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ABSTRACT

Reconstructing high-quality and real-time dense maps is critical for building the
3D environment for robot sensing and navigation. Recently, Neural Radiance
Field (NeRF) has garnered great attention due to its excellent scene representa-
tion capacity of the 3D world; therefore, recent works leverage NeRF to learn
3D maps, typically based on RGB-D cameras. However, depth sensors are not
always available for all devices, while RGB cameras are cheap and widely appli-
cable. Therefore, we propose to use single RGB input for the scene reconstruction
with NeRF, which becomes highly challenging without geometric guidance from
depth sensors. Moreover, we cultivate its real-time capability with lightweight
implementation. In this paper, we propose FMapping, a factorized NeRF map-
ping framework, allowing for high-quality and real-time reconstruction with only
the RGB input. The insight of our method is that depth doesn’t experience much
change in consecutive RGB frames, thus the geometrical clues can be derived from
RGB effectively with well estimated depth priors. In detail, we divide the map-
ping into 1) the initialization stage and 2) the on-the-fly stage. First, given trackers
are not always stable in the initialization stage, we start with a noisy pose input
to optimize the mapping. To this end, we exploit geometric consistency between
volume rendering and signed distance function in a self-supervised way to cap-
ture depth accurately. In the second stage, given relatively short optimization time
for real-time performance, we model the depth estimation as a Gaussian process
(GP) with a pre-trained cost-effective depth covariance function to promptly infer
depth on the condition of previous frames. Meanwhile, the per-pixel depth esti-
mation and its corresponding uncertainty can guide the NeRF sampling process.
Hence, we propose to densely allocate sample points within adjustable truncation
regions near the surface, and further distribute samples to ones with high uncer-
tainty. This way, we can continue building maps from subsequent poses with sta-
bilized trackers. Experiments demonstrate that our framework outperforms state-
of-the-art RGB-based mapping and achieves comparable performance to RGB-D
mapping in terms of photometric and geometric accuracy, with real-time depth
estimation capability in around 5 Hz with consistent scale.

1 INTRODUCTION

Robot sensing and navigation rely on building high-quality dense maps in real-time, which provides
instant feedback on the environment. Such a paradigm offers notable advantages by providing a
comprehensive and instant scene reconstruction, beneficial for onboard tasks, such as robot naviga-
tion (Temeltas & Kayak, 2008; Fang et al., 2021) and interactive digital applications (Bettens et al.,
2020; Sato et al., 2020). Earlier methods, e. g. , Henry et al. (2014); Dai et al. (2017b) are built
based on RGB-D cameras, while their explicitly-cached point clouds impose a high requirement for
computation and memory, limiting the practical application to resource-restricted mobile devices.

Neural Radiance Fields (NeRFs) (Mildenhall et al., 2020) have recently emerged as a compelling
solution to the mapping problem for 3D reconstruction. For example, Sucar et al. (2021) and Zhu
et al. (2022) propose to build neural implicit representations. In other words, NeRF utilizes latent
representations, such as a multi-layer perceptron (MLP) to implicitly infer density and color of 3D
points instead of caching them directly, thereby reducing memory consumption. These methods
are not applicable when no depth sensors are available, as they often have difficulty in estimating
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Figure 1: A simple experiment demonstrates the difficulty of real-time scene reconstruction by
neural implicit representation without depth supervision. Dense mapping snapshots (at 100, 400,
and 1800 input frames) of the on-the-fly running of NICE-SLAM(-) (Zhu et al., 2022), iMAP(-
) (Sucar et al., 2021) and our method are displayed for Replica (Room0) sequence, given ground
truth (GT) poses without depth supervision. (-) denotes that we make modifications to the original
implementations by eliminating the back-propagation of the gradient from depth supervision.

accurate geometric cues. On the other hand, RGB cameras are widely applied with extensive usage,
while lack of geometry guidance further poses a challenge on model’s convergence during training.
Therefore it is valuable to consider real-time mapping with pure RGB input. Some recent NeRF-
based methods (Rosinol et al., 2022; Li et al., 2023; Zhu et al., 2023; Chung et al., 2022) have
made similar efforts to tackle dense RGB mapping given more geometric constraints. For instance,
Rosinol et al. (2022) incorporates geometric cues, e. g. , point clouds, derived from external SLAM
systems (Teed & Deng, 2021). Li et al. (2023) performs multi-scale grid occupancy estimation using
a cross-frame photometric warping loss. However, these methods require extensive computation to
obtain extra geometrical evidence to reach a similar quality from the RGB-D SLAM system. Most
of them can not be real-time without customized CUDA implementations.

Besides computation burden, mapping brings unique difficulties, which can be categorized into two
primary aspects. (1) Unstable trackers for pose initialization: Facing the unknown environment,
as observed by Cheng et al. (2021), trackers often do not perform well and have slow convergence
speed. Therefore, it would be more realistic to learn mapping from the scratch without poses from
trackers. (2) Slow mapping within limited time: During on-the-fly stage equipped with trackers,
it requires a mapping system adaptable to growing scenes in real-time, while capable of rendering
high-quality map. To our best knowledge, most of existing works scarify their real-time performance
for high quality map reconstruction. Recently, H2-Mapping (Jiang et al., 2023) attempts to solve the
same issue by proposing a hybrid representation that combines octrees and implicit multi-resolution
hash encoding to build maps with RGB-D cameras. However, its memory consumption is consid-
erably large given such representation. On the contrary, we tackle to RGB dense mapping problem
with lightweight Factorized NeRF, achieving comparable mapping quality.

In light of this, we present FMapping, an efficient neural field mapping framework that facili-
tates the continuous estimation of a 3D map for dense RGB mapping in real-time. (I) We setup
the online mapping with RGB stream as a two stage maximal likelihood problem, including the
initialization and the on-the-fly continue learning phases, where the prior aims to learn mapping
without poses, and the later to achieve online high quality reconstruction with poses. (II) Inspired
by Chen et al. (2022), we leverage the factorized neural field to decompose the grid features into a
lower-dimensional space, slimming model while ensuring its representation ability. (III) We lever-
age the kernel function (Dexheimer & Davison, 2023) to derive the depth guidance, distributing
sample on surfaces with high uncertainty and achieving speedy convergence during on-the-fly stage.
To maintain the function’s stability, we propose a self-supervised depth training method on Signed
Distance Function (SDF) and NeRF depth. Consequently, our solution enables high quality, real-
time mapping for dense RGB mapping. We show that our FMapping can reconstruct a high-fidelity
dense map more efficiently than existing methods with no poses provide in the initialization. Dur-
ing on-the-fly phase, our method achieves real-time high-fidelity mapping with a standard PyTorch
implementation, with its map quality comparable to RGB-D based methods.
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Figure 2: Schematic diagram of the framework. Gσ and Gc represent the geometric and appearance
representations, respectively. By decoding representation features, the final color, depth, and SDF
estimation are obtained. The entire online training process is constrained by SDF lossesLSDF in a
self-supervised way, RGB loss Lc, warpping loss Lw, and covariance depth loss Ld.

2 PROBLEM SETUP

We address the challenge of the online instant construction of dense maps with only posed RGB
frames as input. In this setup, given image frames I and corresponding poses P̃ , we estimate the
frames’ color Ĩ and depth D̃ to reconstruct dense RGB map m̃. We assume that poses obtained from
trackers entail a normally distributed disturbance n, formulated as P̃ = P +n,n ∼ N (0,Q). Our
goal is instant dense reconstruction upon receiving a posed RGB stream of any accumulated length,
i. e. I1:k. Inspired by Montemerlo et al. (2002), We formulate the dense mapping problem as
estimating a conditional joint probability distribution of:

P (m̃|P̃1:k, I1:k). (1)
NeRF (Mildenhall et al., 2020) has been introduced as a compelling solution for implicit scene
representation. Recent works (Chan et al., 2021; Chen et al., 2022; Johari et al., 2022) leverage
the matrix decomposition to speed up NeRF computation, i. e. , representing the high-dimensional
features by samples’ 3D coordinates along with their latent feature, which has emerged as a prevail-
ing technique for NeRF acceleration. Denote NeRF function as G and its decoder as Φ, the dense
mapping problem of 1 is estimating the map m̃ = Φ(G(r)) to maximize the posterior probability:

m̃ = arg max
(Φ,G,r̃)

P (P̃(k−w):k, I(k−w):k|Φ(G(r̃(k−w):k))), (2)

where r̃(t) = õ + td̃ are samples drawn from camera rays originated from the center õ with nor-
malized direction d̃, t denotes the camera distance from õ to any point sample at r̃. In practice, only
partial frame observation is cached in a window of size w to achieve real-time operation.

As shown at Fig. 2, to best align our solutions to the real-world setting, e. g. , unstable trackers,
we make two assumptions. 1) Noisy start with large Q dominates the system optimization during
the kick-off of mapping. 2) Stable continuous learning with mapping uncertainty Σ takes major
role and has limited noise n. Specifically, it can be divided into Initialization stage which needs
to predict Ĩ , D̃ and P̃ ; and the On-the-fly mapping stage that estimates Ĩ , D̃ upon the system’s
initialization with stabilized pose stream. Therefore, we can view the implicit map construction as a
maximal likelihood problem, which is equivalent to minimizing its quadratic form:

arg min
(Φ,G,r̃,P̃ )

(Ĩinit − I0:w)
TQ−1(Ĩinit − I0:w),

arg min
(Φ,G,r̃)

(Ĩ − I(k−w):k)
TΣ−1(Ĩ − I(k−w):k).

(3)
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Figure 3: Visual demonstration of covariance depth estimation based on well-optimized neural im-
plicit representation and bad-optimized.

The subsequent issue is how to design a system that constrains the two-stage uncertainty of the
system under specified conditions. Given the large window size (Li et al., 2023) or provided depth
(Bian et al., 2023), the neural implicit representations can be decently optimized with extremely
noisy pose inputs or even no pose inputs. Specifically, during the initialization of the system, these
methods use cross-frame consistent constraint to minimize the pose variance Q given a relatively
large window size. However, for continuous instant mapping, the large sliding window size is not
an optimal choice, since it is hard to converge within limited optimization iterations. Inspired by
Dexheimer & Davison (2023), we want to explicitly constrain the covariance Σ in Eq. 3 by a cost-
effective pre-trained kernel function. The idea is to forecast the correlation between the depths of
any two pixels upon receiving an RGB frame. In this way, a covariance function can be constructed
to model depth distribution of the current frame, i. e. , we can obtain strong depth prior over RGB
frames by modelling the depth function f over any pixels x and x′ as a Gaussian Process (GP):
f(x) ∼ GP (m(x), k(x,x′)). In this way, pre-trained pixel-wise covariance can be leveraged to
infer kernel function k(xi,xj) to provide highly reliable depth priors. Conditioning on them, we
proposed a covariance-guided sampling in 4.2 to stabilize instant reconstruction.

Despite of the effectiveness of covariance functions, it highly depends on the well-estimated depth
distribution of previous frames, as showed in Fig. 3. Therefore, it’s crucial to maintain a rela-
tively accurate depth to guide covariance function to infer depths without self-supervised training
described in Sec. 4.1.

3 RELATED WORKS

Dense Visual SLAM. Dense visual SLAM has experienced rapid evolution in the past two decades.
Compared to sparse visual SLAM algorithms (Klein & Murray, 2007; Mur-Artal & Tardós, 2017)
that reconstruct sparse point clouds, dense visual SLAM algorithms (Newcombe et al., 2011b) are
able to recover dense point cloud representations of the scene. Some iconic traditional dense SLAM
works (Newcombe et al., 2011a; Keller et al., 2013) explicitly represent surfaces using standard vol-
ume representation. In addition, some works Dai et al. (2017b); Vespa et al. (2018) employ hierarchi-
cal volume representations, which offer increased efficiency but present challenges in implementa-
tion and parameter optimization due to their size. Recently, deep learning-based works Czarnowski
et al. (2020); Li et al. (2020; 2018) have made great advances in the dense visual SLAM, bringing
the benefits of both accuracy improvement and robustness enhancement. Different from the afore-
mentioned explicit representation methods, we focus on implicitly representing the scene given the
posed RGB images, which is compact and can be extended to unobserved regions.
Monocular depth estimation. With no depth inputs, it is necessary to introduce additional sig-
nals to supervise the depth estimation (Zhu et al., 2023). For example, NICER-SLAM employs the
off-the-shelf depth estimation model (Eftekhar et al., 2021) to generate the depth ground truth. How-
ever, monocular depth estimation is an ill-posed problem due to its scale ambiguity (Bhoi, 2019). To
compensate for it, NICER-SLAM adds a scale item to the depth loss. However, it relies on a heavy
depth estimation model to ensure the quality of depth ground truth. In addition, the scale problem
interferes with the consistency between frames. NICER-SLAM and DIM-SLAM introduce warping
loss to enforce the geometric consistency between frames. However, the warping loss only super-
vises the colour information, instead of directly targeting the structural consistency. Differently, we
leverage the kernel function to derive the depth guidance, which can improve the scale consistency
of depths between frames, while maintaining the lightweight and real-time advantages.
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Figure 4: Heuristic comparison of two efficient approximations of hybrid representation of Neural
Radiance Filed, i. e. , Tri-projection (Left) and Factorization (Right) in the system initialization
stage with only RGB supervision, which is a joint estimation of initial poses and implicit maps. The
pose trajectory plot and the depth estimation suggest that the factorized 4D tensors are more robust
to elusive camera trajectory and unobserved geometry.

Implicit Dense Mapping. Implicit representations have demonstrated their capacity to encode
scenes within a latent feature space through the utilization of a single Multi-Layer Perceptron (MLP).
The implicit representation has manifested in various applications across diverse domains, including
novel view synthesis (Mildenhall et al., 2020; Müller et al., 2022; Verbin et al., 2022; Zhang et al.,
2020), surface reconstruction (Yariv et al., 2021; Oechsle et al., 2021; Wang et al., 2021), as well as
the creation and manipulation of scenes and avatars (Liu et al., 2021; Yang et al., 2021).

Neural Radiance Fields (NeRF) serve as an example that generates novel views based on sparse input
data through a single MLP. It has spurred subsequent research about dense mapping. Pioneering
this effort, iMAP (Sucar et al., 2021) demonstrated that a single MLP can effectively represent a
3D scene, even extending to unobserved regions. To extend the implicit dense mapping to larger
scenes, NICE-SLAM (Zhu et al., 2022) employs hierarchical voxel grids and pre-trained decoders
to enhance the representation capacity. Additionally, ESLAM Johari et al. (2022) replaces the voxel
grids utilized in NICE-SLAM with compact feature planes, improving the speed significantly.

To reduce the demand for depth inputs, NeRF-SLAM (Rosinol et al., 2022) and Orbeez-
SLAM (Chung et al., 2022) have been integrated explicitly the NeRF into visual SLAM systems.
However, this integration results in redundant architectures. On the other hand, NICER-SLAM (Zhu
et al., 2023) relies on heavy pre-trained geometric models, which can not meet real-time demand.
Recently, DIM-SLAM (Li et al., 2023) introduced the first dense RGB SLAM system entirely based
on the neural implicit mapping. However, the problem has been downgraded into estimating voxel
grid occupancy using a single channel without exploiting the robustness and expressiveness of high-
dimensional latent features. Additionally, such occupancy estimation requires tri-linear interpolation
of stacked grids of many different resolutions, leading to an undesirable computational budget.

4 FMAPPING

4.1 SELF-SUPERVISED DEPTH TRAINING

As depicted at Fig. 2, we denote factorized neural radiance field as 4D representation G and propose
a self-supervised strategy that leverages geometric consistency to speed up the mapping speed. The
first goal is to improve efficiency. It can be achieved by decomposing NeRF feature computation in
G by multiplying the matrix and vector in the lower dimensional space. Recent works Chan et al.
(2021); Chen et al. (2022); Johari et al. (2022) leverage the matrix decomposition to speed up NeRF
computation, i. e. , projecting the high-dimensional features to their low dimensional counterparts,
which has emerged as a prevailing technique for NeRF acceleration. In Fig. 4, we evaluate the two
common decomposition paradigms, namely the Tri-plane representation that projects the 3D tensor
onto three 2D feature planes; and the BTD-based Factorized representation (Chen et al., 2022) that
interprets it as multiplication between matrix and vectors. The trajectory and depth estimation results
Fig. 4 show that the Factorization scheme appears to be more robust during the initialization stage.
Therefore, we leverage NeRF factorization to enhance computational efficiency without dampening
the rendering fidelity. To cultivate the potential of representation ability of G in mapping with
RGB, it is a common practice to leverage geometric consistency derived from images. For instance,
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Li et al. (2023) proposes to enforce geometric consistency using a warping loss Lw in the spirit of
multi-view stereo (Zheng et al., 2014). We follow the same paradigm in Li et al. (2023) by enforcing
multi-scale geometric loss:

Lw =
1

M
∑

qj∈M

∑
j,l

∑
s∈S

BqjSSIM(N s
qj
,N s

qj→l
), j ̸= l,

qj→l = KlR̃l
T
(R̃jK

−1
j qh

j D̃qj
+ T̃j − T̃l),

(4)

where randomly sampled |M| pixels and their corresponding patch |N | sizes S from cached frames
inside the initialization window are re-projected to neighbouring frames. Next, Reflecting structural
similarity (SSIM ) is applied to calculate the difference inside the visibility mask B. The 2D pixel
qj in frame j is lifted into 3D space and then project it to another frame l represented by qj→l. P̃ is
the estimated poses, and qh

j is the homogeneous coordinates of qj , K is the camera intrinsic.

4.2 COVARIANCE GUIDED SAMPLING

Given NeRF function G and its decoder Φ, jointly denoted as parameters θ, density and colors
are estimated by underlying continuous volumetric scene function σθ(x̃) and cθ(x̃, d̃). Volume
rendering (Mildenhall et al., 2020) aims to enhance spatial coherence by integrating estimated
samples x̃ along rays r̃ for color supervision,

Ĩ(r̃) =

N∑
i=1

αθ(x̃i)
∏
n<i

(1− αθ(x̃n)) cθ(x̃i, d̃),

αθ(x̃i) = 1− exp(−σθ(x̃i)δi),

(5)

where αθ(x̃i) denotes the penetrating light at x̃i and then composites the sample radiance into the
rendered frames. Therefore, following the conventions, e. g. Zhu et al. (2022), the depth D̃k and
color Ĩk of pixel can be formulated as:

D̃k =

N∑
i=1

wθ(x̃i)ti, Ĩk =

N∑
i=1

wθ(x̃i)cθ(x̃i, d̃), (6)

where wθ(x̃i) = αθ(x̃i)
∏

n<i (1− αθ(x̃j)). αθ(x̃i)(Eq. 5) entails uncertainty regarding sample
distribution δ. Oechsle et al. (2021) uses the sigmoid activation directly on σθ(x̃i) to avoid the
ambiguity, i. e. , αθ(x̃i) is replaced by Oθ(x̃i) = Sigmoid(σθ(x̃i)) in Eq. 5.

However, as shown in Fig. 2, without direct sensor depth supervision like Sucar et al. (2021);
Zhu et al. (2022); Johari et al. (2022), D̃k is indirectly constrained through color rendering loss
Lc = ||Ĩk − Ik||22. Inspired by recent works on instant reconstruction (Johari et al., 2022; Wang
et al., 2023) which leverages Signed Distance Function (SDF) to build the underlying geometry.
We designed implicit mapping to infer depth based on the rendering equation while simultaneously
outputting SDF Fig. 2. Since camera distances, i. e. , depth values are equal regarding SDF and
inferred depth from NeRF, it allows for self-supervision to put pixel-wise depth constraint to extend
further to spatial occupancy coherence:

LSDF (ω) =
1

K
∑
k∈K

1

P
∑
i∈P

(
ti +Φg(G(xi)) · Tr · ω − D̃k)

)2

, (7)

where Φg(G(xi)) gives SDF value estimation of sampler xi, based on its distance ti start from a
camera origin and truncation distance Tr on any ray. ω is weights to distribute samples according
to underlying uncertainty. We set ω = 1 for LSDFinit

loss in the initialization stage. Furthermore,
we can also use Ld = ||D̃k −Dk∗ ||22 to supervise depth derived from NeRF.
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At the on-the-fly stage, we assume both pose variance and representation are stabilized. As discussed
in Sec. 2, we can utilize the pre-trained covariance function to infer depth maps upon receiving
the newest input images. In detail, condition on geometric estimations made by neural implicit
functions, we gain depths prior from predicted depth distribution (Dexheimer & Davison, 2023):

f∗ ∼ N
(
m(D̃j→l),K(Il, Il)

)
. (8)

Upon receiving Il, we calculate the mean m(·) of the re-projected depth D̃j→l from the last frame
, which is available after using photometric warping from the last frames. Specifically, the posterior
distribution of the depth function of frame l can be calculated to obtain its predictive covariance
depth D̃l∗ and covariance Σl∗ :

D̃l∗ = m(D̃j→l) +Kfn(Knn + σ2
nI)

−1(D̃j→l −m(D̃j→l)),

Σl∗ = Kff −Kfn(Kmn + σ2
nI)

−1Knf ,
(9)

where K stands for positive semi-definite matrix provided by covariance function given n samples.
σ2
n capture per-pixel depth estimation uncertainty and thus can be cached inside an optimization

window pending to supervise the sampling procedure jointly with the D̃l∗ for instant neural implicit
mapping. Intuitively speaking, as we assumed the existence of well estimated priors, σ2

n is reliable
to highlight complex regions to explore in the later phase, relaxing biased surface region which
entails large uncertainty for better estimation. Therefore, we weights pixels in an element-wise way
by ω = σ2

n in Eq. 7 for LSDFmapping
loss in the on-the-fly stage.

At last, as shown in Fig. 2, we adjust the sampling distribution to consider high-reward regions
around the objects’ surface, i. e. , indicated by reliable covariance depth D̃l∗ . During NeRF’s ren-
dering process, N samples Xr = {x̃i|x̃i = r̃(ti), ti < ti+1}Ni=1 along any estimated ray r̃ are
drawn from the coarse stratified sampling, followed by the inverse transform sampling according to
the coarse-level sampling Fcdf (x̃) over its normalized PDF scores αθ(x̃),

Xr,k+1 = F−1
pdf (u) ∪Xr,k, Fcdf ( ˜xi,k+1) =

∑
i

P ( ˜xi,k|αθ( ˜xi,k) < u), u ∈ U , (10)

where U ∼ Unif [0, 1], and k denotes the iteration times for multi-stage estimation, e. g. , k = 2 in
the coarse-to-fine hierarchical sampling. The resulting adjacent sample distance is δi = |xi+1 −xi|
from Eq. 5. Xr,k is sorted according to their camera distances after each sampling iteration.

Specifically, as illustrated in Fig. 2, the iterative sampling process consists of a truncation sampling
Ftr over the kth round samples with camera distances tr,k. Similar to the SDF loss defined in Eq. 7,
Ftr aims to sample points close to D̃l∗ , i. e. , the surface regions for the geometric constraint. To
obtain fine level of granularity, we guide Ftr with uncertainty map σ2

n of each depth map D̃l∗ . In
detail, we enlarge the truncation intervals Tr ·σ2

n for rays corresponding to pixel regions with higher
uncertainty. Then we integrate samples with the previous round, and the inverse transform sampling
result Fcdf from Eq. 10 for more robust sample estimation.

Xr,k+1 = F−1
cdf (U) ∪ Ftr(tr,k) ∪Xr,k,

Ftr(tr,k) = õ+Dl∗ + tr,k · Tr · σ2
n.

(11)

5 EXPERIMENTS

We provide an evaluation of our FMapping on simulated dataset (Straub et al., 2019) quantitatively
and qualitatively against the common real-time neural implicit scene reconstruction benchmarks,
including the RGB-D method, e. g. , iMAP (Sucar et al., 2021), NICE-SLAM (Zhu et al., 2022) and
H2-Mapping (Jiang et al., 2023); and RGB method like Orbeez-SLAM (Chung et al., 2022). We

7



Under review as a conference paper at ICLR 2024

also included the experimental results of the NICE-SLAM running without depth supervision that is
available in Rosinol et al. (2022).

5.1 EXPERIMENTAL SETTING

Covariance guided sampling: At each inference, the multi-stage sampling with k = 4 is per-
formed, where the stratified samples are collected at the first iteration for rough distribution estima-
tion, followed by 3 iterations of covariance guided sampling Ftr. During each inference, we use
the updated uncertainty map to setup truncation intervals with a max value of The sampling sizes of
each stage are 32, 64, 64, and 64, respectively. For each sampling iteration, 40% samples are first
retrieved from F−1

cdf , then the remaining 60% are picked through Ftr.

The initialization phase: We collect 15 frames for jointly estimating initial poses and local implicit
maps. Once the initialization stage is finished, the first frame is added to the global keyframe set
and kept fixed. The total loss during initialization phase is denoted as Linit = βcLc + βdLd +
+βwLw,s∈{1,5,11} + βsLSDFinit

, where β represents a weighting factor.

The on-the-fly mapping phase: In the process of mapping, we maintain an active window of 20
frames, with the portion of the global and local frame the same with Li et al. (2023). 20 iterations
of optimization are performed to update the map for every 5 frames. The oldest 5 local frames
are removed while the new 5 incoming frames are added to the window for the next map update.
we also leverage the uncertainty guidance in Eq. 11 on balancing wrapping loss Lw,s=1 and SDF
loss LSDFmapping

besides sampling procedure. The total loss during on-the-fly stage is denoted
as Lfly = βcLc + βdLd + (βwLw,s=1 + βsLSDFmapping

)|P ⊗ σ2
k , where ⊗ is the element wise

multiplication operation that weights each patch with normalized uncertainty map before using them
for loss calculation.

Evaluation Metrics. We assess the precision in terms of both geometric and photometric quality.
To measure geometric accuracy, we rely on the L1 depth error, which compares the estimated and
ground-truth depth maps. Note that we follow the common practice to recover the metric scale
by aligning the median of the estimated depth with the ground truth, as also used in Bian et al.
(2023); Zhou et al. (2017). For photometric accuracy, we use the peak signal-to-noise ratio (PSNR)
to analyze the similarity between the input RGB images and the rendered images.

Implementation Details. All experiments are conducted on a single NVIDIA RTX 3090 GPU. The
factorized representation is inspired and implemented based on the TensoRF (Chen et al., 2022) and
the pre-trained depth covariance function is made available by Dexheimer & Davison (2023), which
has been trained on Scannet Dataset (Dai et al., 2017a). The resolution of the factorized feature grid
is computed based on the pre-defined bounding box. We implement a single-resolution factorized
feature grid with a dimension set to 64. To make it comparable with existing neural implicit mapping
methods using a voxel grid, the resolution is roughly calculated as a voxel size of ∼ 8cm, given a
bounding box of size 11.8m, 8.7m, and 6.8m for three coordinates (the example is given for Replica
scene room 0). The feature channels are set to 16 for both density and appearance components,
respectively. Both SDF and color decoders are a two-layer MLP that explains the appearance feature.
Adam optimizer (Kingma & Ba, 2014) is adopted with learning rates set to 0.02 for the grid feature
updating and set to 0.001 for color decoder updating, respectively. Note that some benchmark scene
e. g. office1, is dimming and thus lacks color variance that poses difficulty in constraining SDF,
so the SDF supervision is muted for better leverage the available appearance feature. A covariance
depth and its corresponding uncertainty is estimated for the incoming downsampled RGB image (set
to 2.5 in the Replica case) for efficient inference. Three consecutive cached sets of RGB images, the
covariance depth map and the uncertainty map are sent to our Fmapping with an additional 20 global
sampled overlapped frames to jointly optimize the neural implicit representation for 30 iterations.

5.2 RESULTS

As shown in Tab. 1, our method demonstrates generally better geometric and photometric estimation
results compared to other RGB instant mapping cases and even shows comparable performance to
the state-of-the-art RGB-D mapping methods (H2-mapping). Note that we report the depth output
from depth covariance (cov) inferring and neural implicit rendering (rend), respectively.
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Table 1: Quantitative comparison of our proposed method’s mapping performance on
Replica indoor scenes.

Method room0 room2 office0 office1 office2 office3 office4 Avg.

iMAP
(RGB-D)

Depth L1 ↓ 5.70 6.94 6.43 7.41 14.23 8.68 6.80 7.64
PSNR. ↑ 5.66 5.64 7.39 11.89 8.12 5.62 5.98 6.95

NICE-SLAM
(RGB-D)

Depth L1 ↓ 2.53 2.93 1.51 0.93 8.41 10.48 2.43 4.08
PSNR. ↑ 29.90 19.80 22.44 25.22 22.79 22.94 24.72 24.61

H2-mapping
(RGB-D)

Depth L1 ↓ 0.34 0.61 0.33 0.45 0.53 0.50 0.40 0.42
PSNR. ↑ 29.24 27.05 33.72 33.82 28.91 29.43 31.17 30.21

NICE-SLAM
(RGB*)

Depth L1 ↓ 11.12 19.03 11.12 10.24 16.36 21.33 14.81 14.18
PSNR. ↑ 18.15 17.82 20.23 19.14 15.22 16.12 17.24 17.76

Orbeez-SLAM
(RGB)

Depth L1 ↓ - - - - - - - 11.88
PSNR. ↑ - - - - - - - 29.25

FMapping
(RGB)

Depth L1 ↓
(cov) 0.21 0.51 0.16 0.29 0.40 0.96 0.32 0.41

Depth L1 ↓
(rend) 0.21 0.60 0.15 0.30 0.42 1.00 0.30 0.43

PSNR. ↑ 24.32 26.03 30.20 36.49 27.26 16.08 24.94 26.47

* Note that the result of the room1 is omitted here since the initialization stage does not generate
satisfactory prior to kicking off the following Gaussian process.

Table 2: Analysis of our method in comparison with existing ones in terms of mapping speed,
number of parameters, and model size growth rate (parameterized by scene side-length L).

Method Mapping Speed ↓ Memory ↓
[s] # Param. Grow. R.

iMAP (RGB-D) 0.45 0.22 M -
NICE-SLAM (RGB-D) 0.13 12.18 M O(L3)

Ours-cov (RGB) 0.19 ∼36.00 M -
Ours-rend (RGB) 2.40 0.025 M O(L2)

In Tab. 2, we compare our mapping speed against common real-time RGB-D neural implicit method,
i. e. iMAP (Sucar et al., 2021) and NICE-SLAM (Zhu et al., 2022). Our FMapping can achieve com-
parable online estimation speed. Due to the lack of absolute sensor depth, an additional dedicated
dynamic sampling process is required for FMapping to approach the true geometry compared to
our RGB-D counterparts, therefore resulting in more processing time. Finally, regarding memory
consumption, our representation is memory efficient, We ascribe it to the factorized neural field
representation. Despite our covariance depth estimator based on a pre-trained covariance function
entailing a large parameter size, it is a relatively cheap geometric prior with a real-time inference
capability and naturally possesses the capability of cross-frame consistency for real-time reconstruc-
tion tasks, compared to other works that leverage large pre-trained monocular depth estimator (Zhu
et al., 2023).

6 CONCLUSION

In this paper, we present FMapping, an efficient neural field mapping technique for real-time dense
RGB mapping. We leverage a light and flexible geometric prior, i.e., a depth covariance function, to
continuously estimate depth based on well-optimized neural implicit mapping upon receiving RGB
observations. In return, this supervises the online training of NeRF. We leverage factorized neural
field representation to facilitate fast convergence with efficient memory growth. We achieve state-
of-the-art RGB mapping in terms of photometric and geometric accuracy, and our results are even
comparable to the performance of RGB-D dense mapping.
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