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ABSTRACT

Emergingweb applications (e.g., video streaming andWeb of Things
applications) account for a large share of traffic in Wide Area Net-
works (WANs) and provide traffic with various Quality of Service
(QoS) requirements. Software-Defined Wide Area Networks (SD-
WANs) offer a promising opportunity to enhance the performance
of Traffic Engineering (TE), which aims to enable differentiable
QoS for numerous web applications. Nevertheless, SD-WANs are
managed by controllers, and unpredictable controller failures may
undermine flexible network management. Switches previously con-
trolled by the failed controllers may become offline, and flows
traversing these offline switches lose the path programmability
to route flows on available forwarding paths. Thus, these offline
flows cannot be routed/rerouted on previous paths to accommo-
date potential traffic variations, leading to severe TE performance
degradation. Existing recovery solutions reassign offline switches
to other active controllers to recover the degraded path programma-
bility but fail to promise good TE performance since higher path
programmability does not necessarily guarantee satisfactory TE
performance. In this paper, we propose Ares to provide predictable
TE performance under controller failures. We formulate an op-
timization problem to maintain predictable TE performance by
jointly considering fine-grained flow-controller reassignment using
P4 Runtime and flow rerouting and propose Ares to efficiently
solve this problem. Extensive simulation results demonstrate that
our problem formulation exhibits comparable load balancing per-
formance to optimal TE solution without controller failures, and
the proposed Ares significantly improves average load balancing
performance by up to 43.36% with low computation time compared
with existing solutions.

KEYWORDS

Traffic Engineering, Software-Defined Wide Area Networks, Web
Services, Controller Failures.

1 INTRODUCTION

Popular modern cloud services bring emerging new web applica-
tions (e.g., web services [31], video streaming [10], web AR/VR
[15], and tactile Internet [27]), which could be deployed for tenants
various Quality of Service (QoS) requirements. These web services
account for a large share of Wide Area Networks (WANs) traffic
[38]. Traffic Engineering (TE) is a prevalent network application
that aims to improve the network performance of WANs and enable
differentiable QoS for numerous web applications [36]. TE plays a
crucial role in the network operations of Internet Service Providers
(ISPs) as it allows them to efficiently manage traffic distribution
across their WANs. As Software-Defined Networking (SDN) has
been introduced into WANs, also known as Software-Defined Wide
Area Networks (SD-WANs) [39, 42], the management of WANs for

TE becomes much more flexible. Empowered by the SDN, TE can be
implemented at the SDN controller, enabling it to respond promptly
to traffic changes by leveraging a global network view [24]. Once
TE generates an updated routing strategy based onmeasured Traffic
Matrices (TMs) [45], the SDN controller can implement correspond-
ing routing policies at the underlying SDN switches to reroute
flows accordingly. Extensive evaluation results on WANs of world-
leading giant techs (e.g., Google [18, 20], Microsoft [17, 22], and
Amazon [19]) have proven the effectiveness of achieving a better
TE performance by introducing SDN into WANs.

While the SDN offers numerous network management benefits,
it still faces challenges. The flexible management of network flows
in an SD-WAN relies on the functionality of the SDN controller.
However, controller failure is a common problem in SD-WANs
[7, 16]. An SDN controller, typically a physical server or virtual
machine running a network operating system, can experience un-
expected failures due to various unforeseen circumstances (e.g.,
power outage [40] and malicious attacks [21]). When a controller
fails in an SD-WAN, all the switches previously controlled by the
failed controller become offline switches. Any flow traversing these
offline switches becomes offline and loses its path programmability,
which denotes the ability to adjust the flow’s forwarding path, and
consequently, the controller can no longer control the flow. Based
on our new observation in Section 2.2, when controller failures
happen [11, 14], network performance cannot be guaranteed to
accommodate potential traffic variations due to the loss of flexible
network management. In some severe cases, several controllers
may fail simultaneously or successively, leading to significant TE
performance variation with a large number of offline flows.

To mitigate the impact of controller failures on web services due
to TE performance degradation, state-of-the-art solutions attempt
to reassign offline switches to other active controllers [8, 9, 12].
These solutions are typically path programmability-centric and
take maximizing the total recovered path programmability as their
primary objective. However, these path programmability-centric so-
lutions may not necessarily guarantee better TE performance, since
they fail to achieve satisfactory and predictable TE performance af-
ter controller failures occur, which is attributed to path programma-
bility being unable to reveal network performance. While higher
path programmability implies a higher likelihood of accommodat-
ing unpredictable future traffic fluctuations, it cannot guarantee
a predictable TE performance when the current traffic status is
given (i.e., TMs are known). Thus, an effective recovery solution is
needed to maintain web services by ensuring improved predictable
TE performance under controller failures.

In this paper, we propose the PredictAble TRaffic Engineering
Solution (Ares), which aims to guarantee predictable TE perfor-
mance under controller failures. The key idea of Ares is to jointly
consider fine-grained flow-controller reassignment using P4 Run-
time and flow rerouting based on the input TMs. We formulate an
optimization problem named TE Performance-aware Flow-Controller
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Reassignment and Flow Rerouting (TPFCRFR), which seeks to mini-
mize the Maximum Link Utilization (MLU) in the network under
controller failures. The formulated TPFCRFR problem is a Mixed In-
teger Linear Programming (MILP) with high complexity. To tackle
this problem, we propose an efficient and effective heuristic solution
named Ares to determine the reassignment and rerouting policies.
Extensive evaluation results verify the effectiveness of our formu-
lation: the optimal solution of our formulation exhibits comparable
load balancing performance to the optimal TE solution without con-
troller failures. The results also show that the proposed Ares can
improve the average load balancing performance by up to 43.36%
with low computation time compared with existing solutions.

The main contributions of this paper are summarized as follows:
• We identify that controller failures may be a severe factor

affecting web service performance due to TE performance
degradation, and existing recovery solutions cannot guar-
antee predictable TE performance.

• We formulate an optimization problem to maintain pre-
dictable TE performance by jointly considering flow-controller
reassignment and flow rerouting. We further conduct simu-
lations to prove the effectiveness of our proposed TPFCRFR
problem.

• To solve the problem, we propose Ares. Extensive simula-
tions under real-world topology and traffic traces demon-
strate that Ares can guarantee good TE performance with
low computation time.

The remainder of this paper is organized as follows. In Section
2, we provide the background, observations, and motivation of
this paper. Section 3 discusses the design opportunity and design
overview of Ares. Section 4 formulates the TPFCRFR problem.
In Section 5, we propose Ares to efficiently address this problem.
In Section 6, we verify the effectiveness of our formulation and
compare the performance of Ares with other existing baseline
solutions. Section 7 discusses the related work within this research
area. Finally, we conclude the paper in Section 8.

2 BACKGROUND AND MOTIVATION

In this section, we will introduce the background, motivation, and
our new observations of this paper.

2.1 TE Meets Various QoS Requirements for

Web Services through SD-WANs

Emerging new web services require various QoS requirements.
These web services are highly prioritized in the whole network
and account for a large share of traffic in WANs [38]. To improve
the network performance to enable differentiable QoS, TE offers a
promising solution to this issue. By Leveraging the capabilities of
SDN, TE can be efficiently deployed at the control plane, enabling
rapid response to traffic fluctuations inWANs and promise required
QoS for web services through a global network perspective. Specif-
ically, TE aims to find effective routing strategies that redistribute
the traffic across the network, thereby alleviating network conges-
tion and optimizing network performance [6, 36]. Based on the
given network topology and traffic demands of flows, TE will for-
mulate an optimization problem with a specific objective function,
e.g., minimizing the MLU, to decide the suitable path for each flow

0 100 200 300 400 500 600
Traffic Matrix Index
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0.4
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0.6

M
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Before Controller Failures

After Controller Failures

Figure 1: Comparison of the MLU performance before and

after controller failures. The lower, the better.

to forward on. Since the SDN controller is able to maintain a global
network view and update routing policies at the underlying SDN
switches, TE will periodically reroute flows to achieve improved
load balancing in response to dynamic changes in network traffic
conditions for SD-WANs.

2.2 Controller Failures Pose Severe Impact on

TE Performance

Even though SDN brings many benefits to WANs, it is still faced
with challenges. SDN controllers, typically physical servers or vir-
tual machines running a network operating system, may fail in
SD-WANs. Unforeseen circumstances (e.g., natural disasters, hard-
ware or software errors, and power outages) can cause controller
failures. When such controller failures occur, switches previously
controlled by the failed controllers will become offline, and flows
traversing these offline switches will lose their path programma-
bility and become offline flows. The controller failure problem can
cause fluctuations in network performance and even TE perfor-
mance under varying network conditions due to decreased path
programmability. To maintain stable network performance, it is
crucial to recover these offline flows under controller failures.

Figure 1 shows our observation about the impact of controller
failures on TE performance. The load balancing results are obtained
by solving the Multi-Commodity Flow (MCF) problem [25], which
is detailed in Appendix A.1. MCF is a widely used TE solution that
balances traffic load among all links by minimizing the MLU. We
utilize GÉANT topology with real-world TMs of the 23 switches at
a time slot of every fifteen minutes and select 672 TMs collected
during one week, specifically from June 2, 2005, to June 8, 2005. The
blue line shows theMLU performance before controller failures, and
the red one shows the MLU performance after controller failures.
This observation demonstrates that controller failures threaten TE
performance, which can increase the MLU by up to 0.35 in the worst
case. The root cause lies in that flows cannot be flexibly rerouted
to accommodate traffic fluctuations due to controller failures. Thus,
meeting various QoS requirements for emerging web services under
controller failures is challenging and non-trivial.

2.3 State-of-the-Art Solutions and Their

Limitations

A common approach to the controller failure problem is to employ
a cluster deployment strategy. The cluster deployment involves

2
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setting up a controller cluster comprising multiple controllers to
handle single controller failure [2, 3]. Typically, if one controller in
the cluster fails, the other functioning controllers can continue oper-
ating and ensure uninterrupted control over the network. However,
it is essential to note that if all controllers in a cluster fail simul-
taneously, such as during a power outage, this cluster design may
not be effective [14]. Therefore, it is necessary to develop efficient
and effective solutions to address this situation, which aims to
maintain network performance to keep the network functional and
responsive even under multiple controller failure scenarios.

To tackle this issue, existing state-of-the-art solutions propose
reassigning offline switches to active controllers to maximize re-
covered path programmability under controller failures. However,
higher path programmability can only indicate higher flexibility
in network management and may not necessarily ensure the ex-
pected improvement in network performance, particularly in TE
performance. In addition, existing solutions all follow the same
coarse-grained switch-controller reassignment pattern, which lim-
its the recovery performance since some flows with large traffic
volumes may not be recovered for further rerouting. In other words,
state-of-the-art can not promise good TE performance under con-
troller failures. In the forthcoming Section 3, we will elaborate
on the design of our proposed Ares, and how it overcomes these
limitations.

3 DESIGN OVERVIEW OF ARES

In this section, we will introduce the opportunity to help us realize
fine-grained flow-controller reassignment and present the design
overview of Ares.

3.1 Opportunity

The development of the programmable data plane has facilitated
precise flow-controller assignment without requiring additional
hardware. P4 is a programming language utilized to program the
data plane, as indicated by [5]. Additionally, P4 Runtime is a novel
approach that allows the control plane to manage the data plane
[4]. This specification is designed for P4 programmable switches
and allows multiple controllers to manage the switch via the P4
Runtime server simultaneously. This feature aligns with the design
goals of enabling multiple controllers to manage a single switch.
By deploying a module in each P4 Runtime server, flow redirection
from failed controllers to active ones can be accomplished using
reassignment strategies. The reassignment strategies are computed
by solving an optimization problem outlined in Section 4, and P4
Runtime allows for flow-controller reassignment among active
controllers based on these strategies.

3.2 Overview of Ares

Ares aims to promise predictable TE performance under controller
failures by jointly considering flow-controller reassignment and
flow rerouting. As depicted in Figure 2, Ares has four main steps.
Firstly, it collects real-time traffic traces (e.g., TMs) from the net-
work periodically. Secondly, when controller failures occur, Ares
updates the current network status with the required information
(e.g., collected TMs, offline flows, and active controllers). Subse-
quently, flow-controller reassignment and flow rerouting policies

Traffic Matrices

Network

Reassignment & 

Rerouting Policies
ARES

1

2 3

4Traffic Info Polling

Network Status 

Update

Flow-Controller Reassignment 

& Routing Policy Update

Policy 

Generation

Figure 2: Design structure of Ares.

are determined and generated by solving the optimization problem
(i.e., TPFCRFR problem) detailed in the following Section 4. Finally,
Ares reassigns offline flows to corresponding active controllers
and updates routing policies, achieving predictable load balancing
performance in the whole network.

4 PROBLEM FORMULATION

In this section, we will exhibit the formulation of the TPFCRFR prob-
lem, which involves deciding the reassignment strategies for offline
flows to active controllers under controller failures by considering
the TE performance.

4.1 System Description

Typically, an SD-WAN consists of 𝐻 controllers at 𝐻 locations, and
each controller controls a domain of switches. Controllers𝐶𝑁+1, ...,
𝐶𝐻 fail, and the set of active controllers is C = {𝐶1, ...,𝐶𝑖 , ...,𝐶𝑁 }.
The set of flows is F = {𝑓1, ..., 𝑓𝑗 , ..., 𝑓𝑇 }, where 𝑓1, ..., 𝑓𝑀 are offline
flows and 𝑓𝑀+1, ..., 𝑓𝑇 are online flows controlled by active con-
trollers. The set of links is E = {𝑒1, ..., 𝑒𝑘 , ..., 𝑒𝐾 }. The pre-configured
path set for flow 𝑓𝑗 is P𝑗 = {𝑝1

𝑗
, ..., 𝑝𝑙

𝑗
, ..., 𝑝𝐿

𝑗
}. We use 𝑥𝑙

𝑖 𝑗
= 1 to

denote that offline flow 𝑓𝑗 ( 𝑗 ∈ [1, 𝑀]) is forwarded on path 𝑝𝑙
𝑗
and

reassigned to controller 𝐶𝑖 ; Otherwise 𝑥𝑙𝑖 𝑗 = 0. We use 𝑦𝑙
𝑗
= 1 to

denote that online flow 𝑓𝑗 ( 𝑗 ∈ [𝑀 + 1,𝑇 ]) is forwarded on path 𝑝𝑙
𝑗
;

Otherwise 𝑦𝑙
𝑗
= 0.

4.2 Problem Constraints

4.2.1 Path Selection Constraint. Each offline flow must be for-
warded on one path. Thus, we have:

𝐿∑︁
𝑙=1

𝑁∑︁
𝑖=1

𝑥𝑙𝑖 𝑗 = 1,∀𝑗 ∈ [1, 𝑀] . (1)

Each online flow should also select one path to forward on, which
is:

𝐿∑︁
𝑙=1

𝑦𝑙𝑗 = 1,∀𝑗 ∈ [𝑀 + 1,𝑇 ] . (2)

4.2.2 Flow-Controller Reassignment Constraint. When con-
troller failures happen, active controllers must prioritize the man-
agement of flows from offline switches while ensuring uninter-
rupted normal operations. The control load of a controller is de-
termined by the overall overhead involved in controlling the flows
within its designated domain. We quantify a controller’s control
resource based on the number of flows it can effectively handle
without introducing additional delays (e.g., queueing delay [41]).

3
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C1 C2

D2

s21

s23

s24

s22

s11

f1D1 s13

s12 D3

...

C3
Required control 

resource: 3 

(s11, s12, and s13)

(a) Flow 𝑓1 is forwarded on its original path 𝑝1
1 (i.e., 𝑠11→𝑠13→𝑠12→𝑠21→𝑠23→𝑠24).

C1 C2

D2

s21

s23

s24

s22

s11

f1
D1 s13

s12 D3

...

C3

Congested

Required control 

resource: 2 

(s11 and s13)

Required control 

resource: 2 

(s21 and s22)

(b) To avoid the congested links 𝑠12-𝑠21 and 𝑠21-𝑠23 , we have to reroute flow 𝑓1 to a
new path 𝑝2

1 (i.e., 𝑠11→𝑠13→𝑠21→𝑠22→𝑠24). For flow 𝑓1 , switches 𝑠21 and 𝑠22 have to
be reassigned to another active controller to update corresponding flow entries. In this
example, these two switches are reassigned to controller𝐶3 . After the rerouting of flow
𝑓1 , the control load of controllers𝐶1 and𝐶3 has changed. Thus, we can calculate ℎ2

1 as
2, which refers to the increased control load of controller𝐶3 . Furthermore, 𝑔2

1,1 equals
1 since the available control resource of controller𝐶1 has been released for 1 unit due
to the rerouting.

Figure 3: An example to show how to calculate ℎ𝑙
𝑗
and 𝑔𝑙

𝑖 𝑗
.

Controller 𝐶2 fails, and all switches within domain 𝐷2 be-

come offline.

In the worst case, the cascading failure may happen due to the
overloading of controllers [43]. Hence, ensuring that a controller’s
control load remains within its available control resource is cru-
cial. We use ℎ𝑙

𝑗
to denote the required available control resource

of selecting path 𝑝𝑙
𝑗
for flow 𝑓𝑗 and dispatching the control of flow

𝑓𝑗 to another active controller. We use 𝑔𝑙
𝑖 𝑗
to denote the released

control resource of controller 𝐶𝑖 if flow 𝑓𝑗 is forwarded on path 𝑝𝑙
𝑗
.

Figure 3 shows an example to calculate ℎ𝑙
𝑗
and 𝑔𝑙

𝑖 𝑗
. Mathematically,

the flow-controller reassignment constraint can be expressed as
follows:

𝐿∑︁
𝑙=1

𝑀∑︁
𝑗=1
(𝑥𝑙𝑖 𝑗 ∗ ℎ

𝑙
𝑗 ) ≤ 𝑅

𝑎𝑣𝑎𝑖𝑙 .
𝑖 +

𝐿∑︁
𝑙=1

𝑀∑︁
𝑗=1
(𝑥𝑙𝑖 𝑗 ∗ 𝑔

𝑙
𝑖 𝑗 ),∀𝑖 ∈ [1, 𝑁 ], (3)

where 𝑅𝑎𝑣𝑎𝑖𝑙 .
𝑖

denotes the available resource of controller 𝐶𝑖 .

4.2.3 Link Load Constraint. The total traffic load on each link,
consisting of two parts (i.e., the sum of the traffic load from offline
and online flows on each link), should be at most its upper bound
link capacity. We use 𝐶𝑎𝑝𝑘 to denote link 𝑒𝑘 ’s capacity, 𝑉𝑗 to de-
note the traffic demand from flow 𝑓𝑗 , 𝛼𝑙𝑘 to denote the relationship

between links and paths, and 𝑢 to denote the MLU. The sum of the
traffic load on link 𝑒𝑘 is denoted as 𝑙𝑜𝑎𝑑𝑘 and calculated as follows:

𝑙𝑜𝑎𝑑𝑘 =

𝐿∑︁
𝑙=1

𝑀∑︁
𝑗=1

𝑁∑︁
𝑖=1
(𝑥𝑙𝑖 𝑗∗𝑉𝑗∗𝛼

𝑙
𝑘
)+

𝐿∑︁
𝑙=1

𝑇∑︁
𝑗=𝑀+1

(𝑦𝑙𝑗∗𝑉𝑗∗𝛼
𝑙
𝑘
),∀𝑘 ∈ [1, 𝐾] .

(4)
Then, the traffic load on each link cannot exceed the link’s capacity,
and the link load constraint can be formulated as follows:

𝑙𝑜𝑎𝑑𝑘 ≤ 𝐶𝑎𝑝𝑘 ∗ 𝑢,∀𝑘 ∈ [1, 𝐾] . (5)

4.3 Objective Function

The objective of our proposed TPFCRFR problem is to minimize the
MLU. Thus, the objective function can be formulated as follows:

𝑜𝑏 𝑗 = 𝑢.

4.4 Problem Formulation

Based on the above problem constraints and objective function, the
problem can be formulated as follows:

min
𝑢,𝑥,𝑦

𝑢

s.t. (1)(2)(3)(4)(5),

𝑥𝑙𝑖 𝑗 , 𝑦
𝑙
𝑗 ∈ {0, 1},

(P)

where {𝑥𝑙
𝑖 𝑗
} and {𝑦𝑙

𝑗
} are binary design variables, and 𝑢 is a contin-

ues design variable. {𝐶𝑎𝑝𝑘 } are given continues constants, {𝑅𝑎𝑣𝑎𝑖𝑙 .𝑖
}

are given integer constants, {𝛼𝑙
𝑘
} are given binary constants, and

{ℎ𝑙
𝑗
} and {𝑔𝑙

𝑖 𝑗
} are given integer constants. Given that the objective

function is linear, this problem is a MILP.

5 SOLUTION

The typical approach to address the above TPFCRFR problem in-
volves obtaining an optimal result through optimization solvers.
However, the TPFCRFR problem is with high complexity. As the
network grows, the solution space expands substantially, making
finding a feasible solution within a reasonable time frame challeng-
ing or rendering it infeasible. Consequently, we propose a heuristic
algorithm to solve the problem, aiming to provide a trade-off be-
tween performance and time complexity. The key idea is to select a
path for each offline flow to forward on based on the probabilities
obtained from the linear programming relaxation of problem (P).
The details of the algorithm are summarized in Algorithm 1, and
the notations used are listed in Table 1.

The algorithm begins by initializing an empty set X (line 1).
We first relax the binary variable 𝑥𝑙

𝑖 𝑗
in problem (P) to continuous

variables and obtain the linear programming relaxation solution𝑋 ∗.
We then sort the values in 𝑋 ∗ in descending order to get vectors 𝑋
(line 2). Sorting the values in𝑋 ∗ in descending order helps prioritize
all the tests based on their probabilities. From lines 4 to 17, the
algorithm tests all possible selection and reassignment strategies by
rounding the decimal values in𝑋 to configure proper reassignments.
It first finds corresponding controller, flow, and path IDs 𝑖0 and 𝑗0
from 𝑙0 (line 5). Then, it checks if the flow 𝑓𝑗0 has not been reassigned
yet and this reassignment is feasible based on problem constraints
Eqs. (1) and (3). If it is a feasible one, this reassignment policy will be

4
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Table 1: Notations.

Notation Meaning

C the set of active controllers, C = {𝐶𝑖 | 𝑖 ∈ [1, 𝑁 ] }
F′ the set of offline flows, F = { 𝑓𝑗 | 𝑗 ∈ [1, 𝑀 ] }

P′
the set of path sets for offline flows, P = {𝑃 𝑗 | 𝑗 ∈
[1, 𝑀 ] }, where P𝑗 = {𝑝𝑙

𝑗
| 𝑗 ∈ [1, 𝑀 ], 𝑙 ∈ [1, 𝐿] } de-

notes all available paths for offline flow 𝑓𝑗

R the set of active controllers’ available control resource,
R = {𝑅𝑎𝑣𝑎𝑖𝑙 .

𝑖
| 𝑖 ∈ [1, 𝑁 ] }

ℎ𝑙
𝑗

an integer constant that denotes required available con-
trol resource of selecting path 𝑝𝑙

𝑗
for flow 𝑓𝑗 and dispatch-

ing the control of flow 𝑓𝑗 to an another active controller

𝑔𝑙
𝑖 𝑗

an integer constant that denotes released control resource
for controller𝐶 𝑗 if flow 𝑓 𝑗 is forwarded on path 𝑝𝑙

𝑗

X
the set of the feasible reassignment relationship be-
tween active controllers, offline flows, and paths, X =

{ (𝑖, 𝑗, 𝑙 ) ∈ [1, 𝑁 ] × [1, 𝑀 ] × [1, 𝐿] | 𝑥𝑙
𝑖 𝑗

= 1}

𝑋

the set of testing mappings by solving the LP relaxation
of problem (P) and sorting the results in the descending
order, 𝑋 = {𝑥𝑡 , 𝑡 ∈ [1, 𝑁 ∗𝑀 ∗ 𝐿] }

confirmed in X, the available control resource of active controller
𝐶 𝑗0 will be updated, and the reassigned flow 𝑓𝑗0 will be removed
from the set F ′ (lines 7-9). Besides, the released control resource
will also be updated to the corresponding controllers due to the
selection of different paths for the flow.

If all offline flows have been reassigned, the first step of the
algorithm will stop. As for the second step of this algorithm, if
there remain unreassigned flows after the initial part, the algorithm
proceeds to design a reassignment policy for these flows further.
From lines 19 to 25, the algorithm lets each unreassigned flow 𝑓𝑗0

keep forward on its original path 𝑝𝑙0
𝑗0
, which will not cause any

further updates on active controllers’ available control resource.
The reassignment policy will be confirmed in X, and the flow 𝑓𝑗0
will be removed from the set F ′ (lines 22 to 23). Finally, in line 26,
the algorithm stops, and the updated set X is returned.

6 EVALUATION

6.1 Evaluation Setup

In our performance evaluation of Ares, we utilize a representative
backbone topology known as GÉANT. This topology is based on
a network infrastructure in Europe and consists of 23 switches
connected by 72 links. Each topology node has a unique ID associ-
ated with latitude and longitude coordinates. We deploy five SDN
controllers for our evaluation setup, each with a control resource of
500 [8, 9, 12]. The control resource of a controller, as defined in pre-
vious studies [33, 35], refers to its processing capability to perform
flow state pulling operations and retrieve network state variations
without introducing additional control latency [41]. To conduct our
evaluation, we utilize a dataset that records the real-world TMs of
the 23 switches at a time slot of every fifteen minutes over four
months [34]. From this dataset, we select 672 TMs collected during

Algorithm 1: Heuristic Algorithm

Input :C, F ′, P′, R, ℎ𝑙
𝑗
, 𝑔𝑙
𝑖 𝑗
;

Output :X;
1 X = ∅;
2 generate 𝑋 = {𝑥𝑡 , 𝑡 ∈ [1, 𝑁 ∗𝑀 ∗ 𝐿]} by solving the linear

programming relaxation of problem (P) and sorting the
results in the descending order;

3 // select path for each offline flow to forward on and dispatch
the control of the flow to an active controller based on the
descending order of their probabilities;

4 for 𝑥𝑡0 ∈ 𝑋 do

5 get controller, flow, and path IDs 𝑖0, 𝑗0, and 𝑙0 from 𝑥𝑡0 ;
6 if X ∪ (𝑖0, 𝑗0, 𝑙0) satisfies constraints Eqs. (1) and (3) and

𝑓𝑗0 ∈ F ′ then
7 X ← X ∪ (𝑖0, 𝑗0, 𝑙0);
8 F ′ ← F ′ \ 𝑓𝑗0 ;
9 𝑅𝑎𝑣𝑎𝑖𝑙 .

𝑖0
= 𝑅𝑎𝑣𝑎𝑖𝑙 .

𝑖0
− ℎ𝑙0

𝑗0
;

10 for 𝐶𝑖0′ ∈ C do

11 𝑅𝑎𝑣𝑎𝑖𝑙 .
𝑖0′

= 𝑅𝑎𝑣𝑎𝑖𝑙 .
𝑖0′

+ 𝑔𝑙0
𝑖0′ 𝑗0

;
12 end

13 end

14 if F ′ == ∅ then
15 break;
16 end

17 end

18 // test any remaining offline flows if there are any;
19 if F ′ ≠ ∅ then
20 for 𝑓𝑗0 ∈ F ′ do
21 get flow 𝑓𝑗0 ’s original forwarding path 𝑝

𝑙0
𝑗0
;

22 X ← X ∪ (∗, 𝑗0, 𝑙0);
23 F ′ ← F ′ \ 𝑓𝑗0 ;
24 end

25 end

26 return X;

one week, specifically from June 2, 2005, to June 8, 2005, to serve
as our dataset for evaluation purposes.

As for the pre-configured path set for MCF, OPT-TPFCRFR, and
Ares, we utilize the pre-configured SMORE path set in our evalu-
ation. SMORE is a widely recognized TE solution that effectively
mitigates network congestion and achieves load balancing by in-
telligently selecting paths with dynamic weight adaptation [23].
The pre-configured SMORE path set is calculated using Räcke’s
oblivious routing algorithm [28]. Notably, SMORE leverages di-
verse paths to enhance network robustness and is optimized for
load balancing. For our evaluation under the GÉANT topology,
we select four SMORE paths with the highest weights for each
flow. By leveraging SMORE’s path selection algorithm, we aim to
achieve efficient load balancing and improved performance in our
evaluation.

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’24, May 13–17, 2024, Singapore Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

0 20 40 60 80 100
Performance Ratio (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

OSPF

ECMP

OPT-OSCM ♦
OPT-FRSM ♦
OPT-FMSSM ♦
OPT-TPFCRFR

(a) Case 1.

0 20 40 60 80 100
Performance Ratio (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

OSPF

ECMP

OPT-OSCM ♦
OPT-FRSM ♦
OPT-FMSSM ♦
OPT-TPFCRFR

(b) Case 2.

0 20 40 60 80 100
Performance Ratio (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

OSPF

ECMP

OPT-OSCM ♦
OPT-FRSM ♦
OPT-FMSSM ♦
OPT-TPFCRFR

(c) Case 3.

0 20 40 60 80 100
Performance Ratio (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

OSPF

ECMP

OPT-OSCM ♦
OPT-FRSM ♦
OPT-FMSSM ♦
OPT-TPFCRFR

(d) Case 4.

Figure 4: Comparison of PR results between TPFCRFR formulation and existing formulations under two controller failures. ♦
denotes that the load balancing results of the scheme are obtained by using GUROBI to solve the MCF problem detailed in

Appendix A.1.

Table 2: Average PR Performance of TPFCRFR formulation

and existing formulations. The higher, the better.

Schemes One controller failure Two controller failures

OSPF 44.46% 44.46%
ECMP 56.78% 56.78%

OPT-OSCM [12]♦ 60.57% 55.68%
OPT-FRSM [9]♦ 58.09% 51.40%
OPT-FMSSM [8]♦ 58.50% 52.42%
OPT-TPFCRFR 100.00% 100.00%

6.2 Comparison Algorithm

(1) Open Shortest Path First (OSPF) [26]: All flows are rerouted
to their respective weighted shortest paths, which are cal-
culated using the OSPF algorithm.

(2) Equal-Cost Multi-Path (ECMP) [32]: When multiple short-
est paths exist between a pair of source and destination
switches, the traffic is evenly distributed among all the
available next hops along these paths. In other words, each
switch along the path splits the traffic equally among all
the corresponding shortest paths.

(3) Multi-Commodity Flow (MCF) [25]: This scheme formu-
lates theMCF optimization problem based on the pre-configured
path set, intending to minimize the MLU to achieve a decent
load balancing performance. Details of the formulation can
be found in Appendix A.1. We use GUROBI optimization
solver [1] to solve this problem.

(4) RetroFlow [12]: This scheme aims to recover offline flows
using a two-fold approach. Firstly, offline switches are con-
figured to operate under the legacy routing mode. Secondly,
the control of the rest of the offline switches is reassigned

to active controllers. OPT-OSCM is the optimal solution to
the formulated problem in [12].

(5) Matchmaker [9]: This scheme adaptively modifies the con-
trol cost of offline switches based on the limited available
control resource by intelligently rerouting flows to facilitate
appropriate reassignment of offline switches. OPT-FRSM is
the optimal solution to the formulated problem in [9].

(6) ProgrammabilityMedic (PM) [8]: This scheme focuses on
recovering offline flows by ensuring that they have similar
path programmability. It achieves this by determining the
appropriate routing mode for flows at the recovered offline
switches and configuring the mappings between switches
and controllers. OPT-FMSSM is the optimal solution to the
formulated problem in [8].

(7) Optimal results of the TPFCRFR problem (OPT-TPFCRFR):
This scheme is the optimal solution to the formulated prob-
lem (P). We use GUROBI optimization solver [1] to solve
this problem.

(8) Ares: This scheme is shown in Algorithm 1.

Note that the results presented for OSPF, ECMP, andMCF assume
that no controller failures have occurred.

6.3 Evaluation Results

We evaluate the effectiveness of our proposed TPFCRFR formulation
andAreswith the following twometrics. The first evaluationmetric
in our evaluation is the MLU. The lower MLU indicates a better
TE performance. The second evaluation metric is the computation
time. We want to ensure our proposed Ares is efficient and scalable
enough to cope with severe controller failure scenarios and realize
a fast recovery of the whole network.

To evaluate the load balancing performance, we employ the
Performance Ratio (PR), which is defined as 𝑃𝑅 = 𝑃MCF/𝑃scheme.
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Figure 5: Comparison of PR results between Ares and existing solutions under one controller failure. ♠ denotes that the load
balancing results of the scheme are obtained by adopting the heuristic TE solution detailed in Appendix A.2 (Algorithm 2).
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Figure 6: Comparison of PR results between Ares and existing solutions under two controller failures. ♠ denotes that the load
balancing results of the scheme are obtained by adopting the heuristic TE solution detailed in Appendix A.2 (Algorithm 2).

𝑃MCF represents the load balancing results achieved by the MCF
approach without controller failures, which represents the optimal
TE performance, and 𝑃scheme corresponds to the load balancing
results attained by a specific scheme. A PR value of 1 implies that
the scheme performs on par with the optimal results. A lower PR
value indicates that the scheme’s performance deviates significantly
from the optimal results.

1) Effectiveness of proposed TPFCRFR problem formulation.

To evaluate the effectiveness of our formulated TPFCRFR formula-
tion, we first compare the optimal results of the TPFCRFR problem
with the optimal results of other problem formulations. Note that
OPT-OSCM, OPT-FRSM, and OPT-FMSSM are the optimal results
of the formulations for RetroFlow, Matchmaker, and PM, respec-
tively. Given that these three schemes are only switch-controller
reassignment solutions and do not include the TE operation part,
we use ♦ to denote that their load balancing results are obtained by
using GUROBI to solve the MCF problem detailed in Appendix A.1.

Figure 4 shows four specific cases of PR results of TPFCRFR for-
mulation and existing formulations under two controller failures.

It is important to note that when two out of five controllers fail,
there are ten specific cases, but due to limited space, only four cases
are displayed in this paper. We can see that OPT-TPFCRFR exhibits
comparable TE performance with the optimal MCF solution and
significantly outperforms other schemes. Table 2 shows the per-
formance of optimal solutions’ average PR. Compared with OSPF,
OPT-TPFCRFR realizes the best TE performance and improves the
load balancing performance by up to 55.54%. The simulation results
prove that our TPFCRFR formulation benefits from jointly consid-
ering flow-controller reassignment and flow rerouting rather than
separately doing the reassignment and rerouting in a two-step way
in other schemes.

2) Effectiveness of proposed Ares. To further evaluate the
effectiveness of our proposed Ares, we conduct more simulations
on load balancing performance between our proposed Ares and
other heuristics. Note that RetroFlow, Matchmaker, and PM are
only switch-controller reassignment solutions and do not include
the TE operation part. Thus, we use ♠ to denote that their load
balancing results are obtained by adopting the heuristic TE solution

7
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Table 3: Average PR Performance of Ares and existing solu-

tions. The higher, the better.

Schemes One controller failure Two controller failures

OSPF 44.46% 44.46%
ECMP 56.78% 56.78%

RetroFlow♠ 64.01% 63.70%
Matchmaker♠ 57.46% 50.49%

PM♠ 60.97% 51.44%
Ares 87.82% 87.23%

Table 4: Performance of average computation time to OPT-

TPFCRFR. The lower, the better.

Schemes One controller failure Two controller failures

OPT-TPFCRFR 100% 100%
Ares 2.53% 2.07%

detailed in Appendix A.2 (Algorithm 2) after the recovery procedure.
Figures 5 and 6 illustrate six specific cases of heuristic solutions’
PR results under one and two controller failures. From these cases,
we observe that Ares consistently demonstrates compatibility with
the optimal MCF performance and outperforms the other solutions.
The evaluation results confirm that Ares effectively guarantees
robust TE performance under controller failures since Ares jointly
considers flow-controller reassignment and rerouting.

Table 3 presents the average PR of six solutions under both one
and two controller failure scenarios. In the case of a single con-
troller failure, Ares achieves the best performance compared to
other schemes. Conversely, OSPF and ECMP exhibit the weakest
performance as they cannot adapt the routing policy to dynamic
traffic conditions. Compared to OSPF, Ares significantly improves
load balancing performance, achieving up to a 43.36% enhance-
ment. Additionally, RetroFlow, Matchmaker, and PM perform less
effectively than Ares, indicating that path programmability-centric
solutions fail to promise predictable TE performance under con-
troller failures compared with Ares. Under two controller failures,
the network faces more critical challenges, and maintaining sat-
isfactory load balancing performance becomes crucial. Multiple
controller failures can lead to more significant TE performance
degradation due to an increased number of offline flows, and the
performance of the solutions becomes vital. As illustrated in the
table, Ares ensures robust TE performance and dramatically out-
performs the rest of the solutions.

3) Efficiency of proposed Ares.We analyze the computation
time for Ares and OPT-TPFCRFR in different scenarios and record
the results in Table 4. On average, Ares only requires 2.53% and
2.07% of the computation time needed by OPT-TPFCRFR in the
two scenarios mentioned above. As the network size increases
and the failure scenario becomes more complex, the performance
gap between OPT-TPFCRFR and Ares is expected to widen. Even
though Ares has a slightly lower load balancing performance than
OPT-TPFCRFR, it still proves to be a highly efficient solution with
low computation complexity.

7 RELATEDWORK

Improving TE performance for web services. Handigol et al.
[13] present Plug-n-Serve, a load-balancing system for web services
hosted in enterprise and campus networks that uses OpenFlow to
control the routing of HTTP requests. The system aims to minimize
the response time by taking both the congestion of the network
and the load on the servers into account, and also propose to dy-
namically adjust the allocation of requests based on an integrated
optimization algorithm called LOBUS. QoS-RL [44], a reinforcement
learning-based TE solution, is proposed to provide good quality
of service and load balancing for different priority levels of traf-
fic in WANs. QoS-RL uses destination-based forwarding entries
to reduce management overhead and service disruption, and also
leverages reinforcement learning to intelligently select and update
a few entries to reroute high and low-priority traffic concerning
different objectives. Wang et al. [37] propose a joint optimization
of TM measurement and TE for SDNs, considering the TCAM ca-
pacity and flow aggregation constraints. They formulate the joint
optimization problem as a MILP model and propose two heuristic
algorithms to design flow rules for traffic measurement and routing
tasks. However, none of the above-mentioned solutions considers
the impact of controller failures on TE performance and how to
improve TE performance under controller failures further.

Maintaining control resiliency in SD-WANs. Ruchel et al.
[30] evaluate the robustness of two open-source distributed SDN
controllers, ONOS [2] and ODL [3], in different failure scenarios
in both data and control planes. This paper measures the perfor-
mance of the controllers in terms of latency, throughput, consis-
tency, and recovery time using various topologies and traffic types,
and also discusses the strengths and weaknesses of each controller
and provides suggestions for future improvements. SDN-ESRC [29],
a secure and resilient control plane for SDN based on endogenous
security, uses multiple heterogeneous controllers to detect and
correct malicious control messages. It also designs a scheduling
algorithm to select the optimal controller set for each flow and
presents a security evaluation model based on the Markov chain to
analyze the performance of the proposed scheme under different
attack scenarios. He et al. [14] propose a preventive priority setting
model to balance the load among multiple controllers in SDNs. The
model assigns a priority for each controller to become the primary
controller of a switch, and automatically switches to the highest-
priority available controller when a failure occurs. Nevertheless, all
the above-mentioned solutions fail to consider improving TE per-
formance, which means that they cannot provide decent network
performance, especially for delay-sensitive web services.

8 CONCLUSION

In this paper, we propose Ares to promise predictable TE perfor-
mance in SD-WANs during controller failures. Ares jointly consid-
ers the fine-grained flow-controller reassignment and flow rerout-
ing in a single optimization problem and tries to minimize the MLU
based on the given TMs. Extensive evaluation results show that not
only our proposed TPFCRFR problem formulation exhibits compa-
rable load balancing performance to optimal TE solution without
controller failures but also brings significant improvements in load
balancing performance with low computation time compared with
existing solutions.
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A APPENDIX

A.1 Formulation of the MCF Problem

In an SD-WAN, there are a total of 𝐻 switches and 𝐾 links con-
necting these switches. It is important to ensure that the utilization
of each link, denoted as 𝑒𝑘 (𝑘 ∈ [1, 𝐾]), does not exceed its spec-
ified upper bound capacity, denoted as 𝐶𝑎𝑝𝑘 . The set of flows is
denoted as F = {𝑓1, 𝑓2, ..., 𝑓𝑗 , ..., 𝑓𝑀 }. Each flow 𝑓𝑗 in the set F
has a pre-configured path-set consisting of 𝐿 paths, denoted as
P𝑗 = {𝑝1

𝑗
, 𝑝2
𝑗
, ..., 𝑝𝑙

𝑗
, ..., 𝑝𝐿

𝑗
}. The traffic demand for flow 𝑓𝑗 is de-

noted as 𝑉𝑗 . We use 𝛼𝑙
𝑘
to denote the relationship between links

and paths. Additionally, for each path 𝑝𝑙
𝑗
, the traffic demand routed

on that particular path is represented by the binary variable 𝑧𝑙
𝑗
. The

MLU is denoted as 𝑢. The objective of the optimization problem
is to minimize the MLU (i.e., 𝑢) in order to achieve optimal net-
work performance while meeting the traffic demands of all flows.
Therefore, the MCF formulation can be presented as follows:

min
𝑢,𝑧

𝑢

s.t.
𝑀∑︁
𝑗=1

𝑧𝑙𝑗 = 1,

𝐿∑︁
𝑙=1

𝑀∑︁
𝑗=1

𝑧𝑙𝑗 ∗𝑉𝑗 ∗ 𝛼
𝑙
𝑘
≤ 𝐶𝑎𝑝𝑘 ∗ 𝑢,

𝑧𝑙𝑟 ∈ {0, 1},∀𝑗 ∈ [1, 𝑀],∀𝑙 ∈ [1, 𝐿],

(P-MCF)

where {𝑦𝑙
𝑗
} is a binary design variable and 𝑢 is a continuous design

variable, {𝑉𝑗 }, {𝐶𝑎𝑝𝑘 }, 𝛼𝑙𝑘 are given constants.

A.2 Heuristic Solution to the MCF Formulation

The key idea of the heuristic algorithm to the MCF formulation is
similar to the proposed Algorithm 1, which aims to select a path for
each flow to forward on based on the probabilities obtained from
the linear programming relaxation of problem (P-MCF). The details
of the algorithm are summarized in Algorithm 2. The algorithm

begins by initializing an empty set Z (line 1). We first relax the
binary variable 𝑧𝑙

𝑗
in problem (P-MCF) to continuous variables and

obtain the linear programming relaxation solution 𝑍 ∗. We then
sort the values in 𝑍 ∗ in descending order to get vectors 𝑍 (line 2).
Sorting the values in 𝑍 ∗ in descending order helps prioritize all the
tests based on their probabilities. From lines 4 to 13, the algorithm
tests all possible path selections by rounding the decimal values in
𝑍 to configure proper selections. It finds corresponding flow and
path IDs 𝑗0 from 𝑙0 (line 5) and checks if the flow 𝑓𝑗0 has not been
selected yet. Then, the path selection will be confirmed inZ and
the selected flow 𝑓𝑗0 will be removed from the set F (lines 7-8). If
all flows have been selected, the algorithm will stop (lines 10-12).
Finally, in line 14, the updated setZ is returned.

Algorithm 2:Heuristic Algorithm to the MCF Formulation
Input :F ;
Output :Z;

1 Z = ∅;
2 generate 𝑍 = {𝑧𝑡 , 𝑡 ∈ [1, 𝑀 ∗ 𝐾]} by solving the linear

programming relaxation of problem (P-MCF) and sorting
the results in the descending order;

3 // select path for each flow to forward on based on the
descending order of their probabilities;

4 for 𝑧𝑡0 ∈ 𝑍 do

5 get flow and path IDs 𝑗0 and 𝑙0 from 𝑧𝑡0 ;
6 if 𝑓𝑗0 ∈ F then

7 Z ← Z ∪ ( 𝑗0, 𝑙0);
8 F ← F \ 𝑓𝑗0 ;
9 end

10 if F ′′ == ∅ then
11 break;
12 end

13 end

14 returnZ;
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