliable 3D scene
graphs.

Official Pytorch Geometric repository made some changes in defining the function names used for convo-
lutional neural networks for creating message passing layers. Message Passing algorithm in Graph neural
network enables information exchange and aggregation among nodes in a graph. Since the authors used
the same message passing algorithm (as a parent class) used in pytorch geometric module for generating
edge descriptor function (in src/model/model_utils/network_util.py), generating edge indices’ function
(in src/utils/op_utils.py) and aggregation of the edge indices’ functions (in src/utils/op_utils.py)
(child class), we renamed the functions such as _check_input(), _set_size(), _index_select() and _collect().

3.3 Training Various Models

The baseline models for each of the models are present in src/models/. The authors provided us the code
for the baseline model for MMGNet, the derived model which derives the class from the baseline model
and introduces the training, validation and evaluation metrics and the main file that loads the MMGNet
model provided with the bash command from terminal. The baseline code for other models was provided by
the authors. We created derived models for SGFN, SGGPoint from the baseline models taking inspiration
from the MMGNet model. We created varying main.py files to run those different models hence creating a
pipeline for evaluating the models and reproducing the results and checkpoints in the paper.

We created varying configuration files for each of the models which are in the config/ folder.

The results are stored in results under varying model names, checkpoints in ckp folder, logs and configurations
respectively in their folders. We provide all the model configurations, results, checkpoints as additional
materials.

3.4 Ablation Studies

To assess the contribution of different components to the VL-SAT architecture, we conducted experiments
focusing on various aspects while comparing them to the baseline VL-SAT model. Here are the variations
we considered:

5

Under review as submission to TMLR

• Node-level Collaboration: We examined the role of node-level collaboration in VL-SAT by omitting
interactions between nodes from both 3D and 2D node encoders. This analysis highlighted the impact
of collaboration on model performance, with extracted features termed as oracle node features for
subsequent processing by the oracle GNN.

• Edge-level Collaboration: After extracting 2D edge features from the oracle GNN and 3D predicate
features from the 3D model, collaboration occurs at the edge level. Conversely, we investigate the
model’s performance when the mechanism enabling interactions between edges, which represent
relationships or connections in the graph, is removed.

• Triplet-level CLIP-based Regularization: An ablation study was conducted to assess the impact of
triplet-level CLIP-based regularization within the VL-SAT architecture. Triplet-level CLIP-based
Regularization process involves integrating enhanced predicate and object features from the oracle
model with a frozen CLIP text encoder, culminating in the creation of an oracle-level object and
predicate classifier.

• Cross-modal Attention: The ablation study on cross-modal attention investigates the simultaneous
use of node collaboration and edge collaboration within the VL-SAT architecture.

• Multi-Head Self-Attention (MHSA): In the ablation study on Multi-Head Self-Attention (MHSA),
we analyze the impact of incorporating MHSA into both the graph edge attention network and the
graph node attention network within the VL-SAT architecture.

By examining these variations and comparing their performance to the baseline VL-SAT model, we gained
insights into the specific contributions of the Clip adapter and 2D image features in addressing the objectives
outlined in our reproducibility scope.

3.5 Hyperparameter Tuning

In addition to conducting all the ablation studies, we also performed hyperparameter tuning to optimize
the model’s performance. In all experiments and ablations, we adhere to the hyperparameters specified in
the original paper. However, we also conduct hyperparameter search to optimize certain parameters such as
learning rate from 0.0001 to 0.0003, AMSGrad, and AdamW weight decay, aiming for improved accuracy.
We experiment with various values for these parameters and record the best-performing values in the table
for reference.

Dropout is a regularization technique used to prevent overfitting by randomly dropping out neurons during
training. We have a dropout rate of 0.5 (50%), then during each training iteration, each unit in the dropout
layer has a 50% chance of being temporarily "dropped out" or set to zero. This means that the network
cannot rely too heavily on any individual neuron and must learn redundant representations, thus improving
its generalization ability.

AMSGrad is an extension of the Adaptive Moment Estimation (Adam) optimizer that aims to address the
issue of adaptive learning rates growing too large in some dimensions. Since the performance with AMSgrad
is comparable to the other optimizers, it is recommended to continue using it unless there is a significant
improvement in performance by switching to another optimizer.

Weight decay (w.decay = false), also known as L2 regularization, is used to prevent overfitting by adding
a penalty term to the loss function. In the table, weight decay is turned off (w.decay = false). You may
want to try turning it on and experimenting with different decay rates to observe its effect on the model’s
performance.

In the context of CLIP, these feature vectors represent both images and text in a shared embedding space,
allowing the model to understand the relationships between visual and textual information. By increasing
the dimensionality of these feature vectors from 512 to 1024, we are effectively increasing the complexity
and richness of the representations learned by the CLIP model.

6

Under review as submission to TMLR

In the multi-head attention mechanism, the number of heads refers to the number of parallel attention layers
that operate independently and in parallel. Each attention head focuses on different parts of the input data
and produces its own output. Increasing the number of heads allows the model to capture more diverse
relationships and dependencies in the data. Typically, the number of heads is a hyperparameter that can be
adjusted during model training.

In some training procedures, it’s common to freeze certain layers or components of a model to prevent them
from being updated during training. This can help stabilize the training process, prevent overfitting, or allow
specific parts of the model to converge more effectively. By setting "update_2d" to false, it’s indicated that
the 2D features, which could represent visual features extracted from images, are not being updated during
the current epoch.

3.6 Computation Resources

In this study, we used a single NVIDIA GeForce GTX 3090 GPU for conducting all experiments, includ-
ing training different models, hyperparameter tuning, and performing ablation studies. The total runtime
required for these tasks amounted to approximately 6 GPU hours per experiment, totaling 96 GPU hours
across all experiments. Due to the limitations of using a single compute resource, parallel processing was
not feasible, necessitating the execution of one model at a time. Although we received compute resources
from ML Collective approximately 4-5 days before submission, we were unable to fully use them within the
given timeframe.

4 Results

In this section, we present the results of our experimental runs using VL-SAT and other pertinent mod-
els, along with their ablations and hyperparameter studies. We have structured our Figure 2 following the
format employed by Wang et al. 1, ensuring easy comparison among the different models. However, we cre-
ated the other two tables independently. Figure 1 encompass a range of models, including VL-SAT, SGFN,
VLSAT-oracle, and non-VLSAT, facilitating comprehensive analysis. Additionally, we have incorporated
additional ablation studies such as node collaboration, edge collaboration, and triplet-level clip regulariza-
tion in Figure 3. These studies aim to ascertain the impact of various factors on model performance, such
as determining the optimal graph convolutional network and evaluating the contribution of the multi-head
attention network to the VL-SAT model. Regarding hyperparameters, we explored various values for pa-
rameters such as learning rate, weight decay, and dropout of the attention network, aiming to optimize the
predictive performance of the VL-SAT model in Figure 4.

Figure 2: We present the performance metrics of VL-SAT alongside SGFN, VLSAT-oracle, and VLSAT
(only 3d). By aligning our results with the structure established by Wang et al. 1. We aim to provide a
clear overview of each model’s efficacy. Notably, we highlight any deviations between our findings and those
reported by the authors, elucidating their implications for the respective claims made.

7

Under review as submission to TMLR

4.1 Results reproducing original paper

VL-SAT: VL-SAT achieves the best performance in several metrics, particularly in 3D Triplet Accuracy@50
and 3D Triplet Accuracy@100, where it outperforms the other models by approximately 7-8%. It also
performs best in 3D Relation Accuracy@5 and 3D Mean Relation Acc@5, surpassing other models by around
1-2%.

SGFN: SGFN performs relatively worse compared to VL-SAT in most metrics. It lags behind by around 30%
in 3D Triplet Accuracy@50 and 3D Triplet Accuracy@100. Additionally, it falls behind by approximately
13% in 3D Mean Relation Acc@1.

SGGPoint: SGGPoint performs competitively in most metrics but falls short compared to VL-SAT. It trails
behind by around 25% in 3D Triplet Accuracy@50 and 3D Triplet Accuracy@100. Additionally, it lags by
approximately 5% in 3D Mean Relation Acc@5 compared to VL-SAT.

VL-SAT-Oracle: VL-SAT-Oracle performs similarly to VL-SAT, as it is designed to provide an upper bound
for VL-SAT’s performance. The difference between VL-SAT and VL-SAT-Oracle is negligible in most metrics.

Non-VLSAT: This model’s performance is comparable to VL-SAT in most metrics, with only slight variations.
It performs nearly on par with VL-SAT in all metrics, with minimal differences.

VL-SAT emerges as the best-performing model across various metrics, showcasing its effectiveness in 3D
scene graph prediction tasks. Regarding VLSAT, our results of the object, predicate, triplet scores are 5-
10% diverging for each of the models. Although, we used a subset of dataset, the metrics are kfold cross
validated hence, our models don’t seem to be undercutting. Yet, those numbers reported by the authors are
varying than ours but at the same time supporting their first (1) claim that VL-SAT performs better than
any other model.

4.2 Results of ablation studies - beyond the paper

In this section, we conduct a detailed performance analysis and ablation study of different components
of the VL-SAT model. We compare the performance of VL-SAT with variations such as NC(node-level
collaboration), EC(edge-level collaboration), TR(triplet-level CLIP-based regularization), VL-SAT without
Multi-Head Self-Attention (MHSA), and TRIP Graph Convolutional Network (GCN TRIP). By comparing
these components of the model, we aim to understand the contribution of each part to the overall performance
of the VL-SAT model in accurately predicting 3D scenes.

Figure 3: We outline the outcomes of our ablation study, where we systematically evaluate the impact of
different components within VL-SAT and related models. Through meticulous analysis, we dissect the con-
tributions of individual elements, shedding light on their significance in model performance. Any disparities
observed in comparison to the original study are emphasized, underscoring potential variations in experi-
mental setups or model configurations.

8

Under review as submission to TMLR

4.2.1 Ablation Analysis Summary

For VL-SAT (TR), there’s an improvement of approximately 0.89% in Object A@1, 0.60% in Object A@10,
0.60% in Predicate A@1, 0.29% in Predicate A@3, 0.49% in Predicate A@5, and 2.45% in Triplet mA@1.
However, there’s a slight decrease of 0.24% in Object A@50 and 0.22% in Object A@100.

VL-SAT (MHSA) shows a degradation of approximately 3.42% in Object A@1, 2.38% in Object A@5, 0.15%
in Object A@10, 0.24% in Predicate A@1, 0.81% in Predicate A@5, and 2.08% in Triplet mA@1.

EC demonstrates an improvement of approximately 1.66% in Object A@1, 0.30% in Object A@10, 0.73% in
Predicate A@1, 0.29% in Predicate A@3, 0.41% in Triplet mA@1, and 0.12% in Triplet mA@3. However,
there’s a slight decrease of 0.75% in Object A@50 and 0.42% in Object A@100.

NC performs similarly to the baseline in most metrics, with slight improvements of approximately 0.13% in
Predicate A@1, 0.38% in Predicate A@3, and 0.12% in Triplet mA@1.

GCN (TRIP) exhibits improvements of approximately 0.74% in Object A@1, 0.74% in Object A@10, 0.24%
in Predicate A@1, 0.42% in Predicate A@3, 0.39% in Predicate A@5, and 2.57% in Triplet mA@1. There
are minor improvements of approximately 0.40% in Object A@50 and 0.57% in Object A@100.

We observe that VL-SAT (TR) and GCN (TRIP) achieve the highest performance in terms of A@1, A@5,
and A@10 metrics, indicating that the triplet-level CLIP-based regularization and TRIP Graph Convolu-
tional Network rather than EAN GCN features contribute significantly to the model’s accuracy. VL-SAT
without Multi-Head Self-Attention (MHSA) shows lower performance across all metrics, suggesting that this
component is extremely important to have more number of heads for graph scene prediction. The notable im-
provements observed across all metrics underscore the significant impact of both edge and node collaboration
in enhancing the performance of the VL-SAT architecture model. This suggests that leveraging collabora-
tive learning strategies, such as edge and node collaboration, can substantially contribute to the overall
effectiveness and efficiency of the model. By fostering cooperation and interaction among interconnected
entities, these collaborative approaches enable the VL-SAT model to capitalize on the collective intelligence
and insights derived from collaborative efforts, ultimately leading to improved performance across various
evaluation metrics. Further analysis is needed to understand the impact of each component on the overall
performance of the VL-SAT model. Despite some variations between the reported numbers by the authors
and our own findings, the results still align with the authors’ secondary assertion that multi-modal learning
in VL-SAT’s architecture outperforms other models.

4.3 Results regarding hyperparameter analysis - beyond the paper

In this section, we explore the impact of various hyperparameters on fine-tuning the baseline VL-SAT
model. Specifically, we investigate adjustments to the learning rate, using AMSGrad, toggling weight decay,
and introducing dropout attention. Through systematic experimentation and analysis, we aim to discern
how these modifications influence the performance of the VL-SAT model, providing insights into optimal
configurations for enhancing its effectiveness in 3D semantic scene graph prediction.

In Figure 4, the baseline VL-SAT model achieved an mAP@1 of 44.13% and mA@100 of 98.4%. Configura-
tions with higher learning rates (lr=0.0003) generally led to improved performance, with the highest mAP@1
and mA@100 achieved at 49.33% and 98.85%, respectively. Optimizing with AMSGrad and disabling weight
decay maintained competitive results compared to the baseline, with a slight improvement in mAP@1 and
a marginal decrease in mA@100. However, adding dropout to attention (dropout attn=0.25) resulted in
decreased performance across all metrics compared to the baseline VL-SAT model.

Using a learning rate of 0.0003 seems to bring the results closer to those reported in the original paper. This
adjustment in the learning rate might help the model converge more effectively during training, leading to
performance metrics that align better with the expected outcomes described in the paper. It’s essential to
fine-tune hyperparameters like learning rate to achieve optimal performance and match the expected results.
We performed an extensive hyperparameter tuning to check that weight decay with amsgrad decreases the
performance but with a learnign rate of 0.0005, some of the metrics improve by a little percentage hence,
conclusing that 0.0003 is the ideal learning rate for VL-SAT.

9

Under review as submission to TMLR

Figure 4: We present the results of our hyperparameter study, elucidating the effects of varying key pa-
rameters on model performance. Through rigorous experimentation, we explore the sensitivity of VL-SAT
and its counterparts to different hyperparameter configurations. We emphasize any differences in outcomes
compared to the reference study, offering insights into the robustness of the models under different settings.

5 Discussion

While the study is largely replicable due to the availability of the authors’ code, it falls short of being readily
reproducible. Despite the code being open-source, it contains several errors, lacks sufficient documentation,
and does not offer a straightforward method to reproduce the reported results. Merely using the provided
code is insufficient, and attempts to extend it according to the paper’s specifications often result in divergent
numerical outcomes across multiple experiments. Consequently, our assessment concludes that the paper
lacks reproducibility in terms of obtaining the reported numbers as we got nearly a 5-10% decrease in
percentage of each of the metrics as in the original paper.

However, it’s important to note that the majority of our experiments which were ablation studies support
the primary claims made in the paper. Despite conducting hyperparameter tuning, we observed minimal
impact on the model’s performance, with no significant improvements noted.

5.1 Limitations

Our attempt to replicate the study encountered several hurdles stemming from disparities in the dataset
generation script and inconsistencies in the training procedures. To address these issues, we made necessary
adjustments, including replacing PointNet graph network with SG2IM graph network. However, these
modifications led to deviations from the original experimental setup. Additionally, our replication efforts were
hampered by constraints on computational resources, limiting our ability to explore further experiments.

5.2 What was easy

It was straightforward for us to grasp the main claims of the paper and the experiments supporting them.
Setting up the development environment and generating datasets were relatively easy tasks. This was
mainly due to the authors’ provision of dataset links and code for data loaders, model definitions, and
training procedures. With all the necessary code provided, training models and calculating metrics like
top-k accuracy, recall, and zero-shot recall became seamless processes.

5.3 What was difficult

Setting up the environment for generating datasets and preparing the 3RScan dataset was relatively straight-
forward, thanks to the provided instructions and scripts. However, we encountered challenges when discrep-
ancies arose in the script provided for downloading and preparing data scan folders. This led to delays as
we had to troubleshoot and resolve the issues. Additionally, due to our limited computational resources, we
had to reduce the number of data scan folders from 1553 to 150. During model training, we faced further

10

Under review as submission to TMLR

complexities, especially with the MMGNet architecture. The absence of GraphTripleConvNet in the desig-
nated directory was a significant hurdle. To overcome this, we had to utilize a similar graph convolutional
network from Google’s sg2im repository. Furthermore, changes in function names within the PyTorch Geo-
metric repository required us to rename several functions to ensure compatibility with the message passing
algorithm used in our code.

5.4 Communication

Throughout the reproducibility project, we maintained communication with the original authors. They
provided us with the baseline code for sgpn, sgfn, and sggpoint models, which we utilized for comparison
purposes. Despite our repeated inquiries about various issues and discrepancies observed among the models,
we did not receive a response. We are grateful for their assistance in replicating their paper; however, we
believe that documenting clarifications within the code or paper, as well as sharing the generated datasets
through file-sharing mechanisms, could have enhanced the reproducibility process.

5.5 Acknowledgments

We extend our gratitude to the ML Collective team for providing valuable compute resources during our
project. Additionally, we appreciate Ziqin Wang for generously sharing the code for various other models,
which proved to be instrumental in our research efforts.

References

1. Ziqin Wang, Bowen Cheng, Lichen Zhao, Dong Xu, Yang Tang, and Lu Sheng. Vl-sat: Visual-
linguistic semantics assisted training for 3d semantic scene graph prediction in point cloud. arXiv
preprint arXiv:2303.14408, 2023.

2. Xuyang Bai, Zeyu Hu, Xinge Zhu, Qingqiu Huang, Yilun Chen, Hongbo Fu, and Chiew-Lan Tai.
Transfusion: Robust lidar-camera fusion for 3d object detection with transformers. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1090–1099,
2022.

3. Daigang Cai, Lichen Zhao, Jing Zhang, Lu Sheng, and Dong Xu. 3djcg: A unified framework for
joint dense captioning and visual grounding on 3d point clouds. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16464–16473, 2022.

4. Dave Zhenyu Chen, Angel X Chang, and Matthias Nießner. Scanrefer: 3d object localization in
rgb-d scans using natural language. In European Conference on Computer Vision (ECCV), pp.
202–221. Springer, 2020.

5. Jean Lahoud and Bernard Ghanem. 2d-driven 3d object detection in rgb-d images. In International
Conference on Computer Vision (ICCV), pp. 4622–4630, 2017.

6. Su Pang, Daniel Morris, and Hayder Radha. Clocs: Camera-lidar object candidates fusion for
3d object detection. In International Conference on Intelligent Robots and Systems (IROS), pp.
10386–10393. IEEE, 2020.

7. Su Pang, Daniel Morris, and Hayder Radha. Clocs: Camera-lidar object candidates fusion for
3d object detection. In International Conference on Intelligent Robots and Systems (IROS), pp.
10386–10393. IEEE, 2020.

8. Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J Guibas. Frustum pointnets for 3d
object detection from rgb-d data. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 918–927, 2018.

9. Charles R Qi, Xinlei Chen, Or Litany, and Leonidas Guibas. Imvotenet: Boosting 3d object detection
in point clouds with image votes. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 4404–4413, 2020.

11

Under review as submission to TMLR

10. Vishwanath A Sindagi, Yin Zhou, and Oncel Tuzel. Mvx-net: Multimodal voxelnet for 3d object
detection. In International Conference on Robotics and Automation (ICRA), pp. 7276–7282. IEEE,
2019.

11. Sourabh Vora, Alex H Lang, Bassam Helou, and Oscar Bei. Pointpainting: Sequential fusion for 3d
object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 4604–4612, 2020.

12. Zaiwei Zhang, Bo Sun, Haitao Yang, and Qixing Huang.H3dnet: 3d object detection using hybrid
geometric primitives. In ECCV, pages 311–329. Springer, 2020

A PointNet library

PointNet, a novel neural network designed to directly process point cloud data, preserving the inherent
permutation invariance. Unlike traditional methods that convert point clouds into voluminous voxel grids
or image collections, PointNet offers a unified architecture for various applications, including object classifi-
cation, part segmentation, and scene semantic parsing.

B The evaluation metrics

The metrics evaluated in this context include:

1. Top-k Accuracy (A@k): - This metric evaluates the accuracy of object, predicate, and triplet predictions.
- It considers the top-k predictions generated by the model, where ’k’ denotes the number of predictions
taken into account. - A higher A@k score signifies greater accuracy, indicating that more of the model’s top
predictions align with the ground truth.

2. Mean Top-k Accuracy (mA@k): - This metric calculates the average top-k accuracy across all predicate
classes. - It offers an assessment of the model’s performance across various predicate categories, capturing
the variability in the distribution of predicate classes.

3. Recall at the Top-k (R@k): - R@k evaluates the correctness of triplets by examining the top-k predictions
produced by the model. - A triplet is deemed correct if all three elements (subject, predicate, and object)
match the ground truth. - This metric measures the model’s efficacy in retrieving relevant information from
the predicted triplets.

4. Mean Recall (mR@k): - Similar to mA@k, mR@k focuses on assessing the model’s performance in
capturing unevenly sampled relations. - It provides a holistic evaluation of the model’s capability to handle
long-tailed predicate distributions, offering insights into its robustness across varied relation types.

These metrics collectively provide a comprehensive evaluation of the model’s performance in object and
predicate prediction, scene graph classification, and predicate classification tasks within the 3D scene graph
scenario.

12

	Introduction
	Scope of Reproducibility
	Experimental Setup and Code
	Generating 3D Indoor Scene Datasets
	Model(s) Architecture
	Training Various Models
	Ablation Studies
	Hyperparameter Tuning
	Computation Resources

	Results
	Results reproducing original paper
	Results of ablation studies - beyond the paper
	Ablation Analysis Summary

	Results regarding hyperparameter analysis - beyond the paper

	Discussion
	Limitations
	What was easy
	What was difficult
	Communication
	Acknowledgments

	PointNet library
	The evaluation metrics

