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ABSTRACT

Multimodal large language models built on the Mamba architecture offer effi-
ciency advantages, yet remain hampered by redundant visual tokens that inflate
inference cost, with the prefill stage accounting for the majority of total inference
time. We introduce Delta-guided Two stage Pruning (DTP), a method that pro-
gressively reduces token redundancy through selective pruning at early layer and
complete pruning at late layer. Unlike Transformer-oriented pruning methods, our
approach derives token importance directly from Mamba’s internal parameters.
The statistical distribution of these importance scores, combined with implicit at-
tention patterns, then provides the basis for determining both the pruning layers
and the tokens to be removed. Extensive evaluation across diverse benchmarks
demonstrates that DTP reduces computation by nearly 50% while preserving task
performance more effectively than existing pruning methods under the same re-
duction setting. Beyond efficiency, our analysis reveals previously underexplored
behaviors of visual tokens within Mamba layers, suggesting a principled perspec-
tive for designing future pruning techniques in Mamba-based Multimodal Large
Language Models.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) are capable of jointly understanding and generating
across different modalities such as images and text, thereby handling complex tasks that are difficult
for single-modality models (Liu et al., 2023; Dai et al., 2023; Peng et al., 2023; Wu et al., 2024).
These capabilities have demonstrated outstanding performance in diverse tasks such as visual ques-
tion answering (Guo et al., 2023; Hu et al., 2024; Fang et al., 2025; Wang et al., 2025; Dong et al.,
2025) and reasoning segmentation (Lai et al., 2024; Ren et al., 2024; Xia et al., 2024).

Most existing MLLMs are built upon the Transformer architecture (Vaswani et al., 2017), which has
shown strong performance in a wide range of multimodal tasks through the self-attention mecha-
nism. However, self-attention requires computing interactions between all token pairs, leading to
O(n2) time complexity that must be repeatedly incurred at every step when generating new tokens.
To mitigate this redundant computation, the KV-Cache technique has been introduced, which ef-
fectively accelerates autoregressive generation during inference. Nevertheless, KV-Cache requires
storing key-value pairs at every generation step, which results in substantial memory consumption.
Furthermore, it does not reduce the computational cost of the prefill stage.

To overcome these structural limitations of Transformers, the recently proposed Mamba architecture
(Gu & Dao, 2023) leverages State Space Models (SSMs) to recurrently update hidden states, thereby
achieving linear-time complexity. Figure 1 contrasts the inference process between Transformer-
based and Mamba-based MLLMs. As shown in Figure 1 (a), Transformers must recompute self-
attention with all previous tokens whenever a new token is generated, causing decoding costs to
increase linearly with sequence length. In contrast, as illustrated in Figure 1 (b), Mamba generates
the next token through a single-step hidden state update without revisiting the entire input sequence.
This structural difference allows Mamba-based MLLMs to achieve much lower memory usage and
faster decoding compared to Transformer-based models, a benefit that has been empirically validated
in recent studies (Liu et al., 2024; Qiao et al., 2024; Zhao et al., 2025).
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(a) Transformer-based MLLMs (b) Mamba-based MLLMs

Figure 1: Comparison of inference structures between Transformer-based and Mamba-based
MLLMs.

Thus, while Mamba provides clear efficiency advantages in the decoding stage, the majority of in-
ference time is still spent in the prefill stage, where all input tokens must be processed initially. The
inefficiency of the prefill stage is particularly pronounced in multimodal settings, since the number
of visual tokens far exceeds that of text tokens, greatly increasing the overall input length. However,
many of these visual tokens are redundant or uninformative, and often do not contribute to the final
output (Chen et al., 2024). Based on this observation, various pruning methods have been proposed
in Transformer-based MLLMs to reduce computational cost by removing unnecessary visual tokens
(Alvar et al., 2025; Yang et al., 2025; Ye et al., 2025a;b; Lin et al., 2025). While effective in im-
proving efficiency, these approaches rely on attention scores to estimate token importance, making
them inherently specific to the Transformer architecture. As a result, they cannot be directly applied
to Mamba.

To address this limitation, we propose a novel visual token pruning framework tailored for Mamba-
based MLLMs. The proposed DTP (Delta-guided Two stage Pruning) leverages the input-dependent
parameter ∆t to estimate token importance and performs pruning during inference without any re-
training. Pruning is applied at two specific layers, with their positions determined from the observed
distribution of token importance and the analysis of Mamba’s implicit attention matrices. These
findings indicate that redundant visual tokens can be reliably identified in the early layer, while in
the late layer they no longer contribute meaningfully. Based on this rationale, our design effectively
removes unnecessary tokens while incurring smaller performance degradation compared to other
approaches.

Through extensive experiments on representative Mamba-based MLLMs, Cobra (Zhao et al., 2025)
and RoboMamba (Liu et al., 2024), we demonstrate that DTP reduces computational cost by nearly
half while maintaining comparatively high performance relative to existing methods. Furthermore,
we identify the optimal internal parameters in Mamba for evaluating token importance, thereby max-
imizing the effectiveness of pruning. In addition to empirical results, our study provides new insights
into the role and significance of visual tokens across layers in Mamba-based MLLMs, offering an
effective methodology for visual token pruning.

Our main contributions are summarized as follows:

• We propose DTP (Delta-guided Two stage Pruning), the novel visual token pruning frame-
work designed for Mamba-based MLLMs. DTP leverages the input-dependent parameter
∆t to estimate token importance and performs visual token pruning during inference with-
out requiring additional training.

• Pruning is applied at two specific layers, with their positions determined based on token im-
portance distribution and the analysis of Mamba’s implicit attention matrices. This design
enables the effective removal of redundant visual tokens while maintaining stable perfor-
mance.
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• Extensive experiments on Cobra and RoboMamba demonstrate that DTP reduces FLOPs by
nearly half with less performance degradation compared to existing methods. In addition,
we identify the optimal internal parameters for token importance estimation, providing
further insights into the role of visual tokens across layers in Mamba-based MLLMs.

2 RELATED WORK

Token Reduction in Mamba-based Model. Token reduction has been studied in Transformer-
based models as a way to alleviate high computational cost and accelerate inference by removing
unnecessary input tokens without causing significant performance degradation (Bolya et al., 2022;
Kong et al., 2022; Haurum et al., 2023; Wei et al., 2023; Kim et al., 2024; 2025). However, since
Mamba is based on State Space Models (SSMs) rather than the self-attention mechanism central to
Transformers, token reduction techniques designed for Transformer architectures cannot be directly
applied. Accordingly, recent studies have proposed token reduction methods specifically tailored to
the structural characteristics of Mamba. Zhan et al. (2024) proposed a token pruning method for
Vision Mamba (ViM) (Zhu et al., 2024) and PlainMamba (Yang et al., 2024), introducing a pruning-
aware hidden state alignment approach to stabilize the neighborhoods of the remaining tokens and
a token importance estimation mechanism specific to Mamba, thereby improving inference speed
while minimizing performance degradation. Shen et al. (2024) proposed Famba-V, a cross-layer
token fusion method for ViM that identifies and merges similar tokens across layers, improving
training efficiency while maintaining a balance with accuracy. Although these works explore diverse
token reduction strategies such as pruning and fusion in Mamba-based models, they remain limited
to unimodal vision tasks, and token reduction in Mamba-based MLLMs has not yet been sufficiently
explored.

Mamba-based MLLMs. Recent studies have sought to leverage the structural efficiency of Mamba
by extending Transformer-based MLLMs into Mamba-based MLLMs, aiming to achieve faster in-
ference speed and improved efficiency in long-sequence processing. Qiao et al. (2024) proposed
VL-Mamba, the first multimodal architecture that replaces the Transformer-based language model
with a Mamba language model. It adopts SigLIP (Zhai et al., 2023) as the vision encoder and in-
troduces the Vision Selective Scan (VSS) module within a multimodal connector to enhance repre-
sentational capacity, demonstrating competitive results across a variety of multimodal benchmarks.
Liu et al. (2024) introduced RoboMamba, which combines a CLIP vision encoder (Radford et al.,
2021) with Mamba and adds it with a lightweight policy head to enable SE(3) pose prediction and
vision-language-action modeling. In addition to its strong performance in robotic manipulation
tasks, it also exhibits remarkable multimodal reasoning capability. Furthermore, Zhao et al. (2025)
presented Cobra, which integrates a pre-trained Mamba language model with visual encoders such
as DINOv2 (Oquab et al., 2023) and SigLIP (Zhai et al., 2023). Compared to Transformer-based
MLLMs, it achieves both faster inference speed and superior performance.

3 PRELIMINARIES

3.1 STATE SPACE MODELS AND MAMBA

State Space Models (SSMs) are the core structure of Mamba (Gu & Dao, 2023), which transform an
input sequence x(t) ∈ R into an output sequence y(t) ∈ R through a hidden state h(t) ∈ RN , and
are defined as:

h′(t) = Ah(t) +Bx(t), y(t) = Ch(t), (1)
where A governs the state transitions, B maps the input into the hidden state, and C projects the
hidden state into the output sequence.

In this basic form, SSMs have the limitation of linear time invariance (LTI), in which the same fixed
parameters are applied to every time step of the input sequence, making it impossible to selectively
process important or redundant information. In addition, while this formulation is designed for
continuous systems, deep learning models generally operate on discrete systems, and therefore the
continuous parameters must be discretized.

To address this issue, Mamba introduces an input-dependent parameter ∆t. This parameter is com-
puted from the input at each time step through a linear transformation followed by the softplus
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function, which enables different state updates at each step. By leveraging this input-dependent
parameter, Mamba discretizes SSMs and proposes Selective SSMs (S6), which allow inputs to be
processed selectively at each time step, as formulated below:

Āt = exp(∆tA), B̄t = (∆tA)−1 (exp(∆tA)− I)∆tB

ht = Ātht−1 + B̄txt, yt = Ctht

(2)

3.2 ATTENTION MATRICES IN MAMBA

Ali et al. (2024) demonstrated that the selective SSM layer can be unfolded into a causal kernel
that closely resembles the attention matrix in Transformers. This finding provides an interpretation
of Mamba’s selective SSMs as implicitly incorporating attention-like behavior, even without an
explicit attention mechanism. Specifically, the selective SSM formulation can be expanded into a
convolutional form, yielding a kernel that functions as implicit attention weights. From Equation 2,
assuming the initial state h0 = 0, the output yt can be written as:

yt =

t∑
j=1

Ct

 t∏
k=j+1

Āk

 B̄jxj (3)

By defining

Kt,j = Ct

 t∏
k=j+1

Āk

 B̄j , yt =

t∑
j=1

Kt,jxj , (4)

we see that Kt,j represents the coefficient through which the input xj is linearly transformed and
incorporated into the output at time step t.

By arranging all coefficients, we obtain the following lower-triangular implicit attention matrix:

K =


C1B̄1 0 0 · · · 0

C2Ā2B̄1 C2B̄2 0 · · · 0
C3Ā2Ā3B̄1 C3Ā3B̄2 C3B̄3 · · · 0

...
...

...
. . .

...
CL

(∏L
k=2 Āk

)
B̄1 CL

(∏L
k=3 Āk

)
B̄2 CL

(∏L
k=4 Āk

)
B̄3 · · · CLB̄L

 (5)

This matrix K ∈ RL×L, where L denotes the sequence length, can be interpreted in a way similar
to the attention matrix of Transformers, where each row corresponds to the output at time t and each
column shows how an input xj propagates its influence to subsequent outputs.

4 METHOD

In this section, we propose DTP (Delta-guided Two stage Pruning), a pruning strategy for Mamba-
based MLLMs. As shown in Figure 2, DTP follows a two stage pruning strategy, performing se-
lective pruning in the early layer and complete pruning in the late layer. To determine the specific
layers where pruning is applied and to conduct selective pruning in the early layer, we leverage ∆t,
the key parameter that enables the selectivity of Mamba, to evaluate the importance of visual tokens
in each Mamba block.

4.1 TOKEN IMPORTANCE FROM ∆t

As described in Section 3.1, LTI SSMs apply the same parameters to all input sequences and there-
fore lack the selectivity to distinguish the relative importance of tokens. Accordingly, Mamba (Gu
& Dao, 2023) introduces an input-dependent parameter ∆t derived from the input sequence, and
∆t serves as the key mechanism that enables selectivity by discretizing continuous SSMs and con-
trolling the state transition matrix Āt and the input mapping matrix B̄t. Building on this role, we
directly leverage ∆t to obtain token importance scores for visual token pruning in Mamba-based
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Figure 2: Overview of the proposed DTP(Delta-guided Two stage Pruning) method.

MLLMs. The importance score of the j-th token, denoted as sj , is defined as follows:

sj =
1

D

D∑
d=1

∆j,d, (6)

where D is the dimension size. This allows token importance to be directly estimated from ∆t during
inference, without requiring any additional training or modification. Based on the token importance
scores s derived from ∆t, we adopt a top-k selection strategy to retain the most informative visual
tokens. At the pruning layers, visual tokens are ranked according to their importance scores, and
only the top k tokens are preserved while the others are discarded. This reduces redundant visual
information and enables computation to focus on the more critical tokens during reasoning. For a
more comprehensive analysis, we further compared the proposed token importance parameter ∆t

with other internal parameters such as yt, Bt, and Ct, and the results confirmed that ∆t is the most
suitable criterion for evaluating the importance of tokens in pruning.

4.2 PRUNING STRATEGY

Drawing on prior studies of token reduction in Transformer-based MLLMs (Chen et al., 2024; Lin
et al., 2025; Ye et al., 2025a), which observed that visual tokens contain redundant information and
exhibit minimal attention in deeper layers, we apply pruning specifically to visual tokens. Pruning
is performed at two specific layers, one in the early layer and one in the late layer, and the positions
are determined based on the token importance measure proposed in Section 4.1 and the analysis of
Mamba’s implicit attention matrix discussed in Section 3.2.

Selective pruning at the early layer. Pruning at very early layers has the advantage of achieving
high computational efficiency, but it carries a significant risk of discarding tokens that could later
serve as meaningful information in deeper layers. In addition, at such early layers, the distinction of
token importance is not yet clear, making reliable selection difficult. To address this, we determine
the appropriate layer for applying selective pruning by using the standard deviation of delta-guided
token importance at each layer, which are defined as follows:

Stdℓ =

√√√√ 1

N

N∑
j=1

(sj,ℓ − s̄ℓ)2 (7)

where, sj,ℓ denotes the importance score of the j-th token at layer ℓ, s̄ℓ is the average importance at
that layer, and N is the number of tokens. The standard deviation of token importance scores across
layers is shown in Figure 3, where we observe that the 15th layer exhibits the first global peak. To
examine this in more detail, Figure 4 visualizes the token importance distributions and the top 50%
tokens separately at the 5th, 15th, 35th, and 45th layers. The results show that at the 15th and 35th
layers, the standard deviation is low, with most tokens clustered around similar importance values
while a small number of tokens retain relatively higher scores. In contrast, at the 5th and 45th layers,
such separation is less evident, and tokens are more uniformly included within the top 50% across all
positions. Taken together, these analyses indicate that the 15th layer, where the standard deviation
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Figure 3: Standard deviation analysis of token importance across layers in a Mamba-based MLLM,
Cobra (Zhao et al., 2025) The statistics were computed using a subset of the VQAv2 dataset, showing
that the standard deviation reaches its first local peak at the 15th layer and increases sharply after
the 45th layer.

Figure 4: Visualization of token importance distributions at different layers of a Mamba-based
MLLM, Cobra (Zhao et al., 2025). Red and blue points denote tokens within and outside the top
50% by importance, respectively.

reaches its first global peak, represents an optimal point for pruning redundant visual tokens while
reliably preserving salient ones. Furthermore, as shown in Figure 5, the 15th layer is also the first
depth at which attention patterns become significantly stronger compared to earlier layers, providing
additional evidence for applying selective pruning at this layer. Therefore, we perform selective
pruning at the 15th layer to preserve meaningful tokens while reducing unnecessary computation at
an early layer, thereby improving efficiency.

Complete pruning at the late layer. As shown in Figure 3, the standard deviation of token im-
portance scores sharply decreases at several points in the middle layers, while Figure 5 confirms
that strong token interactions are still present at these depths. However, beyond the 45th layer, the
standard deviation increases steeply and remains consistently high. Furthermore, an analysis of im-
plicit attention patterns across all layers, presented in the Appendix B, reveals that after the 45th
layer interactions with neighboring tokens almost completely vanish, indicating that visual tokens
no longer make meaningful contributions. As also illustrated in Figure 4, in this regime it becomes
difficult to reliably distinguish redundant tokens. Based on these observations, we adopt complete
pruning at the 45th layer, where all visual tokens are removed and only text tokens are retained.

Figure 5: Visualization of implicit attention patterns across different layers in Mamba-based MLLM,
Cobra (Zhao et al., 2025).
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Table 1: Comparison of pruning methods on the Cobra model. The table presents FLOPs, FLOPs
ratio, and evaluation scores across six benchmarks including GQA (Hudson & Manning, 2019),
VQAv2 (Goyal et al., 2017), TextVQA (Singh et al., 2019), POPE (Li et al., 2023), VSR (Liu et al.,
2023), and VizWiz (Gurari et al., 2018), along with the averaged performance, for different pruning
methods and settings.

Method FLOPs FLOPs ratio GQA VQAv2 TextVQA POPE VSR VizWiz Avg

Baseline (Cobra) 2.01 100% 62.3 77.8 58.2 88.4 58.4 49.7 65.8

FastV (k=2, r=0.7) 1.45 72% 62.1
(−0.2)

77.4
(−0.4)

56.9
(−1.3)

87.7
(−0.7)

58.0
(−0.4)

49.8
(+0.1)

65.3
(−0.5)

VTW (k=45) 1.43 71% 62.1
(−0.2)

77.7
(−0.1)

58.2
(+0.0)

88.3
(−0.1)

58.5
(+0.1)

49.5
(−0.2)

65.7
(−0.1)

Ours (r=0.9) 1.35 67% 62.0
(−0.3)

77.7
(−0.1)

57.9
(−0.3)

88.3
(−0.1)

58.9
(+0.5)

49.7
(+0.0)

65.8
(+0.0)

FastV (k=2, r=0.5) 1.06 53% 61.7
(−0.6)

76.8
(−1.0)

55.0
(−3.2)

87.4
(−1.0)

57.3
(−1.1)

50.1
(+0.4)

64.7
(−1.1)

VTW (k=32) 1.04 52% 47.1
(−15.2)

54.1
(−23.7)

42.6
(−15.6)

74.1
(−14.3)

57.9
(−0.5)

48.5
(−1.2)

54.0
(−11.8)

Ours (r=0.5) 0.97 48% 61.4
(−0.9)

77.1
(−0.7)

56.1
(−2.1)

87.3
(−1.1)

57.9
(−0.5)

49.6
(−0.1)

64.9
(−0.9)

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

We evaluate our pruning strategy on two representative Mamba-based MLLMs: Cobra (Zhao et al.,
2025) and RoboMamba (Liu et al., 2024). These models are representative Mamba-based MLLMs
and are used as baselines since their pretrained weights are publicly available and they provide
strong performance across multimodal tasks. For Cobra, we apply our method to six benchmarks
that cover diverse aspects of multimodal reasoning, including GQA (Hudson & Manning, 2019),
VQAv2 (Goyal et al., 2017), TextVQA (Singh et al., 2019), POPE (Li et al., 2023), VSR (Liu
et al., 2023), and VizWiz (Gurari et al., 2018). For RoboMamba, we evaluate on five benchmarks,
including OKVQA (Marino et al., 2019), GQA (Hudson & Manning, 2019), VQAv2 (Goyal et al.,
2017), POPE (Li et al., 2023), and VSR (Liu et al., 2023).

The baselines considered in this study are two representative token pruning methods originally pro-
posed for Transformer-based MLLMs: (1) FastV (Chen et al., 2024) prunes visual tokens at a desig-
nated layer k based on attention scores, with the pruning ratio controlled by r. Since Mamba-based
MLLMs do not expose explicit attention scores, we replace them with our proposed ∆t-based token
importance measure for benchmarking. (2) VTW (Lin et al., 2025) determines the optimal layer
k for withdrawing visual tokens by sampling a small subset of the dataset, comparing the original
output with the output after token withdrawal, and selecting the earliest layer where the KL diver-
gence between the two logits falls below a predefined threshold. As this method provides a general
criterion that is independent of model architecture, it also serves as an appropriate baseline for our
study.

All experiments are implemented in PyTorch and executed on a single NVIDIA RTX 5090 GPU to
ensure fair comparisons.

5.2 MAIN RESULTS

Table 1 presents the results on the Cobra model. For a fair comparison, we adjusted the pruning
layer k and keep ratio r so that each method has a similar FLOPs ratio. Our proposed DTP sets
the keep ratio of all visual tokens to 0.9 in the early layer, reducing FLOPs to 67% of the baseline
while maintaining the same average score of 65.8 as the unpruned baseline. For FastV, pruning was
applied at the 2nd layer with a keep ratio of 0.7, achieving 72% FLOPs efficiency. However, this
setting resulted in performance drops of 1.3 points on TextVQA and 0.7 points on POPE, showing
a larger degradation compared to the baseline. In contrast, VTW identified the 45th layer as the
optimal depth where the influence of visual tokens vanishes based on KL divergence, while showing
only a 0.1 point decrease on average. This indicates that the optimal k determined by the withdrawal
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Table 2: Comparison of pruning methods on the RoboMamba model. The table presents FLOPs,
FLOPs ratio, and evaluation scores on five benchmarks including OKVQA (Marino et al., 2019),
GQA (Hudson & Manning, 2019), VQAv2 (Goyal et al., 2017), POPE (Li et al., 2023), and VSR
(Liu et al., 2023), together with the averaged performance across different pruning methods and
settings.

Method FLOPs FLOPs ratio OKVQA GQA VQAv2 POPE VSR Avg

Baseline (RoboMamba) 0.70 100% 64.4 56.4 74.9 85.2 54.2 67.6

FastV (k=2, r=0.7) 0.50 71% 64.1
(−0.3)

56.1
(−0.3)

74.4
(−0.5)

85.3
(+0.1)

53.0
(−1.2)

67.2
(−0.4)

VTW (k=45) 0.50 71% 64.0
(−0.4)

55.9
(−0.5)

74.7
(−0.2)

85.3
(+0.1)

53.3
(−0.9)

67.3
(−0.3)

Ours (r=0.9) 0.46 66% 63.8
(−0.6)

56.1
(−0.3)

74.7
(−0.2)

85.2
(0.0)

53.2
(−1.0)

67.3
(−0.3)

FastV (k=2, r=0.5) 0.37 53% 63.4
(−1.0)

55.1
(−1.3)

73.4
(−1.5)

84.2
(−1.0)

52.1
(−2.1)

65.6
(−2.0)

VTW (k=32) 0.36 51% 40.0
(−24.4)

44.7
(−11.7)

55.2
(−19.7)

82.1
(−3.1)

45.2
(−9.0)

53.4
(−14.2)

Ours (r=0.5) 0.34 49% 63.8
(−0.6)

54.9
(−1.5)

73.6
(−1.3)

84.4
(−0.8)

52.8
(−1.4)

65.9
(−1.7)

criterion of VTW indirectly supports the validity of our complete pruning at the late layer strategy
described in Section 4.2. When FLOPs were reduced to about half of the baseline, FastV was
configured by setting the keep ratio to 0.5 at the 2nd layer for comparison with existing methods.
Although VTW is a method for finding the optimal k, we fixed k = 32 to enable comparison under
this specific FLOPs condition. In this setting, FastV showed significant performance degradation,
including a 3.2 point drop on TextVQA and a 1.1 point drop on VSR, while VTW exhibited large
performance losses across all datasets. In contrast, our proposed method showed only a 0.9 point
decrease on average compared to the baseline, demonstrating smaller performance degradation than
the existing methods.

Table 2 presents the results on RoboMamba, where the pruning parameters k and r were set to
the same values as used for Cobra. Our proposed method shows only a 0.3 point performance
drop even when FLOPs are reduced to 66%. When FLOPs are further reduced to around 50%,
VTW exhibits a severe performance degradation, similar to the case of Cobra. Both FastV and our
method experience some decrease in performance, but our method shows relatively smaller drops
on OKVQA and VSR, achieving an average score of 65.9 with the least overall degradation. This
effect arises because RoboMamba employs the CLIP vision encoder (Radford et al., 2021) with only
256 image tokens. Compared to Cobra, which processes 729 tokens, the smaller number of tokens
makes RoboMamba more susceptible to information loss under aggressive pruning.

5.3 ABLATION STUDY

All ablation studies in this section are conducted under the setting where FLOPs are reduced to
approximately 50% of the baseline.

Identifying effective internal parameters for token importance. Table 3 presents the ablation
study results when different internal parameters of the selective SSM are used to compute token
importance. Comparing the output term yt, the input coefficient Bt, the state coefficient Ct, and the
temporal delta term ∆t, it was found that ∆t provides the most stable and effective signal in both
Cobra and RoboMamba. The output term yt shows generally competitive performance but falls short
of ∆t on TextVQA, while Bt and Ct exhibit relatively lower performance, particularly on TextVQA
for Cobra and on POPE for RoboMamba. In contrast, ∆t achieves the highest or comparable scores
across all datasets in the ablation study, demonstrating that it serves as the most reliable criterion for
distinguishing salient from redundant tokens. These results justify our choice of adopting ∆t as the
default measure for token importance.

Exploring strategies for token selection in pruning. Table 4 compares three strategies for selecting
pruning candidates. The first baseline simply selects tokens at random. The second strategy applies a
Top-k policy but also allows text tokens to be pruned. This strategy leads to catastrophic degradation
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Table 3: Ablation study on internal parameters
of Mamba for token importance estimation.

Cobra RoboMamba
Parameter GQA TextVQA Vizwiz GQA POPE OKVQA

yt 61.1 48.0 49.0 54.5 83.8 63.8
Bt 60.2 47.4 49.2 54.2 82.9 62.6
Ct 58.9 44.9 49.6 53.0 81.6 62.0
∆t 61.4 56.1 49.6 54.9 84.4 63.8

Table 4: Ablation study on token selection
methods for Cobra and RoboMamba

Cobra RoboMamba
Method GQA TextVQA Vizwiz GQA POPE OKVQA

Random 61.4 53.7 49.4 54.1 83.6 63.2
Top-k (all tokens) 7.01 10.3 30.7 21.2 56.8 46.5

Top-k (visual only) 61.4 56.1 49.6 54.9 84.4 63.8

Table 5: Ablation study on the effect of complete pruning at the late layer for Cobra and Robo-
Mamba.

Cobra RoboMamba

Complete pruning FLOPs FLOPs Ratio GQA TextVQA Vizwiz FLOPs FLOPs Ratio GQA POPE OKVQA

Disable 1.26 100% 61.5 56.1 49.6 0.44 100% 55.1 84.4 63.9
Enable 1.04 83% 61.4 56.1 49.6 0.34 77% 54.9 84.4 63.8

across all benchmarks, with Cobra and RoboMamba both showing dramatic performance drops
that make the results far below usable levels. These results highlight that text tokens are essential
for reasoning and must not be removed. The third approach applies Top-k only to visual tokens.
This strategy reduces redundancy while maintaining overall performance stably, showing that visual
tokens can be pruned safely without affecting model performance. These results support the validity
of a ranked Top-k pruning policy that targets only visual tokens.

Effect of complete pruning at the late layer. Table 5 reports the ablation results of complete prun-
ing at the late layer. For Cobra, enabling complete pruning reduces FLOPs from 1.26 to 1.04, which
corresponds to a 17% reduction, while accuracy remains nearly identical across GQA, TextVQA,
and Vizwiz. Likewise, RoboMamba achieves a reduction from 0.44 to 0.34, amounting to a 23%
decrease, with no meaningful accuracy drop on GQA, POPE, and OKVQA.These results emphasize
that complete pruning at the late layer offers significant computational savings without sacrificing
performance, validating it as an effective strategy for improving efficiency.

6 CONCLUSION

In this paper, we introduced Delta-guided Two stage Pruning (DTP), a novel framework for to-
ken pruning in Mamba-based MLLMs. Token importance is derived from the internal parameter
∆t in Mamba’s selective SSM, and the statistical distribution of these scores is analyzed together
with implicit attention patterns to determine where pruning should occur and which tokens should
be removed. Extensive experiments revealed that, under the same FLOPs budget, DTP preserves
task performance more effectively than alternative pruning approaches. Ablation studies further
demonstrated that ∆t provides the most reliable criterion for estimating token importance, and that
selecting the top-k visual tokens based on these scores is a reasonable pruning strategy. Moreover,
we confirmed that applying complete pruning at late layers maintains performance equivalent to re-
taining tokens at those layers. Taken together, these findings establish DTP as an effective method
for pruning visual tokens in Mamba-based MLLMs.
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A TOKEN IMPORTANCE IN ROBOMAMBA

We provide further analyses on token importance using another Mamba-based MLLM, Robomamba
(Liu et al., 2024). The figures show a similar trend to those observed in Cobra, supporting the
generality of our pruning strategy.

Figure 6: Standard deviation analysis of token importance across layers in a Mamba-based MLLM,
Robomamba (Liu et al., 2024) The statistics were computed using a subset of the VQAv2 dataset,
showing that the standard deviation reaches its first local peak at the 15th layer and increases sharply
after the 45th layer.

Figure 7: Visualization of token importance distributions at different layers of a Mamba-based
MLLM, Robomamba (Liu et al., 2024). Red and blue points denote tokens within and outside
the top 50% by importance, respectively.

B FULL IMPLICIT ATTENTION PATTERNS

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 8: Full implicit attention patterns of each layer of Cobra.
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