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Abstract

We consider online model selection with decentralized data over M clients, and
study the necessity of collaboration among clients. Previous work proposed various
federated algorithms without demonstrating their necessity, while we answer the
question from a novel perspective of computational constraints. We prove lower
bounds on the regret, and propose a federated algorithm and analyze the upper
bound. Our results show (i) collaboration is unnecessary in the absence of compu-
tational constraints on clients; (ii) collaboration is necessary if the computational
cost on each client is limited to o(K), where K is the number of candidate hy-
pothesis spaces. We clarify the unnecessary nature of collaboration in previous
federated algorithms for distributed online multi-kernel learning, and improve the
regret bounds at a smaller computational and communication cost. Our algorithm
relies on three new techniques including an improved Bernstein’s inequality for
martingale, a federated online mirror descent framework, and decoupling model
selection and prediction, which might be of independent interest.

1 Introduction

Model selection which is a fundamental problem for offline machine learning focuses on how to select
a suitable hypothesis space for a machine learning algorithm [Mitchell, 1997, Bartlett et al., 2002,
Mohri et al., 2018]. Model selection for online machine learning is called online model selection
(OMS), such as model selection for online supervised learning [Foster et al., 2017, Zhang and Liao,
2018, Zhang et al., 2021, Li and Liao, 2022], model selection for online active learning [Karimi
et al., 2021], and model selection for contextual bandits [Foster et al., 2019, Pacchiano et al., 2020,
Ghosh and Chowdhury, 2022]. We consider model selection for online supervised learning. Let
F = {F1, . . . ,FK} contain K hypothesis spaces and `(·, ·) be a loss function. For a sequence of
examples {(xt, yt)}t=1,...,T , we aim to adapt to the case that the optimal hypothesis space Fi∗ ∈ F
is given by an oracle and we run an online learning algorithm in Fi∗ . OMS can be defined by
minimizing the regret, i.e.,

min
f1,...,fT

(
T∑
t=1

`(ft(xt), yt)− min
f∈Fi∗

T∑
t=1

`(f(xt), yt)

)
,
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where ft ∈ ∪Ki=1Fi is the hypothesis used by an OMS algorithm at the t-th round. The optimal value
of the regret depends on the complexity of Fi∗ [Foster et al., 2017, 2019].

In this work, we consider online model selection with decentralized data (OMS-DecD) over M
clients, in which each client observes a sequence of examples

{(
x

(j)
t , y

(j)
t

)}
t=1,...,T

, j = 1, . . . ,M ,

and but does not share personalized data with others. There is a central server that coordinates the
clients by sharing personalized models or gradients [Konečný et al., 2016, Kairouz et al., 2021, Zeng
et al., 2023a,b]. OMS-DecD captures some real-world applications where the data may be collected
by sensors on M different remote devices or mobile phones [Li et al., 2020, Patel et al., 2023, Kwon
et al., 2023], or a local device can not store all of data due to low storage and thus it is necessary to
store the data on more local devices [Slavakis et al., 2014, Bouboulis et al., 2018]. OMS-DecD can
be defined by minimizing the following regret,

min
f
(j)
t ,t=1,...,T,j=1,...,M

 M∑
j=1

T∑
t=1

`
(
f

(j)
t

(
x

(j)
t

)
, y

(j)
t

)
− min
f∈Fi∗

M∑
j=1

T∑
t=1

`
(
f
(
x

(j)
t

)
, y

(j)
t

) ,

where f (j)
t ∈ ∪Ki=1Fi is the hypothesis adopted by the j-th client at the t-th round. Solving OMS-

DecD must achieve two goals: G1 minimizing the regret, and G2 providing privacy protection.

A trivial approach is to use a noncooperative algorithm that independently runs a copy of an OMS
algorithm on the M clients. It naturally provides strong privacy protection, that is, it achieves G2, but
suffers a regret bound that increases linearly with M . It is unknown whether it achieves G1. Another
approach is federated learning which is a framework of cooperative learning with privacy protection
and is provably effective in stochastic convex optimization [McMahan et al., 2017, Woodworth et al.,
2020b, Wang et al., 2021, Reddi et al., 2021]. It is natural to ask:
Question 1. Whether collaboration is effective for OMS-DecD.

The question reveals the hardness of OMS-DecD and is helpful to understand the limitations of
federated learning. Previous work studied a special instance of OMS-DecD called distributed online
multi-kernel learning (OMKL) where Fi is a reproducing kernel Hilbert space (RKHS), and proposed
three federated OMKL algorithms including vM-KOFL, eM-KOFL [Hong and Chae, 2022] and
POF-MKL [Ghari and Shen, 2022]. The three algorithms also suffer regret bounds that increase
linearly with M , and thus can not answer the question. If K = 1, then OMS-DecD is equivalent to
distributed online learning [Mitra et al., 2021, Kwon et al., 2023, Patel et al., 2023]. A noncooperative
algorithm that independently runs online gradient descent (OGD) on each client achieves the two
goals simultaneously [Patel et al., 2023]. Collaboration is unnecessary in the case of K = 1.

In summary, previous work can not answer the question well. On one hand, previous work can not
answer the question in the case of K > 1. On the other hand, in the case of K = 1, previous work
has answered the question only using the statistical property of algorithms, i.e., the worst-case regret,
but omitted the computational property which is very important for real-world applications.

1.1 Main Results

In this paper, we will answer the question from a new perspective of computational constraints on the
problem (Section 5.5). Our main results are as follows.

(1) An upper bound on the regret. We propose a federated algorithm, FOMD-OMS, and prove an
upper bound on the regret (Theorem 2). Besides, if F1, ...,FK are RKHSs, then our algorithm
improves the regret bounds of FOP-MKL [Ghari and Shen, 2022] and eM-KOFL [Hong and
Chae, 2022] at a smaller computational and communication cost. Table 1 summarizes the results.

(2) Lower bounds on the regret. We separately prove a lower bound on the regret of any (possibly
cooperative) algorithm and any noncooperative algorithm (Theorem 3).

(3) A new perspective of computational constraints for Question 1. By the upper bound and
lower bounds, we conclude that (i) collaboration is unnecessary when there are no computational
constraints on clients, thereby generalizing the result for distributed online learning, i.e., K = 1;
(ii) collaboration is necessary if the computational cost on each client is limited to o(K) where
irrelevant parameters are omitted. Our results clarify the unnecessary nature of collaboration in
previous federated algorithms for distributed OMKL.
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1.2 Technical Challenges

There are two main technical challenges on designing a federated online model selection algorithm.

The first challenge lies in obtaining high-probability regret bounds that adapt to the complexity of
individual hypothesis space, a fundamental problem in online model selection [Foster et al., 2017].
While acquiring expected regret bounds that adapt to the complexity of individual hypothesis spaces
is straightforward, the crux is to derive high-probability bounds from expected bounds. To this end,
we introduce a new Bernstein’s inequality for martingale (Lemma 1), which might be of independent
interest.

The second challenge involves achieving a per-round communication cost of o(K). To tackle
this challenge, we propose two techniques: (i) decoupling model selection and prediction; (ii) an
algorithmic framework, named FOMD-No-LU, which might be of independent interest. Specifically,
when clients execute model selection, server must broadcast an aggregated probability distribution,
denoted by p ∈ RK , to clients, naturally incurring a O(K) download cost. Our algorithm conducts
model selection on server and makes predictions on clients, thereby eliminating the need to broadcast
the aggregated probability distribution to clients. Additionally, if we use the local updating approach
[Mitra et al., 2021, Patel et al., 2023], then server must broadcast K aggregated models to clients,
also resulting in a O(K) download cost [Ghari and Shen, 2022]. By utilizing FOMD-No-LU, our
algorithm only broadcasts the selected models to clients and can achieve a o(K) download cost.

2 Related work

Previous work has studied the necessity of collaboration for distributed bandit convex optimization
[Patel et al., 2023], where a federated algorithmic framework named FEDPOSGD was proposed.
Although the regret bounds of FEDPOSGD are smaller than some noncooperative algorithms, there
is not a lower bound on the regret of any noncooperative algorithm [Patel et al., 2023]. Moreover,
the regret analysis of FEDPOSGD is based on the analysis for federated online gradient descent that
is not applicable to our algorithm, FOMD-OMS. The regret analysis of FOMD-OMS requires the
analysis for federated online mirror descent with negative entropy regularizer.

Our work is also different from federated bandits, such as federated K-armed bandits [Wang et al.,
2020] and federated linear contextual bandits [Huang et al., 2021]. For OMS-DecD, we do not
assume that the examples (x

(j)
t , y

(j)
t ), t = 1, . . . , T , on each client are independent and identically

distributed (i.i.d.). In contrast, in both federated K-armed bandits or federated linear contextual
bandits, the rewards must be i.i.d., thereby making collaboration effective. This is similar to the
approach used in federated stochastic optimization. However, this may not hold true for OMS-DedD.
Therefore, it is a distinctive problem for OMS-DecD to study whether collaboration is effective.

3 Problem Setting

Notations Let X = {x ∈ Rd|‖x‖2 < ∞} be an instance space, Y = {y ∈ R : |y| < ∞} be an
output space, and {(xt, yt)}t∈[T ] be a sequence of examples, where [T ] = {1, . . . , T}, xt ∈ X
and yt ∈ Y . Let S = {s1, s2, . . .} be a finite set, Uni(S) be the uniform distribution over the
elements in S and s[T ] be the abbreviation of the sequence s1, s2, . . . , sT . Denote by P[A] the
probability that an event A occurs, a ∧ b = min{a, b}, a ∨ b = max{a, b} and log(a) = log2(a).
Let ψt(·) : Ω→ R, t ∈ [T ] be a sequence of time-variant strongly convex regularizers defined on a
domain Ω. The Bregman divergence denoted by Dψt

(·, ·), associated with ψt(·) is defined by

∀u,v ∈ Ω, Dψt(u,v) = ψt(u)− ψt(v)− 〈∇ψt(v),u− v〉.

3.1 Online Model Selection (OMS)

Let F = {F1, ...,FK} contain K hypothesis spaces where

Fi =
{
f(x) = w>φi(x) : φi(x) ∈ Rdi , ‖w‖2 ≤ Ui

}
. (1)
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Let Fi∗ ∈ F be the optimal but unknown hypothesis space for a given {(xt, yt)}t∈[T ]. OMS can be
defined as follows: generating a sequence of hypotheses f[T ] that minimizes the following regret,

∀i ∈ [K], Reg(Fi) =

T∑
t=1

`(ft(xt), yt)− min
f∈Fi

T∑
t=1

`(f(xt), yt),

where ft ∈ ∪Ki=1Fi. The optimal hypothesis space Fi∗ must contain a good hypothesis and has a low
complexity [Foster et al., 2017, 2019], and is defined by

Fi∗ = arg min
Fi∈F

[
min
f∈Fi

T∑
t=1

`(f(xt), yt) + Θ
(√

T · Ci
)]

,

where Ci measures the complexity of Fi, such as Ui and di.

OMS is more challenge than online learning, since we not only learn the optimal hypothesis space,
but also learn the optimal hypothesis in the space. Next we give some examples of OMS.
Example 1 (Online Hyper-parameters Tuning). Let Fi consist of linear functions of the form

Fi = {f(x) = 〈w,x〉, ‖w‖2 ≤ Ui} ,

where Ui > 0 is a regularization parameter. Let U = {Ui, i ∈ [K] : U1 < U2 < . . . < UK}. The
hypothesis spaces are nested, i.e., F1 ⊆ F2 ⊆ . . . ⊆ FK . The optimal regularization parameter
Ui∗ ∈ U corresponds to the optimal hypothesis space Fi∗ ∈ F .
Example 2 (Online Kernel Selection [Shen et al., 2019, Li and Liao, 2022]). Let κi(·, ·) : Rd×Rd →
R be a positive semidefinite kernel function, and φi : Rd → Rdi be the associated feature mapping.
Fi is the RKHS associated with κi, i.e.,

Fi = {f(x) = 〈w, φi(x)〉 : ‖w‖2 ≤ Ui} .

The optimal kernel function κi∗ ∈ {κ1, . . . , κK} corresponds to the optimal RKHS Fi∗ ∈ F .
Example 3 (Online Pre-trained Classifier Selection [Karimi et al., 2021]). Generally, Fi can be a
well-trained machine learning model. Let F contain K pre-trained classifiers. For a new instance
xt, we select a (combinational) pre-trained classifier and make a prediction. The selection of a
pre-trained classifier has an important implication in practical scenarios.

3.2 Online Model Selection with Decentralized Data (OMS-DecD)

We formally define OMS-DecD as follows. Assuming that there are M clients and a server. At any
round t, each client observes an instance x

(j)
t , and selects a hypothesis f (j)

t ∈ ∪Ki=1Fi, j ∈ [M ].
Then clients output predictions {f (j)

t (x
(j)
t )}Mj=1. The goal is to minimize the following regret

∀i ∈ [K], RegD(Fi) =

T∑
t=1

M∑
j=1

`
(
f

(j)
t (x

(j)
t ), y

(j)
t

)
− min
f∈Fi

T∑
t=1

M∑
j=1

`
(
f(x

(j)
t ), y

(j)
t

)
,

where y(j)
t is the label or true output. Each client can not share personalized data with others, but can

share personalized models or gradients via the central server.

4 FOMD-No-LU

In this section, we propose a federated algorithmic framework, FOMD-No-LU (Federated Online
Mirror Descent without Local Updating) for online collaboration.

Let Ω be a convex and bounded decision set. At any round t, each client j ∈ [M ] selects a decision
u

(j)
t ∈ Ω, and then observes a loss function l(j)t (·) : Ω→ R. The client computes the loss l(j)t (u

(j)
t )

and an estimator of the gradient denoted by g̃(j)
t (or the gradient denoted by g(j)

t ). To reduce the
communication cost, we adopt the intermittent communication (IC) protocol [Woodworth et al.,
2021] where clients communicate with server every N rounds. Assuming that T = N ×R where
N,R ∈ Z, the IC protocol limits the rounds of communication to R.
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We divide [T ] into R disjoint sub-intervals denoted by {Tr}Rr=1, in which

Tr = {(r − 1)N + 1, (r − 1)N + 2, . . . , rN} . (2)

For any t ∈ Tr, all clients always select the initial decision, i.e.,

∀j ∈ [M ], ∀t ∈ Tr, u
(j)
t = u

(j)
(r−1)N+1. (3)

At the end of the rN -round, all of clients send 1
N

∑
t∈Tr

g̃
(j)
t , j ∈ [M ] to server. Then server updates

the decision within online mirror descent framework [Bubeck and Cesa-Bianchi, 2012],

ḡt =
1

M

M∑
j=1

(
1

N

∑
t∈Tr

g̃
(j)
t

)
, (4)

∇ūt+1ψt(ūt+1) = ∇utψt(ut)− ḡt, (5)
ut+1 = arg min

u∈Ω
Dψt

(u, ūt+1). (6)

(4)-(5) is called model averaging [McMahan et al., 2017] and shows the collaboration among clients.
Finally, server may broadcast ut+1 to all clients. Let the initial decision u

(j)
1 = u1 for all j ∈ [M ],

then it must be u(j)
t = ut for all t ∈ [T ]. Thus clients do not transmit u(j)

t to server. The pseudo-code
of FOMD-No-LU is shown in Algorithm 1.

4.1 Regret Bound

Theorem 1. Let E = {N, 2N, ...., RN} where N = T
R and R ∈ [T ]. Assuming that l(j)t (·),

t ∈ [T ], j ∈ [M ], are convex loss functions. Let g(j)
t = ∇

u
(j)
t
l
(j)
t (u

(j)
t ) and g̃(j)

t be an estimator of

g
(j)
t . At any round t ∈ E , let qt+1 and rt+1 be two auxiliary decisions defined as follows,

∇qt+1
ψt(qt+1) = ∇ut

ψt(ut)− 2

M∑
j=1

g̃
(j)
t − g

(j)
t

M
, ∇rt+1

ψt(rt+1) = ∇ut
ψt(ut)−

2

M

M∑
j=1

g
(j)
t .

Then FOMD-No-LU guarantees that,

∀v ∈ Ω,

T∑
t=1

M∑
j=1

l
(j)
t (u

(j)
t )− l(j)t (v)

NM
≤
∑
t∈E

[
Dψt

(v,ut)−Dψt
(v,ut+1) +

Dψt
(ut, rt+1)

2

]
︸ ︷︷ ︸

Ξ1

+

∑
t∈E

Dψt
(ut,qt+1)

2
+

1

M

∑
t∈E

M∑
j=1

〈
g̃

(j)
t − g

(j)
t ,ut − v

〉
︸ ︷︷ ︸

Ξ2

.

It is intriguing that the regret bound comprises two components: the first part, Ξ1, cannot be reduced
by collaboration, while the second part, Ξ2, highlights the benefits of collaboration. Ξ1 is the regret
induced by exact gradients, while Ξ2 is the regret induced by estimated gradients and shows how
collaboration controls the regret. It is worth mentioning that Theorem 1 gives a general regret bound,
from which various types of regret bounds can be readily derived by instantiating the decision set Ω
and the regularizer ψt(·). For instance, if Ω = Fi where Fi follows Example 1, ψt(v) = 1

2λ‖v‖
2
2

and E[‖g̃(j)
t ‖22] ≤ C‖g(j)

t ‖22, then FOMD-No-LU becomes a federated online descent descent. It is

easy to give a O(MUi

√
(1 + C

M )T ) expected regret from Theorem 1. Besides, N > 1 increases the
regret and shows the trade-off between communication cost and regret bound.

Theorem 1 requires a novel analysis on how the bias of estimators, i.e.,
∑M
j=1 ‖g̃

(j)
t − g

(j)
t ‖22, is

controlled by cooperation. To this end, we introduce two virtual decisions qt+1 and rt+1 that are

updated by 2
∑M
j=1

g̃
(j)
t −g

(j)
t

M and 2
∑M
j=1

g
(j)
t

M , respectively. Previous federated online mirror descent

uses exact gradients g(j)
t , j ∈ [M ] [Mitra et al., 2021]. Thus its analysis is different from ours.
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Algorithm 1 FOMD-No-LU
Require: Ω.
Ensure: u

(j)
1 , j ∈ [M ]

1: for r = 1, 2, . . . , R do
2: for t = (r − 1)N + 1, . . . , rN do
3: for j = 1, . . . ,M in parallel do
4: Client selects u(j)

(r−1)N+1 ∈ Ω

5: Client observes loss function l(j)t (·)
6: Client computes estimated gradient g̃(j)t

7: end for
8: if t == rN then
9: Clients transmit 1

N

∑
t∈Tr

g̃
(j)
t , j ∈ [M ]

10: Server computes ut+1 following (4)-(6)
11: Server may broadcast ut+1

12: end if
13: end for
14: end for

Algorithm 2 FOMD-OMS (R = T )

Require: T , J , η1, {Ui, λ1,i, i ∈ [K]}
Ensure: f (j)

1,i = 0, p1,i, i ∈ [K], j ∈ [M ]
1: for t = 1, 2, . . . , T do
2: for j = 1, . . . ,M do
3: Server samples O(j)

t following (7)
4: Server broadcasts f (j)

t,i , i ∈ O
(j)
t to client

5: end for
6: for j = 1, . . . ,M in parallel do
7: Client outputs f (j)

t,At,1
(x

(j)
t )

8: Client computes∇(j)
t,i , c

(j)
t,i , i ∈ O

(j)
t

9: Client transmits∇(j)
t,i , c

(j)
t,i , i ∈ O

(j)
t

10: end for
11: Server computes pt+1 following (8)
12: Server computes wt+1,i, i ∈ [K] following (9)
13: end for

4.2 Comparison with Previous Work

In fact, FOMD-No-LU adopts the batching technique [Dekel et al., 2011], that is, it divides [T ] into
R sub-intervals and executes (3) during each sub-intervals. The batching technique (also known as
mini-batch) has been used in the multi-armed bandit problem [Arora et al., 2012] and distributed
stochastic convex optimization [Karimireddy et al., 2020, Woodworth et al., 2020a]. We use the
batching technique for the first time to distributed online learning.

FOMD-No-LU is different from FedOMD (federated online mirror descent) [Mitra et al., 2021]. (i)
FedOMD only transmits exact gradients, while FOMD-No-LU can transmit estimated gradients. Thus
the regret bound of FedOMD did not contain Ξ2 in Theorem 1. (ii) FedOMD uses local updating,
such as local OGD [Patel et al., 2023] and local SGD [McMahan et al., 2017, Reddi et al., 2021].
Thus FedOMD induces client drift, i.e., u(j)

t 6= ut. Besides, if we use FedOMD to design a federated
online model selection algorithm, then the download cost is in O(MK) bits.

5 A Federated Algorithm for OMS-DecD

In this section, we just consider the case R = T , that is, there is no communication constraints. Due
to space constraints, we have deferred the algorithm and result of R < T to the appendix.

At a high level, our algorithm comprises two components both of which are critical for achieving a
communication cost in o(K): (i) decoupling model selection and online prediction; (ii) collaboratively
updating decisions within the framework of FOMD-No-LU.

5.1 Decoupling Model Selection and Prediction

Model Selection on Server At any round t, server maintains K hypotheses {f (j)
t,i ∈ Fi}Ki=1 and a

probability distribution p
(j)
t over the K hypotheses for all j ∈ [M ]. The model selection process

aims to select a hypothesis from {f (j)
t,i }Ki=1 and then predicts the output of x(j)

t . An intuitive idea is

that, for each j ∈ [M ], the client samples a hypothesis following p
(j)
t . However, such an approach

requires that server broadcasts p(j)
t to clients, and will cause a download cost in O(K).

The sampling operation (or model selection process) can be executed on server. Specifically, server
just broadcasts the selected hypotheses, and thus saves the communication cost. For each j ∈ [M ],
server selects J ∈ [2,K] hypotheses denoted by f (j)

t,At,a
, a ∈ [J ] whereAt,a ∈ [K]. For simplicity, let

O
(j)
t = {At,1, . . . , At,J}. We instantiate ut = pt in FOMD-No-LU. Then FOMD-No-LU ensures
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p
(j)
t = pt for all j ∈ [M ]. We sample At,1, . . . , At,J in order and follow (7).{

At,1 ∼ pt,

At,a ∼ Uni([K] \ {At,1, . . . , At,a−1}), a ∈ [2, J ].
(7)

Server samples O(j)
t for all j ∈ [M ] and thus must independently execute (7) M times which only

pays an additional computational cost in O(M logK). The factor logK arises from the process of
sampling a number from {1, ...,K}. Server only sends f (j)

At,a
, a ∈ [J ] to the j-th client. It is worth

mentioning that server does not send pt. The total download cost is O(
∑M
j=1

∑J
a=1(dAt,a

+ logK)).
If J is independent of K, then the download cost is only O(M logK).

Prediction on Clients For each j ∈ [M ], the j-th client receives f (j)
At,a

, a ∈ [J ], and uses f (j)
t,At,1

to
output a prediction, i.e.,

ŷ
(j)
t = f

(j)
t,At,1

(
x

(j)
t

)
=
〈
w

(j)
t,At,1

, φAt,1
(x

(j)
t )
〉
,

where we assume that f (j)
t,i is parameterized by w

(j)
t,i ∈ Rdi (see (1)). After observing the true output

y
(j)
t , the client suffers a loss `(f (j)

t,At,1
(x

(j)
t ), y

(j)
t ).

It is worth mentioning that the other J − 1 hypotheses f (j)
t,At,a

, a ≥ 2 are just used to obtain more
information on the loss function. We will explain more in the following subsection. Thus we do not
cumulate the loss `(f (j)

t,At,a
(x

(j)
t ), y

(j)
t ), a ≥ 2.

5.2 Online Collaboration Updating

Updating sampling probabilities For each j ∈ [M ], let c(j)
t = (c

(j)
t,1 , . . . , c

(j)
t,K) where c(j)t,i =

`(f
(j)
t,i (x

(j)
t ), y

(j)
t ) is the loss of f (j)

t,i , i ∈ [K]. The j-th client will send c(j)t,i , i ∈ O(j)
t , to server.

Since c(j)t,i , i /∈ O(j)
t can not be observed, it is necessary to construct an estimated loss vector c̃(j)

t =

(c̃
(j)
t,1 , . . . , c̃

(j)
t,K) where c̃(j)t,i =

c
(j)
t,i

P[i∈O(j)
t ]
· I
i∈O(j)

t
, i ∈ [K]. It is easy to prove that Et

[
c̃
(j)
t,i

]
= c

(j)
t,i

and Et
[
(c̃

(j)
t,i )2

]
≤ K−1

J−1 (c
(j)
t,i )2 where Et[·] := E

[
·|O(j)

[t−1]

]
. Thus sampling At,a, a ≥ 2 reduces the

variance of the estimators which is equivalent to obtain more information on the true loss.

Server aggregates c̃(j)
t , j ∈ [M ] and updates pt following (4)-(6). Let ∆K be the (K−1)-dimensional

simplex, Ω = ∆K and g̃(j)
t = c̃

(j)
t . Then the server executes (8).

∇p̄t+1
ψt(p̄t+1) =∇pt

ψt(pt)−
1

M

M∑
j=1

c̃
(j)
t ,

pt+1 = arg min
p∈∆K

Dψt
(p, p̄t+1),

ψt(p) =

K∑
i=1

Ci
ηt
pi ln pi,

(8)

where ψt(p) is the weighted negative entropy regularizer [Bubeck et al., 2017], ηt > 0 is a time-
variant learning rate and Ci > 0 satisfies that maxt,j c

(j)
t,i ≤ Ci. It is obvious that server does not

broadcast pt+1.

Updating hypotheses For each j ∈ [M ] and i ∈ [K], let ∇(j)
t,i = ∇

w
(j)
t,i
`
(〈

w
(j)
t,i , φi(x

(j)
t )
〉
, y

(j)
t

)
.

Since ∇(j)
t,i , i /∈ O

(j)
t are unknown, it is necessary to construct an estimator of the gradient, denoted

by ∇̃(j)
t,i =

∇(j)
t,i

P[i∈O(j)
t ]
· I
i∈O(j)

t
for all j ∈ [M ], i ∈ [K]. Clients send {∇(j)

t,i , i ∈ O
(j)
t }, j ∈ [M ] to

server. Then server aggregates {∇̃(j)
t,i , i ∈ [K]}, j ∈ [M ] and updates the hypotheses following
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(4)-(6). For each i ∈ [K], let Ω = Fi and g̃(j)
t = ∇̃(j)

t,i . Server executes (9).

∇w̄t+1,iψt,i(w̄t+1,i) =∇wt,iψt,i(wt,i)−
1

M

M∑
j=1

∇̃(j)
t,i , i = 1, ...,K,

wt+1,i = arg min
w∈Fi

Dψt,i
(w, w̄t+1,i),

ψt,i(w) =
1

2λt,i
‖w‖22,

(9)

where ψt,i(w) is the Euclidean regularizer and λt,i is a time-variant learning rate.

We name this algorithm FOMD-OMS (FOMD-No-LU for OMS-DecD) and show it in Algorithm 2.

5.3 Regret bounds

To obtain high-probability regret bounds that adapt to the complexity of individual hypothesis space,
we establish a new Bernstein’s inequality for martingale.
Lemma 1. Let X1, . . . , Xn be a bounded martingale difference sequence w.r.t. the filtration H =
(Hk)1≤k≤n and with |Xk| ≤ a. Let Zt =

∑t
k=1Xk be the associated martingale. Denote the sum of

the conditional variances by Σ2
n =

∑n
k=1 E

[
X2
k |Hk−1

]
≤ v, where v ∈ [0, B] is a random variable

and B ≥ 2 is a constant. Then for any constant a > 0, with probability at least 1− 2dlogBeδ,

max
t=1,...,n

Zt <
2a

3
ln

1

δ
+

√
2

B
ln

1

δ
+ 2

√
v ln

1

δ
.

Note that v is a random variable in Lemma 1, while it is a constant in standard Bernstein’s inequality
for martingale (see Lemma A.8 [Cesa-Bianchi and Lugosi, 2006]). Lemma 1 is derived from the
standard Bernstein’s inequality along with the well-known peeling technique [Bartlett et al., 2005].
Assumption 1. For each i ∈ [K], there is a constant bi such that ‖φi(x)‖2 ≤ bi where φi(·) is
defined in (1).
Lemma 2. Under Assumption 1, for each i ∈ [K], there are two constants Ci > 0, Gi > 0 that
depend on Ui or bi such that maxt,j c

(j)
t,i ≤ Ci and maxt,j ‖∇(j)

t,i ‖2 ≤ Gi.
Theorem 2. Let R = T . Under Assumption 1, denote by Am = argmini∈[K]Ci and C =

maxi∈[K] Ci. Assuming that `(·, ·) is convex and K ≥ J ≥ 2. Let gK,J = K−J
J−1 ,

∀i ∈ Am, p1,i =
1

|Am|

(
1−
√
K√
T

)
+

1√
KT

and ∀i /∈ Am, p1,i =
1√
KT

,

∀t ∈ [T ], ηt =

√
ln (KT )

2
√(

1 +
gK,J

M

)
T
∧ 1

2gK,J
, λt,i =

Ui

2Gi

√(
1 +

gK,J

M

)
·
(
g2
K,J ∨ t

) .
With probability at least 1−Θ (M log(T ) + log(KT/M)) · δ, the regret of FOMD-OMS satisfies:

∀i ∈ [K],RegD(Fi) = O

(
MBi,1

√(
1 +

gK,J
M

)
T +Bi,2 · gK,J ln

1

δ
+Bi,3

√
gK,JMT ln

1

δ

)
,

where Bi,1 = UiGi + Ci
√

ln(KT ), Bi,2 = MC + UiGi and Bi,3 = UiGi +
√
CCi.

Both Ci and Gi depend on Ui or bi (see Lemma 2). Let Ci = Θ(UiGi + Ci). Thus Ci measures the
complexity of Fi. Then our regret bound adapts to

√
CCi where C = maxi∈[K] Ci, while previous

regret bounds depend on C [Ghari and Shen, 2022, Hong and Chae, 2022], that is, they can not adapt
to the complexity of individual hypothesis space. If Ci∗ � C, then our regret bound is much better.

The regret bound in Theorem 2 is also called multi-scale regret bound [Bubeck et al., 2017]. However,
previous regret analysis can not yield a high-probability multi-scale bound. The reason is the lack of
the new Bernstein’s inequality for martingale (Lemma 1). If we use the new Freedman’s inequality
for martingale [Lee et al., 2020], then a high-probability bound can still be obtained, but is worse
than the bound in Theorem 2 by a factor of order O(poly(lnT )).
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5.4 Time Complexity and Communication Complexity Analysis

For each j ∈ [M ], the j-th client makes prediction and computes gradients in time O(
∑
i∈O(j)

t
di).

Server samples O(j)
t , j ∈ [M ], aggregates gradients and updates global models. The per-round time

complexity on server is O(
∑M
j=1

∑
i∈O(j)

t
di +

∑K
i=1 di + JM logK).

Upload At any round t ∈ [T ], the j-th client transmits c(j)t,i ,∇
(j)
t,i , i ∈ O(j)

t and the corresponding
indexes to server. It requires J(

∑
i∈O(j)

t
di + 1) floating-point numbers and J integers. If we use

32 bits to represent a float, and use logK bits to represent an integer in [K]. Each client transmits
(32J(

∑
i∈O(j)

t
di + 1) + J logK) bits to server.

Download Server broadcasts wt,i ∈ Rdi , i ∈ O(j)
t and the corresponding indexes to clients. The

total download cost is (32MJ(
∑
i∈O(j)

t
di + 1) +MJ logK) bits.

5.5 Answers to Question 1

Before discussing Question 1, we give two lower bounds on the regret.
Theorem 3 (Lower Bounds). Assuming that 5 ≤ K ≤ min{d, T}. For each i ∈ [K], let Fi =
{fi(x) = e>i x} and Di = [minx∈X fi(x),maxx∈X fi(x)], where ei is the standard basis vector in
Rd. Denote by sup the supremum over all examples.

(i) There are no computational constraints on clients. Let `(v, y) = |v − y|. The regret of any
algorithm for OMS-DecD satisfies: limT→∞ sup maxi∈[K] RegD(Fi) ≥ 0.25M

√
T lnK;

(ii) The per-round time complexity on each client is limited toO(J). Let `(v, y) = 1−v ·y. The regret
of any, possibly randomized, noncooperative algorithm with outputs in ∪i∈[K]Di for OMS-DecD
satisfies: supE[maxi∈[K] RegD(Fi)] ≥ 0.1M

√
KTJ−1, where the expectation is taken over the

randomization of algorithm.

The assumption that the outputs of any noncooperative algorithm belong to ∪i=∈[K]Di is natural, and
can be removed in the case of J = 1. Next we define a noncooperative algorithm, NCO-OMS.

Definition 1 (NCO-OMS). NCO-OMS independently samples O(j)
t following (7) and executes

∀j ∈ [M ], ∇p̄t+1
ψt(p̄t+1) =∇

p
(j)
t
ψt

(
p

(j)
t

)
− c̃

(j)
t , p

(j)
t+1 = arg min

p∈∆K

Dψt
(p, p̄t+1).

∇w̄t+1,iψt,i(w̄t+1,i) =∇
w

(j)
t,i
ψt,i

(
w

(j)
t,i

)
− ∇̃(j)

t,i , w
(j)
t+1,i = arg min

w∈Fi

Dψt,i(w, w̄t+1,i),

where the definitions of c̃(j)
t and ∇̃(j)

t,i follow FOMD-OMS.

It is easy to prove the regret of NCO-OMS satisfies: with probability at least 1−Θ (M log(KT )) · δ,

∀i ∈ [K], RegD(Fi) = O

(
M

(
Bi,1

√
(1 + gK,J)T +Bi,2gK,J ln

1

δ
+Bi,3

√
gK,JT ln

1

δ

))
,

where Bi,1 = UiGi + Ci
√

ln(KT ), Bi,2 = C + UiGi and Bi,3 = UiGi +
√
CCi. We leave the

pseudo-code of NCO-OMS and the corresponding regret analysis in appendix.

Next we discuss Question 1 by considering two cases.

Case 1: There are no computational constraints on clients. Collaboration is unnecessary.

Let J = Θ(K) in FOMD-OMS and NCO-OMS. By Theorem 2, both FOMD-OMS and NCO-OMS
enjoy a O(MUiGi

√
T +MCi

√
T ln(KT )) regret. By Theorem 3, FOMD-OMS and NCO-OMS

are nearly optimal in terms of the dependence on M and T . Thus collaboration is unnecessary.

Case 2: The per-round time complexity on each client is limited to o(K). Collaboration is necessary.

Let J = o(K) in FOMD-OMS and Theorem 3. By Theorem 2, FOMD-OMS enjoys a
O(MBi,1

√
T + Bi,3

√
MKTJ−1 ln δ−1) regret, which is smaller than the lower bound on the

regret of any noncooperative algorithm (see Theorem 3). Thus collaboration is necessary.
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Table 1: Comparison with previous algorithms. D is the number of random features [Rahimi and
Recht, 2007]. Time (s) is the per-round time complexity on client.

Algorithm Regret bound Time (s) Download (bits)

eM-KOFL Õ
(
CM
√
T lnK + CiMT√

D

)
O(DK) O(DM logK)

POF-MKL Õ
(
CM
√
KT + CiMT√

D

)
O(DK) O(DMK)

FOMD-OMS Õ
(
CiM

√
T lnK +

√
CCiMKT + CiMT√

D

)
O(D) O(DM logK)

6 Application to Distributed OMKL

We will apply the proposed FOMD-OMS to a special instance of OMS-DecD, known as distributed
OMKL, in which Fi is a RKHS. Then we contrast our results with those from earlier studies,
highlighting the unnecessary nature of collaboration in prior federated algorithms.

Theorem 4. Let Fi be a RHKS for all i ∈ [K] and R ≤ T . With probability at least
1−Θ (TM log(R) + T log(KR/M)) · δ, the regret of FOMD-OMS satisfies, ∀i ∈ [K],

RegD(Fi) = Õ

(
MBi,1

√
1 +

gK,J
M
· T√

R
+
Bi,2MgK,JT

R
+
Bi,3T√
R

√
MgK,J +

UiGiMT√
D

)
,

where the notation Õ(·) hides polylogarithmic factor in δ−1 and D = di follows (1).

We defer the algorithm in appendix. Let R = T and J = 2. We compare FOMD-OMS with
eM-KOFL [Hong and Chae, 2022] and POF-MKL [Ghari and Shen, 2022]. Table 1 gives the results.

We observe that FOMD-OMS significantly improves the computational complexity of eM-KOFL and
POF-MKL (by a factor ofO(K)) on each client. The per-round time complexity of the two algorithms
is O(DK). Recalling the answer to Question 1 (see Section 5.5), collaboration in eM-KOFL and
POF-MKL is unnecessary.

Next we compare the regret bound of the three algorithms. Recalling that Ci ≤ C. The regret bounds
of eM-KOFL and POF-MKL can not adapt to the complexity of individual hypothesis space. (i) The
regret bound of FOMD-OMS is better than that of POF-MKL in relation to its dependence on M
and Ci. (ii) In the case of K = O

(
C
Ci
M · lnK

)
, the regret bound of FOMD-OMS is better than that

of eM-KOFL. (iii) In the case of K = Ω
(

C
Ci
M · lnK

)
, the regret bound of FOMD-OMS is worse

than that of eM-KOFL. If K is sufficiently large, the regret bound of eM-KOFL is better than that of
FOMD-OMS by a factor of O(

√
K).

7 Conclusion

In this paper, we have studied the necessity of collaboration for OMS-DecD from the perspective
of computational constraints. We demonstrate that collaboration is unnecessary when there are no
computational constrains on clients, while it becomes necessary if the time complexity on each client
is limited to o(K). Our work clarifies the unnecessary nature of collaboration in previous algorithms
for the first time, gives conditions under which collaboration is necessary, and provides inspirations
for studying the problem from constraints beyond computational constrains.
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A Limitations

The main limitation of this work lies in the first lower bound in Theorem 3 that holds in the case of
T →∞. Although this lower bound nearly matches our upper bound asymptotically and is enough
to answer Question 1, it is desired to establish a non-asymptotical lower bound, that is, the lower
bound holds for any value of T .

B Broader Impact

This work can be potentially applied to distributed online prediction tasks. We aim to address a
fundamental problem whether collaboration among clients is necessary and under what conditions
collaboration is necessary. A predictable economic benefit of our work is to give a guidance on the
usage of federated learning and save unnecessary communication overhead.

Our work can also instruct the machine learning engineers to tune the hyper-parameter of online
learning algorithms. Thus our work can alleviate the burden of machine learning engineers and
improve the utility of online leaning algorithms in industrial applications.

C Experiments

In this section, we aim to verify the following three goals which are our main results.

G1 Collaboration is unnecessary if we allow the computational cost on each client to be O(K).
We set R = T and J = K in FOMD-OMS. In this case, the per-round running time on each
client is O(K). We aim to verify that FOMD-OMS enjoys similar prediction performance with
the noncooperative algorithm, NCO-OMS with J = K (see Definition 1).

G2 Collaboration is necessary if we limit the computational cost on each client to o(K).
We set R = T and J = 2 in FOMD-OMS. In this case, the per-round running time on each
client is O(1). We aim to verify that FOMD-OMS enjoys better prediction performance than
NCO-OMS with J = 2.

G3 FOMD-OMS improves the regret bounds of algorithms for distributed OMKL.
FOMD-OMS with R = T and J = 2 enjoys similar prediction performance with eM-KOFL
[Hong and Chae, 2022], and enjoys better prediction performance than POF-MKL [Ghari and
Shen, 2022] at a smaller computational cost on each client.
Although there are more baseline algorithms, such as vM-KOFL [Hong and Chae, 2022], pM-
KOFL [Hong and Chae, 2022] and OFSKL [Ghari and Shen, 2022], we do not compare with the
three algorithms since they do not perform as well as eM-KOFL and POF-MKL.

C.1 Experimental setting

We will execute three experiments and each one verifies a goal. For simplicity, we do not measure the
actual communication cost and use serial implementation to simulate the distributed implementation.

To verify G1 and G2, we use the instance of online model selection given in Example 1. The first
experiment verifies G1. We construct 10 nested hypothesis spaces (i.e., K = 10) as follows

∀i ∈ [10], Fi = {f(x) = 〈w,x〉, ‖w‖2 ≤ Ui} ,

where Ui = i
10 . We set R = T and J = K in FOMD-OMS. Since J = K, we have O(j)

t = [K]

and P
[
i ∈ O(j)

t

]
= 1. The learning rates ηt, λt,i, i ∈ [K] of FOMD-OMS follow Theorem 2. For

NCO-OMS, we set J = K and set the learning rate ηt, λt,i, i ∈ [K] following Theorem 2 in which
M = 1, i.e.,

∀t ∈ [T ], ηt =

√
ln (KT )

2
√
T

, λt,i =
Ui

2Gi
√
t
.

We use the square loss function `(f(x), y) = (f(x)− y)2. For both FOMD-OMS and NCO-OMS,
we tune Gi = (Ui + 1)× {1, 2, 4, 6, 8, 10} and set Ci = (Ui + 1)2.
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Table 2: Basic information of datasets.
Dataset Number of Instances Number of features
bank 8,190 32
ailerons 13,750 40
calhousing 14,000 8
elevators 16,590 18
TomsHardware 28,170 96
Twitter 50,000 77
Year 51,630 90
Slice 53,500 384

The second experiment verifies G2. We set R = T and J = 2 in FOMD-OMS. The learning rates of
FOMD-OMS also follow Theorem 2. For NCO-OMS, we also set J = 2 and set the learning rate
ηt, λt,i, i ∈ [K] following Theorem 2 in which M = 1, i.e.,

∀t ∈ [T ], ηt =

√
ln (KT )

2
√

(K − 1)T
∧ 1

2(K − 2)
, λt,i =

Ui

2Gi
√

(K − 1) · ((K − 2)2 ∨ t)
.

Similar to the first experiment, we tune Gi = (Ui + 1)× {1, 2, 4, 6, 8, 10} and set Ci = (Ui + 1)2.

The third experiment verifies G3. We consider online kernel selection (as known as online multi-
kernel learning) which is an instance of online model selection given in Example 2. We select the
Gaussian kernel with 8 different kernel widths (i.e., K = 8),

∀i ∈ [8], κi(x,v) = exp

(
−‖x− v‖22

2σ2
i

)
, σi = 2i−2,

and construct the corresponding hypothesis space Fi and Hi following (21) in which we set Ui = U
and Di = D for all i ∈ [K] and tune U ∈ {1, 2, 4}. Note that Ui is same for all i ∈ [K]. We replace
the initial distribution p1 in Theorem 2 with a uniform distribution ( 1

K , . . . ,
1
K ). We set D = 100

for FOMD-OMS, eM-KOFL and POF-MKL. D is the number of random features. We set R = T ,
J = 2 and C = U + 1 in FOMD-OMS. Thus the per-round time complexity on each client is O(D)
and the per-round communication cost is O(MD +M logK). There are three hyper-parameters in
eM-KOFL, i.e., ηg, ηl and λ. ηg is the global learning rate, ηl is the local learning rate and λ is a
regularization parameter. There are 2M + 3 hyper-parameters in POF-MKL, i.e., ηg , ηj , ξj , j ∈ [M ],
m, λ in which M/m plays the same role with J in FOMD-OMS. ηg is the global learning rate, ηj is
the local learning rate, ξj is called exploration rate and λ is a regularization parameter. Since J = 2
in FOMD-OMS, we can set m = M/2 for FOMD-OMS. Following the original paper [Ghari and
Shen, 2022], we set ξj = 1. For a fair comparison, we change the learning rates of FOMD-OMS,
eM-KOFL and POF-MKL. Following the parameter setting of eM-KOFL [Hong and Chae, 2022], we
tune ηg, ηl, ηj ∈ {0.1, 0.5, 1, 4, 8, 16} and λ ∈ {0.1, 0.001, 0.0001} for eM-KOFL and POF-MKL.
For FOMD-OMS, we also tune ηt, λt,i ∈ {0.1, 0.5, 1, 4, 8, 16}.
For all of the three experiments, we set 10 clients, i.e., M = 10. We use 8 regression datasets shown
in Table 2 from WEKA 2 [Hall et al., 2009] and UCI machine learning repository 3, and rescale the
target variables and features of all datasets to fit in [0,1] and [-1,1] respectively. For each dataset,
we randomly divide it into 10 subsets and each subset simulates the data on a client. We randomly
permutate the instances in the datasets 10 times and report the average results. All algorithms are
implemented with R on a Windows machine with 2.8 GHz Core(TM) i7-1165G7 CPU 4.

We use the square loss function and define the mean squared error (MSE) of all algorithms, i.e.,

MSE =
1

MT

M∑
j=1

T∑
t=1

(
f

(j)
t

(
x

(j)
t

)
− y(j)

t

)2

.

We record the mean of MSE over 10 random experiments, and the standard deviation of the mean of
MSE. We also record the mean of of the total running time on each client, and the standard deviation
of the mean of running time.

2https://waikato.github.io/weka-wiki/datasets/
3https://archive.ics.uci.edu/ml/index.php
4The code of algorithms is available at https://github.com/JunfLi-TJU/OMS-DecD.git
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Table 3: Comparison with the noncooperative algorithm. ∆ is the difference of MSE between
NCO-OMS and FOMD-OMS. aE-b = a× 10−b, a > 0, b > 0.

Algorithm elevator bank
MSE×102 J Time (s) ∆ MSE×102 J Time (s) ∆

NCO-OMS 0.991 ± 0.002 K 1.31 ± 0.10
1E-4 2.158 ± 0.022 K 0.88 ± 0.05

1E-3FOMD-OMS 0.980 ± 0.005 K 0.65 ± 0.08 2.020 ± 0.005 K 0.33 ± 0.08
NCO-OMS 1.168 ± 0.005 2 0.58 ± 0.04

1E-3 2.321 ± 0.021 2 0.39 ± 0.05
2E-3FOMD-OMS 1.024 ± 0.002 2 0.14 ± 0.04 2.118 ± 0.003 2 0.08 ± 0.03

Algorithm TomsHardware Twitter
MSE×102 J Time (s) ∆ MSE×102 J Time (s) ∆

NCO-OMS 0.090 ± 0.004 K 3.02 ± 0.29
1E-4 0.017 ± 0.000 K 5.11 ± 0.24 0FOMD-OMS 0.083 ± 0.008 K 1.48 ± 0.28 0.017 ± 0.000 K 2.07 ± 0.07

NCO-OMS 0.150 ± 0.002 2 1.11 ± 0.07
4E-4 0.018 ± 0.000 K 2.24 ± 0.25 1E-5FOMD-OMS 0.107 ± 0.003 2 0.44 ± 0.09 0.017 ± 0.000 2 0.51 ± 0.05

Algorithm ailerons calhousing
MSE×102 J Time (s) ∆ MSE×102 J Time (s) ∆

NCO-OMS 19.506 ± 0.033 K 1.41 ± 0.04
3E-4 10.166 ± 0.029 K 1.07 ± 0.05 3E-4FOMD-OMS 19.480 ± 0.046 K 0.74 ± 0.08 10.136 ± 0.012 K 0.43 ± 0.05

NCO-OMS 20.323 ± 0.036 2 0.65 ± 0.05
5E-3 10.372 ± 0.021 2 0.53 ± 0.04

1E-3FOMD-OMS 19.820 ± 0.032 2 0.20 ± 0.04 10.227 ± 0.014 2 0.12 ± 0.05

Algorithm year Slice
MSE×102 J Time (s) ∆ MSE×102 J Time (s) ∆

NCO-OMS 20.322 ± 0.040 K 5.94 ± 0.25
2E-3 13.097 ± 0.009 K 10.40 ± 0.94

1E-3FOMD-OMS 20.096 ± 0.045 K 2.25 ± 0.20 12.964 ± 0.007 K 4.12 ± 0.18
NCO-OMS 24.334 ± 0.021 2 2.95 ± 0.63

1E-2 13.364 ± 0.012 2 3.60 ± 0.23
3E-3FOMD-OMS 22.705 ± 0.040 2 0.59 ± 0.09 13.038 ± 0.009 2 1.41 ± 0.12

C.2 Results of the First and the Second Experiment

We summary the experimental results of the first and the second experiments in Table 3.

In Table 3, ∆ is defined as the difference of MSE between NCO-OM and FOMD-OMS. Thus ∆
shows whether collaboration improves the prediction performance of the noncooperative algorithm.
Times (s) records the total running time on all clients.

We first consider the case J = K in which the per-round time complexity on each client is O(K).
It is obvious that the MSE of NCO-OMS is similar with that of FOMD-OMS. Although there are
four datasets on which FOMD-OMS performs better than NCO-OMS, such as the elevator, bank,
Year and Slice datsets, the improvement is very limited. Beside, the value of ∆ is very small.
Thus collaboration does not significantly improve the prediction performance of the noncooperative
algorithm. The results verify the first goal G1.

Next we consider the case J = 2 in which the per-round time complexity on each client is O(1). It is
obvious that FOMD-OMS performs better than NCO-OMS on all datasets. Besides, the value of ∆
in the case of J = 2 is much larger than that in the case of J = K, such as the elevators, ailerons,
ailerons and Year datasets. Thus collaboration indeed improves the prediction performance of the
noncooperative algorithm. The results verify the second goal G2.

Finally we compare the running time of all algorithms. It is obvious that FOMD-OMS with J = 2
runs faster than the other algorithms. The results coincide with our theoretical analysis. NCO-OMS
runs slower than FOMD-OMS. The reason is that NCO-OMS must solve the sampling probability
pt using an additional binary search on each client (see Section G.1). In other words, NCO-OMS
must execute binary search M times at each round. FOMD-OMS only executes one binary search on
server at each round. The improvement on the computational cost is benefit from decoupling model
selection and prediction.

C.3 Results of the Third Experiment

We summary the experimental results of the third experiment in Table 4.
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Table 4: Comparison with the state-of-the-art algorithms.

Algorithm elevator bank
MSE J Time (s) MSE J Time (s)

eM-KOFL 0.00292 ± 0.00013 - 2.67 ± 0.05 0.01942 ± 0.00066 - 1.41 ± 0.06
POF-MKL 0.00806 ± 0.00026 - 3.12 ± 0.14 0.02292 ± 0.00036 - 1.59 ± 0.13
FOMD-OMS 0.00318 ± 0.00021 2 0.52 ± 0.08 0.01917 ± 0.00110 2 0.27 ± 0.06

Algorithm TomsHardware Twitter
MSE J Time (s) MSE J Time (s)

eM-KOFL 0.00048 ± 0.00003 - 5.88 ± 0.69 0.00007 ± 0.00000 - 9.60 ± 0.77
POF-MKL 0.00188 ± 0.00004 - 6.60 ± 0.93 0.00020 ± 0.00001 2 10.44 ± 0.54
FOMD-OMS 0.00059 ± 0.00003 2 1.46 ± 0.12 0.00010 ± 0.00001 2 2.23 ± 0.18

Algorithm ailerons calhousing
MSE J Time (s) MSE J Time (s)

eM-KOFL 0.00370 ± 0.00011 - 2.40 ± 0.19 0.02242 ± 0.00043 - 2.28 ± 0.06
POF-MKL 0.01335 ± 0.00046 - 2.66 ± 0.12 0.05248 ± 0.00197 - 2.68 ± 0.08
FOMD-OMS 0.00429 ± 0.00021 2 0.48 ± 0.04 0.02373 ± 0.00126 2 0.39 ± 0.07

Algorithm year Slice
MSE J Time (s) MSE J Time (s)

eM-KOFL 0.01481 ± 0.00108 - 9.60 ± 0.51 0.05781 ± 0.00230 - 12.74 ± 0.95
POF-MKL 0.01896 ± 0.00036 - 10.73 ± 0.29 0.08675 ± 0.00402 - 14.22 ± 0.54
FOMD-OMS 0.01534 ± 0.00121 2 2.26 ± 0.10 0.05698 ± 0.00480 2 4.82 ± 0.21

We first compare FOMD-OMS with eM-KOFL. As a whole, the MSE of the two algorithms is similar.
On the TomsHardware, Twitter and ailerons datasets, eM-KOFL enjoys slightly better prediction
performance than FOMD-OMS. However, the running time of eM-KOFL is much larger than that
of FOMD-OMS. The results coincide with the theoretical observations that FOMD-OMS enjoys a
similar regret bound with eM-KOFL at a much smaller computational cost on the clients.

Next we compare FOMD-OMS with POF-MKL. Both the MSE and running time of FOMD-OMS
are much smaller than that of POF-MKL. The results coincide with the theoretical observations that
FOMD-OMS enjoys a smaller regret bound than POF-MKL at a much smaller computational cost on
the clients.

Thus the results in Table 4 verifies the third goal G3.

Finally, we explain that why POF-MKL performs worse than FOMD-OMS. There are three reasons.

(1) POF-MKL does not use federated learning to learn a global probability distribution denoted
by pt, but learns a personalized probability distribution denoted by pt,j on each client. Thus
POF-MKL converges to the best kernel function at a lower rate.

(2) POF-MKL uniformly samples two kernel functions and then learns two global hypotheses, while
FOMD-OMS uses pt to sample a kernel function and learns a global hypothesis. Thus POF-MKL
can learn a better global hypothesis.

(3) On each client, POF-MKL executes model selection and combines the predictions of K hypothe-
ses using pt,j . Thus the time complexity is in O(DK). FOMD-OMS executes model selection
on server, and only uses the sampled hypothesis to make prediction. Thus the time complexity
on each client is in O(D).

D A Federated Algorithm for OMS-DecD with Communication Constraints

Let R < T . Clients communicate with server every N rounds. At the r-th communication, clients
transmit { 1

N

∑
t∈Tr
∇(j)
t,i ,

1
N

∑
t∈Tr

c
(j)
t,i }i∈O(j)

t
to server at the last round in Tr. Then server updates

sampling probabilities and hypotheses. We give the pseudo-code in Algorithm 3.
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Algorithm 3 FOMD-OMS (R < T )

Require: U , T , R, J .
Ensure: f (j)

1,i = 0, p1,i, i ∈ [K], j ∈ [M ]
1: for r = 1, 2, . . . , R do
2: for t ∈ Tr do
3: if t == (r − 1)N + 1 then
4: for j = 1, . . . ,M do
5: Server samples O(j)

t following (7)
6: Server transmits f (j)

t,i , i ∈ O
(j)
t to the j-th client

7: end for
8: end if
9: for j = 1, . . . ,M in parallel do

10: Output f (j)
t,At,1

(x
(j)
t )

11: for i ∈ O(j)
t do

12: Computing∇(j)
t,i and c(j)t,i

13: end for
14: end for
15: if t == rN then
16: Clients transmit { 1

N

∑
t∈Tr
∇(j)

t,i ,
1
N

∑
t∈Tr

c
(j)
t,i }i∈O(j)

t
to server

17: Server computes pt+1 following (8)
18: Server computes wt+1,i, i ∈ [K] following (9)
19: end if
20: end for
21: end for

Theorem 5. Let R < T . For any t ∈ [R], let

∀i ∈ Am, p1,i =
1

|Am|

(
1−
√
K√
R

)
+

1√
KR

and ∀i /∈ Am, p1,i =
1√
KR

,

∀t ∈ [R], ηt =

√
ln (KR)

2
√(

1 +
gK,J

M

)
R
∧ 1

2gK,J
, λt,i =

Ui

2Gi

√(
1 +

gK,J

M

)
·
(
g2
K,J ∨ t

) .
Under the condition of Theorem 2, with probability at least 1−Θ

(
T
RM log(R) + T

R log(KR/M)
)
·δ,

the regret of FOMD-OMS satisfies: ∀i ∈ [K],

RegD(Fi) = O

(
MBi,1

√
1 +

gK,J
M
· T√

R
+
T

R
·Bi,2MgK,J ln

1

δ
+
Bi,3T√
R

√
MgK,J ln

1

δ

)
.

The regret bound depends on O( 1√
R

). Thus FOMD-OMS explicitly balances the prediction perfor-
mance and the communication cost.

Proof. If FOMD-OMS runs on a sequence of examples with length T = R, then Theorem 2 gives,
with probability at least 1−Θ (M log(CR) + log(CKR/M)) · δ,

RegD(Fi) = O

(
MBi,1

√(
1 +

gK,J
M

)
R+Bi,2gK,J ln

1

δ
+Bi,3

√
gK,JMR ln

1

δ

)
.

According to Theorem 1, the regret bound of FOMD-OMS with R < T satisfies, with probability at
least 1−Θ

(
T
RM log(CR) + T

R log(CKR/M)
)
· δ,

RegD(Fi) =O

(
NMBi,1

√(
1 +

gK,J
M

)
R+NBi,2gK,J ln

1

δ
+NBi,3

√
gK,JMR ln

1

δ

)

=O

(
T√
R
MBi,1

√
1 +

gK,J
M

+
T

R
·Bi,2gK,J ln

1

δ
+

T√
R
Bi,3

√
gK,JM ln

1

δ

)
,

which concludes the proof.
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E Proof of Theorem 1

We first state a technical lemma.
Lemma 3 (Boyd and Vandenberghe [2004]). Assuming thatψ(·) : X → R is a convex and differential
function, and X is a convex domain. Let f∗ = argminf∈Xψ(f). Then it must be

∀g ∈ X , 〈∇ψ(f∗), g − f∗〉 ≥ 0.

Lemma 3 gives the first-order optimality condition.

Proof of Theorem 1. We first consider the case R = T .

The main idea is to give an lower bound and upper bound on 〈ḡt,ut+1 − v〉, respectively. Next we
give an upper bound.

〈ḡt,ut+1 − v〉
=〈∇ut

ψt(ut)−∇ūt+1
ψt(ūt+1),ut+1 − v〉

=〈∇ut
ψt(ut)−∇ut+1

ψt(ut+1),ut+1 − v〉+ 〈∇ut+1
ψt(ut+1)−∇ūt+1

ψt(ūt+1),ut+1 − v〉
=Dψt(v,ut)−Dψt(v,ut+1)−Dψt(ut+1,ut)− 〈∇ut+1Dψt(ut+1, ūt+1),v − ut+1〉
≤Dψt

(v,ut)−Dψt
(v,ut+1)−Dψt

(ut+1,ut).

The last inequality comes from Lemma 3.

Then we give a lower bound.

〈ḡt,ut+1 − v〉

=
1

M

M∑
j=1

[〈
g

(j)
t ,ut+1 − v

〉
+
〈
g̃

(j)
t − g

(j)
t ,ut+1 − v

〉]

=
1

M

M∑
j=1

〈
g

(j)
t ,u

(j)
t − v

〉
+

1

M

M∑
j=1

〈
g

(j)
t ,ut+1 − ut

〉
︸ ︷︷ ︸

Ξ1

+
1

M

M∑
j=1

〈
g̃

(j)
t − g

(j)
t ,ut+1 − v

〉
︸ ︷︷ ︸

Ξ2

,

where u
(j)
t = ut.

Next we analyze Ξ1 and Ξ2.

To analyze Ξ1, we introduce an auxiliary variable rt+1 defined as follows

∇rt+1ψt(rt+1) = ∇utψt(ut)−
2

M

M∑
j=1

g
(j)
t .

Then we have

Ξ1 =
1

2

〈
2

M

M∑
j=1

g
(j)
t ,ut+1 − ut

〉

=
1

2

〈
∇ut

ψt(ut)−∇rt+1
ψt(rt+1),ut+1 − ut

〉
=

1

2
(Dψ(ut+1, rt+1)−Dψ(ut+1,ut)−Dψ(ut, rt+1))

≥− 1

2
(Dψ(ut+1,ut) +Dψ(ut, rt+1)) .

Before analyzing Ξ2, we also introduce an auxiliary variable qt+1 defined as follows

∇qt+1
ψt(qt+1) = ∇ut

ψt(ut)−
2

M

M∑
j=1

(
g̃

(j)
t − g

(j)
t

)
.
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Now we can analyze Ξ2. We have

Ξ2 =
1

2

〈
2

M

M∑
j=1

(
g̃

(j)
t − g

(j)
t

)
,ut+1 − ut

〉
+

〈
1

M

M∑
j=1

(
g̃

(j)
t − g

(j)
t

)
,ut − v

〉
︸ ︷︷ ︸

Ξ3

=
1

2

〈
∇ut

ψt(ut)−∇qt+1
ψt(ut+1),ut+1 − ut

〉
+ Ξ3

=
1

2
(Dψ(ut+1,qt+1)−Dψ(ut+1,ut)−Dψ(ut,qt+1)) + Ξ3

≥− 1

2
(Dψ(ut+1,ut) +Dψ(ut,qt+1)) + Ξ3.

Combining the lower bound and upper bound gives

1

M

M∑
j=1

[〈
g

(j)
t ,u

(j)
t − v

〉]
≤Dψt

(v,ut)−Dψt
(v,ut+1) + Ξ3 +

1

2
Dψ(ut,qt+1) +

1

2
Dψ(ut, rt+1).

Using the convexity of l(j)t , that is, l(j)t (u
(j)
t )− l(j)t (v) ≤

〈
g

(j)
t ,p

(j)
t − v

〉
, we further obtain

1

M

M∑
j=1

(
l
(j)
t (u

(j)
t )− l(j)t (v)

)
≤Dψt(v,ut)−Dψt(v,ut+1) +

1

2
Dψ(ut,qt+1) +

1

2
Dψ(ut, rt+1) + Ξ3,

which concludes the proof.

Now we consider the case R < T .

Recalling that E = {N, 2N, 3N . . . , RN} and
Tr = {(r − 1)N + 1, (r − 1)N + 2, . . . , rN}, r = 1, . . . , R.

For any batch Tr, r = 1, . . . , R, we define a new loss function l̄(j)rN (·) at the end of this batch,

∀j ∈ [M ], ∀u ∈ Ω, l̄
(j)
rN (u) =

1

N

∑
τ∈Tr

l(j)τ (u).

During each batch, our algorithmic framework does not change the decision, i.e.,

∀j ∈ [M ], t ∈ Tr, u
(j)
t = u

(j)
(r−1)N+1.

Thus the regret can be decomposed as follows,

1

M

T∑
t=1

M∑
j=1

(
l
(j)
t (u

(j)
t )− l(j)t (v)

)
=

1

M

R∑
r=1

∑
t∈Tr

M∑
j=1

(
l
(j)
t (u

(j)
(r−1)N+1)− l(j)t (v)

)
=
N

M

R∑
r=1

 M∑
j=1

∑
t∈Tr

1

N

(
l
(j)
t (u

(j)
(r−1)N+1)− l(j)t (v)

)
=
N

M

R∑
r=1

M∑
j=1

(
l̄
(j)
rN (u

(j)
(r−1)N+1)− l̄(j)rN (v)

)
.

Now we can use FOMD-No-LU with R = T to the new loss functions {l̄(1)
rN , . . . , l̄

(M)
rN }r=1,...,R, and

use Theorem 1 to obtain
1

NM

T∑
t=1

M∑
j=1

(
l
(j)
t (u

(j)
t )− l(j)t (v)

)
≤
∑
t∈E

[
Dψt

(v,ut)−Dψt
(v,ut+1) +

1

2
Dψt

(ut,qt+1)

]
+

1

2

∑
t∈E
Dψt

(ut, rt+1) +
1

M

∑
t∈E

M∑
j=1

〈
g̃

(j)
t − g

(j)
t ,ut − v

〉
,
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which concludes the proof.

F Proof of Lemma 1

Lemma 4 (Bernstein’s inequality for martingale). Let X1, . . . , Xn be a bounded martingale differ-
ence sequence w.r.t. the filtration H = (Hk)1≤k≤n and with |Xk| ≤ a. Let Zt =

∑t
k=1Xk be the

associated martingale. Denote the sum of the conditional variances by

Σ2
n =

n∑
k=1

E
[
X2
k |Hk−1

]
≤ v.

Then for all constants a, v > 0, with probability at least 1− δ,

max
t=1,...,n

Zt <
2

3
a ln

1

δ
+

√
2v ln

1

δ
.

Note that v must be a constant. Lemma 4 is derived from Lemma A.8 in [Cesa-Bianchi and Lugosi,
2006].

Proof. Let v ∈ [0, B] is a random variable and B ≥ 2 is a constant. We use the well-known peeling
technique [Bartlett et al., 2005]. We divide the interval [0, B] as follows

[0, B] ⊆
[
0, 2−dlogBe

] dlogBe⋃
j=−dlogBe+1

(
2j−1, 2j

]
.

First, we consider the case v > 2−dlogBe. Let

ε =
2

3
a ln

1

δ
+ 2

√
v ln

1

δ
>

2

3
a ln

1

δ
+ 2

√
2−1−logB ln

1

δ
=

2

3
a ln

1

δ
+

√
2

B
ln

1

δ
.

We decompose the random event as follows,

P
[

max
t=1,...,n

Zt > ε,Σ2
n ≤ v, v > 2−dlogBe

]
=P
[
max
t≤n

Zt > ε,Σ2
n ≤ v,∪

dlogBe
i=−dlogBe+12i−1 < v ≤ 2i

]
≤P
[
max
t≤n

Zt > εi,Σ
2
n ≤ v,∪

dlogBe
i=−dlogBe+12i−1 < v ≤ 2i

]

≤
dlogBe∑

i=−dlogBe+1

P
[
max
t≤n

Zt > εi,Σ
2
n ≤ v, 2i−1 < v ≤ 2i

]
,

where εi = 2
3a ln 1

δ + 2
√

2i−1 ln 1
δ . For each sub-event, Lemma 4 yields

P
[
max
t≤n

Zt > εi,Σ
2
n ≤ v, 2i−1 < v ≤ 2i

]
≤ δ.

Thus we have

P
[
max
t∈[n]

Zt > ε,Σ2
n ≤ v, v > 2−dlogBe

]
≤

dlogBe∑
i=−dlogBe+1

δ ≤ 2dlogBeδ.

Then we consider the case v ≤ 2−dlogBe ≤ 1
B . Lemma 4 yields, with probability at least 1− δ,

max
t=1,...,n

Zt ≤
2

3
a ln

1

δ
+

√
21−dlogBe ln

1

δ
≤ 2

3
a ln

1

δ
+

√
2

B
ln

1

δ
.

Combining the two cases, with probability at least 1− 2dlogBeδ,

max
t=1,...,n

Zt ≤
2a

3
ln

1

δ
+

√
2

B
ln

1

δ
+ 2

√
v ln

1

δ
,

which concludes the proof.
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G Properties of Online Mirror Descent (OMD)

G.1 OMD with the weighted negative entropy regularizer

Let Ω = ∆K and ψt(p) =
∑K
i=1

Ci

ηt
pi ln pi. Then we have

∀p ∈ RK , ∇piψt(p) =
Ci
ηt

(ln pi + 1) , ∇2
i,iψt(p) =

Ci
ηtpi

.

The Bregman divergence associated with the negative entropy regularizer is

Dψt
(p,q) =

1

ηt

K∑
i=1

Ci

(
pi ln

pi
qi

+ qi − pi
)
. (10)

Denote by c̄t = 1
M

∑M
j=1 c̃

(j)
t . Recalling that the OMD is defined as follows,

∇p̄t+1ψt(p̄t+1) = ∇ptψt(pt)− c̄t, pt+1 = arg min
p∈∆K

Dψt(p, p̄t+1).

Substituting into the gradient of ψt, the mirror updating can be simplified.

∀i ∈ [K], p̄t+1,i = pt,i · exp

(
−ηtc̄t,i

Ci

)
.

Now we use the Lagrangian multiplier method to solve the projection associated with Bregman
divergence.

L(p, λ) =
1

ηt

K∑
i=1

Ci

(
pi ln

pi
p̄t+1,i

+ p̄t+1,i − pi
)

+ λ

(
K∑
i=1

pi − 1

)
−

K∑
i=1

βipi.

The KKT conditions are
∂L

∂pi
= Ci

ln pi + 1− ln p̄t+1,i − 1

ηt
+ λ− βi = 0,

∂L

∂λ
=

(
K∑
i=1

pi − 1

)
= 0,

βipi = 0.

Let pt+1, λ∗ and {β∗i }Ki=1 be the optimal solution. By the KKT conditions, we have

pt+1,i =p̄t+1,i · exp

(
−ηt(λ

∗ − β∗i )

Ci

)
,

K∑
i=1

p̄t+1,i · exp

(
−ηt(λ

∗ − β∗i )

Ci

)
=

K∑
i=1

pt,i · exp

(
−ηt(λ

∗ − β∗i + c̄t,i)

Ci

)
= 1,

β∗i =0,

in which the last equality comes from pt+1,i > 0. The reason is that by the fact p1,i > 0 for all
i ∈ [K], we can iteratively prove that pt,i > 0 and pt+1,i > 0, satisfying the condition under which
β∗i = 0. Then we can obtain the solution pt+1, i.e.,

∀i ∈ [K], pt+1,i = pt,i · exp

(
−ηt(λ

∗ + c̄t,i)

Ci

)
. (11)

Next we prove that λ∗ can be found by the binary search.

If λ∗ ≥ 0, then
∑K
i=1 pt,i · exp

(
−ηt(λ

∗+c̄t,i)
Ci

)
≤
∑K
i=1 pt,i ≤ 1.

If λ∗ ≤ −maxi c̄t,i, then
∑K
i=1 pt,i · exp

(
−ηt(λ

∗+c̄t,i)
Ci

)
≥
∑K
i=1 pt,i ≥ 1.

Thus it must be −maxi c̄t,i ≤ λ∗ ≤ 0. For any 0 ≥ λ1 ≥ λ2 ≥ −maxi c̄t,i, we can obtain
K∑
i=1

pt,i · exp

(
−ηt(λ1 + c̄t,i)

Ci

)
≤

K∑
i=1

pt,i · exp

(
−ηt(λ2 + c̄t,i)

Ci

)
.

Thus
∑K
i=1 pt,i · exp

(
−ηt(λ

∗+c̄t,i)
Ci

)
is non-increasing w.r.t. λ∗.

We can use the binary search to find λ∗.
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G.2 OMD with the Euclidean regularizer

Let Ω = Fi and ψt,i(w) = 1
2λt,i
‖w‖22. Then we have

∀w ∈ Rdi , ∇wψt,i(w) =
1

λt,i
w, ∇2

wψt,i(w) =
1

λt,i
, Dψt,i

(w,v) =
1

2λt,i
‖w − v‖22.

Recalling that the OMD is defined as follows,

∇w̄t+1,iψt,i(w̄t+1,i) = ∇wt,iψt(wt,i)− ∇̄t,i, wt+1,i = arg min
w∈Fi

Dψt,i(w, w̄t+1,i).

The mirror updating is as follows,

∀i ∈ [K], w̄t+1,i =wt,i − λt,i · ∇̄t,i,

wt+1,i = min

{
1,

Ui
‖w̄t+1,i‖2

}
· w̄t+1,i.

Thus OMD with the Euclidean regularizer is online gradient descent [Zinkevich, 2003].

H Proof of Lemma 2

Recalling that c(j)t,i = `(f
(j)
t,i (x

(j)
t ), y

(j)
t ), in which

f
(j)
t,i (x

(j)
t ) = 〈w(j)

t,i , φi(x
(j)
t )〉 ≤ Uibi.

Since |y(j)
t | is uniformly bounded for all j ∈ [M ] and t ∈ [T ], there is a constant Ci that depends on

Ui and bi such that c(j)t,i ≤ Ci.

Recalling that ∇(j)
t,i = `′(f

(j)
t,i (x

(j)
t ), y

(j)
t ) · φi(x(j)

t ). Since `(f (j)
t,i (x

(j)
t ), y

(j)
t ) can be upper bounded

by Ci and ‖φi(x(j)
t )‖2 ≤ bi, there is a constantGi that depends on Ui and bi such that ‖∇(j)

t,i ‖2 ≤ Gi.

I Proof of Theorem 2

The regret w.r.t. any f ∈ Fi can be decomposed as follows.

T∑
t=1

M∑
j=1

`
(
f

(j)
t,At,1

(x
(j)
t ), y

(j)
t

)
−

T∑
t=1

M∑
j=1

`
(
f(x

(j)
t ), y

(j)
t

)

=

T∑
t=1

M∑
j=1

[
`
(
f

(j)
t,At,1

(x
(j)
t ), y

(j)
t

)
− `
(
f

(j)
t,i (x

(j)
t ), y

(j)
t

)
+ `
(
f

(j)
t,i (x

(j)
t ), y

(j)
t

)
− `
(
f(x

(j)
t ), y

(j)
t

)]

=

T∑
t=1

M∑
j=1

[
c
(j)
t,At,1

− c(j)t,i
]

︸ ︷︷ ︸
Ξ4

+

T∑
t=1

M∑
j=1

[
`
(
f

(j)
t,i (x

(j)
t ), y

(j)
t

)
− `
(
f(x

(j)
t ), y

(j)
t

)]
︸ ︷︷ ︸

Ξ5

.

Next we separately give an upper bound on Ξ4 and Ξ5.

I.1 Analyzing Ξ4

We start with Lemma 1 and instantiate some notations.

Ω = ∆K , v = v ∈ ∆K ,

∀t ∈ [T ], g
(j)
t = c

(j)
t , g̃

(j)
t = c̃

(j)
t , ḡt = c̄t, u

(j)
t = p

(j)
t , ut = pt,

ljt (u
j
t ) =

〈
c

(j)
t ,p

(j)
t

〉
, ljt (v) =

〈
c

(j)
t ,v

〉
.
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Lemma 1 gives, ∀v ∈ ∆K ,

1

M

T∑
t=1

M∑
j=1

〈
c

(j)
t ,p

(j)
t − v

〉

≤
T∑
t=1

(Dψt
(v,pt)−Dψt

(v,pt+1)) +
1

2

T∑
t=1

Dψt
(pt,qt+1) +

1

2

T∑
t=1

Dψt
(pt, rt+1)+

1

M

T∑
t=1

M∑
j=1

〈
c̃

(j)
t − c

(j)
t ,pt − v

〉
.

(12)

Recalling that

∇qt+1
ψt(qt+1) =∇ut

ψt(ut)− 2

M∑
j=1

g̃
(j)
t − g

(j)
t

M
, (13)

∇rt+1
ψt(rt+1) =∇ut

ψt(ut)−
2

M

M∑
j=1

g
(j)
t . (14)

In (13), we redefine Ω = ∆K and ψt(p) =
∑K
i=1

Ci

ηt
pi ln pi, and in (14), we redefine Ω = ∆K and

ψt(p) =
∑K
i=1

2Ci

ηt
pi ln pi. Using the results in Section G.1, we can obtain

∀i ∈ [K], qt+1,i =pt,i exp

(
−ηtδt,i

Ci

)
, δt,i =

2

M

M∑
j=1

(
c̃
(j)
t,i − c

(j)
t,i

)
,

rt+1,i =pt,i exp

(
−ηtĉt,i

2Ci

)
, ĉt,i =

2

M

M∑
j=1

c
(j)
t,i .

(15)

It can be verified that δt,i ∈ [−2Ci, 2
K−J
J−1 Ci] and ĉt,i ∈ [0, 2Ci].

Recalling the definition of learning rate ηt in Theorem 2. We can obtain ηtδt,i
Ci
≥ −1 and ηtĉt,i

2Ci
≥ −1.

Next we use (10) and (15) to analyze the following two Bregman divergences.

T∑
t=1

Dψt
(pt, rt+1) =

T∑
t=1

1

ηt

K∑
i=1

2Ci ·
(
pt,i ln

pt,i
rt+1,i

+ rt+1,i − pt,i
)

=

T∑
t=1

1

ηt

K∑
i=1

2Ci ·
(
pt,iηtĉt,i

2Ci
+ pt,i · exp

(
−ηtĉt,i

2Ci

)
− pt,i

)

≤
T∑
t=1

1

ηt

K∑
i=1

2Ci ·

(
pt,iηtĉt,i

2Ci
+ pt,i ·

(
1− ηtĉt,i

2Ci
+

(
ηtĉt,i
2Ci

)2
)
− pt,i

)

≤
T∑
t=1

ηt

K∑
i=1

pt,i
2Ci

 2

M

M∑
j=1

c
(j)
t,i

2

≤2

T∑
t=1

ηt ·
1

M

M∑
j=1

K∑
i=1

pt,ic
(j)
t,i ,
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and
T∑
t=1

Dψt
(pt,qt+1) =

T∑
t=1

1

ηt

K∑
i=1

Ci

(
pt,i ln

pt,i
qt+1,i

+ qt+1,i − pt,i
)

=

T∑
t=1

1

ηt

K∑
i=1

Ci

(
pt,iηtδt,i
Ci

+ pt,i · exp

(
−ηtδt,i

Ci

)
− pt,i

)

≤4

T∑
t=1

ηt

K∑
i=1

pt,i
Ci

 1

M

M∑
j=1

(
c̃
(j)
t,i − c

(j)
t,i

)2

,

in where we use the fact exp(−x) ≤ 1− x+ x2 for all x ≥ −1.

Substituting the two upper bounds into (12) gives

∀v ∈ ∆K ,
1

M

T∑
t=1

M∑
j=1

〈
c

(j)
t ,p

(j)
t − v

〉
︸ ︷︷ ︸

Ξ4,1

≤
T∑
t=1

(Dψt
(v,pt)−Dψt

(v,pt+1))︸ ︷︷ ︸
Ξ4,2

+2

T∑
t=1

η

K∑
i=1

pt,i
Ci

 1

M

M∑
j=1

(
c̃
(j)
t,i − c

(j)
t,i

)2

︸ ︷︷ ︸
Ξ4,3

+

T∑
t=1

η

M

M∑
j=1

K∑
i=1

pt,ic
(j)
t,i +

1

M

T∑
t=1

M∑
j=1

〈
c̃

(j)
t − c

(j)
t ,pt − v

〉
︸ ︷︷ ︸

Ξ4,4

.

Bounding Ξ4,1

We define a random variable Xt as follows,

Xt = c
(j)
t,At,1

−
〈
c

(j)
t ,p

(j)
t

〉
.

Let Ht = {O(1)
t , . . . , O

(M)
t }. Then we have E[Xt|H[t−1]] = 0 and |Xt| ≤ C where C = maxi Ci.

ThusX[T ] is a bounded martingale difference sequence w.r.t. the filtrationH[T ]. The sum of condition
variance satisfies

T∑
t=1

E
[
|Xt|2 |H[t−1]

]
≤

T∑
t=1

E
[∣∣∣c(j)t,At,1

∣∣∣2 |H[t−1]

]
≤ C ·

T∑
t=1

〈
c

(j)
t ,p

(j)
t

〉
≤ C2T.

The upper bound is a random variable. Lemma 1 yields, with probability at least 1−M log(C2T )δ,

Ξ4,1 ≥
T∑
t=1

M∑
j=1

c
(j)
t,At,1

−
T∑
t=1

M∑
j=1

〈
c

(j)
t ,v

〉
− 2CM

3
ln

1

δ
− 2

√√√√CM ·
M∑
j=1

T∑
t=1

〈
c

(j)
t ,p

(j)
t

〉
· ln 1

δ
,

where the fail probability comes from the union-of-events, and the lower order term M
√

2
C2T ln 1

δ is
omitted.

Bounding Ξ4,2

According to (10), we have

Ξ4,2 ≤ Dψ1
(v,p1) =

1

η

K∑
i=1

Ci

(
vi ln

vi
p1,i

+ p1,i − vi
)
≤ Ci

η
ln

1

p1,i
+

1

η

K∑
k=1

Ckp1,k −
Ci
η
.
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Bounding Ξ4,3

We define a random variable Xt as follows,

Xt =

K∑
i=1

pt,i
Ci

 1

M

M∑
j=1

(
c̃
(j)
t,i − c

(j)
t,i

)2

− Et

 K∑
i=1

pt,i
Ci

 1

M

M∑
j=1

(
c̃
(j)
t,i − c

(j)
t,i

)2
 .

It can be verified that E[Xt|H[t−1]] = 0 and |Xt| ≤ K−J
J−1 C. Next we upper bound the sum of

condition variance.

T∑
t=1

Et[X2
t ] ≤

T∑
t=1

Et


 K∑
i=1

pt,i
Ci

 1

M

M∑
j=1

(
c̃
(j)
t,i − c

(j)
t,i

)2


2

≤
T∑
t=1

Et

 K∑
i=1

pt,i

 1

Ci

 1

M

M∑
j=1

(
c̃
(j)
t,i − c

(j)
t,i

)2


2
≤ (K − J)2

(J − 1)2

T∑
t=1

Et

 K∑
i=1

pt,i

 1

M

M∑
j=1

(
c̃
(j)
t,i − c

(j)
t,i

)2


=
(K − J)2

(J − 1)2

1

M2

T∑
t=1

K∑
i=1

pt,iEt

 M∑
j=1

(
c̃
(j)
t,i − c

(j)
t,i

)2


≤ (K − J)3

(J − 1)3M2
C ·

T∑
t=1

M∑
j=1

〈
c

(j)
t ,p

(j)
t

〉
≤ (K − J)3

(J − 1)3M
C2T,

where we use the fact c̃(j)t,i =
c
(j)
t,i

P
[
i∈O(j)

t

] ≥ K−1
J−1 c

(j)
t,i . Lemma 1 yields, with probability at least

1− log(C2K3T/M)δ,

Ξ4,3 ≤ η

gK,J
M2

T∑
t=1

M∑
j=1

〈
c

(j)
t ,p

(j)
t

〉
+

2CgK,J
3

ln
1

δ
+ 2

√√√√g3
K,J

M2
C

T∑
t=1

M∑
j=1

〈
c

(j)
t ,p

(j)
t

〉
· ln 1

δ

 ,

where gK,J = K−J
J−1 and the lower order term

√
2M

g3K,JC
2T

ln 1
δ is omitted.

Bounding Ξ4,4

We define a random variable Xt as follows,

Xt =

〈
1

M

M∑
j=1

(
c̃

(j)
t − c

(j)
t

)
,pt − v

〉
=

1

M

M∑
j=1

(
K∑
i=1

(pt,i − vi)
(
c̃
(j)
t,i − c

(j)
t,i

))
.
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{Xt}Tt=1 is a bounded martingale difference sequence and |Xt| ≤ gK,JC. We further have

T∑
t=1

Et[X2
t ]

=
1

M2

T∑
t=1

Et

 M∑
j=1

(
K∑
i=1

(pt,i − vi)
(
c̃
(j)
t,i − c

(j)
t,i

))2
+

1

M2

T∑
t=1

Et

∑
j 6=r

(
K∑
i=1

(pt,i − vi)
(
c̃
(j)
t,i − c

(j)
t,i

))( K∑
i=1

(pt,i − vi)
(
c̃
(r)
t,i − c

(r)
t,i

))
=

1

M2

T∑
t=1

M∑
j=1

Et

( K∑
i=1

(pt,i − vi)
(
c̃
(j)
t,i − c

(j)
t,i

))2


=
2

M2

T∑
t=1

M∑
j=1

Et

( K∑
i=1

pt,i

(
c̃
(j)
t,i − c

(j)
t,i

))2
+

2

M2

T∑
t=1

M∑
j=1

Et

( K∑
i=1

vi

(
c̃
(j)
t,i − c

(j)
t,i

))2


≤ 2

M2

T∑
t=1

M∑
j=1

Et

[
K∑
i=1

pt,i

(
c̃
(j)
t,i − c

(j)
t,i

)2
]

+
2

M2

T∑
t=1

M∑
j=1

Et

[
K∑
i=1

vi

(
c̃
(j)
t,i − c

(j)
t,i

)2
]

≤2
gK,J
M2

C ·
T∑
t=1

M∑
j=1

〈
c

(j)
t ,p

(j)
t

〉
+ 2

gK,J
M2

·
T∑
t=1

M∑
j=1

〈
c

(j)
t ⊗ c

(j)
t ,v

〉
≤4C2KT

M
,

where
〈
c

(j)
t ⊗ c

(j)
t ,v

〉
=
∑K
i=1 vi(c

(j)
t,i )2.

With probability at least 1− log(4C2KT/M)δ,

Ξ4,4 ≤
2CgK,J

3
ln

1

δ
+ 2

√
2
gK,J
M2

ln
1

δ
·

√√√√C

T∑
t=1

M∑
j=1

〈
c

(j)
t ,p

(j)
t

〉
+

T∑
t=1

M∑
j=1

〈
c

(j)
t ⊗ c

(j)
t ,v

〉
.

For simplicity, we introduce some new notations

L̄T =
T∑
t=1

M∑
j=1

〈
c

(j)
t ,p

(j)
t

〉
, L̄T (v) =

T∑
t=1

M∑
j=1

〈
c

(j)
t ,v

〉
, L̃T (v) =

T∑
t=1

M∑
j=1

〈
c

(j)
t ⊗ c

(j)
t ,v

〉
.

Combining all

Combining all gives, with probability at least 1−Θ(log(CKT/M)) · δ,

L̄T − L̄T (v) ≤M
η

(
Ci ln

1

p1,i
+

K∑
k=1

Ckp1,k − Ci

)
+

η

((
1 +

gK,J
M

)
L̄T +

2MC

3
gK,J ln

1

δ
+ 2

√
g3
K,JC · L̄T · ln

1

δ

)
+

2MCgK,J
3

ln
1

δ
+ 2

√
2gK,J ln

1

δ
·
√
CL̄T + L̃T (v).
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Rearranging terms gives

(
1− η

(
1 +

gK,J
M

))
L̄T −

(
2η

√
g3
K,JC ln

1

δ
+ 2

√
2gK,JC ln

1

δ

)√
L̄T

≤L̄T (v) +
M

η

(
Ci ln

1

p1,i
+

K∑
k=1

Ckp1,k − Ci

)
+

4MCgK,J
3

ln
1

δ
+ 2

√
2gK,J ln

1

δ
·
√
L̃T (v).

Recalling that, the solution of the following inequality

x− a
√
x− b ≤ 0, x > 0, a > 0, b > 0,

is x ≤ a2 + b+ a
√
b. Solving for L̄T gives

L̄T − L̄T (v) ≤

(
2η
√
g3
K,JC ln 1

δ + 2
√

2gK,JC ln 1
δ

)2

(
1− η

(
1 +

gK,J

M

))2 +
2η
√
g3
K,JC ln 1

δ + 2
√

2gK,JC ln 1
δ(

1− η
(
1 +

gK,J

M

)) 3
2

·

√√√√L̄T (v) +
M

η

(
Ci ln

1

p1,i
+

K∑
k=1

Ckp1,k − Ci

)
+

4MCgK,J
3

ln
1

δ
+ 2

√
2gK,J ln

1

δ
·
√
L̃T (v)+

η
(
1 +

gK,J

M

)
1− η

(
1 +

gK,J

M

) L̄T (v)+

M
η

(
Ci ln 1

p1,i
+
∑K
k=1 Ckp1,k − Ci

)
+

4MCgK,J

3 ln 1
δ + 2

√
2gK,J ln 1

δ ·
√
L̃T (v)

1− η
(
1 +

gK,J

M

) .

Denote by Am = argmini∈[K]Ci. Let the learning rate and initial distribution p1 satisfy

η =

√
ln (KT )

2

√(
1 + K−J

(J−1)M

)
T

∧ J − 1

2(K − J)
,

p1,k =

(
1−
√
K√
T

)
1

|Am|
+

1√
KT

, k ∈ Am, p1,j =
1√
KT

, j 6= Am.

Then we have

Ci ln
1

p1,i
+

K∑
k=1

Ckp1,k − Ci

≤Ci ln(
√
KT ) +

C · (K − |Am|)√
KT

+ min
i
Ci · |Am| ·

((
1−
√
K√
T

)
1

|Am|
+

1√
KT

)
− Ci

≤Ci ln(
√
KT ) +

C
√
K√
T

.
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We further simplify L̄T − L̄T (v).

L̄T − L̄T (v)

≤64gK,JC ln
1

δ
+ 11

√
gK,JC ln

1

δ
·√√√√CiTM +

M

η

(
Ci ln(

√
KT ) +

C
√
K√
T

)
+

4MCgK,J
3

ln
1

δ
+ 2

√
2gK,J ln

1

δ
·
√
L̃T (v)+

2η
(

1 +
gK,J
M

)
CiT +

M
η

(
Ci ln(

√
KT ) + C

√
K√
T

)
+

4MCgK,J

3 ln 1
δ + 2Ci

√
2gK,J ln 1

δ ·
√
TM

1
2

≤ (64 + 3M)gK,JC ln
1

δ
+ 17

√
MgK,JCCiT ln

1

δ
+

4√
2
CiM

√(
1 +

K − J
(J − 1)M

)
T ln (KT )︸ ︷︷ ︸

Ξ4,5

,

in which we omit the lower order terms such as O(T
1
4 ) and O(

√
gK,JC ln 1

δ ).

Finally, using the upper bound on Ξ4,1 gives, with probability at least 1 − Θ(M log(CT ) +
log(CKT/M)) · δ,

Ξ4

≤L̄T − L̄T (v) +
2CM

3
ln

1

δ
+ 2

√√√√CM ·
M∑
j=1

T∑
t=1

〈
c

(j)
t ,p

(j)
t

〉
· ln 1

δ

≤L̄T − L̄T (v) +
2CM

3
ln

1

δ
+ 2

√
CM ·

(
L̄T (v) + Ξ4,5

)
· ln 1

δ

≤(64 + 3M)gK,JC ln
1

δ
+ 17

√
MgK,JCCiT ln

1

δ
+

4√
2
CiM

√(
1 +

K − J
(J − 1)M

)
T ln (KT )+

2M

√
CCiT ln

1

δ
,

where we omit O(
√
CMΞ4,5 · ln 1

δ ) which is a lower order term.

I.2 Analyzing Ξ5

We also start with Lemma 1.

We just a fixed i ∈ Fi. We instantiate some notations.

Ω = Fi, v = w ∈ Fi,

∀t ∈ [T ], g
(j)
t = ∇(j)

t,i , g̃
(j)
t = ∇̃(j)

t,i , ḡt = ∇̄t,i, u
(j)
t = w

(j)
t,i , ut = wt,

ljt (u
j
t ) = `

(
f

(j)
t,i (x

(j)
t ), y

(j)
t

)
, ljt (v) = `

(
f(x

(j)
t ), y

(j)
t

)
.

Lemma 1 gives

∀w ∈ Fi,
1

M

T∑
t=1

M∑
j=1

[
`
(
f

(j)
t,i (x

(j)
t ), y

(j)
t

)
− `
(
f(x

(j)
t ), y

(j)
t

)]

≤
T∑
t=1

(
Dψt,i(w,wt)−Dψt(w,wt+1)

)
+

1

2

T∑
t=1

Dψt,i(wt,qt+1)+

1

2

T∑
t=1

Dψt,i
(wt, rt+1) +

1

M

T∑
t=1

M∑
j=1

〈
∇̃(j)
t,i −∇

(j)
t,i ,wt −w

〉
,
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where the Bregman divergence is

Dψt,i
(w,v) =

1

2λt,i
‖w − v‖22.

Besides, (13) and (14) can be instantiated as follows

qt+1 =wt − λt,i ·
2

M

M∑
j=1

(
∇̃(j)
t,i −∇

(j)
t,i

)
,

rt+1 =wt − λt,i ·
2

M

M∑
j=1

∇(j)
t,i .

Thus we have: ∀w ∈ Fi,
1

M
Ξ5

≤
T∑
t=1

‖w −wt‖22 − ‖w −wt+1‖22
2λt,i

+ 2

T∑
t=1

λt,i

∥∥∥∥∥∥ 1

M

M∑
j=1

(
∇̃(j)
t,i −∇

(j)
t,i

)∥∥∥∥∥∥
2

2

+

2

T∑
t=1

λt,i

∥∥∥∥∥∥ 1

M

M∑
j=1

∇(j)
t,i

∥∥∥∥∥∥
2

2

+
1

M

T∑
t=1

M∑
j=1

〈
∇̃(j)
t,i −∇

(j)
t,i ,wt −w

〉

≤2U2
i

λT,i
+ 2G2

i

T∑
t=1

λt,i + 2

T∑
t=1

λt,i

∥∥∥∥∥∥
M∑
j=1

∇̃(j)
t,i −∇

(j)
t,i

M

∥∥∥∥∥∥
2

2︸ ︷︷ ︸
Ξ5,1

+
1

M

T∑
t=1

M∑
j=1

〈
∇̃(j)
t,i −∇

(j)
t,i ,wt −w

〉
︸ ︷︷ ︸

Ξ5,2

.

Next we separately give a high-probability upper bound on Ξ4,1 and Ξ4,2.

Bounding Ξ5,2

We define a random variable Xt as follows,

Xt =

〈
1

M

M∑
j=1

(
∇̃(j)
t,i −∇

(j)
t,i

)
,wt −w

〉
.

X[T ] is a bounded martingale difference sequence w.r.t. H[T ] and |Xt| ≤ 2gK,JGiUi. We further
have

T∑
t=1

Et[|Xt|2] ≤
T∑
t=1

4U2
i Et


∥∥∥∥∥∥ 1

M

M∑
j=1

(
∇̃(j)
t,i −∇

(j)
t,i

)∥∥∥∥∥∥
2

2

 ≤ 4U2
i G

2
i

gK,J
M

T.

The upper bound on the sum of conditional variance is a constant. Lemma 4 gives, with probability
at least 1− δ,

Ξ5,2 ≤
4GiUigK,J

3
ln

1

δ
+ 2GiUi

√
2
gK,J
M

T ln
1

δ
.

Bounding Ξ5,1

Recalling that

λt,i =


Ui

2Gi

√
(1+

gK,J
M )·g2K,J

if t ≤ g2
K,J ,

Ui

2Gi

√
(1+

gK,J
M )·t

otherwise.
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It can be found that λt,i ≤ Ui

2gK,JGi
.

Case 1: T > g2
K,J .

We decompose Ξ5,1 as follows,

Ξ5,1 =

g2K,J∑
t=1

λt,i

∥∥∥∥∥∥ 1

M

M∑
j=1

(
∇̃(j)
t,i −∇

(j)
t,i

)∥∥∥∥∥∥
2

2︸ ︷︷ ︸
Ξ5,1,1

+

T∑
t=g2K,J+1

λt,i

∥∥∥∥∥∥ 1

M

M∑
j=1

(
∇̃(j)
t,i −∇

(j)
t,i

)∥∥∥∥∥∥
2

2︸ ︷︷ ︸
Ξ5,1,2

.

We separately analyze Ξ5,1,1 and Ξ5,1,2. Let

Xt = λt,i

∥∥∥∥∥∥ 1

M

M∑
j=1

(
∇̃(j)
t,i −∇

(j)
t,i

)∥∥∥∥∥∥
2

2

− λt,iEt


∥∥∥∥∥∥ 1

M

M∑
j=1

(
∇̃(j)
t,i −∇

(j)
t,i

)∥∥∥∥∥∥
2

2

 .
X[T ] is a martingale difference sequence and satisfies |Xt| ≤ λt,i · g2

K,JG
2
i ≤

gK,JUiGi

2 .
We further have

g2K,J∑
t=1

Et[|Xt|2] ≤
g2K,J∑
t=1

Et

λ2
t,i

∥∥∥∥∥∥ 1

M

M∑
j=1

(
∇̃(j)
t,i −∇

(j)
t,i

)∥∥∥∥∥∥
4

2

 ≤ U2
i G

2
i

g3
K,J

4M
,

T∑
t=g2K,J+1

Et[|Xt|2] ≤U2
i G

2
i

gK,J
4M

(
T − g2

K,J

)
.

With probability at least 1− 2δ,

Ξ5,1 ≤
T∑
t=1

λt,iEt


∥∥∥∥∥∥ 1

M

M∑
j=1

(
∇̃(j)
t,i −∇

(j)
t,i

)∥∥∥∥∥∥
2

2

+
2gK,JGiUi

3
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1

δ
+GiUi

√
2
gK,J
M

T ln
1

δ

≤gK,J
M

G2
i

T∑
t=1

λt,i +
2gK,JGiUi

3
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1

δ
+GiUi

√
2
gK,J
M

T ln
1

δ
.

Combining with all results gives, with probability at leat 1− 3δ,

1

M
Ξ5 ≤

2U2
i

λT,i
+ 2G2

i

(
1 +

gK,J
M

)g2K,J∑
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T∑
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+ 2gK,JGiUi ln
1

δ
+

3GiUi

√
2gK,JT

M
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1

δ

≤2U2
i
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+GiUi

√
1 +

gK,J
M

(
gK,J +

∫ T

t=g2K,J+1

1√
t
d t

)
+ 2gK,JGiUi ln

1

δ
+

3GiUi

√
2gK,JT

M
ln

1

δ

≤6UiGi

√(
1 +

gK,J
M

)
T + 2gK,JGiUi ln

1

δ
+ 3GiUi

√
2gK,JT

M
ln

1

δ
.

Case 2: T ≤ g2
K,J .

In this case, we do not decompose Ξ5,1 and λt,i = Ui

2Gi

√
(1+

gK,J
M )g2K,J

. With probability at least

1− δ,

Ξ5,1 ≤
gK,J
M

G2
i

T∑
t=1

λt,i +
gK,JGiUi

3
ln

1

δ
+GiUi

√
gK,J
2M

T ln
1

δ
.
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Furthermore, with probability at least 1− 2δ,

1

M
Ξ5 ≤

2U2
i

λT,i
+ 2G2

i

(
1 +

gK,J
M

) T∑
t=1

λt,i +
5gK,JGiUi

3
ln

1

δ
+ 4GiUi

√
gK,J
M

T ln
1

δ

≤5UiGi

√
1 +

gK,J
M
· gK,J +

5gK,JGiUi
3

ln
1

δ
+ 4GiUi

√
gK,J
M

T ln
1

δ
.

Combining the two cases gives, with probability at least 1− (M + 5)δ,

1

M
Ξ5 ≤ 6UiGi

√
1 +

gK,J
M

(√
T + gK,J

)
+ 2gK,JGiUi ln

1

δ
+ 3GiUi

√
2gK,J
M

T ln
1

δ
.

I.3 Combining all

Combining the upper bounds on Ξ4 and Ξ5 gives an upper bound on the regret.
With probability at least 1−Θ (M log(CT ) + log(CKT/M)) · δ,

T∑
t=1

M∑
j=1

`
(
f

(j)
t,At,1

(x
(j)
t ), y

(j)
t

)
−

T∑
t=1

M∑
j=1

`
(
f(x

(j)
t ), y

(j)
t

)
≤M

√
1 +

gK,J
M

(
6UiGi

(√
T + gK,J

)
+

4√
2
Ci
√
T ln (KT )

)
+

(64C + 3MC + 2UiGi)gK,J ln
1

δ
+ (3
√

2GiUi + 17
√
CCi)

√
2MgK,JT ln

1

δ
+ 2MCi

√
T ln

1

δ
.

Omitting the constant terms and lower order terms concludes the proof.

J Proof of Theorem 3

We first establish a technical lemma.

Lemma 5. Let X1, ..., XK be a sequence of independent standard normal random variables. Let
ZK = max{X1, ..., XK}. If K ≥ 5, then E[ZK ] ≥

(
1− 1√

e

)√
2 lnK.

Proof of Lemma 5. Proposition 2.1.2 in Vershynin [2018] gives a lower bound on the tail probability
of standard normal distribution.

∀x > 0,P[X1 ≥ x] =

∫ +∞

x

1√
2π

exp

(
−µ

2

2

)
dµ ≥ 1√

2π

(
1

x
− 1

x3

)
exp

(
−x

2

2

)
.

Then we have

E[ZK ] =E [ZK |∃i ∈ [K], Xi ≥ ε] · P [∃i ∈ [K], Xi ≥ ε] + E[ZK |∀Xi < ε] · P [∀Xi < ε]

≥P [∃i ∈ [K], Xi ≥ ε] · ε
= (1− P [∀Xi < ε]) · ε

=

(
1−

K∏
i=1

P [Xi < ε]

)
· ε

=

(
1−

K∏
i=1

(1− P [Xi ≥ ε])

)
· ε

≥

(
1−

(
1− 1√

2π

(
1

ε
− 1

ε3

)
exp

(
−ε

2

2

))K)
· ε.
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Let ε =
√

2 lnK. If K > 5, then we have(
1− 1√

2π

(
1

ε
− 1

ε3

)
exp

(
−ε

2

2

))K
=

(
1− 1√

2π

(
1√

2 lnK
− 1

ln1.5K2

)
1

K

)K
≤
(

1− 1

K2

)K
≤ 1√

e
.

Substituting into the lower bound of E[ZK ] concludes the proof.

J.1 Proof of the First Lower Bound

Proof. Let d ≥ K, X ⊆ Rd and Y ∈ {0, 1}. We use the absolute loss function `(f(xt), yt) =
|f(xt)− yt|. Recalling that

Fi = {fi(x) = 〈ei,x〉} , i = 1, 2, ...,K,

where ei is the standard basis vector in Rd. It is obvious that the time complexity of computing
fi(x) = xi is O(1). At each client j, let the selected hypothesis be f (j)

t and the prediction be
f

(j)
t (x

(j)
t ). Since there are no computational constraints on each client, f (j)

t (x
(j)
t ) can be a weighted

combination of K predictions, i.e., f (j)
t (x

(j)
t ) =

∑K
i=1 w

(j)
t,i fi(x

(j)
t ). The time complexity of

computing f (j)
t (x

(j)
t ) is O(K). We will follow the techniques used in the proof of Theorem 3.1 in

Patel et al. [2023] and Theorem 3.7 in Cesa-Bianchi and Lugosi [2006].

Following the proof of Theorem 3.1 in Patel et al. [2023], the adversary gives a sequence of same
examples for each client. To be specific, we define(

x
(j)
t , y

(j)
t

)
= (xt, yt), t = 1, ..., T, j = 1, ...,M,

where xt = (bt,1, bt,2, ..., bt,K , 0, . . . , 0) ∈ Rd, and bt,1, bt,2, ..., bt,K , yt is a sequence of symmetric
i.i.d. Bernoulli random variables, i.e., P[yt = 1] = P[yt = 0] = 1

2 .

At any round t, the minimax regret against the best hypothesis can be simplified as follows

inf
f
(1)
1 ,...,f

(M)
T

sup
(x

(j)
t ,y

(j)
t ),,j∈[M ],t∈[T ]

max
i∈[K]

RegD(Fi)
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f
(1)
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T

sup
(xt,yt),t∈[T ]

max
i∈[K]
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f
(1)
1 ,...,f

(M)
T

E
(xt,yt),t∈[T ]

 T∑
t=1

M∑
j=1

`
(
f

(j)
t (xt), yt

)
− min
i∈[K]

T∑
t=1

M∑
j=1

` (fi(xt), yt)


= inf
f
(1)
1 ,...,f

(M)
T

E
(xt,yt),t∈[T ]

 T∑
t=1

M∑
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|f (j)
t (xt)− yt| −M min

i∈[K]

T∑
t=1

|fi(xt)− yt|


=
MT

2
−M E

(xt,yt),t∈[T ]

[
min
i∈[K]

T∑
t=1

|fi(xt)− yt|

]

=M E
(xt,yt),t∈[T ]

[
max
i∈[K]

T∑
t=1

(
1

2
− fi(xt)

)
· (1− 2yt)

]
,

in which fi(xt) = bt,i is a Bernoulli random variable and

E
(x,yt),t∈[T ]

 T∑
t=1

M∑
j=1

|f (j)
t (xt)− yt|

 = E
yt,t∈[T ]

 T∑
t=1

M∑
j=1

yt

 =
MT

2
.
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We further obtain

inf
f
(1)
1 ,...,f

(M)
T

sup
(x

(j)
t ,y

(j)
t ),j∈[M ],t∈[T ]

max
i∈[K]

RegD(Fi) ≥
M

2
E

σt,Zt,i,t∈[T ],i∈[K]

[
max
i∈[K]

T∑
t=1

Zt,i · σt

]

=
M

2
E

Zt,i,t∈[T ],i∈[K]

[
max
i∈[K]

T∑
t=1

Zt,i

]
,

where both {Zt,i}t∈[T ],i∈[K] and {σt}t∈[T ] are i.i.d. Rademacher random variables.

By Lemma A.11 in Cesa-Bianchi and Lugosi [2006], we obtain

lim
T→∞

E

[
max
i∈[K]

1√
T

T∑
t=1

Zt,i

]
= E

[
max
i∈[K]

Gi

]
,

where G1, ..., GN are independent standard normal random variables.

By Lemma 5, we obtain

lim
T→∞

inf
f
(1)
1 ,...,f

(M)
T

sup
(x

(j)
t ,y

(j)
t ),j∈[M ],t∈[T ]

max
i∈[K]

RegD(Fi) ≥
1

2

(
1− 1√

e

)
M
√

2T lnK,

which concludes the proof.

J.2 Proof of the Second Lower Bound

We mainly use the techniques in the proof of Theorem 2 in Seldin et al. [2014], but also require a new
technique. The idea of our proof is to reduce the online model selection on each client to multi-armed
bandit problem with additional observations.

Proof. Now we prove the second lower bound in Theorem 3.

Let d ≥ K, X ⊆ Rd and Y ∈ {0, 1}. We use a linear loss function `(f(xt), yt) = 1 − ytf(xt).
Recalling that

Fi = {fi(x) = 〈ei,x〉} , i = 1, 2, ...,K.

It is obvious that the time complexity of computing fi(x) = xi is O(1). Under the constraint that the
time complexity on each client is limited to O(J), on each client, any algorithm can only select J
hypotheses and then output a prediction.

One of challenges is that the prediction may be a combination of J predictions. To be specific,
for each client j ∈ [M ], f (j)

t (x
(j)
t ) =

∑
i∈O(j)

t
wt,ifi(x

(j)
t ), where O(j)

t contains the index of
selected J hypotheses by some algorithm. To address this challenge, we introduce a virtual strat-
egy that randomly selects a hypothesis f (j)

I
(j)
t

∈ {fAt,1 , fAt,2 , ..., fAt,J
} following the distribution

(wt,At,1 , wt,At,2 , ..., wt,At,J
) where At,a ∈ O

(j)
t , a = 1, ..., J . Since the loss function is a linear

function, it is easy to prove that,

E
[
`(f

(j)

I
(j)
t

(x
(j)
t ), y

(j)
t )

]
= `

(
E
[
f

(j)

I
(j)
t

(x
(j)
t )

]
, y

(j)
t

)
= `

(
f

(j)
t (x

(j)
t ), y

(j)
t

)
, (16)

where the expectation is taken over I(j)
t . Assuming that `(fi(x

(j)
t ), y

(j)
t ) ≤ C for all i = 1, ...,K.

Lemma A.7 in Cesa-Bianchi and Lugosi [2006] gives, with probability at least 1− δ,
T∑
t=1

[
`(f

(j)

I
(j)
t

(x
(j)
t ), y

(j)
t )− `

(
f

(j)
t (x

(j)
t ), y

(j)
t

)]
≤ −C

√
T

2
ln

1

δ
.

Note that we assume wt,i ≥ 0 and
∑
i∈O(j)

t
wt,i = 1 for all t = 1, ..., T . Recalling that Theorem 3

assumes the outputs of algorithm belong to [mini∈[K],x∈X fi(x),maxi∈[K],x∈X fi(x)]. If wt,i < 0
or
∑
i∈O(j)

t
wt,i > 1, we can still find a weight vector w′t,i ≥ 0 and

∑
i∈O(j)

t
w′t,i = 1, such that

f
(j)
t (x

(j)
t ) =

∑
i∈O(j)

t

wt,ifi(x
(j)
t ) =

∑
i∈O(j)

t

w′t,ifi(x
(j)
t ).
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Then we sample I
(j)
t following (w′t,At,1

, w′t,At,2
, ..., w′t,At,J

). We can replace
(wt,At,1 , wt,At,2 , ..., wt,At,J

) with (w′t,At,1
, w′t,At,2

, ..., w′t,At,J
).

Since the algorithm is non-cooperative, the total regret can be decomposed into the summation of the
regret on each client. With probability at least 1−Mδ,

∀i ∈ [K], RegD(Fi) =

M∑
j=1

[
T∑
t=1

`
(
f

(j)
t (x

(j)
t ), y

(j)
t

)
−

T∑
t=1

`
(
fi(x

(j)
t ), y

(j)
t

)]

=

M∑
j=1

[
T∑
t=1

`

(
f

(j)

I
(j)
t

(x
(j)
t ), y

(j)
t

)
−

T∑
t=1

`
(
fi(x

(j)
t ), y

(j)
t

)]
+

M∑
j=1

[
T∑
t=1

`
(
f

(j)
t (x

(j)
t ), y

(j)
t

)
−

T∑
t=1

`

(
f

(j)

I
(j)
t

(x
(j)
t ), y

(j)
t

)]

≥
M∑
j=1

[
T∑
t=1

`

(
f

(j)

I
(j)
t

(x
(j)
t ), y

(j)
t

)
−

T∑
t=1

`
(
fi(x

(j)
t ), y

(j)
t

)]
︸ ︷︷ ︸

RegD(Fi)

+C

√
T

2
ln

1

δ
. (17)

Note that if we take expectation w.r.t. the randomness of algorithm, then the additional term

C
√

T
2 ln 1

δ in (17) can be omitted following (16).

If the prediction is not a combination of J predictions, but just f (j)

I
(j)
t

(x
(j)
t ), then we have

∀i ∈ [K], RegD(Fi) =

M∑
j=1

[
T∑
t=1

`

(
f

(j)

I
(j)
t

(x
(j)
t ), y

(j)
t

)
−

T∑
t=1

`
(
fi(x

(j)
t ), y

(j)
t

)]
︸ ︷︷ ︸

RegD(Fi)

. (18)

Combining with the two cases, we just need to analyze RegD(Fi).

The adversary first uniformly samples a same h ∈ [K] for all clients, and then constructs
{(x(j)

t , yt)}Tt=1 as follows

x
(j)
t = xt := (bt,1, bt,2, ..., bt,K , 0, . . . , 0) , y

(j)
t = 1, j = 1, ...,M,

in which bt,i satisfies

Ph [bt,i = 1] =
1− ρ

2
, Ph [bt,i = 0] =

1 + ρ

2
, i 6= h,

Ph [bt,h = 1] =
1 + ρ

2
, Ph [bt,h = 0] =

1− ρ
2

.

Let Eh[·] and Ph[·] separately be the expectation and probability operator conditioned on h is selected.
Then we have

Ph [`(fi(xt), 1) = 1] =
1 + ρ

2
, Ph [`(fi(xt), 1) = 0] =

1− ρ
2

, i 6= h,

Ph [`(fh(xt), 1) = 1] =
1− ρ

2
, Ph [`(fh(xt), 1) = 0] =

1 + ρ

2
.

It is obvious that online model selection can be reduced to a K-armed bandit problem, in which fi is
the i-th arm. At each round t, let I(j)

t be the selected arm. Besides, any algorithm can select another
J − 1 arms. Thus any algorithm can observe J losses. Let O(j)

t be the set of the selected J arms.
Note that f (j)

I
(j)
t

= f
I
(j)
t

for any I(j)
t ∈ [K].
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Assuming that the algorithm is deterministic, that is, O(j)
t is determined by {O(j)

τ }t−1
τ=1 and the

observed losses. Let NT,i =
∑T
t=1 II(j)t =i

. Taking expectation w.r.t. (bt,1, ..., bt,K)Tt=1 yields

Eh

[
T∑
t=1

`

(
f

(j)

I
(j)
t

(xt), 1

)
− min
i∈[K]

T∑
t=1

` (fi(xt), 1)

]

≥Eh

[
T∑
t=1

`

(
f

(j)

I
(j)
t

(xt), 1

)]
− min
i∈[K]

Eh

[
T∑
t=1

` (fi(xt), 1)

]

=ρ · Eh

[
T∑
t=1

I
I
(j)
t 6=h

]

=ρT ·
(

1− 1

T
Eh [NT,h]

)
.

Following the techniques in the proof of Theorem 2 in Seldin et al. [2014], we have

1

KT

K∑
h=1

Eh [NT,h] ≤ 1

K
+

√
−JT
K

2ρ2

1− ρ2
.

Recalling that T ≥ K ≥ 5. Let ρ =
√
K

3
√
JT

. We further have

1

K

K∑
h=1

[
Eh

[
T∑
t=1

`

(
f

(j)

I
(j)
t

(xt), 1

)]
− min
i∈[K]

Eh

[
T∑
t=1

` (fi(xt), 1)

]]

≥ρT ·

(
1− 1

K
− 3

2
ρ

√
JT

K

)

≥0.1

√
KT√
J
. (19)

For any deterministic algorithm, we can prove

sup
(x

(j)
t ,y

(j)
t ),t∈[T ],j∈[M ]

max
i∈[K]

RegD(Fi)

≥ sup
(xt,1),t∈[T ],h∈[K]

 T∑
t=1

M∑
j=1

`
(
f

(j)
t (xt), 1

)
− min
i∈[K]

T∑
t=1

M∑
j=1

` (fi(xt), 1)


= sup

(xt,1),t∈[T ],h∈[K]

 T∑
t=1

M∑
j=1

`
(
f

(j)
t (xt), 1

)
−M min

i∈[K]

T∑
t=1

` (fi(xt), 1)


≥ sup
h∈[K]

Eh
xt,t∈[T ]

 M∑
j=1

[
T∑
t=1

`

(
f

(j)

I
(j)
t

(xt), 1

)
− min
i∈[K]

T∑
t=1

` (fi(xt), 1)

]
≥ sup
h∈[K]

M∑
j=1

[
Eh

xt,t∈[T ]

[
T∑
t=1

`

(
f

(j)

I
(j)
t

(xt), 1

)]
− min
i∈[K]

Eh
xt,t∈[T ]

[
T∑
t=1

` (fi(xt), 1)

]]

≥ E
h∈[K]

M∑
j=1

[
Eh

[
T∑
t=1

`

(
f

(j)

I
(j)
t

(xt), 1

)]
− min
i∈[K]

Eh

[
T∑
t=1

` (fi(xt), 1)

]]

=

M∑
j=1

1

K

K∑
h=1

[
Eh

[
T∑
t=1

`

(
f

(j)

I
(j)
t

(xt), 1

)]
− min
i∈[K]

Eh

[
T∑
t=1

` (fi(xt), 1)

]]

≥0.1M

√
K

J
T ,
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Algorithm 4 NCO-OMS

Require: T , J , η1, {Ui, λ1,i, i ∈ [K]}
Ensure: f (j)

1,i = 0, p1,i, i ∈ [K], j ∈ [M ]
1: for t = 1, 2, . . . , T do
2: for j = 1, . . . ,M do
3: The client samples O(j)

t following (7)
4: The client outputs f (j)

t,At,1
(x

(j)
t )

5: The client computes f (j)
t,At,a

(x
(j)
t ) for all a = 2, . . . , J

6: The client computes ∇̃(j)
t,i and c̃(j)t,i for all i ∈ O(j)

t

7: The client computes p(j)
t+1 and w

(j)
t+1,i, i ∈ [K] following Definition 1

8: end for
9: end for

where the last inequality comes from (19). As claimed in the proof of Theorem 6.11 in Cesa-
Bianchi and Lugosi [2006], the lower bound of any randomized algorithm is same with that of any
deterministic algorithm, i.e.,

sup
(x

(j)
t ,y

(j)
t ),t∈[T ],j∈[M ]

E
[

max
i∈[K]

RegD(Fi)
]

= sup
(x

(j)
t ,y

(j)
t ),t∈[T ],j∈[M ]

[
E

[
T∑
t=1

`

(
f

(j)

I
(j)
t

(x
(j)
t ), y

(j)
t

)]
− min
i∈[K]

T∑
t=1

`
(
fi(x

(j)
t ), y

(j)
t

)]

≥0.1M

√
KT√
J
,

in which the expectation is taken over the internal randomness of algorithm. Substituting into (17), or
(18) concludes the proof.

K Regret Analysis of NCO-OMS

Algorithm 4 gives the pseudo-code of NCO-OMS.

Following the definition of NCO-OMS and Algorithm 4, it is obvious that the regret bound of
NCO-OMS on each client is same with Theorem 2 in which we set M = 1. The regret bound on M
clients is M times of that of a client. Thus we have Theorem 6.

Theorem 6 (Regret Bound of NCO-OMS). Let the learning rate η, λt,i and the initial distribution
p1 be same for each client j ∈ [M ]. The values of η, λt,i and p1 follow Theorem 2 in which M = 1.
With probability at least 1−Θ (M log(KT )) · δ, the regret of NCO-OMS satisfies:

∀i ∈ [K], RegD(Fi) = O

(
M

(
Bi,1

√
(1 + gK,J)T +Bi,2gK,J ln

1

δ
+Bi,3

√
gK,JT ln

1

δ

))
,

whereBi,1 = UiGi+Ci
√

ln(KT ), Bi,2 = C+UiGi andBi,3 = UiGi+
√
CCi and C = maxi Ci.

L Proof of Theorem 4

L.1 Algorithm

We give the pseudo-code in Algorithm 5.

To implement Algorithm 5, we require one more technique, i.e., the random features [Rahimi and
Recht, 2007]. We will use the random features to construct an approximation of the implicity kernel
mapping. The are two reasons. The first one is that we can avoid transferring the data itself and thus
the privacy is protected. The second one is that we can avoid the O(T ) computational cost on the
clients.
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For any i ∈ [K], we consider the kernel function κi(x,v) that has an integral representation, i.e.,

κi(x,v) =

∫
Γ

ϕi(x, ω)ϕi(v, ω)dµi(ω), ∀x,v ∈ X , (20)

where ϕi : X × Γ→ R is the eigenfunctions and µi(·) is a distribution function on Γ. Let pi(·) be
the density function of µi(·). We sample {ωj}Dj=1 ∼ pi(ω) independently and compute

κ̃i(x,v) =
1

D

D∑
j=1

ϕi(x, ωj)ϕi(v, ωj).

For any f(x) =
∫

Γ
α(ω)ϕi(x, ω)pi(ω)dω. We can approximate f(x) by f̂(x) =

1
D

∑D
j=1 α(ωj)ϕi(x, ωj). It can be verified that E[f̂(x)] = f(x). Such an approximation scheme

also defines an explicit feature mapping denoted by

φi(x) =
1√
D

(ϕi(x, ω1), . . . , ϕi(x, ωD)) .

For each κi, i ∈ [K], we define two hypothesis spaces [Rahimi and Recht, 2008, Li and Liao, 2022]
as follows

Fi =

{
f(x) =

∫
Γ

α(ω)ϕi(x, ω)pi(ω)dω ||α(ω)| ≤ Ui
}
,

Hi =

f̂(x) =

D∑
j=1

αjϕi(x, ωj)

∣∣∣∣|αj | ≤ Ui
D


=

{
f̂(x) = w>φi(x)

∣∣∣∣w =
√
D(α1, . . . , αD) ∈ RD, |αj | ≤

Ui
D

}
,

(21)

in which Fi is exact the hypothesis space defined in (1).

It can be verified that ‖w‖22 ≤ U2
i . LetWi = {w ∈ RD : ‖w‖∞ ≤ Ui√

D
}. We replace (9) with (22),

∇w̄t+1,i
ψt,i(w̄t+1,i) =∇wt,i

ψt,i(wt,i)−
1

M

M∑
j=1

∇̃(j)
t,i , i = 1, ...,K,

wt+1,i = arg min
w∈Wi

Dψt,i
(w, w̄t+1,i),

ψt,i(w) =
1

2λt,i
· ‖w‖22.

(22)

L.2 Regret Analysis

We first give an assumption and a technique lemma.

Assumption 2 (Li et al. [2019]). For any i ∈ [K], if κi satisfies (20), then there is a bounded constant
bi such that, ∀x ∈ X , |ϕi(x, ω)| ≤ bi.

Under Assumption 2, we have |f(x)| ≤ Uibi for any f ∈ Hi and f ∈ Fi. It is worth mentioning that
if Assumption 2 holds, then Assumption 1 holds with the same bi.

Lemma 6. For any i ∈ [K], let Fi and Hi follow (21). With probability at least 1 − δ, ∀f ∈ Fi,
there is a f̂ ∈ Hi such that |f(x)− f̂(x)| ≤ Ubi√

D

√
2 ln 1

δ .

The lemma is adopted from Lemma 5 in [Li and Liao, 2023]. Thus we omit the proof.

Now we begin to prove Theorem 4.
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Algorithm 5 FOMD-OMS for Distributed OMKL

Require: U , T , R, J .
Ensure: f (j)

1,i = 0, p1,i, i ∈ [K], j ∈ [M ]
1: for r = 1, 2, . . . , R do
2: for t ∈ Tr do
3: if t == (r − 1)N + 1 then
4: for j = 1, . . . ,M do
5: Server samples O(j)

t following (7)
6: Server transmits wt,i, i ∈ O(j)

t to the j-th client
7: end for
8: end if
9: for j = 1, . . . ,M in parallel do

10: for i ∈ O(j)
t do

11: Computing φi(x
(j)
t )

12: end for
13: Outputting w>t,At,1

φAt,1(x
(j)
t ) and receiving y(j)t

14: for i ∈ O(j)
t do

15: Computing∇(j)
t,i and c(j)t,i

16: end for
17: end for
18: if t == rN then
19: Clients transmit { 1

N

∑
t∈Tr
∇(j)

t,i ,
1
N

∑
t∈Tr

c
(j)
t,i }i∈O(j)

t
to server

20: Server computes pt+1 following (8)
21: Server computes wt+1,i, i ∈ [K] following (22)
22: end if
23: end for
24: end for

Proof of Theorem 4. The regret w.r.t. any f ∈ Fi can be decomposed as follows.

T∑
t=1

M∑
j=1

`
(
f

(j)
t,At,1

(x
(j)
t ), y

(j)
t

)
−

T∑
t=1

M∑
j=1

`
(
f(x

(j)
t ), y

(j)
t

)

=

T∑
t=1

M∑
j=1

[
`
(
f

(j)
t,At,1

(x
(j)
t ), y

(j)
t

)
− `
(
f

(j)
t,i (x

(j)
t ), y

(j)
t

)
+ `
(
f

(j)
t,i (x

(j)
t ), y

(j)
t

)
− `
(
f̂(x

(j)
t ), y

(j)
t

)]
︸ ︷︷ ︸

RegD(Hi)

+

T∑
t=1

M∑
j=1

[
`
(
f̂(x

(j)
t ), y

(j)
t

)
− `
(
f(x

(j)
t ), y

(j)
t

)]
︸ ︷︷ ︸

Ξ6

=RegD(Hi) + Ξ6.

RegD(Hi) is the regret that we run FOMD-OKS with hypothesis spaces {Hi}Ki=1. f̂ ∈ Hi satisfies
Lemma 6. In other words, Ξ6 is induced by the approximation error that we use f̂ to approximate f .

RegD(Hi) has been given by Theorem 5. Next we analyze Ξ6.
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Using the convexity of `(·, ·), with probability at least 1− TMδ,

Ξ6 ≤
T∑
t=1

M∑
j=1

d `
(
f̂(x

(j)
t ), y

(j)
t

)
d f̂(x

(j)
t )

·
(
f̂(x

(j)
t )− f(x

(j)
t )
)

≤
T∑
t=1

M∑
j=1

∣∣∣∣∣∣
d `
(
f̂(x

(j)
t ), y

(j)
t

)
d f̂(x

(j)
t )

∣∣∣∣∣∣ ·
∣∣∣f̂(x

(j)
t )− f(x

(j)
t )
∣∣∣

≤gibiUi
MT√
D

√
2 ln

1

δ

≤GiUi
MT√
D

√
2 ln

1

δ
.

Under Assumption 2, there is a constant gi such that
∣∣∣∣d `

(
f̂(x

(j)
t ),y

(j)
t

)
d f̂(x

(j)
t )

∣∣∣∣ ≤ gi. The last inequality

comes from the definition of Lipschitz constant (see Lemma 2).

Combining the upper bounds on RegD(Hi) and Ξ6 concludes the proof.
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should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We have give all assumptions in the main paper. Due to the limited space, we
do not include proof sketches in the main paper, but give a complete and correct proof for
each theoretical result (including lemma and theorem) in appendix.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have clearly state the experimental setting and datasets, and give the
datasets and code in supplemental material.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All of the datasets used in this paper are public. The datasets and code of all
algorithms are available at https://github.com/JunfLi-TJU/OMS-DecD.git.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have clearly specified the experimental setting in appendix (Section
C) including basic information of datasets, the type of hyperparameters, the value of
hyperparameters and so on.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have reported the error bar which is the standard deviation of the mean.
We run each experiment 10 times, record the mean of 10 random results (including MSE
and running time) and the standard deviation of the mean.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have stated the compute resources in the experimental setting (Section C).
All algorithms are implemented with R on a Windows machine with 2.8 GHz Core(TM)
i7-1165G7 CPU.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and our research conforms with
the NeurIPS Code of Ethics.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
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Justification: We have included the broader impacts in appendix (Section B)
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use public datasets and give the URL from which the datasets are down-
loaded.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have provided the code of our algorithms with a simplified documentation
available at https://github.com/JunfLi-TJU/OMS-DecD.git.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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