
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CATS: COST-AUGMENTED TREE SEARCH FOR LLM-
ASSISTED PLANNING

Anonymous authors
Paper under double-blind review

ABSTRACT

While large language models excel at open-ended reasoning, they often struggle
with cost-sensitive planning, either treating all actions as having equal cost or
failing to stay within strict budgets. In this paper, we introduce Cost-Augmented
Tree Search (CATS), a novel search approach that brings explicit cost-awareness
into LLM-guided planning. Tight cost constraints push the planner to quickly
identify infeasible solutions, while looser constraints encourage optimization for
minimal cost. We benchmark top LLMs such as GPT-4.1 and Claude-Opus-4.1
against our CATS planner to evaluate their performance on a cost-augmented
variant of BlocksWorld, where each action is assigned a specific budget and tasks
must be completed under an overall budget constraint. Our experiments show that
raw LLMs, such as Claude-Opus-4.1, often falter under tight budgets, whereas
CATS consistently delivers strong performance with higher task success rates and
better budget utilization. CATS provides an effective solution for budget-aware
planning by combining the reasoning power of LLMs with structured search.

1 INTRODUCTION

Planning is a cornerstone of real-world decision-making, yet most research on LLM-assisted planning
overlooks a critical factor: cost. Whether it is travel planning with budget constraints, scheduling
meetings with transition times, or strategic resource allocation, cost considerations are paramount (Xie
et al., 2024; Zheng et al., 2024; Kambhampati et al., 2024; Huang et al., 2024; Li et al., 2024; Wei
et al., 2025). Some constraints are hard, e.g., missing a train departure, while others are soft, e.g.,
slightly exceeding a budget, but both demand cost-aware solutions. Existing LLM-based planners
often assume all actions have the same cost, leading to suboptimal solutions. Our work bridges this
gap by introducing cost-augmented planning, where models explicitly optimize for both task success
and cost efficiency.

LLMs have demonstrated impressive reasoning capabilities, particularly in code generation, mathe-
matical problem-solving, and logical reasoning (Shao et al., 2024; Ke et al., 2025; Hao et al., 2025).
These breakthroughs suggest that LLMs could, in principle, handle constrained planning tasks by
leveraging their emergent world understanding and step-by-step reasoning. However, while LLMs
excel in open-ended reasoning, their ability to adhere to strict cost constraints remains understud-
ied (Kambhampati et al., 2024). Can LLMs natively solve cost-sensitive planning problems, or do
they require algorithmic enhancements to resolve constraints effectively? Our work investigates
this question, testing both raw LLM performance and hybrid approaches that combine LLMs with
structured search.

To evaluate on the cost setting, we augment the widely used BlocksWorld benchmark (Valmeekam
et al., 2022) with explicit action costs to better study budget-aware planning. Each action is assigned
a numerical cost, transforming the originally cost-agnostic benchmark into one that encourages
cost-efficient solutions. This cost-augmented setting prioritizes low-cost valid plans, aligning more
closely with real-world decision-making scenarios. An illustrative example of our cost-aware Budget-
BlocksWorld is in Figure 1. We classify the difficulty of the task into three budget constraints, tight,
loose, and unlimited. Tight constraints force planners to quickly recognize impossible solutions,
while loose and unlimited encourage optimization for minimal cost. Building on this cost-augmented
benchmark, we next turn to search-based planning methods.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Initial State

The red block is clear, the blue block is clear, the orange block is clear, the hand
is empty, the blue block is on top of the yellow block, the red block is on the
table, the orange block is on the table, and the yellow block is on the table.

 Plan 1 [Cost: 14]

1. Unstack the blue block from on top of the yellow block
2. Stack the blue block on top of the orange block
3. Pick up the red block
4. Stack the red block on top of the yellow block
5. Unstack the blue block from on top of the orange block
6. Stack the blue block on top of the red block

 Plan 2 [Cost: 11]

1. Unstack the blue block from on top of the yellow block
2. Put down the blue block
3. Pick up the red block
4. Stack the red block on top of the yellow block
5. Pick up the blue block
6. Stack the blue block on top of the red block

 Plan 3 [Cost: 8]

1. Pick up the red block
2. Stack the red block on top of the yellow block
3. Pick up the blue block
4. Stack the blue block on top of the red block

Goal State

The red block is on top of the
yellow block and the blue block
is on top of the red block.

[Cost: 1] Pick up
[Cost: 1] Put down
[Cost: 3] Stack
[Cost: 2] Unstack

Initial State

Goal State

Figure 1: BlocksWorld includes four actions, pick up, put down, stack, and unstack, each with an
associated cost. Plans that are optimal in terms of execution steps may not be cost-optimal. E.g., two
plans with the same number of steps (6) can have different total costs (Plan 1 costs 14, while Plan 2
costs 11). Plans directly generated by LLMs may contain hallucinations that lead to invalid actions.
For instance, in Plan 3, the model attempts to stack the red block on the yellow block, even though
the blue block is already on top of the yellow block.

Search algorithms are foundational to sequential decision-making, providing a principled mechanism
for looking ahead, comparing alternatives, and managing uncertainty. Combining LLM with single-
tree-based search algorithms has been proven effectively on sequential decision making tasks (Hao
et al., 2023; Zhao et al., 2023; Gao et al., 2024; Lehnert et al., 2024). However, single-tree-based
planners face a key limitation: the search space grows exponentially with depth, leading to poor
performance on long-horizon tasks. To address this, we introduce a cost-augmented bidirectional
search (CATS) that expands two trees, one forward tree starting search from the initial state and
one backward tree starting from the goal, coupled by a cross-tree guidance signal. The search halts
when the trees meet at a shared state, at which point the full plan is constructed. CATS incorporate
cost-awareness at every step: actions are weighted by expense, and task constraints (e.g., “complete
within $100”) prune unfeasible paths. Our experimental results reveal that CATS outperforms both
raw LLM planners and single-tree-based planners, achieving 100% success rate on unlimited budget
setting. Having outlined the testbed and design of CATS, we now summarize our key contributions:

• Cost-Augmented Benchmark We introduce Budget-BlocksWorld, a variant of the classic
BlocksWorld benchmark augmented with non-uniform action costs and configurable budget
constraints, transforming a step-counting task into a cost-sensitive planning benchmark.

• Cost-Aware Evaluation We propose a comprehensive evaluation suite consisting of Success
Rate, Optimality, and Efficiency, which together assess planners on budget-constrained tasks
in terms of solution correctness, cost-effectiveness, and search efficiency.

• Cost-Augmented Tree Search We introduce CATS, a novel tree-based search algorithm
that grows two trees, one forward from the initial state and one backward from the goal,
coupled through a cross-tree guidance signal. Experiments show that CATS outperforms
classic search methods on all tasks in Budget-BlocksWorld.

2 RELATED WORKS

2.1 TEST TIME COMPUTING

Test-time compute has emerged as a key paradigm for enhancing post-training reasoning. AlphaGo
Zero achieved superhuman performance by leveraging Monte Carlo Tree Search (MCTS) with
substantial test-time compute (Silver et al., 2016). Similarly, recent LLMs like o1 (Jaech et al.,
2024) show that increasing inference-time computation can significantly enhance reasoning. In
practice, test time compute is initiated trough repeated sampling, self correction, tree search (Wang
et al., 2022; Shinn et al., 2023; Snell et al., 2024; Kumar et al., 2024; Yang et al., 2024). Repeated
sampling improves reliability by generating multiple candidate solutions and selecting the most
consistent answer, as in self-consistency decoding. Self-correction instead refines an initial response
by prompting the model to re-evaluate and revise its outputs, often using external feedback or
verification signals. However, both approaches operate at the level of isolated answers and are
generally incapable of handling multi-step planning tasks that require explicit state transitions and

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

structured search. In contrast, tree-based search algorithms have gained traction because it allocates
test-time compute toward structured exploration, enabling LLMs to reason over multi-step planning
tasks with explicit state transitions.

2.2 TREE-BASED SEARCH ALGORITHMS IN LLM ERA

LLMs such as ChatGPT (Brown et al., 2020) exhibit strong commonsense reasoning, extending
planning beyond purely symbolic domains to open-ended tasks (Xie et al., 2024; Jimenez et al., 2023;
Hausknecht et al., 2019), requiring commonsense reasoning. However, direct calls to an LLM depend
solely on its internal algorithm, where state transitions are handled inherently but remain opaque and
error-prone. In contrast, external algorithms such as tree search or other robust search procedures
define the environment explicitly, enabling systematic exploration and verifiable state transitions.
This motivates coupling LLMs with tree-based search algorithms for planning tasks. Several studies
have employed tree search during inference time to guide the LLM in sequential decision-making
tasks (Zhang et al., 2023; Feng et al., 2023; Hu et al., 2024; Besta et al., 2024; Chen et al., 2024;
Antoniades et al., 2024; Shi et al., 2025; Zhang et al., 2025b) . Beyond inference, tree-based search
has also been leveraged to generate reasoning trajectories that serve as training data for improving
downstream models (Mittal et al., 2025; Zhang et al., 2024; Light et al., 2025). All of those methods
construct a single search tree rooted at the initial state, causing the search space to grow exponentially
with depth. Our method explores the path from both initial and goal state in order to reduce the depth
of each search tree. This bidirectional design not only mitigates the exponential blowup in search
depth but also enables more efficient convergence between two trees.

2.3 COST-AUGMENTED PLANNING PROBLEM

Planning is a fundamental aspect of human intelligence, involving the generation of action sequences
to search for solutions and make decisions (Hayes-Roth & Hayes-Roth, 1979; Mattar & Lengyel,
2022; Su, 2023). This capability has been extensively studied in domains such as robotics and
autonomous systems (Alterovitz et al., 2016; McDermott, 1992). Recent advances have shown that
LLMs and LLM-based frameworks can achieve remarkable performance on a variety of planning
tasks. This success is largely due to their strong general reasoning abilities and their integration with
classical data structures such as trees and graphs (Hao et al., 2023; Yao et al., 2023; Besta et al.,
2024). However, most existing planning benchmarks like GSM8K (Cobbe et al., 2021), Game of
24, judge performance solely on plan correctness, largely ignoring real-world constraints such as
time, cost, or resource limits. In practical applications, planning often operates under strict budget
constraints, such as limited time steps, energy consumption, or financial cost, making it essential to
generate not only valid but also efficient plans (Xie et al., 2024; Zhang et al., 2025a). In this work,
we introduce a cost-aware concept to the BlocksWorld benchmark that explicitly incorporates budget
constraints into the planning process.

3 BUDGET-BLOCKSWORLD

We introduce our testbed Budget-BlocksWorld, a cost-augmented version of BlocksWorld bench-
mark (Valmeekam et al., 2022). BlocksWorld is a widely used planning benchmark with several
distinct blocks on a table. The objective of this task is to rearrange the blocks on the table from its
initial state to the goal state using four deterministic actions: pick-up, put-down, stack, and unstack.
Building on top of this setup, Budget-BlocksWorld obtains 1,008 tasks with 6-block instances, and
categorizes the difficulty by the optimal plan length (minimum number of actions from initial state to
goal). We split our dataset into three categories: short-horizon (2–8 steps), mid-horizon (10–14
steps), and long-horizon (16+ steps) to capture different levels of planning difficulty, where longer
horizons require reasoning over more complex state transitions and larger search space. We adopt
BlocksWorld with action costs to transform it into Budget-BlocksWorld, a realistic cost-sensitive
planning task that is unique among conventional planning benchmarks. We assign non-uniform
costs to actions, making some actions (e.g., put-down/pick-up) more expensive than others (e.g.,
stack/unstack), which forces planners to trade off plan length against execution cost.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Action costs (pu, un, pd, st) Short-Horizon Mid-Horizon Long-Horizon Total

[20, 1, 1, 1] 80% 79% 95% 84%
[1, 20, 1, 1] 81% 68% 76% 71%
[1, 1, 20, 1] 86% 86% 96% 90%
[1, 1, 1, 20] 74% 62% 75% 67%
[20, 1, 20, 1] 62% 83% 97% 87%
[1, 20, 1, 20] 21% 58% 79% 58%
[20, 20, 1, 1] 48% 67% 85% 69%
[1, 1, 20, 20] 44% 66% 83% 67%
[20, 1, 1, 20] 26% 58% 80% 59%
[1, 20, 20, 1] 53% 71% 75% 69%

Table 1: Solution shift rate under nonuniform action costs. The first column represents the cost
schedule allocated for each action: pick-up(pu), unstack(un), put-down(pd), stack(st). An optimal
solution is counted as shifted if its sequence of action types under the given schedule is not exactly the
same as under the uniform-cost solution. The rest columns represent the percentage of tasks whose
optimal solutions are shifted.

Ground Truth Generation. To establish the cost distribution for our experiments, we evaluate
several cost schedules and recompute ground-truth plans to ensure cost optimality. Using exhaustive
search, we enumerate all possible plans and select the lowest-cost plan as the new ground truth.

Solution Shift Rate. We then compute the solution shift rate for each cost schedule. This metric
measures the proportion of tasks in Budget-BlocksWorld whose cost-optimal plans differ from the
uniform-cost BlocksWorld baseline. A task’s solution is considered as shifted if the cost-optimal
ground truth plan is not identical to the uniform ground truth plan. Table 1 summarizes these results.
We select the [1, 1, 20, 1] configuration with the highest ratio of shifted plans as our testbed, ensuring
that our optimal solutions are clearly distinguishable from those of the vanilla BlocksWorld. This
setup emphasizes the robustness of planning algorithms by requiring them to optimize not only for
plan feasibility but also for execution cost under varying action-cost configurations. We provide more
statistics on our cost-augmented BlocksWorld in Appendix A.

Budget-BlocksWorld has three budget conditions to simulate different levels of cost strictness. TIGHT
budget is set exactly to the ground-truth cost-optimal plan, permitting only plans whose cost matches
the optimum. LOOSE budget is set to the optimal cost plus a small margin, allowing slight overruns.
We set the small margin to be the cost of two rounds of most expensive actions. UNLIMITED condition
applies no budget constraints, and all valid plans are accepted. This setup allows us to systematically
study planner’s behavior under strict, relaxed, and unconstrained cost settings.

4 COST-AUGMENTED TREE SEARCH (CATS)

We introduce CATS to address budget-constrained planning problems. In the Budget-BlocksWorld
setting, the planner is given an initial block state s0, where uniquely colored blocks are stacked on the
table in a specific order (Figure 1). The planner is also provided with a budget limit B, an action set
A, and a goal state sg . Each action a ∈ A (e.g., picking up the blue block; stacking the red block on
the top of the green block) is associated with a cost ca. The planner’s objective is to select a sequence
of actions A′ = [a1, a2, . . . , ak] from the action set A that transforms the initial state s0 into the goal
state sgoal when applied in order. More importantly, the total cost incurred by executing A′, i.e.,∑k

i=1 cai
, must not exceed the budget limit B.

CATS adopts a tree search methodology to solve the Budget-BlocksWorld task. Given the initial
state s0 and the goal state sgoal, CATS constructs a forward search tree Tf rooted at node v0, and
a backward search tree Tb rooted at node vgoal. The two trees expand in alternating turns, each
expanding one selected leaf node per round by applying actions a ∈ A as edges. Each node v is
associated with a cost cv , representing the cumulative edge cost along the path from the corresponding
root, either v0 in the forward tree or vgoal in the backward tree, to v. In this way, CATS transforms
the challenging problem of finding sequence A′ into building a valid path between v0 and vgoal via
growing two trees. To prevent non-termination, we impose a node expansion limit L. If the two trees

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Confidence +
Distance Rewards

V5

V0

V1

V2

Vgoal

V Forward Tree V Backward Tree
a

1

V3

V4

= 0.4

V0

V1

V2

Vgoal

2

V3

V4V6

V5

V0

V1

V2

Vgoal

3

V3

V4V6

V5

V0

V1

V2

Vgoal

4

V3

V4V6

V7

V8

Node ComparisonApply Action a

a2

a1

a1

a1

a1

a2

a2

a2

a3

a3

a3

a3

a4a4

a4
a4

a5

a5

a5

a6

a6

a6

a8

a7

Jaccard Distance

= 0.2

= 0.4

= 0.8

Figure 2: An example of CATS. (1) Forward tree selects the highest reward node v1 to expand. (2)
Forward tree checks if it has nodes equivalent to a node in the backward tree. (3) Backward tree
selects node v4 to expand. (4) Backward tree expands and finds v8 equals to the v6 in the forward
tree, completes the search. Non-essential comparisons edges omitted; search result remains valid.

fail to meet within L expansions, CATS halts the search and declares that no valid path is found. We
provide an example of CATS building such path in Figure 2.

We design a reward mechanism that guides the selection of the most promising node in Tf and Tb for
expansion. We leverage the reasoning capabilities of LLMs to construct a confidence reward, which
quantifies the utility of applying an action a at a given node v. Additionally, we introduce a distance
reward, based on Jaccard distance(Manning et al., 2008), to encourage efficient convergence between
the two search trees. We detail the full reward design in Section 4.1.

Section 4.2 details how CATS selects nodes for expansion based on its reward functions and in-
crementally grows Tf and Tb toward each other. When two equivalent nodes appear in both trees,
indicating that a common node v is reachable from both v0 and vgoal, CATS terminates the expansion
process and completes the search. The full procedure is outlined in Algorithm 1.

4.1 REWARD DESIGN

To efficiently grow the two search trees toward convergence, CATS employs two reward signals
to guide node selection. Each node in Tf and Tb, excluding v0 and vgoal, is assigned a reward
score, indicating its likelihood of lying on the valid path connecting the trees. The confidence
reward Rconf assesses the node’s role within its own tree, reflecting the planner’s internal confidence.
The distance reward Rdist evaluates a node’s proximity in jaccard distance to the opposite tree,
promoting convergence. Both rewards are normalized and combined using a weighting parameter
ω ∈ [0, 1] to balance their influence.

Confidence Reward. Consider a leaf node v with parent node vp. Let a be the action that transforms
vp into v, and let ca be its cost. The parent node has an accumulated cost cvp . To assess the quality of
a, we prompt the LLM with the parent node vp, the available action setA, the budget limit B, and the
accumulated cost cvp . The LLM is asked to predict the best next action. Since a was the action taken,
we use the log-probability that the LLM assigns to a as the confidence reward for node v. To reduce
potential hallucinations or inconsistencies, we add a second layer of validation using LLM-based
self-evaluation. Given the action a, the budget limit B, parent node vp and its cost cvp , we prompt the
LLM to assess whether a is a good choice by outputting either good or bad. The detailed prompts
are included in Appendix B. We then use the log-probability of generating good as an additional
confidence signal for the node v. The reward calculation is formalized in Equation 1, and is used by
both the forward and backward trees to guide their node selection during the expansion process.

Rconf (v) = logPLLM(a | vp, cvp ,B) + logPLLM(good | a, vp,B, cvp) (1)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Cost-Augmented Tree Search (CATS)

Require: Initial node v0 ∈ V, goal node vg ∈ V, weight ω, max iterations L, budget limit B
1: Initialize confidence reward Rconf : V→ R, distance reward Rdist : V× V→ R
2: Initialize feasible actions A : V× B → A, child nodes c : V× A→ V
3: Initialize unvisited verifier U : V→ {0, 1}
4: Initialize node set Vf ← {v0}, Vb ← {vg}
5: Initialize empty plan π ← ∅
6: for t← 0 to L− 1 do
7: v∗f ← argmaxv∈Leaf(v0) (ω · U(v) ·Rconf (v) + (1− ω) ·Rdist(v))

8: for a ∈ A(v∗f ,B) do
9: v∗ ← c(v∗f , a)

10: Vf ← Vf ∪ {v∗}
11: end for
12: v∗b ← argmaxv∈Leaf(vg) (ω · U(v) ·Rconf (v) + (1− ω) ·Rdist(v))
13: for a ∈ A(v∗b ,B) do
14: v∗ ← c(v∗b , a)
15: Vb ← Vb ∪ {v∗}
16: end for
17: voverlap ← Vf ∩ Vb

18: if voverlap ̸= ∅ then
19: π ← EXTRACTPLAN(voverlap)
20: break
21: end if
22: end for
23: return π

Distance Reward. CATS uses Jaccard distance to guide the convergence of the forward and
backward search frontiers. For a leaf node v, we compute its distance reward to the opposite tree
Topp ∈ {Tf , Tb} as the minimum Jaccard distance which is between v and any leaf node of the
opposing tree. The distance reward for leaf node v is defined as:

Rdist(v) = 1− min
vopp∈Leaf(Topp)

J(v, vopp) where J(v, vopp) =
|S(v) ∩ S(vopp)|
|S(v) ∪ S(vopp)|

(2)

where S(v) denotes the set of block-state descriptions represented by node v. For example, in the
initial state in Figure1, the statement “the blue block is on top of the yellow block” correspond to a
single block-state description.

4.2 TREE EXPANSION ALGORITHM

The node selection and expansion process is crucial, as it ensures that CATS focuses its time and
budgets on growing the most cost-effective branches of the search trees.

Selection. CATS selects the most promising node for expansion based on the confidence and distance
rewards defined in the previous section 4.1. For a search tree T ∈ {Tf , Tb}, the selected leaf node
v∗ ∈ Leaf(T) is determined as:

v∗ = arg max
v∈Leaf(T)

[
ω · U(v) ·Rconf (v) + (1− ω) ·Rdist(v)

]
(3)

U(v) is a binary indicator, where U(v) = 0 if the node v has already been visited, and U(v) = 1
otherwise. The weight parameter ω controls the trade-off between the confidence reward and the
distance reward.

Expansion. After selecting the node v∗, CATS generates successor nodes for all feasible actions in
A that can be applied to the current block state of v∗. To prevent redundant exploration, it performs a
node merging step: if a successor shares the same block state as an existing node in the tree, only
the node with the lower path cost is retained. If all successors have higher costs than their matching
counterparts, the node v∗ is not expanded and is instead marked as visited by setting U(v) = 0. This
strategy avoids cycles and ensures the search tree grows along cost-effective paths only.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

We compare CATS against two types of baselines: tree-based planners such as Tree-of-Thought (ToT),
Reasoning via Planning(RAP), and state-of-the-art raw LLM planners (GPT-4.1, Claude-Opus-4.1).

Raw LLM planner. We directly prompt the model with in-context learning examples and require
it to generate the entire plan in one pass. The cost budget limit specified in the prompt is varied
according to the given constraint. The full prompting details are included in the Appendix C.

Tree-based LLM planner. We compare our method CATS with two well-known tree-based planners,
ToT and RAP. Tree of Thought (ToT) extends chain-of-thought prompting, where an LLM reasons
step-by-step, by turning these steps into a search tree. Instead of following only one line of reasoning,
ToT explores multiple possible reasoning paths using classical search methods like DFS or BFS,
and uses the LLM to score which path look more promising. Reasoning via Planning (RAP) goes
a step further: instead of only guiding a search with the LLM, it integrates the LLM into Monte
Carlo Tree Search (MCTS). MCTS adaptively balances exploration (trying new reasoning paths)
and exploitation (refining promising ones), allowing RAP to continuously reconsider alternatives
and avoid getting stuck on suboptimal paths. Both ToT and RAP are using same confidence reward
mentioned in section 4.1 to guide the tree search. To standardize the implementation and reduce
hallucination of LLM in our implementation, we use PDDLGym (Silver & Chitnis, 2020) as the
world model to update the state based on the given state-action pair.

Additionally, we introduce a strict bounding mechanism during the tree-search process for ToT
and RAP: any action that exceeds the cost budget limit is eliminated, thereby improving overall
performance. For a fair comparison, we set a maximum tree node expansion limit of 500 nodes for
ToT, RAP and CATS. This prevents the planner from resorting to exhaustive search.

5.1 METRICS

We evaluate the performance using three metrics: Success Rate, Optimality, Efficiency. The success
rate checks whether the planner find a valid, cost-adherent plan within the node expansion limits.
Optimality quantifies cost efficiency by comparing the generated plan’s cost to that of the ground-truth
optimal plan. We compute the cost difference between the two and apply a reciprocal transformation
that maps smaller deviations to larger scores. The resulting optimality score ranges from 0 to 0.5. In
this way, the optimality metric is defined such that higher scores indicate better performance (see
Eq. 4). Efficiency reflects the number of node expansion of the search tree required to obtain the first
feasible plan. A higher efficiency value means the planner reached a solution while consuming a
smaller portion of its allotted node expansion budget (see Eq. 4).

Optimality =
1

1 + (Costgen/Costopt)
; Efficiency = 1− #Nodes Expanded

Node Budget
(4)

5.2 OVERALL PERFORMANCE

Table 2 compares Success Rate and Optimality metrics across three budget limits (TIGHT, LOOSE,
UNLIMITED) and plan lengths (Short, Mid, Long). Under LOOSE budget, CATS attains a success
rate of 84% on mid-horizon tasks and maintains 36% on long-horizon tasks. With the UNLIMITED
budget, it further achieves an overall 100% success rate. Besides substantial gains in success rate,
CATS consistently achieves the highest optimality across all budget settings. Under the LOOSE
and UNLIMITED settings, it achieves average optimality scores of 0.27 and 0.33, more than twice
the performance of Claude-Opus-4.1, the second-best performing method. This demonstrates the
effectiveness of CATS’s core design, which integrates LLM-based reasoning with structured, cost-
aware search.

Search algorithms can substantially enhance the performance of pure LLM planners, but their
effectiveness varies widely. While ToT and RAP improve Qwen3-8B over plain CoT, they still fail
to surpass CoT with stronger closed-source models such as GPT-4.1 or Claude-Opus-4.1, and their
gains are often confined to short-horizon tasks. In contrast, CATS consistently outperforms all other
search strategies across both budget constraints and task horizons. It achieves an average success
rate of 65% under the LOOSE setting and 100% under the UNLIMITED budget, compared to just 2%

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Success Rate Optimality

PLAN LENGTH Short Mid Long Avg. Short Mid Long Avg.

TIGHT CoT w/ Qwen3-8B 0.04 0.00 0.00 0.01 0.04 0.00 0.00 0.01
CoT w/ GPT-4.1 0.04 0.01 0.00 0.01 0.04 0.01 0.00 0.01
CoT w/ Claude-Opus-4.1 0.19 0.01 0.00 0.02 0.16 0.01 0.00 0.02
ToT w/ Qwen3-8B 0.08 0.00 0.00 0.01 0.04 0.00 0.00 0.01
RAP w/ Qwen3-8B 0.34 0.01 0.00 0.04 0.16 0.01 0.00 0.02
CATS w/ Qwen-8B 0.34 0.08 0.01 0.08 0.16 0.04 0.01 0.04

LOOSE CoT w/ Qwen3-8B 0.04 0.00 0.00 0.01 0.04 0.00 0.00 0.01
CoT w/ GPT-4.1 0.21 0.15 0.05 0.11 0.05 0.05 0.02 0.04
CoT w/ Claude-Opus-4.1 0.58 0.25 0.14 0.24 0.20 0.09 0.05 0.08
ToT w/ Qwen3-8B 0.14 0.00 0.00 0.02 0.06 0.00 0.00 0.02
RAP w/ Qwen3-8B 0.61 0.04 0.01 0.09 0.21 0.01 0.01 0.03
CATS w/ Qwen-8B 0.96 0.84 0.36 0.65 0.31 0.29 0.24 0.27

UNLIMITED CoT w/ Qwen3-8B 0.04 0.00 0.00 0.01 0.04 0.01 0.01 0.01
CoT w/ GPT-4.1 0.27 0.19 0.10 0.16 0.07 0.06 0.03 0.05
CoT w/ Claude-Opus-4.1 0.55 0.32 0.23 0.31 0.18 0.10 0.07 0.10
ToT w/ Qwen3-8B 0.15 0.02 0.00 0.02 0.06 0.01 0.00 0.01
RAP w/ Qwen3-8B 0.69 0.04 0.01 0.10 0.25 0.01 0.00 0.03
CATS w/ Qwen-8B 1.00 1.00 1.00 1.00 0.29 0.32 0.34 0.33

Table 2: Overall performance of planners on Budget-BlocksWorld. CATS consistently outperforms
all other methods across budget conditions and task horizons. The comparison includes raw LLM
planners (CoT w/ model) and tree-based LLM planners (ToT, RAP, CATS). For CATS, we set ω = 0.5
in the selection schema (Equation 3). In the LOOSE setting, we provide an additional budget of 42,
corresponding to the cost of two full rounds of pick-up/unstack followed by put-down actions.

PLAN LENGTH Short Mid Long Avg.

TIGHT ToT w/ Qwen3-8B 0.92 n/a n/a 0.92
RAP w/ Qwen3-8B 0.90 0.50 n/a 0.85
CATS w/ Qwen-8B 0.99 0.97 0.97 0.98

LOOSE ToT w/ Qwen3-8B 0.92 n/a n/a 0.92
RAP w/ Qwen3-8B 0.77 0.48 0.71 0.71
CATS w/ Qwen-8B 0.97 0.94 0.92 0.93

UNLIMITED ToT w/ Qwen3-8B 0.92 0.93 n/a 0.92
RAP w/ Qwen3-8B 0.76 0.74 n/a 0.70
CATS w/ Qwen-8B 0.97 0.93 0.91 0.93

Table 3: The efficiency of tree-based LLM planners across different level of horizon tasks and
constraint settings. “n/a” indicates no successful tasks in that category.

and 9% for ToT and RAP, respectively, under LOOSE. These results highlight that CATS uniquely
enables small open-source models to surpass state-of-the-art CoT baselines by using bidirectional
search and cross-tree guidance.

5.3 EFFICIENCY

In this section, we compare efficiency across methods. A higher efficiency score indicates less node
expansion usage during the tree seach process. As shown in Table 3, CATS achieves the highest
average efficiency across all budget settings, reaching 98% under TIGHT constraints compared to
92% for ToT. This demonstrates that CATS is particularly effective when strict budget adherence is
required. Across plan lengths, efficiency decreases monotonically for all methods, but CATS remains
the most consistent, with its largest drop only 6% from short- to long-horizon in the unlimited setting,
while ToT often fails on long-horizon tasks. These results show that CATS reduces nearly 90% of
unnecessary expansions compared to cost-agnostic search, demonstrating that our reward design
effectively guides the trees toward the correct path for convergence.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Tight Loose Unlimited
0.0

0.2

0.4

0.6

0.8

1.0
Sc

or
e

(%
)

0.08

0.69

1.00

0.08

0.69

1.00

0.06

0.55

0.99

Success Rate

Tight Loose Unlimited

0.04

0.27
0.33

0.04

0.24

0.32

0.03

0.20

0.29

Optimality

Qwen3-8B Qwen3-4B Qwen3-0.6B

Tight Loose Unlimited

0.96 0.96
0.93

0.95
0.92 0.900.93

0.84
0.79

Efficiency

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

Su
cc

es
s /

 E
ffi

cie
nc

y

Success Rate Efficiency Optimality

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

Op
tim

al
ity

Figure 3: Performance comparison across models (left). CATS is effective across different scales of
model, while larger model intuitively provides stronger performance. Performance across different ω
values (right): Balancing confidence and distance rewards yields the best overall performance.

5.4 ABLATION STUDIES

Model Size. To examine the robustness of CATS across model scales, we evaluate it with Qwen3-
0.6B, Qwen3-4B, and Qwen3-8B. All other variables are held fixed, with ω = 0.5, and experiments
are conducted under TIGHT, LOOSE, and UNLIMITED constraint settings. From the bar chart in
Figure 3, we can see that the results for the three models are broadly consistent: larger models
generally yield stronger performance. Qwen3-4B and Qwen3-8B has relatively same performance
while Qwen3-0.6B is less cost-efficient compared to its other models with around 14% drop in
efficiency under UMLIMITED settings compare to Qwen3-8B. These findings suggest that CATS is
robust across model scales, with larger models offering incremental benefits but not altering the overall
effectiveness of the method. Remarkably, even Qwen3-0.6B surpasses the latest state-of-the-art LLM,
ToT and RAP planner across all constraint settings.

Distance Reward. In this section, we investigate how distance reward influence the reward signal of
CATS. Specifically, we vary the weighting parameter ω in Equation 3 from 0 to 1 in increments of
0.1. Setting ω = 1 corresponds to relying solely on the confidence reward, whereas ω = 0 represents
the reward is entirely depended on the distance reward. We run the experiment using Qwen3-8B
as the base model, and assess performance on the entire Budget-BlocksWorld with UNLIMITED
constraint. As shown in line chart in Figure 3, three key observations emerge: (1) success rate is
highly robust across a wide range of ω, achieving nearly perfect performance when ω ≥ 0.3. (2)
Optimality generally improves as ω increases, showing that solutions become more cost-efficient
when the confidence reward signal is given greater weight, while heavy reliance on distance reward
alone reduces plan quality. (3) Efficiency initially benefits from incorporating distance reward but
declines when ω becomes too large, with performance degrading when rewards rely solely on distance
reward. These results suggest that a balanced combination of confidence reward and distance reward
yields the most efficient outcomes while maintaining high success rates and optimality.

6 CONCLUSION

We conducted a systematic study of LLM-assisted cost-sensitive planning. To fill the gap in evaluating
cost-sensitive planning, we proposed Budget-Blocksworld, a cost-augmented benchmark, along with
a complementary evaluation suite that measures plan success, cost efficiency, and search effectiveness.
We introduced a novel method, CATS, which integrates cost-awareness into LLM-guided search.
While raw LLMs such as GPT-4.1 often fail under tight budgets, CATS consistently generates
cost-efficient plans by combining structured search with LLM reasoning. Notably, CATS achieves
state-of-the-art performance on Budget-BlocksWorld, delivering the highest success rates, optimality
and search efficiency, across all budget constraints and long-horizon tasks. Our work suggests several
promising directions for future work, including extending CATS to domains with richer constraints
and integrating reinforcement learning to enable planners that internalize cost-augmented reasoning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Ron Alterovitz, Sven Koenig, and Maxim Likhachev. Robot planning in the real world: Research
challenges and opportunities. Ai Magazine, 37(2):76–84, 2016.

Antonis Antoniades, Albert Örwall, Kexun Zhang, Yuxi Xie, Anirudh Goyal, and William Wang.
Swe-search: Enhancing software agents with monte carlo tree search and iterative refinement.
arXiv preprint arXiv:2410.20285, 2024.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of thoughts:
Solving elaborate problems with large language models. In Proceedings of the AAAI conference
on artificial intelligence, volume 38, pp. 17682–17690, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: process supervision
without process. Advances in Neural Information Processing Systems, 37:27689–27724, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Xidong Feng, Ziyu Wan, Muning Wen, Ying Wen, Weinan Zhang, and Jun Wang. Alphazero-like tree-
search can guide large language model decoding and training. arXiv preprint arXiv:2309.17179,
2023.

Zitian Gao, Boye Niu, Xuzheng He, Haotian Xu, Hongzhang Liu, Aiwei Liu, Xuming Hu, and
Lijie Wen. Interpretable contrastive monte carlo tree search reasoning, 2024. URL https:
//arxiv.org/abs/2410.01707.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Wang, and Zhiting Hu. Reasoning
with language model is planning with world model. In Houda Bouamor, Juan Pino, and Kalika Bali
(eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
pp. 8154–8173, Singapore, December 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.emnlp-main.507. URL https://aclanthology.org/2023.emnl
p-main.507/.

Yilun Hao, Yongchao Chen, Yang Zhang, and Chuchu Fan. Large language models can solve
real-world planning rigorously with formal verification tools, 2025. URL https://arxiv.or
g/abs/2404.11891.

Matthew Hausknecht, Prithviraj Ammanabrolu, Côté Marc-Alexandre, and Yuan Xingdi. Interactive
fiction games: A colossal adventure. CoRR, abs/1909.05398, 2019. URL http://arxiv.or
g/abs/1909.05398.

Barbara Hayes-Roth and Frederick Hayes-Roth. A cognitive model of planning. Cognitive science, 3
(4):275–310, 1979.

Zhiyuan Hu, Chumin Liu, Xidong Feng, Yilun Zhao, See-Kiong Ng, Anh Tuan Luu, Junxian He,
Pang Wei Koh, and Bryan Hooi. Uncertainty of thoughts: Uncertainty-aware planning enhances
information seeking in large language models. arXiv preprint arXiv:2402.03271, 2024.

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang,
Ruiming Tang, and Enhong Chen. Understanding the planning of llm agents: A survey, 2024.
URL https://arxiv.org/abs/2402.02716.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

10

https://arxiv.org/abs/2410.01707
https://arxiv.org/abs/2410.01707
https://aclanthology.org/2023.emnlp-main.507/
https://aclanthology.org/2023.emnlp-main.507/
https://arxiv.org/abs/2404.11891
https://arxiv.org/abs/2404.11891
http://arxiv.org/abs/1909.05398
http://arxiv.org/abs/1909.05398
https://arxiv.org/abs/2402.02716

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
Bhambri, Lucas Saldyt, and Anil Murthy. Llms can’t plan, but can help planning in llm-modulo
frameworks, 2024. URL https://arxiv.org/abs/2402.01817.

Zixuan Ke, Fangkai Jiao, Yifei Ming, Xuan-Phi Nguyen, Austin Xu, Do Xuan Long, Minzhi Li,
Chengwei Qin, Peifeng Wang, Silvio Savarese, Caiming Xiong, and Shafiq Joty. A survey of
frontiers in llm reasoning: Inference scaling, learning to reason, and agentic systems, 2025. URL
https://arxiv.org/abs/2504.09037.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Iqbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via
reinforcement learning. arXiv preprint arXiv:2409.12917, 2024.

Lucas Lehnert, Sainbayar Sukhbaatar, DiJia Su, Qinqing Zheng, Paul Mcvay, Michael Rabbat, and
Yuandong Tian. Beyond a*: Better planning with transformers via search dynamics bootstrapping.
arXiv preprint arXiv:2402.14083, 2024.

Haoming Li, Zhaoliang Chen, Jonathan Zhang, and Fei Liu. Lasp: Surveying the state-of-the-art in
large language model-assisted ai planning, 2024. URL https://arxiv.org/abs/2409.0
1806.

Jonathan Light, Min Cai, Weiqin Chen, Guanzhi Wang, Xiusi Chen, Wei Cheng, Yisong Yue, and
Ziniu Hu. Strategist: Self-improvement of LLM decision making via bi-level tree search. In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=gfI9v7AbFg.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Information
Retrieval. Cambridge University Press, Cambridge, UK, 2008. See Section 2.3 for Jaccard
similarity.

Marcelo G Mattar and Máté Lengyel. Planning in the brain. Neuron, 110(6):914–934, 2022.

Drew McDermott. Robot planning. AI magazine, 13(2):55–55, 1992.

Dixant Mittal, Liwei Kang, and Wee Sun Lee. Learning to search from demonstration sequences.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=v593OaNePQ.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

Zijing Shi, Meng Fang, and Ling Chen. Monte carlo planning with large language model for
text-based game agents. arXiv preprint arXiv:2504.16855, 2025.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL https://arxiv.
org/abs/2303.11366, 1, 2023.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Tom Silver and Rohan Chitnis. Pddlgym: Gym environments from pddl problems. In International
Conference on Automated Planning and Scheduling (ICAPS) PRL Workshop, 2020. URL https:
//github.com/tomsilver/pddlgym.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

11

https://arxiv.org/abs/2402.01817
https://arxiv.org/abs/2504.09037
https://arxiv.org/abs/2409.01806
https://arxiv.org/abs/2409.01806
https://openreview.net/forum?id=gfI9v7AbFg
https://openreview.net/forum?id=gfI9v7AbFg
https://openreview.net/forum?id=v593OaNePQ
https://openreview.net/forum?id=v593OaNePQ
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://github.com/tomsilver/pddlgym
https://github.com/tomsilver/pddlgym

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yu Su. Language agents: a critical evolutionary step of artificial intelligence. yusu. substack. com.
2023.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Large language
models still can’t plan (a benchmark for llms on planning and reasoning about change). In NeurIPS
2022 Foundation Models for Decision Making Workshop, 2022.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Hui Wei, Zihao Zhang, Shenghua He, Tian Xia, Shijia Pan, and Fei Liu. Plangenllms: A modern
survey of llm planning capabilities, 2025. URL https://arxiv.org/abs/2502.11221.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. Travelplanner: A benchmark for real-world planning with language agents. arXiv preprint
arXiv:2402.01622, 2024.

Zhe Yang, Yichang Zhang, Yudong Wang, Ziyao Xu, Junyang Lin, and Zhifang Sui. Confidence vs
critique: A decomposition of self-correction capability for llms. arXiv preprint arXiv:2412.19513,
2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in neural
information processing systems, 36:11809–11822, 2023.

Cong Zhang, Xin Deik Goh, Dexun Li, Hao Zhang, and Yong Liu. Planning with multi-constraints
via collaborative language agents. In Owen Rambow, Leo Wanner, Marianna Apidianaki, Hend Al-
Khalifa, Barbara Di Eugenio, and Steven Schockaert (eds.), Proceedings of the 31st International
Conference on Computational Linguistics, pp. 10054–10082, Abu Dhabi, UAE, January 2025a.
Association for Computational Linguistics. URL https://aclanthology.org/2025.co
ling-main.672/.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm
self-training via process reward guided tree search. Advances in Neural Information Processing
Systems, 37:64735–64772, 2024.

Kaiyan Zhang, Jiayuan Zhang, Haoxin Li, Xuekai Zhu, Ermo Hua, Xingtai Lv, Ning Ding, Biqing Qi,
and Bowen Zhou. Openprm: Building open-domain process-based reward models with preference
trees. In The Thirteenth International Conference on Learning Representations, 2025b.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu Ding, Joshua B Tenenbaum, and Chuang Gan.
Planning with large language models for code generation. arXiv preprint arXiv:2303.05510, 2023.

Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge for
large-scale task planning, 2023. URL https://arxiv.org/abs/2305.14078.

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang, Xinyun Chen, Minmin Chen, Azade Nova,
Le Hou, Heng-Tze Cheng, Quoc V. Le, Ed H. Chi, and Denny Zhou. Natural plan: Benchmarking
llms on natural language planning, 2024. URL https://arxiv.org/abs/2406.04520.

12

https://arxiv.org/abs/2502.11221
https://aclanthology.org/2025.coling-main.672/
https://aclanthology.org/2025.coling-main.672/
https://arxiv.org/abs/2305.14078
https://arxiv.org/abs/2406.04520

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A COST-AUGMENTED BLOCKSWORLD

The Budget-BlocksWorld dataset contains tasks of varying lengths, from 2 to 32 steps. The distribution
is as follows: 2-step (5), 4-step (12), 6-step (29), 8-step (67), 10-step (108), 12-step (177), 14-step
(191), 16-step (163), 18-step (109), 20-step (78), 22-step (33), 24-step (20), 26-step (7), 28-step (6),
30-step (2), and 32-step (1).

We recompute the cost-optimal solution for each task in Budget-BlocksWorld using exhaustive search.
At each step, we expand nodes with all feasible actions and retain the least-cost path once a goal state
is reached. This non-trivial effort ensures that our benchmark provides reliable optimal ground-truth
plans.

B ADDITIONAL IMPLEMENTATION DETAILS OF CATS

Figure 4 and Figure 5 displays the prompt used by CATS for generating confidence rewards, and
Figure 6 and Figure 7 shows the associated self-evaluation prompt that performs binary validation of
each selected action. For consistency, the same prompts are also used in the RAP and ToT baselines.

Next Action Confidence Prompt
I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the actions I can
do and the corresponding time consumption:
Pick up a block, 1 min
Unstack a block from on top of another block, 1 min
Put down a block, 20 min
Stack a block on top of another block, 1 min
I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is empty.
I can only pick up a block if the block is on the table and the block is clear. A block is clear if the block has
no other blocks on top of it and if the block is not picked up.
I can only unstack a block from on top of another block if the block I am unstacking was really on top of
the other block.
I can only unstack a block from on top of another block if the block
I am unstacking is clear. Once I pick up or unstack a block, I am holding the block.
I can only put down a block that I am holding.
I can only stack a block on top of another block if I am holding the block being stacked.
I can only stack a block on top of another block if the block onto which I am stacking the block is clear.
Once I put down or stack a block, my hand becomes empty.

[STATEMENT] As initial conditions I have that, the red block is clear, the blue block is clear, the orange
block is clear, the hand is empty, the red block is on the table, the blue block is on the table and the orange
block is on the table.
My goal is to have that the blue block is on top of the orange block.
My previous plan is:
[PREVIOUS PLAN] pick up the blue block [PREVIOUS PLAN END]
The current time usage for the previous plan is 1 min
My plan is as follows:
[PLAN] stack the blue block on top of the orange block [PLAN END]

Figure 4: The prompt for computing the confidence reward for CATS.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Next Action Confidence Prompt(Continued)
[Another In-context learning example in the same format as the previous text block...]

[STATEMENT]
As initial conditions I have that, <init state>
My goal is to <goals>
My previous plan is:
[PREVIOUS PLAN] <previous plan> [PREVIOUS PLAN END]
The current time usage for the previous plan is <current time usage> min
My plan is as follows:
[PLAN]

Figure 5: The prompt for computing the confidence reward for CATS.

Self Evaluation Prompt for Confidence Reward
I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the actions I can
do and the corresponding time consumption:
Pick up a block, 1 min
Unstack a block from on top of another block, 1 min
Put down a block, 20 min
Stack a block on top of another block, 1 min
I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is empty.
I can only pick up a block if the block is on the table and the block is clear. A block is clear if the block has
no other blocks on top of it and if the block is not picked up.
I can only unstack a block from on top of another block if the block I am unstacking was really on top of
the other block.
I can only unstack a block from on top of another block if the block
I am unstacking is clear. Once I pick up or unstack a block, I am holding the block.
I can only put down a block that I am holding.
I can only stack a block on top of another block if I am holding the block being stacked.
I can only stack a block on top of another block if the block onto which I am stacking the block is clear.
Once I put down or stack a block, my hand becomes empty.

[STATEMENT] The initial state: I have that, the yellow block is on the table. The red block is on the top of
the yellow block. The green block is on the top of the red block. The blue block is on the green block. The
blue block is clear. The hand is clear.
The current state: I have that, the yellow block is on the table. The red block is on the top of the yellow
block. The green block is on the top of the red block. The blue block is on the table. The blue block is clear.
The hand is clear.
Goal: The green block is on the top of blue block.
[PREVIOUS ACTION]
unstack the blue block from the green block.
put down the blue block.
We have used 21 minutes.
Our time limit is 33 minutes
[ACTION] unstack the green block from the red block
[EVALUATION] good

[Another in-context learning example in the same format as the previous text block...]

Figure 6: The prompt for computing the confidence reward for CATS.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Self Evaluation Prompt for Confidence Reward (Continued)

[STATEMENT]
The initial state: I have that, <init state>
The current state: I have that,<current state>
Goal: <goal>
[PREVIOUS ACTION] <previous actions>
We have used <current time usage> minutes so far.
Our time limit is <time limit> minutes.
[ACTION] <action>
[EVALUATION]

Figure 7: The prompt for computing the confidence reward for CATS

C BASELINE CONFIGURATIONS

Figure 8 and Figure 9 illustrates the prompt employed for GPT-4.1, Claude-Opus-4.1, and Qwen3-8B
in our main experiments (Section 5.2).

Prompt for raw LLM planner
I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the actions I can
do and the corresponding time consumption:
Pick up a block, 1 min
Unstack a block from on top of another block, 1 min
Put down a block, 20 min
Stack a block on top of another block, 1 min
I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is empty.
I can only pick up a block if the block is on the table and the block is clear. A block is clear if the block has
no other blocks on top of it and if the block is not picked up.
I can only unstack a block from on top of another block if the block I am unstacking was really on top of
the other block.
I can only unstack a block from on top of another block if the block
I am unstacking is clear. Once I pick up or unstack a block, I am holding the block.
I can only put down a block that I am holding.
I can only stack a block on top of another block if I am holding the block being stacked.
I can only stack a block on top of another block if the block onto which I am stacking the block is clear.
Once I put down or stack a block, my hand becomes empty.

IMPORTANT: You must respond with ONLY the plan in the exact format shown below. Do not include any
explanations, analysis, or additional text.

[STATEMENT] As initial conditions I have that, the red block is clear, the blue block is clear, the orange
block is clear, the hand is empty, the red block is on the table, the blue block is on the table and the orange
block is on the table.
My goal is to have that the blue block is on top of the orange block.
The time limit is 22 min
My plan is as follows:
[PLAN]
pick up the blue block
stack the blue block on top of the orange block
[PLAN END]

Figure 8: The prompt for raw LLMs.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Prompt for raw LLM planner (Continued)

[STATEMENT] As initial conditions I have that, the red block is clear, the blue block is clear, the orange
block is clear, the hand is empty, the red block is on top of the yellow block, the blue block is on the table,
the orange block is on the table and the yellow block is on the table.
My goal is to have that the blue block is on top of the yellow block and the orange block is on top of the
blue block.
The time limit is 45 min
My plan is as follows:
[PLAN]
unstack the red block from on top of the yellow block
put down the red block
pick up the blue block
stack the blue block on top of the yellow block
pick up the orange block
stack the orange block on top of the blue block
[PLAN END]

[STATEMENT] As initial conditions I have that, <init state>
My goal is to <goals>
The time limit is <time limit> min
My plan is as follows:
[PLAN]

Figure 9: The prompt for raw LLMs.

D USE OF LLMS

We used Large Language Models solely as writing assistants to polish the clarity, grammar, and
readability of the manuscript. LLMs were not involved in the research ideation, methodology design,
experiment execution, data analysis, or interpretation of results. All technical content, contributions,
and conclusions are entirely the work of the authors. The authors take full responsibility for the
content of this paper.

16

	Introduction
	Related Works
	Test time computing
	Tree-based Search algorithms in LLM era
	Cost-augmented planning problem

	Budget-Blocksworld
	Cost-Augmented Tree Search (CATS)
	Reward Design
	Tree Expansion algorithm

	Experiments
	Metrics
	Overall performance
	Efficiency
	Ablation studies

	Conclusion
	Cost-Augmented Blocksworld
	Additional Implementation Details of CATS
	Baseline Configurations
	Use of LLMs

