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Abstract
Achieving the generalization of an invariant classifier from training

domains to shifted test domains while simultaneously considering

model fairness is a substantial and complex challenge in machine

learning. Existing methods address the problem of fairness-aware

domain generalization, focusing on either covariate shift or cor-

relation shift, but rarely consider both at the same time. In this

paper, we introduce a novel approach that focuses on learning

a fairness-aware domain-invariant predictor within a framework

addressing both covariate and correlation shifts simultaneously,

ensuring its generalization to unknown test domains inaccessible

during training. In our approach, data are first disentangled into

content and style factors in latent spaces. Furthermore, fairness-

aware domain-invariant content representations can be learned

by mitigating sensitive information and retaining as much other

information as possible. Extensive empirical studies on benchmark

datasets demonstrate that our approach surpasses state-of-the-art

methods with respect to model accuracy as well as both group and

individual fairness.
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Figure 1: Taking a digit dataset (e.g. RCMNIST) as an example
to illustrate covariate shift and correlation shift across do-
mains. Here, domain is uniquely determined by the rotation
angle and𝐶𝑜𝑟𝑟 (𝑑𝑖𝑔𝑖𝑡, 𝑐𝑜𝑙𝑜𝑟 ), the color serves as the sensitive at-
tribute. 𝐶𝑜𝑟𝑟 (𝑑𝑖𝑔𝑖𝑡, 𝑐𝑜𝑙𝑜𝑟 ) represents the correlation between
the digit (3 and 6) and color (red and green).

1 Introduction
While machine learning has achieved remarkable success in various

areas, including computer vision [14], natural language process-

ing [5], and many others [10, 11, 35], these accomplishments are

often built upon the assumption that training and test data are inde-

pendently and identically distributed (i.i.d.) within their respective

domains [33].

However, models under this assumption tend to perform poorly

when there is a distribution shift between the training and test

domains. Addressing distribution shifts across domains and gen-

eralizing from finite training domains to unseen but related test

domains is the primary goal of domain generalization (DG) [1].

Many types of distribution shift are introduced in [20], such as

label shift [34], concept shift [36], covariate shift [30], and correla-

tion shift [28]. The covariate shift is defined as the differences in

the marginal distributions over instances across different domains

[30]. As shown in Figure 1, the two domains exhibit variations re-

sulting from different image styles, represented by varying rotation

angles. Correlation shift is defined as the variation in the depen-

dency between the sensitive attribute and label across domains. For

example, in Figure 1, it is evident that there is a strong correlation

between the digit (3,6) and digit colors (green, red) when rotated at

30
◦
, whereas this correlation becomes less pronounced at 60

◦
.

Since the correlation involves sensitive attributes, correlation

shift is highly related to fairness. In the context of algorithmic

decision-making, fairness means the absence of any bias or fa-

voritism towards an individual or group based on their inherent or

acquired characteristics [23]. Many methods have been proposed to

address the domain generalization (DG) problem [1, 17, 18, 31, 39],
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but most of them lack fairness considerations. Therefore, when

these algorithms are applied in human-centered real-world settings,

they may exhibit bias against populations [12] characterized by

sensitive features, such as gender and race.

While existing efforts have addressed the challenge of fairness-

aware domain generalization due to shifted domains, they either

overlook the variation in data across domains in the marginal dis-

tribution of data features [4, 25] or specifically address the spurious

correlation between sensitive attributes and predicted outcomes in

terms of unchanged group fairness [26] across domains. Therefore,

research is needed to explore fairness-aware domain generalization

considering both covariate and correlation shifts simultaneously

across training and test domains.

In this paper, we propose a novel framework, namely Fairness-

aware LeArning Invariant Representations (FLAIR). It focuses on

the problem arising from both covariate shift and correlation shift

while considering fairness. The overall framework is shown in Fig-

ure 2. In the presence of multiple training domains, our objective is

to acquire a predictor that is both domain-invariant and fairness-

aware. This enables effective generalization in unseen test domains

while preserving both accuracy and fairness.We assume there exists

an underlying transformation model that can transform instances

sampled from one domain to another while keeping the class labels

unchanged. Under this assumption, the predictor consists of three

components: a content featurizer, a fair representation learner, and

an invariant classifier. To achieve fairness, data are divided into

different sensitive subgroups. Within each subgroup, content fac-

tors encoded from the content featurizer are reconstructed using 𝐾

latent prototypes. These reconstructed content representations over

various sensitive subgroups are crafted with dual objectives: (1) min-

imizing the inclusion of sensitive information and (2) maximizing

the preservation of non-sensitive information. Utilizing these rep-

resentations as inputs, we train a fairness-aware domain-invariant

classifier for making model predictions. Exhausted experiments

showcase that FLAIR demonstrates robustness in the face of covari-

ate shift, even when facing alterations in unfairness and correlation

shift across domains. The main contributions are summarized:

• We introduce a fairness-aware domain generalization problem

within a framework that addresses both covariate and correlation

shifts simultaneously, which has practical significance.

• We introduce an end-to-end training approach aimed at learn-

ing a fairness-aware domain invariant predictor. We claim that

the trained predictor can generalize effectively to unseen test

domains that are unknown and inaccessible during training.

• Comprehensive experiments on three benchmark datasets show

that our proposed algorithm FLAIR significantly outperforms

state-of-the-art baselines with respect to model accuracy as well

as both group and individual fairness.

2 Related Work
Algorithmic Fairness in Machine Learning. In recent years,

fairness in machine learning has gained widespread attention. In

this field, there is a widely recognized trade-off: enhancing fairness

may come at the cost of accuracy to some extent [3, 24]. How to

handle such a trade-off, especially in real-world datasets, has been

a widely researched issue in the field of algorithmic fairness.

From a statistical perspective, algorithmic fairness metrics are

typically divided into group fairness and individual fairness. The

conflict between them is a common challenge, as algorithms that

achieve group fairness may not be able to handle individual fairness

[15]. LFR [38] is the first method to achieve both group fairness and

individual fairness simultaneously. It encodes tabular data, aiming

to preserve the original data as much as possible while ignoring

information related to sensitive attributes.

Fairness-Aware Domain Generalization. Some efforts [40–

44] have already been attempted to address the fairness-aware

domain generalization problem. EIIL [4] takes correlation shift into

consideration when addressing the DG problem, thus ensuring fair-

ness to some extent. FVAE [25] learns fair representation through

contrastive learning and both improve out-of-distribution general-

ization and fairness. But both of them only take correlation shift

into account while assuming that covariate shift remains invariant.

The latest work FATDM [26] attempts to simultaneously enhance

the model’s accuracy and fairness, considering the DG problem

associated with covariate shift. However, it does not consider corre-

lation shift and solely focuses on group fairness, without addressing

individual fairness.

3 Preliminaries
Notations. Let X ⊆ R𝑑 denote a feature space, A = {−1, 1} is
a sensitive space, and Y = {0, 1} is a label space for classifica-

tion. Let C ⊆ R𝑐 and S ⊆ R𝑠 be the latent content and style

spaces, respectively, induced from X by an underlying transfor-

mation model 𝑇 : X × X → X. We use 𝑋,𝐴,𝑌,𝐶, 𝑆 to denote

random variables that take values in X,A,Y, C,S and x, 𝑎,𝑦, c, s
be the realizations. A domain 𝑒 ∈ E is specified by distribution

P(𝑋𝑒 , 𝐴𝑒 , 𝑌𝑒 ) : X × A ×Y → [0, 1]. A predictor 𝑓 parameterized

by 𝜽𝑐𝑙𝑠 denotes 𝑓 : X × A × Θ→ Y.
Problem Formulation.We consider a set of data domains E,

where each domain 𝑒 ∈ E corresponds to a distinct data D𝑒 =

{(x𝑒
𝑖
, 𝑎𝑒
𝑖
, 𝑦𝑒
𝑖
)} |D

𝑒 |
𝑖=1

sampled i.i.d. from P(𝑋𝑒 , 𝐴𝑒 , 𝑌𝑒 ). Given a dataset

D = {D𝑒 }𝑒∈E , it is partitioned into a training dataset D𝑡𝑟 ⊂ D
with multiple training domains E𝑡𝑟 ⊂ E and a test dataset D𝑡𝑒 =
D\D𝑡𝑟 with unknown test domains which are inaccessible during

training. Therefore, given samples from finite training domains,

we aim to learn a fairness-aware predictor 𝑓 at training that is

generalizable on unseen test domains.

Problem 1 (Domain generalization concerning fairness).

Let E𝑡𝑟 ⊂ E be a finite subset of training domains and assume
that for each 𝑒 ∈ E𝑡𝑟 , we have access to its corresponding data
D𝑒 = {(x𝑒

𝑖
, 𝑎𝑒
𝑖
, 𝑦𝑒
𝑖
)} |D

𝑒 |
𝑖=1

sampled i.i.d. from P(𝑋𝑒 , 𝐴𝑒 , 𝑌𝑒 ). Given
a loss function ℓ𝐶𝐸 : Y × Y → R, the goal is to learn a fair predic-
tor 𝑓 parameterized by 𝜽𝑐𝑙𝑠 ∈ Θ𝑓 𝑎𝑖𝑟 ⊂ Θ for any D𝑒 ∈ D𝑡𝑟 that
minimizes the worst-case risk over training domains E𝑡𝑟 that

min

𝜽𝑐𝑙𝑠 ∈Θ𝑓 𝑎𝑖𝑟

max

𝑒∈E𝑡𝑟
EP(𝑋𝑒 ,𝐴𝑒 ,𝑌𝑒 ) ℓ𝐶𝐸 (𝑓 (𝑋𝑒 , 𝐴𝑒 , 𝜽𝑐𝑙𝑠 ), 𝑌𝑒 )

However, addressing Problem 1 by training such a predictor 𝑓

is challenging because (1) 𝑓 is required to remain invariant across

domains in terms of model accuracy, and model outcomes are fair

with respect to sensitive subgroups defined by 𝐴; and (2) we do not

assume data from E\E𝑡𝑟 is accessible during training.
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To tackle such challenges, we divide the fairness-aware domain

invariant predictor 𝑓 into three components: a domain-invariant

featurizer ℎ𝑐 : X × Θ𝑓 𝑎𝑖𝑟 → C parameterized by 𝜽𝑐 , a fair repre-
sentation learner 𝑔 : C × A × Θ𝑓 𝑎𝑖𝑟 → C parameterized by 𝜽𝑔 ,
and a classifier 𝜔 : C × Θ𝑓 𝑎𝑖𝑟 → R parameterized by 𝜽𝑤 , denoted
𝑓 = ℎ𝑐 ◦ 𝑔 ◦ 𝜔 and 𝜽𝑐𝑙𝑠 = {𝜽𝑐 , 𝜽𝑔, 𝜽𝑤}.

4 Fairness-aware Learning Invariant
Representations (FLAIR)

In this paper, we narrow the scope of various distribution shifts

and focus on a hybrid shift where covariate and correlation shifts

are present simultaneously.

Definition 1 (Covariate shift and correlation shift). Given
∀𝑒1, 𝑒2 ∈ E and 𝑒1 ≠ 𝑒2, a covariate shift occurs in Problem 1 when do-
main variation is due to differences in the marginal distributions over
input features P(𝑋𝑒1 ) ≠ P(𝑋𝑒2 ). Meanwhile, a correlation shift arises
in Problem 1 when domain variation results from changes in the joint
distribution between 𝑌 and 𝑍 , denoted as P(𝐴𝑒1 , 𝑌𝑒1 ) ≠ P(𝐴𝑒2 , 𝑌𝑒2 ).
More specifically, P(𝑌𝑒1 |𝐴𝑒1 ) ≠ P(𝑌𝑒2 |𝐴𝑒2 ) and P(𝐴𝑒1 ) = P(𝐴𝑒2 ); or
P(𝐴𝑒1 |𝑌𝑒1 ) ≠ P(𝐴𝑒2 |𝑌𝑒2 ) and P(𝑌𝑒1 ) = P(𝑌𝑒2 ).

In Section 4.1, we handle covariate shift by enforcing invariance

on instances based on disentanglement, while in Section 4.2, we

address correlation shift by learning fair content representation.

4.1 Disentanglement of Domain Variation
In [27], distribution shifts are attributed into two forms: concept

shift, where the distribution of instance classes varies across differ-

ent domains, and covariate shift, where the marginal distributions

over instance P(𝑋𝑒 ) are various. In this paper, we restrict the scope

of our framework to focus on Problem 1 in which inter-domain

variation is solely due to covariate shift.

Building upon the insights from existing domain generalization

literature [27, 39, 44], data variations across domains are disentan-

gled into multiple factors in latent spaces.

Assumption 1 (Latent Factors). GivenD𝑒 = {(x𝑒
𝑖
, 𝑎𝑒
𝑖
, 𝑦𝑒
𝑖
)} |D

𝑒 |
𝑖=1

sampled i.i.d. from P(𝑋𝑒 , 𝐴𝑒 , 𝑌𝑒 ) in domain 𝑒 ∈ E, we assume that
each instance (x𝑒

𝑖
, 𝑎𝑒
𝑖
, 𝑦𝑒
𝑖
) is generated from

• a latent content factor c = ℎ𝑐 (x𝑒𝑖 , 𝜽𝑐 ) ∈ C, where C = {c𝑦=0, c𝑦=1}
refers to a content space, and ℎ𝑐 is a content encoder;
• a latent style factor s𝑒 = ℎ𝑠 (x𝑒𝑖 , 𝜽𝑠 ) ∈ S, where s

𝑒 is specific to the
individual domain 𝑒 , and ℎ𝑠 : X × Θ→ S is a style encoder.

We assume that the content factors in C do not change across domains.
Each domain 𝑒 over P(𝑋𝑒 , 𝐴𝑒 , 𝑌𝑒 ) is represented by a unique s𝑒 and
𝐶𝑜𝑟𝑟 (𝑌𝑒 , 𝐴𝑒 ), where𝐶𝑜𝑟𝑟 (𝑌𝑒 , 𝐴𝑒 ) is the correlation betweem 𝑌𝑒 and
𝐴𝑒 .

Under Assumption 1, we further assume that, for any two do-

mains 𝑒𝑖 , 𝑒 𝑗 ∈ E, inter-domain variations between them due to co-

variate shift are managed via an underlying transformation model

𝑇 . Through this model, instances sampled from such two domains

can be transformed interchangeably.

Assumption 2 (Transformation Model). We assume, ∀𝑒, 𝑒′ ∈
E, 𝑒 ≠ 𝑒′, there exists a function 𝑇 : X × X → X that transforms
instances from domain 𝑒 to 𝑒′, denoted as 𝑋𝑒

′
= 𝑇 (𝑋𝑒 , 𝑋𝑒′ ). The

Content Encoder

Style Encoder

Decoder

Reconstruction

Reconstruction

Figure 2: Illustrating the pipeline of FLAIR using RCMNIST
dataset as an example. The content encoder ℎ𝑐 first maps
instances to the latent content space to obtain latent con-
tent factors. Subsequently, these content factors are grouped
based on the sensitive attributes (color) into c1

𝑖
and c−1

𝑖
. Con-

sequently, the fair content representations c̃1
𝑖
and c̃−1

𝑖
are

reconstructed using weighted prototypes. Each prototype
represents a statistical mean estimated from its correspond-
ing cluster, which is fitted by the content factors of the re-
spective subgroups, while ensuring fairness through Eq.(4).
Further, instances are transformed into different domains
using the style factor s extracted by the style encoder ℎ𝑠 .

transformation model 𝑇 is defined as

𝑇 (𝑋𝑒 , 𝑋𝑒
′
) = 𝐷 (ℎ𝑐 (𝑋𝑒 , 𝜽𝑐 ), ℎ𝑠 (𝑋𝑒

′
, 𝜽𝑠 ), 𝜽𝑑 )

where ℎ𝑐 and ℎ𝑠 are content and style encoders defined in Assumption
1, and 𝐷 : C × S × Θ→ X denotes a decoder.

With the transformation model𝑇 that transforms instances from

domain 𝑒 to 𝑒′, ∀𝑒, 𝑒′ ∈ E, under Assumption 2, we introduce a new

definition of invariance with respect to the variation captured by𝑇

in Definition 2.

Definition 2 (𝑇 -invariance). Under Assumptions 1 and 2, given
a transformation model 𝑇 as well as two instance (x𝑒

𝑖
, 𝑎𝑒
𝑖
, 𝑦𝑒
𝑖
) and

(x𝑒′
𝑗
, 𝑎𝑒

′
𝑗
, 𝑦𝑒

′
𝑗
), a content encoder ℎ𝑐 is domain invariant if it holds

x𝑒
′
𝑗 = 𝑇 (x𝑒𝑖 , x

𝑒′
𝑗 ), when 𝑒 ≠ 𝑒′, 𝑦𝑒 = 𝑦𝑒

′
, or

x𝑒𝑖 = 𝑇 (x
𝑒
𝑖 , x

𝑒′
𝑗 ), when 𝑒 = 𝑒′, 𝑦𝑒 ≠ 𝑦𝑒

′ (1)

almost surely ∀𝑒, 𝑒′ ∈ E.

Definition 2 is crafted to enforce invariance on instances based

on disentanglement via 𝑇 . The output of ℎ𝑐 is further utilized to

acquire a fairness-aware representation, considering different sen-

sitive subgroups, through the learner 𝑔 within the content latent

space.

4.2 Learning Fair Content Representations
Dwork et al., [6] defines fairness that similar individuals are treated
similarly. As stated in Section 4.1, the featurizer ℎ𝑐 maps instances

to the latent content space. Therefore, for each instance (x𝑒
𝑖
, 𝑎𝑒
𝑖
, 𝑦𝑒
𝑖
)

sampled i.i.d. from P(𝑋𝑒 , 𝐴𝑒 , 𝑌𝑒 ) where 𝑒 ∈ E𝑡𝑟 , the goal of the

learner𝑔 is to reconstruct a fair content representation c̃𝑖 = 𝑔(c𝑖 , 𝜽𝑔)
from c𝑖 = ℎ𝑐 (x𝑒𝑖 , 𝜽𝑐 ), wherein c̃𝑖 is generated to meet two objectives
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(1) minimizing the information disclosure related to a specific sen-

sitive subgroup D𝑎=−1𝑡𝑟 or D𝑎=1𝑡𝑟 , and (2) maximizing the preserva-

tion of significant information within non-sensitive representations.

Under Assumption 1, since the content space is invariant across

domains, we omit the superscript of domain labels for content

factors.

To achieve these objectives effectively through 𝑔 and drawing in-

spiration from [15, 38], we group the content factors along with the

sensitive attributes, denoted {c𝑎
𝑖
}𝑁𝑎

𝑖=1
= {(c𝑖 , 𝑎𝑖 )}𝑁

𝑎

𝑖=1
, of instances

{(x𝑒
𝑖
, 𝑎𝑒
𝑖
, 𝑦𝑒
𝑖
)}𝑁𝑎

𝑖=1
within each sensitive subgroup D𝑎𝑡𝑟 ,∀𝑎 ∈ {−1, 1},

which are encoded from ℎ𝑐 , into 𝐾 clusters based on their similar-

ity. Consequently, their fair content representations {c̃𝑎
𝑖
}𝑁𝑎

𝑖=1
, with

the sensitive attributes {𝑎𝑖 }𝑁
𝑎

𝑖=1
unchanged, are reconstructed us-

ing weighted prototypes, with each prototype 𝝁𝑎
𝑘
representing a

statistical mean estimated from each cluster.

Specifically, for content factors {c𝑎
𝑖
}𝑁𝑎

𝑖=1
in a sensitive subgroup

𝑎 where 𝑎 ∈ {−1, 1}, let 𝑍 be a latent variable, where its realization

z𝑎 ∈ {0, 1}𝐾 is a 𝐾-dimensional vector, satisfying a particular entry

𝑧𝑎
𝑘
is equal to 1, while all other entries are set to 0s, and

∑
𝑘 𝑧

𝑎
𝑘
= 1.

We denote 𝜋𝑎
𝑘
as the mixing coefficients representing the prior

probability of 𝑧𝑎
𝑘
= 1 that c𝑎

𝑖
belongs to the 𝑘-th prototype.

P(𝑧𝑎
𝑘
= 1) = 𝜋𝑎

𝑘
, 0 ≤ 𝜋𝑎

𝑘
≤ 1,

𝐾∑︁
𝑘=1

𝜋𝑎
𝑘
= 1

In the context of Gaussian mixture models, we assume the con-

ditional distribution (𝐶𝑎 |𝑍𝑎 = 𝑧𝑎
𝑘
) ∼ N (𝝁𝑎

𝑘
, Σ𝑎
𝑘
). To estimate the

parameters 𝜽𝑎𝑔 = {𝝁𝑎
𝑘
, Σ𝑎
𝑘
, 𝜋𝑎
𝑘
}𝐾
𝑘=1

of the subgroup 𝑎, we take the

loss

L𝑔𝑚𝑚 (x𝑎𝑖 , 𝜽𝑐 , 𝜽
𝑎
𝑔 ) = −

𝑁𝑎∑︁
𝑖=1

ln

{ 𝐾∑︁
𝑘=1

𝜋𝑎
𝑘
N(c𝑎𝑖 |𝝁

𝑎
𝑘
, Σ𝑎
𝑘
)
}
+

𝐾∑︁
𝑘=1

𝜋𝑎
𝑘

(2)

Intuitively, the latent variable 𝑍 is the key to finding the maximal

log-likelihood. We attempt to compute the posterior distribution

𝛾𝑎
𝑘,𝑖

of 𝑍 given the observations c𝑎
𝑖
:

𝛾𝑎
𝑘,𝑖

:= P(𝑧𝑎
𝑘
= 1|c𝑎𝑖 ) =

𝜋𝑎
𝑘
N(c𝑎

𝑖
|𝝁𝑎
𝑘
, Σ𝑎
𝑘
)∑𝐾

𝑗=1 𝜋
𝑎
𝑗
N(c𝑎

𝑖
|𝝁𝑎
𝑗
, Σ𝑎
𝑗
)

(3)

To achieve fairness, the fundamental idea designing 𝑔 is to make

sure that the probability that a random content factor c𝑎=−1
𝑖

from

the sensitive subgroup 𝑎 = −1 mapping to the 𝑘-th particular

prototype 𝝁𝑎=−1
𝑘

is equal to the probability of a random content

factor c𝑎=1
𝑖

mapping to the prototype 𝝁𝑎=1
𝑘

from the other sensitive

subgroup 𝑎 = 1.

𝛾𝑎=1
𝑘

= 𝛾𝑎=−1
𝑘

,∀𝑘 where 𝛾𝑎
𝑘
= E(x𝑖 ,𝑎,𝑦𝑖 )∼P(𝑋,𝐴=𝑎,𝑌 )𝛾

𝑎
𝑘,𝑖 (4)

We hence formulate the loss regarding fairness that

L𝑓 𝑎𝑖𝑟 (D𝑡𝑟 , 𝜽𝑐 , 𝜽𝑔) =
𝐾∑︁
𝑘=1

���𝛾𝑎=1𝑘
− 𝛾𝑎=−1

𝑘

��� (5)

where 𝜽𝑔 = {𝜽𝑎=−1𝑔 , 𝜽𝑎=1𝑔 }. Eq.(5) draws inspiration from the group

fairness metric, known as the Difference of Demographic Parity

(DDP) [21], which enforces the statistical parity between two sen-

sitive subgroups.

To maximize the non-sensitive information in the reconstructed

content representations, the reconstruction loss is defined

L𝑟𝑒𝑐 (x𝑎𝑖 , 𝜽𝑐 , 𝜽
𝑎
𝑔 ) =

| E𝑡𝑟 |∑︁
𝑖=1

𝑑𝑖𝑠𝑡 [c𝑎𝑖 , c̃
𝑎
𝑖 ], ∀𝑎 ∈ {−1, 1}

where c̃𝑎𝑖 = 𝑔(c𝑎𝑖 , 𝜽
𝑎
𝑔 ) =

𝐾∑︁
𝑘=1

𝛾𝑎
𝑘,𝑖
· 𝝁𝑎
𝑘

(6)

where |E𝑡𝑟 | = 𝑁𝑎=−1 + 𝑁𝑎=1 and 𝑑𝑖𝑠𝑡 [·, ·] : C × C → R is the

Euclidean distance metric.

4.3 Learning the Predictor 𝒇
To tackle Problem 1, which aims to learn a fairness-aware domain

invariant predictor 𝑓 , a crucial element of 𝑓 is the acquisition of con-

tent factors throughℎ𝑐 , while simultaneously reducing the sensitive

information associated with them through 𝑔. In this subsection, we

introduce a framework designed to train 𝑓 with a focus on both

domain invariance and model fairness.

Given training domains E𝑡𝑟 , a data batchQ = {(r1, r2, r3, r4)𝑞}𝑄𝑞=1
containingmultiple quartet instance pairs are sampled from P(𝑋𝑒 , 𝐴𝑒 ,
𝑌𝑒 ) and P(𝑋𝑒′ , 𝐴𝑒′ , 𝑌𝑒′ ), ∀𝑒, 𝑒′ ∈ E𝑡𝑟 , where𝑄 denotes the number

of quartet pairs in |Q|. Specifically,
r1 = (x𝑒1, 𝑎 = −1, 𝑦), with class 𝑦 and domain 𝑒

r2 = (x𝑒2, 𝑎 = 1, 𝑦′), with class 𝑦′ and domain 𝑒

r3 = (x𝑒
′
3
, 𝑎 = −1, 𝑦), with class 𝑦 and domain 𝑒′

r4 = (x𝑒
′
4
, 𝑎 = 1, 𝑦′), with class 𝑦′ and domain 𝑒′

We set r1 and r2 (same to r3 and r4) share the same domain 𝑒

but different class label 𝑦 and 𝑦′, while r1 and r3 (same to r2 and
r4) share the same class label 𝑦 but different domains 𝑒 and 𝑒′.
Therefore, r1 and r2 are alternative instances with respect to r3 and
r4 in a different domain, respectively.

Therefore, under Definition 2 and Eq.(1), we have the invariance

loss 𝑅𝑖𝑛𝑣 with respect to 𝜽 𝑖𝑛𝑣 = {𝜽𝑐 , 𝜽𝑠 , 𝜽𝑑 },

𝑅𝑖𝑛𝑣 (𝜽 𝑖𝑛𝑣) = E(𝑅1,𝑅2,𝑅3,𝑅4) ∈Q
(
𝑑 [𝑅1,𝑇 (𝑅1, 𝑅2)] + 𝑑 [𝑅3,𝑇 (𝑅3, 𝑅4)]

)
(7)

Note that in each distance metric 𝑑 [·] of 𝑅𝑖𝑛𝑣 , it compares a pair

of instances with the same domain but different classes.

Furthermore, given Eq.(2), Eq.(6) and under Definition 2, we have

the invariant classification loss with respect to 𝜽𝑐𝑙𝑠 = {𝜽𝑐 , 𝜽𝑔, 𝜽𝑤},

𝑅𝑐𝑙𝑠 (𝜽𝑐𝑙𝑠 ) = 𝑅𝑐𝑙𝑠 (𝜽𝑎=−1𝑐𝑙𝑠
) + 𝑅𝑐𝑙𝑠 (𝜽𝑎=1𝑐𝑙𝑠

) (8)

with

𝑅𝑐𝑙𝑠 (𝜽𝑎𝑐𝑙𝑠 ) = E(𝑅𝑖 ,𝑅 𝑗 ) ∈Q
{
𝑑 [𝑅𝑖 ,𝑇 (𝑅𝑖 , 𝑅 𝑗 )] + L𝑔𝑚𝑚 (𝑅𝑖 , 𝜽𝑐 , 𝜽𝑎𝑔 )

+L𝑟𝑒𝑐 (𝑅𝑖 , 𝜽𝑐 , 𝜽𝑎𝑔 ) + ℓ𝐶𝐸
(
𝜔 (𝑔(ℎ𝑐 (𝑅𝑖 , 𝜽𝑐 ), 𝜽𝑎𝑔 ), 𝜽𝑤), 𝑌

)}
where 𝑑 : X × X → R indicates a distance metric, such as ℓ1-norm.

𝑅𝑐𝑙𝑠 (𝜽𝑎=−1𝑐𝑙𝑠
) indicates the empirical risk of instance pairs with the

sensitive attribute 𝑎 = −1. Similarly, 𝑅𝑐𝑙𝑠 (𝜽𝑎=1𝑐𝑙𝑠
) is the empirical

risk of instance pairs with the sensitive attribute 𝑎 = 1. Notice that

the instance pair (𝑅𝑖 , 𝑅 𝑗 ) in 𝑅𝑐𝑙𝑠 sampled from Q have the same

class label but different domains, such as (r1, r3) and (r2, r4).
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Algorithm 1 Fairness-aware Learning Invariant Representations

(FLAIR)

Input: Training dataset D𝑡𝑟 , stepsize 𝜂1, 𝜂2, 𝜂3, margin 𝜖1, 𝜖2,

number of prototypes 𝐾

Initialize: primal variables 𝜽 = {𝜽𝑐 , 𝜽𝑠 , 𝜽𝑑 , 𝜽𝑔, 𝜽𝑤} and dual

variables 𝜆1, 𝜆2
1: repeat
2: Sample a batch Q = {(r1, r2, r3, r4)𝑞}𝑄𝑞=1 in D𝑡𝑟 .
3: Evaluate 𝑅𝑖𝑛𝑣 (𝜽𝑐 , 𝜽𝑠 , 𝜽𝑑 ) using Q and Eq.(7).

4: Estimate 𝜽𝑔 = FairGMMs(Q, 𝜽𝑐 )
5: Estimate 𝑅𝑓 𝑎𝑖𝑟 (𝜽𝑐 , 𝜽𝑔) ≈

∑𝐾
𝑘=1

���𝜋𝑎=−1
𝑘

− 𝜋𝑎=1
𝑘

���
6: Evaluate 𝑅𝑐𝑙𝑠 (𝜽𝑐 , 𝜽𝑔, 𝜽𝑤) using Eq.(8)
7: Define 𝑅𝑡𝑜𝑡𝑎𝑙 using Eq.(10)

8: Primal Update 𝜽 ← Adam(𝑅𝑐𝑙𝑠 + 𝜆1𝑅𝑖𝑛𝑣 + 𝜆2𝑅𝑓 𝑎𝑖𝑟 , 𝜽 , 𝜂1)
9: Dual Update 𝜆1 ← max

{[
𝜆1 + 𝜂2

(
𝑅𝑖𝑛𝑣 − 𝜖1

)]
, 0

}
,

𝜆2 ← max

{[
𝜆2 + 𝜂3

(
𝑅𝑓 𝑎𝑖𝑟 − 𝜖2

)]
, 0

}
10: until convergence
11: procedure FairGMMs(Q, 𝜽𝑐 )
12: for each 𝑎 ∈ {−1, 1} do
13: Define {c𝑎

𝑖
}𝑁𝑎

𝑖=1
by encoding Q using ℎ𝑐 and 𝜽𝑐 with

respect to the sensitive subgroup 𝑎
14: repeat
15: Estimate {𝛾𝑎

𝑘,𝑖
}𝑁𝑎

𝑖=1
using Eq.(3)

16: Update 𝝁𝑎
𝑘
←

∑𝑁𝑎

𝑖=1 𝛾
𝑎
𝑘,𝑖

c𝑎
𝑖∑𝑁𝑎

𝑖=1 𝛾
𝑎
𝑘,𝑖

17: Update Σ𝑎
𝑘
←

∑𝑁𝑎

𝑖=1 𝛾
𝑎
𝑘,𝑖
(c𝑎

𝑖
−𝝁𝑎

𝑘
) (c𝑎

𝑖
−𝝁𝑎

𝑘
)𝑇∑𝑁𝑎

𝑖=1 𝛾
𝑎
𝑘,𝑖

18: Update 𝜋𝑎
𝑘
←



∑𝑁𝑎

𝑖=1 𝛾
𝑎
𝑘,𝑖

𝑁𝑎 + 𝜆2
, if 𝜋𝑎

𝑘
≥ 𝜋−𝑎

𝑘∑𝑁𝑎

𝑖=1 𝛾
𝑎
𝑘,𝑖

𝑁𝑎 − 𝜆2
, otherwise

19: until convergence
20: end for
21: end procedure

Finally, the fair loss 𝑅𝑓 𝑎𝑖𝑟 is defined over the data batch with all

sensitive attributes using Eq.(5),

𝑅𝑓 𝑎𝑖𝑟 (𝜽𝑐 , 𝜽𝑔) = L𝑓 𝑎𝑖𝑟 (𝑄, 𝜽𝑐 , 𝜽𝑔) (9)

Therefore the total loss is given

𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑐𝑙𝑠 + 𝜆1 · 𝑅𝑖𝑛𝑣 + 𝜆2 · 𝑅𝑓 𝑎𝑖𝑟 (10)

where 𝜆1, 𝜆2 > 0 are Lagrangian multipliers.

4.4 An Effective Algorithm
We introduce an effective algorithm for FLAIR to implement the

predictor 𝑓 , as shown in Algorithm 1. Lines 2-3 represent the trans-

formation model 𝑇 , while lines 4-6 denote the fair representation

learner𝑔. In the𝑔 component, we employ𝑅𝑓 𝑎𝑖𝑟 as an approximation

to 𝑅𝑓 𝑎𝑖𝑟 , since the EM algorithm[22] in FairGMMs continuously

estimates 𝛾𝑎
𝑘
using 𝜋𝑎

𝑘
, ∀𝑘, 𝑎. Parameters of 𝜽𝑔 update are given in

lines 15-18 of Algorithm 1. We optimize 𝜆1 and 𝜆2 in the 𝑅𝑡𝑜𝑡𝑎𝑙

using the primal-dual algorithm, which is an effective tool for en-

forcing invariance [27]. The time complexity of Algorithm 1 is

O(𝑀 ×𝑄 × (𝑁𝑎=1 + 𝑁𝑎=−1)), where𝑀 is the number of batches.

5 Experimental Settings
5.1 Datasets
Rotated-Colored-MNIST (RCMNIST) dataset is a synthetic image

dataset generated from the MNIST dataset [16] by rotating and

coloring the digits. The rotation angles 𝑑 ∈ {0◦,15◦,30◦,45◦,60◦,75◦}
of the digits are used to partition different domains, while the color

𝑎 ∈ {red, green} of the digits is served as the sensitive attribute. A

binary target label is created by grouping digits into {0, 1, 2, 3, 4}
and {5, 6, 7, 8, 9}. To investigate the robustness of FLAIR in the face

of correlation shift, we controlled the correlation between label

and color for each domain in the generation process of RCMNIST,
setting them respectively to {0, 0.8, 0.5, 0.1, 0.3, 0.6}. The correlation
for domain 𝑑 = 0

◦
was set to 0, implying that higher accuracy leads

to fairer results.

New-York-Stop-and-Frisk (NYPD) dataset [9] is a real-world

tabular dataset containing stop, question, and frisk data from some

suspects in five different cities. We selected the full-year data from

2011, which had the highest number of stops compared to any

other year. We consider the cities 𝑑 ∈{BROOKLYN, QUEENS, MAN-

HATTAN, BRONX, STATEN IS} where suspects were sampled as

domains. The suspects’ gender 𝑎 ∈ {Male, Female} serves as the
sensitive attribute, and whether a suspect was frisked is treated as

the target label.

FairFace dataset [13] is a novel face image dataset containing

108,501 images labeled with race, gender, and age groups which is

balanced on race. The dataset comprises face images from seven race

group 𝑑 ∈ {White, Black, Latino/Hispanic, East Asian, Southeast

Asian, Indian, Middle Eastern}. These race groups determine the

domain to which an image belongs. Gender 𝑎 ∈ {Male, Female}
is considered a sensitive attribute, and the binary target label is

determined based on whether the age is greater than 60 years old.

5.2 Evaluation Metrics
Given input feature 𝑋 ∈ X, target label 𝑌 ∈ Y = {0, 1} and binary

sensitive attribute 𝐴 ∈ A = {−1, 1}, we evaluate the algorithm’s

performance on the test dataset D𝑡𝑒 . We measure the DG perfor-

mance of the algorithm usingAccuracy and evaluate the algorithm

fairness using the following metrics.

Demographic parity difference (Δ𝐷𝑃 ) [6] is a type of group
fairness metric. Its rationale is that the acceptance rate provided by

the algorithm should be the same across all sensitive subgroups. It

can be formalized as

Δ𝐷𝑃 =
��𝑃 (𝑌 = 1|𝐴 = −1) − 𝑃 (𝑌 = 1|𝐴 = 1)

�� ,
where 𝑌 is the predicted class label. The smaller the Δ𝐷𝑃 , the fairer
the algorithm.

AUC for fairness (𝐴𝑈𝐶𝑓 𝑎𝑖𝑟 ) [2] is a pairwise group fairness
metric. Define a scoring function 𝑞𝜃 : X → R, where 𝜃 represents

the model parameters. The𝐴𝑈𝐶𝑓 𝑎𝑖𝑟 of 𝑞𝜃 measures the probability
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Table 1: Performance on RCMNIST (bold is the best, underline is the second best).
Consisitency ↑ / Δ𝐷𝑃 ↓ / AUC𝑓 𝑎𝑖𝑟 ↓ / Accuracy ↑

0
◦

15
◦

30
◦

ERM [32] 0.94 (0.03) / 0.04 (0.01) / 0.54 (0.01) / 92.02 (0.35) 0.95 (0.05) / 0.32 (0.04) / 0.67 (0.01) / 98.34 (0.17) 0.95 (0.03) / 0.15 (0.01) / 0.56 (0.01) / 97.99 (0.34)

IRM [1] 0.96 (0.01) / 0.04 (0.01) / 0.53 (0.01) / 90.67 (0.89) 0.95 (0.05) / 0.32 (0.03) / 0.67 (0.01) / 97.94 (0.25) 0.95 (0.02) / 0.15 (0.03) / 0.55 (0.01) / 97.65 (0.28)

GDRO [29] 0.95 (0.01) / 0.04 (0.02) / 0.55 (0.01) / 93.00 (0.67) 0.95 (0.02) / 0.31 (0.05) / 0.66 (0.01) / 98.07 (0.33) 0.95 (0.04) / 0.16 (0.01) / 0.58 (0.01) / 97.84 (0.30)

Mixup [37] 0.95 (0.01) / 0.04 (0.01) / 0.54 (0.01) / 93.27 (0.84) 0.95 (0.05) / 0.31 (0.05) / 0.66 (0.01) / 98.13 (0.20) 0.95 (0.05) / 0.16 (0.02) / 0.57 (0.01) / 98.26 (0.11)

MLDG [18] 0.95 (0.01) / 0.04 (0.01) / 0.53 (0.01) / 92.37 (0.47) 0.95 (0.03) / 0.31 (0.03) / 0.65 (0.01) / 97.65 (0.18) 0.95 (0.05) / 0.16 (0.04) / 0.56 (0.01) / 98.07 (0.26)

CORAL [31] 0.95 (0.01) / 0.04 (0.01) / 0.55 (0.01) / 93.81 (0.82) 0.96 (0.02) / 0.31 (0.03) / 0.67 (0.01) / 98.31 (0.44) 0.96 (0.03) / 0.16 (0.05) / 0.58 (0.01) / 98.49 (0.29)
DANN [8] 0.94 (0.02) / 0.04 (0.01) / 0.54 (0.01) / 91.24 (2.11) 0.93 (0.05) / 0.30 (0.02) / 0.63 (0.04) / 96.74 (0.27) 0.93 (0.02) / 0.14 (0.01) / 0.54 (0.03) / 96.84 (0.34)

CDANN [19] 0.94 (0.01) / 0.04 (0.01) / 0.53 (0.01) / 91.08 (1.21) 0.93 (0.05) / 0.31 (0.02) / 0.66 (0.01) / 97.47 (0.32) 0.93 (0.01) / 0.15 (0.01) / 0.57 (0.02) / 96.57 (0.66)

DDG [39] 0.97 (0.01) / 0.01 (0.01) / 0.50 (0.05) / 96.90 (0.11) 0.96 (0.03) / 0.31 (0.04) / 0.65 (0.01) / 97.79 (0.05) 0.97 (0.02) / 0.16 (0.01) / 0.59 (0.03) / 97.42 (0.33)

DIR [7] 0.73 (0.03) / 0.02 (0.05) / 0.52 (0.05) / 71.89 (0.21) 0.73 (0.03) / 0.18 (0.03) / 0.57 (0.05) / 72.61 (0.24) 0.72 (0.02) / 0.17 (0.04) / 0.56 (0.01) / 71.72 (0.11)

EIIL [4] 0.93 (0.01) / 0.14 (0.04) / 0.58 (0.01) / 82.00 (0.76) 0.96 (0.02) / 0.27 (0.03) / 0.63 (0.06) / 92.07 (0.18) 0.96 (0.04) / 0.14 (0.01) / 0.61 (0.01) / 92.17 (0.28)

FVAE [25] 0.95 (0.02) / 0.07 (0.03) / 0.53 (0.03) / 91.44 (2.02) 0.96 (0.01) / 0.30 (0.02) / 0.59 (0.06) / 92.49 (1.42) 0.96 (0.06) / 0.18 (0.05) / 0.60 (0.04) / 91.69 (6.34)

FATDM [26] 0.94 (0.01) / 0.01 (0.01) / 0.52 (0.02) / 94.02 (1.02) 0.95 (0.01) / 0.19 (0.01) / 0.55 (0.02) / 90.65 (1.42) 0.94 (0.01) / 0.14 (0.02) / 0.55 (0.02) / 90.25 (1.36)

FLAIR 0.97 (0.02) / 0.02 (0.01) / 0.52 (0.01) / 93.11 (1.23) 0.99 (0.02) / 0.18 (0.02) / 0.56 (0.04) / 90.85 (1.56) 0.99 (0.02) / 0.12 (0.03) / 0.54 (0.02) / 91.77 (1.94)

45
◦

60
◦

75
◦

Avg

ERM [32] 0.95 (0.04) / 0.35 (0.05) / 0.69 (0.01) / 98.34 (0.12) 0.95 (0.01) / 0.29 (0.02) / 0.68 (0.01) / 98.04 (0.18) 0.93 (0.01) / 0.17 (0.02) / 0.62 (0.02) / 94.60 (0.46) 0.946 / 0.221 / 0.626 / 96.55

IRM [1] 0.96 (0.05) / 0.35 (0.01) / 0.69 (0.01) / 97.68 (0.42) 0.96 (0.01) / 0.28 (0.01) / 0.66 (0.01) / 97.11 (0.47) 0.93 (0.02) / 0.16 (0.02) / 0.61 (0.01) / 93.67 (0.30) 0.953 / 0.217 / 0.619 / 95.79

GDRO [29] 0.95 (0.05) / 0.35 (0.01) / 0.71 (0.02) / 98.07 (0.30) 0.96 (0.01) / 0.29 (0.01) / 0.69 (0.01) / 97.88 (0.39) 0.93 (0.04) / 0.16 (0.01) / 0.61 (0.01) / 94.40 (0.41) 0.952 / 0.220 / 0.631 / 96.54

Mixup [37] 0.95 (0.04) / 0.34 (0.03) / 0.69 (0.01) / 98.39 (0.22) 0.96 (0.03) / 0.29 (0.04) / 0.68 (0.01) / 97.94 (0.14) 0.93 (0.01) / 0.15 (0.01) / 0.59 (0.01) / 93.58 (0.61) 0.951 / 0.215 / 0.623 / 96.59

MLDG [18] 0.95 (0.05) / 0.35 (0.01) / 0.70 (0.01) / 98.15 (0.07) 0.96 (0.03) / 0.28 (0.04) / 0.66 (0.01) / 97.59 (0.15) 0.94 (0.02) / 0.17 (0.04) / 0.62 (0.01) / 94.30 (0.36) 0.952 / 0.219 / 0.620 / 96.36

CORAL [31] 0.96 (0.05) / 0.35 (0.04) / 0.68 (0.01) / 98.63 (0.23) 0.96 (0.05) / 0.29 (0.03) / 0.68 (0.01) / 98.33 (0.16) 0.94 (0.01) / 0.16 (0.01) / 0.61 (0.02) / 95.43 (0.74) 0.954 / 0.221 / 0.628 / 97.17

DANN [8] 0.93 (0.02) / 0.35 (0.01) / 0.70 (0.01) / 97.36 (0.26) 0.94 (0.04) / 0.29 (0.01) / 0.69 (0.01) / 97.03 (0.25) 0.90 (0.01) / 0.17 (0.01) / 0.62 (0.01) / 90.60 (1.13) 0.928 / 0.216 / 0.620 / 94.97

CDANN [19] 0.93 (0.03) / 0.35 (0.01) / 0.69 (0.02) / 97.61 (0.40) 0.94 (0.02) / 0.29 (0.03) / 0.67 (0.01) / 97.60 (0.17) 0.90 (0.02) / 0.18 (0.02) / 0.62 (0.01) / 90.63 (1.67) 0.928 / 0.219 / 0.623 / 95.16

DDG [39] 0.97 (0.02) / 0.35 (0.01) / 0.69 (0.05) / 97.97 (0.05) 0.97 (0.03) / 0.28 (0.02) / 0.64 (0.05) / 97.81 (0.06) 0.95 (0.03) / 0.15 (0.01) / 0.58 (0.01) / 96.74 (0.13) 0.963 / 0.209 / 0.609 / 97.44

DIR [7] 0.73 (0.04) / 0.22 (0.02) / 0.57 (0.03) / 72.35 (0.19) 0.72 (0.04) / 0.21 (0.03) / 0.56 (0.03) / 70.85 (0.21) 0.73 (0.02) / 0.16 (0.05) / 0.57 (0.01) / 69.69 (0.14) 0.728 / 0.161 / 0.555 / 71.52

EIIL [4] 0.97 (0.03) / 0.26 (0.02) / 0.62 (0.01) / 91.83 (0.38) 0.96 (0.02) / 0.27 (0.01) / 0.59 (0.01) / 93.09 (0.22) 0.96 (0.02) / 0.21 (0.02) / 0.61 (0.01) / 93.77 (0.10) 0.959 / 0.216 / 0.607 / 90.82

FVAE [25] 0.97 (0.01) / 0.28 (0.04) / 0.56 (0.02) / 92.85 (1.30) 0.97 (0.01) / 0.28 (0.01) / 0.67 (0.03) / 91.02 (1.25) 0.94 (0.02) / 0.21 (0.02) / 0.60 (0.03) / 91.34 (1.74) 0.958 / 0.220 / 0.592 / 91.80

FATDM [26] 0.96 (0.04) / 0.25 (0.01) / 0.57 (0.02) / 92.90 (1.21) 0.95 (0.02) / 0.26 (0.03) / 0.57 (0.01) / 91.72 (1.32) 0.96 (0.01) / 0.14 (0.02) / 0.57 (0.03) / 91.11 (0.84) 0.953 / 0.165 / 0.555 / 91.78

FLAIR 0.98 (0.02) / 0.28 (0.02) / 0.56 (0.03) / 92.05 (2.34) 0.98 (0.02) / 0.24 (0.03) / 0.56 (0.04) / 91.95 (2.23) 0.98 (0.01) / 0.11 (0.03) / 0.56 (0.04) / 91.55 (1.02) 0.980 / 0.157 / 0.552 / 91.88

of correctly ranking positive examples ahead of negative examples.

𝐴𝑈𝐶𝑓 𝑎𝑖𝑟 (𝑞𝜃 ) =
∑
𝑋 ∈D𝑎=1

𝑡𝑒

∑
𝑋 ′∈D𝑎=−1

𝑡𝑒
1[𝑞𝜃 (𝑋 ) > 𝑞𝜃 (𝑋 ′)]

𝑁𝑎=1 × 𝑁𝑎=−1
,

where 1(·) is an indicator function that returns 1 when the param-

eter is true and 0 otherwise. D𝑡𝑒 is divided into D𝑎=1𝑡𝑒 and D𝑎=−1𝑡𝑒

based on 𝐴, which respectively contain 𝑁𝑎=1 and 𝑁𝑎=−1 samples.

The value of 𝐴𝑈𝐶𝑓 𝑎𝑖𝑟 ranges from 0 to 1, with a value closer to 0.5

indicating a fairer algorithm.

Consistency [38] is an individual fairness metric based on the

Lipschitz condition [6]. Specifically, Consistency measures the dis-

tance between each individual and its k-nearest neighbors.

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = 1 − 1

𝑁

𝑁∑︁
𝑖=1

������𝑦𝑖 − 1

𝑘

∑︁
𝑗∈𝑘NN(x𝑖 )

𝑦 𝑗

������ ,
where N is the total number of samples in D𝑡𝑒 , 𝑦𝑖 is the predicted
class label for sample x𝑖 , and 𝑘NN(·)1 takes the features of sam-

ple x𝑖 as input and returns the set of indices corresponding to

its k-nearest neighbors in the feature space. A larger Consistency
indicates a higher level of individual fairness.

5.3 Compared Methods
We validate the utility of FLAIR in handling Problem 1 using 13

methods. ERM [32], IRM [1], GDRO [29], Mixup [37], MLDG [18],

1
Note that in [38], 𝑘NN( ·) is applied to the full set of samples. To adapt it for DG task,

here we apply it only to the set for the domain in which the samples are located.

CORAL [31], DANN [8], CDANN [19], and DDG [39] are DG meth-

ods without fairness consideration. Among them, DDG is a recently

proposed method that focuses on learning invariant representa-

tions through disentanglement. DIR [7] is a classic group fairness

algorithm. EIIL [4] and FVAE [25] can achieve both domain gener-

alization under correlation shift and fairness. FATDM [26] is the

latest work that explicitly focuses on both domain generalization

under covariate shift and group fairness simultaneously.

6 Results
To evaluate the performance of FLAIR, we posed the following

research questions from shallow to deep and answered them in

Sections 6.1, 6.3 and 6.2.

• Q1) Can FLAIR effectively address Problem 1, or in other

words, can FLAIR ensure both group fairness and individual

fairness on unseen domains while maximizing DG perfor-

mance?

• Q2) Does FLAIR exhibit a good trade-off between DG per-

formance and fairness?

• Q3) What are the roles of the transformation model 𝑇 and

the fair representation learner 𝑔 in FLAIR?

• Q4) How is 𝑅𝑓 𝑎𝑖𝑟 ensuring algorithmic fairness in the learn-

ing process of FLAIR?

6.1 Overall Performance
The overall performance of FLAIR and its competing methods on

three real-world datasets is presented in Table 1, 2 and 3, ↑means
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Table 2: Performance on NYPD (bold is the best, underline is the second best).
Consisitency ↑ / Δ𝐷𝑃 ↓ / AUC𝑓 𝑎𝑖𝑟 ↓ / Accuracy ↑

BROOKLYN QUEENS MANHATTAN

ERM [32] 0.92 (0.03) / 0.14 (0.01) / 0.60 (0.03) / 62.57 (0.15) 0.92 (0.03) / 0.11 (0.01) / 0.58 (0.03) / 61.47 (0.15) 0.91 (0.03) / 0.13 (0.04) / 0.60 (0.03) / 60.60 (0.16)

IRM [1] 0.93 (0.02) / 0.17 (0.01) / 0.62 (0.05) / 62.54 (0.07) 0.92 (0.03) / 0.13 (0.01) / 0.60 (0.01) / 61.80 (0.38) 0.92 (0.01) / 0.15 (0.01) / 0.61 (0.01) / 61.10 (0.13)

GDRO [29] 0.93 (0.01) / 0.14 (0.01) / 0.60 (0.04) / 62.10 (0.17) 0.92 (0.01) / 0.12 (0.01) / 0.59 (0.04) / 61.94 (0.30) 0.92 (0.01) / 0.15 (0.01) / 0.60 (0.01) / 60.50 (0.07)

Mixup [37] 0.92 (0.03) / 0.13 (0.01) / 0.59 (0.01) / 62.24 (0.30) 0.92 (0.01) / 0.10 (0.01) / 0.58 (0.01) / 62.34 (0.98) 0.92 (0.01) / 0.13 (0.01) / 0.60 (0.01) / 60.17 (0.38)

MLDG [18] 0.93 (0.03) / 0.14 (0.01) / 0.60 (0.02) / 62.54 (0.13) 0.92 (0.04) / 0.11 (0.01) / 0.58 (0.01) / 61.45 (0.23) 0.92 (0.04) / 0.13 (0.05) / 0.60 (0.05) / 60.53 (0.18)

CORAL [31] 0.93 (0.02) / 0.15 (0.01) / 0.61 (0.01) / 62.38 (0.10) 0.92 (0.01) / 0.11 (0.04) / 0.58 (0.01) / 61.51 (0.40) 0.91 (0.02) / 0.13 (0.01) / 0.60 (0.01) / 60.61 (0.15)

DANN [8] 0.92 (0.01) / 0.15 (0.02) / 0.61 (0.01) / 61.78 (0.32) 0.92 (0.02) / 0.11 (0.01) / 0.58 (0.01) / 61.06 (1.33) 0.91 (0.05) / 0.15 (0.02) / 0.60 (0.01) / 60.51 (0.57)

CDANN [19] 0.93 (0.05) / 0.15 (0.01) / 0.60 (0.01) / 62.07 (0.27) 0.92 (0.02) / 0.11 (0.01) / 0.58 (0.01) / 61.28 (1.56) 0.91 (0.04) / 0.15 (0.01) / 0.61 (0.01) / 60.59 (0.36)

DDG [39] 0.94 (0.02) / 0.14 (0.01) / 0.60 (0.02) / 62.46 (0.11) 0.94 (0.02) / 0.11 (0.01) / 0.58 (0.04) / 62.45 (0.13) 0.94 (0.03) / 0.13 (0.01) / 0.60 (0.04) / 61.11 (0.29)

DIR [7] 0.87 (0.03) / 0.14 (0.01) / 0.58 (0.05) / 57.23 (0.04) 0.89 (0.01) / 0.10 (0.04) / 0.58 (0.05) / 55.80 (0.23) 0.88 (0.02) / 0.11 (0.02) / 0.57 (0.02) / 56.19 (0.11)

EIIL [4] 0.94 (0.03) / 0.11 (0.01) / 0.59 (0.01) / 59.92 (1.16) 0.94 (0.02) / 0.10 (0.01) / 0.58 (0.01) / 56.06 (0.24) 0.93 (0.05) / 0.04 (0.01) / 0.55 (0.01) / 53.08 (0.98)
FVAE [25] 0.95 (0.01) / 0.12 (0.01) / 0.61 (0.01) / 58.78 (0.88) 0.96 (0.02) / 0.13 (0.01) / 0.58 (0.01) / 58.76 (3.17) 0.94 (0.01) / 0.13 (0.01) / 0.61 (0.03) / 60.63 (2.95)

FATDM [26] 0.93 (0.01) / 0.09 (0.01) / 0.58 (0.02) / 60.13 (1.10) 0.93 (0.02) / 0.05 (0.02) / 0.56 (0.01) / 58.48 (0.57) 0.94 (0.01) / 0.12 (0.01) / 0.57 (0.01) / 57.02 (0.63)

FLAIR 0.96 (0.01) / 0.10 (0.02) / 0.58 (0.01) / 58.08 (1.08) 0.96 (0.04) / 0.03 (0.02) / 0.57 (0.01) / 60.82 (0.55) 0.95 (0.02) / 0.10 (0.01) / 0.56 (0.02) / 58.14 (0.44)

BRONX STATEN IS Avg

ERM [32] 0.90 (0.01) / 0.03 (0.03) / 0.55 (0.04) / 61.07 (0.46) 0.91 (0.03) / 0.15 (0.01) / 0.61 (0.01) / 67.02 (0.30) 0.910 / 0.113 / 0.588 / 62.55

IRM [1] 0.91 (0.04) / 0.06 (0.04) / 0.55 (0.02) / 59.84 (1.83) 0.91 (0.01) / 0.17 (0.01) / 0.62 (0.01) / 66.68 (0.16) 0.916 / 0.136 / 0.598 / 62.39

GDRO [29] 0.91 (0.04) / 0.04 (0.03) / 0.53 (0.02) / 60.94 (1.73) 0.91 (0.04) / 0.15 (0.01) / 0.60 (0.01) / 66.48 (0.20) 0.914 / 0.121 / 0.585 / 62.39

Mixup [37] 0.90 (0.02) / 0.07 (0.02) / 0.56 (0.01) / 61.30 (1.96) 0.91 (0.02) / 0.14 (0.01) / 0.59 (0.05) / 66.25 (0.85) 0.914 / 0.113 / 0.583 / 62.46

MLDG [18] 0.91 (0.05) / 0.03 (0.01) / 0.53 (0.02) / 60.94 (2.43) 0.91 (0.04) / 0.15 (0.04) / 0.61 (0.03) / 66.94 (0.25) 0.916 / 0.113 / 0.585 / 62.48

CORAL [31] 0.91 (0.01) / 0.04 (0.03) / 0.54 (0.02) / 61.52 (3.13) 0.91 (0.02) / 0.15 (0.01) / 0.60 (0.02) / 67.08 (0.21) 0.917 / 0.114 / 0.586 / 62.62

DANN [8] 0.88 (0.03) / 0.10 (0.01) / 0.56 (0.02) / 58.32 (1.28) 0.91 (0.03) / 0.14 (0.01) / 0.60 (0.01) / 65.62 (0.18) 0.910 / 0.130 / 0.591 / 61.46

CDANN [19] 0.90 (0.02) / 0.09 (0.03) / 0.56 (0.02) / 61.26 (1.25) 0.91 (0.05) / 0.17 (0.01) / 0.61 (0.01) / 66.07 (0.59) 0.914 / 0.132 / 0.594 / 62.25

DDG [39] 0.93 (0.03) / 0.02 (0.02) / 0.53 (0.01) / 64.91 (0.57) 0.93 (0.04) / 0.15 (0.01) / 0.60 (0.01) / 66.46 (0.22) 0.935 / 0.109 / 0.582 / 63.48

DIR [7] 0.90 (0.04) / 0.08 (0.02) / 0.58 (0.03) / 54.25 (0.17) 0.89 (0.03) / 0.11 (0.02) / 0.56 (0.01) / 55.19 (0.11) 0.883 / 0.107 / 0.577 / 55.73

EIIL [4] 0.92 (0.04) / 0.03 (0.02) / 0.53 (0.01) / 61.02 (1.14) 0.94 (0.02) / 0.13 (0.01) / 0.55 (0.01) / 56.69 (0.98) 0.933 / 0.080 / 0.561 / 57.35

FVAE [25] 0.93 (0.04) / 0.04 (0.01) / 0.54 (0.01) / 61.08 (1.16) 0.93 (0.02) / 0.16 (0.01) / 0.56 (0.03) / 63.96 (1.58) 0.941 / 0.115 / 0.578 / 60.64

FATDM [26] 0.94 (0.02) / 0.01 (0.02) / 0.54 (0.01) / 62.57 (0.59) 0.93 (0.05) / 0.14 (0.01) / 0.57 (0.02) / 62.80 (1.83) 0.931 / 0.082 / 0.566 / 60.20

FLAIR 0.94 (0.01) / 0.02 (0.02) / 0.52 (0.01) / 63.87 (1.14) 0.95 (0.05) / 0.12 (0.01) / 0.55 (0.03) / 62.63 (1.06) 0.955 / 0.073 / 0.560 / 60.71

higher is better, ↓ means lower is better. Each experiment was

conducted five times and the average results were recorded, with

standard deviations reported in parentheses.

Fairness Evaluation. Focus on the average of each fairness met-

ric across all domains, FLAIR almost achieves the best performance

on all three datasets. Excluding DIR, which is not competitive due

to its poor DG performance, FLAIR consistently ranks as either

the fairest or the second fairest in each domain. This indicates its

relative stability in achieving fairness across various domains com-

pared to competing methods. All of the above analyses shows that

FLAIR is able to achieve both individual fairness and group fairness

on unseen domains with state-of-the-art results.

DGEvaluationConsidering Trade-off.Considering the accur-
acy-fairness trade-off, we aim to enhance DG performance while si-

multaneously ensuring algorithmic fairness. From this perspective,

we notice that (i) methods solely focusing on DG cannot ensure

algorithmic fairness effectively. (ii) Although lower than the above

methods, the performance of DG for FLAIR is still competitive, and

it outperforms other competing algorithms that also focus on fair-

ness. (iii) On the FairFace dataset, FLAIR ensures the best fairness

while its DG performance is second only to DDG. This is because

the transformation model allows FLAIR to learn better domain-

invariant representations when dealing with relatively complex

data (facial photos) and types of environments.

Overall, FLAIR ensures fairness on both tabular and image data

while maintaining strong DG capabilities. It can learn a fairness-

aware domain-invariant predictor to effectively address Problem 1.

The success of FLAIR on all three datasets, particularly RCMNIST,

also demonstrates that our approachworks effectively when dealing

with DG problems involving covariate shift and correlation shift.
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Figure 3: Ablation study over four metrics for FLAIR and its
two variants on (a) RCMNIST, (b) NYPD and (c) FairFace datasets.
Results are averaged across all domains.
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Table 3: Performance on FairFace (bold is the best, underline is the second best).
Consisitency ↑ / Δ𝐷𝑃 ↓ / AUC𝑓 𝑎𝑖𝑟 ↓ / Accuracy ↑

White Black Latino/Hispanic East Asian

ERM [32] 0.95 (0.02) / 0.05 (0.02) / 0.57 (0.01) / 92.97 (3.04) 0.95 (0.01) / 0.03 (0.01) / 0.58 (0.01) / 91.31 (2.28) 0.96 (0.04) / 0.02 (0.01) / 0.57 (0.02) / 95.33 (1.51) 0.96 (0.03) / 0.02 (0.01) / 0.60 (0.01) / 96.71 (0.28)

IRM [1] 0.95 (0.01) / 0.05 (0.01) / 0.57 (0.01) / 93.26 (1.17) 0.96 (0.01) / 0.02 (0.01) / 0.57 (0.01) / 92.94 (1.01) 0.96 (0.03) / 0.03 (0.02) / 0.56 (0.03) / 94.85 (2.27) 0.95 (0.01) / 0.03 (0.01) / 0.60 (0.01) / 95.23 (1.26)

GDRO [29] 0.95 (0.01) / 0.06 (0.01) / 0.57 (0.01) / 91.94 (0.47) 0.96 (0.01) / 0.02 (0.01) / 0.58 (0.01) / 92.67 (1.59) 0.96 (0.01) / 0.01 (0.02) / 0.57 (0.01) / 96.14 (0.69) 0.96 (0.01) / 0.02 (0.01) / 0.61 (0.01) / 96.63 (0.30)

Mixup [37] 0.95 (0.04) / 0.05 (0.01) / 0.55 (0.05) / 92.29 (2.26) 0.95 (0.01) / 0.03 (0.01) / 0.53 (0.01) / 92.49 (2.20) 0.96 (0.03) / 0.02 (0.03) / 0.54 (0.03) / 95.42 (1.02) 0.96 (0.01) / 0.03 (0.01) / 0.55 (0.02) / 96.09 (1.43)

MLDG [18] 0.95 (0.05) / 0.05 (0.01) / 0.58 (0.01) / 93.71 (0.41) 0.95 (0.04) / 0.02 (0.01) / 0.58 (0.01) / 93.21 (0.40) 0.96 (0.03) / 0.02 (0.02) / 0.58 (0.01) / 95.64 (0.93) 0.95 (0.03) / 0.02 (0.01) / 0.59 (0.02) / 96.34 (0.84)

CORAL [31] 0.95 (0.05) / 0.07 (0.02) / 0.57 (0.01) / 91.99 (2.14) 0.95 (0.04) / 0.05 (0.01) / 0.57 (0.01) / 89.44 (2.35) 0.95 (0.05) / 0.04 (0.01) / 0.56 (0.01) / 93.97 (0.57) 0.95 (0.02) / 0.04 (0.01) / 0.57 (0.03) / 94.84 (0.99)

DANN [8] 0.93 (0.04) / 0.11 (0.01) / 0.59 (0.01) / 80.72 (2.23) 0.92 (0.01) / 0.09 (0.01) / 0.58 (0.01) / 74.07 (1.65) 0.93 (0.04) / 0.09 (0.02) / 0.61 (0.04) / 87.17 (2.48) 0.92 (0.02) / 0.10 (0.02) / 0.60 (0.01) / 85.42 (3.67)

CDANN [19] 0.91 (0.05) / 0.12 (0.02) / 0.59 (0.01) / 76.13 (2.65) 0.91 (0.03) / 0.08 (0.01) / 0.58 (0.01) / 76.43 (2.09) 0.92 (0.01) / 0.06 (0.01) / 0.60 (0.01) / 91.03 (1.42) 0.92 (0.02) / 0.08 (0.02) / 0.60 (0.01) / 89.09 (2.69)

DDG [39] 0.95 (0.04) / 0.04 (0.04) / 0.56 (0.01) / 96.25 (0.64) 0.96 (0.05) / 0.03 (0.01) / 0.55 (0.01) / 97.26 (0.60) 0.97 (0.03) / 0.01 (0.01) / 0.55 (0.02) / 98.15 (0.52) 0.96 (0.03) / 0.02 (0.01) / 0.59 (0.01) / 98.37 (0.63)

DIR [7] 0.74 (0.04) / 0.02 (0.03) / 0.52 (0.05) / 76.14 (0.11) 0.75 (0.04) / 0.03 (0.01) / 0.52 (0.03) / 76.31 (0.17) 0.75 (0.04) / 0.03 (0.03) / 0.52 (0.02) / 76.65 (0.19) 0.75 (0.01) / 0.03 (0.01) / 0.52 (0.04) / 77.42 (0.21)
EIIL [4] 0.96 (0.01) / 0.01 (0.00) / 0.55 (0.01) / 89.92 (0.12) 0.96 (0.05) / 0.00 (0.00) / 0.59 (0.01) / 96.79 (0.11) 0.97 (0.05) / 0.11 (0.03) / 0.55 (0.01) / 83.76 (0.57) 0.97 (0.05) / 0.07 (0.01) / 0.60 (0.03) / 86.35 (1.87)

FVAE [25] 0.94 (0.01) / 0.05 (0.04) / 0.54 (0.02) / 90.36 (1.05) 0.91 (0.02) / 0.03 (0.01) / 0.57 (0.04) / 89.63 (2.22) 0.97 (0.02) / 0.03 (0.01) / 0.55 (0.01) / 93.30 (0.97) 0.98 (0.01) / 0.05 (0.01) / 0.57 (0.02) / 91.44 (1.58)
FATDM [26] 0.95 (0.01) / 0.02 (0.02) / 0.53 (0.03) / 96.23 (1.11) 0.96 (0.01) / 0.02 (0.02) / 0.54 (0.01) / 95.82 (0.13) 0.95 (0.01) / 0.02 (0.04) / 0.55 (0.02) / 95.38 (0.29) 0.95 (0.03) / 0.01 (0.01) / 0.55 (0.04) / 96.31 (0.35)

FLAIR 0.98 (0.01) / 0.02 (0.01) / 0.57 (0.01) / 96.56 (0.76) 0.98 (0.01) / 0.01 (0.00) / 0.53 (0.01) / 97.60 (0.13) 0.98 (0.01) / 0.00 (0.00) / 0.54 (0.01) / 98.31 (0.30) 0.97 (0.02) / 0.00 (0.00) / 0.55 (0.01) / 97.36 (0.28)

Southeast Asian Indian Middle Eastern Avg

ERM [32] 0.96 (0.03) / 0.01 (0.01) / 0.56 (0.01) / 94.42 (0.29) 0.94 (0.04) / 0.01 (0.03) / 0.53 (0.02) / 94.66 (0.32) 0.95 (0.02) / 0.04 (0.01) / 0.57 (0.02) / 93.42 (1.85) 0.952 / 0.026 / 0.568 / 94.12

IRM [1] 0.96 (0.05) / 0.01 (0.01) / 0.56 (0.01) / 94.56 (0.41) 0.93 (0.04) / 0.02 (0.02) / 0.54 (0.02) / 94.27 (0.29) 0.94 (0.04) / 0.04 (0.01) / 0.56 (0.01) / 93.95 (1.37) 0.950 / 0.029 / 0.566 / 94.15

GDRO [29] 0.96 (0.01) / 0.02 (0.01) / 0.57 (0.02) / 94.26 (0.47) 0.94 (0.02) / 0.02 (0.01) / 0.53 (0.01) / 93.99 (0.79) 0.95 (0.03) / 0.04 (0.01) / 0.57 (0.01) / 93.87 (0.47) 0.954 / 0.027 / 0.570 / 94.21

Mixup [37] 0.96 (0.04) / 0.01 (0.02) / 0.51 (0.01) / 94.55 (0.28) 0.94 (0.01) / 0.03 (0.01) / 0.53 (0.01) / 93.76 (0.46) 0.95 (0.05) / 0.04 (0.01) / 0.55 (0.02) / 93.83 (0.44) 0.953 / 0.029 / 0.538 / 94.06

MLDG [18] 0.96 (0.05) / 0.01 (0.02) / 0.56 (0.02) / 94.62 (0.16) 0.93 (0.03) / 0.02 (0.02) / 0.56 (0.02) / 94.68 (0.37) 0.95 (0.03) / 0.03 (0.01) / 0.58 (0.01) / 94.57 (0.20) 0.952 / 0.023 / 0.577 / 94.68

CORAL [31] 0.96 (0.05) / 0.02 (0.01) / 0.54 (0.02) / 93.96 (0.74) 0.93 (0.05) / 0.03 (0.01) / 0.54 (0.02) / 93.78 (0.45) 0.94 (0.02) / 0.05 (0.01) / 0.56 (0.02) / 92.56 (0.73) 0.949 / 0.043 / 0.558 / 92.93

DANN [8] 0.91 (0.05) / 0.04 (0.01) / 0.56 (0.01) / 86.96 (1.54) 0.90 (0.04) / 0.07 (0.01) / 0.58 (0.02) / 88.35 (1.85) 0.92 (0.02) / 0.09 (0.02) / 0.60 (0.02) / 84.68 (3.25) 0.918 / 0.082 / 0.590 / 83.91

CDANN [19] 0.93 (0.05) / 0.04 (0.02) / 0.55 (0.01) / 84.56 (2.98) 0.91 (0.02) / 0.06 (0.03) / 0.56 (0.03) / 88.91 (3.54) 0.93 (0.02) / 0.05 (0.04) / 0.58 (0.01) / 86.14 (5.08) 0.918 / 0.070 / 0.581 / 84.61

DDG [39] 0.97 (0.03) / 0.01 (0.02) / 0.54 (0.01) / 97.98 (0.21) 0.94 (0.04) / 0.01 (0.01) / 0.54 (0.02) / 97.29 (0.46) 0.95 (0.01) / 0.04 (0.04) / 0.55 (0.02) / 97.13 (0.68) 0.959 / 0.023 / 0.554 / 97.49

DIR [7] 0.75 (0.03) / 0.03 (0.04) / 0.52 (0.02) / 75.46 (0.20) 0.74 (0.05) / 0.03 (0.01) / 0.52 (0.03) / 74.55 (0.31) 0.75 (0.01) / 0.03 (0.03) / 0.52 (0.05) / 68.14 (4.08) 0.748 / 0.027 / 0.521 / 74.95

EIIL [4] 0.97 (0.01) / 0.03 (0.01) / 0.54 (0.03) / 85.90 (0.82) 0.96 (0.02) / 0.04 (0.01) / 0.55 (0.01) / 88.96 (0.57) 0.96 (0.02) / 0.04 (0.02) / 0.56 (0.01) / 89.65 (0.26) 0.966 / 0.044 / 0.561 / 88.76

FVAE [25] 0.95 (0.01) / 0.03 (0.01) / 0.52 (0.01) / 90.23 (1.43) 0.96 (0.04) / 0.04 (0.01) / 0.54 (0.01) / 88.48 (1.18) 0.96 (0.01) / 0.06 (0.01) / 0.55 (0.02) / 86.80 (2.15) 0.954 / 0.041 / 0.550 / 90.04

FATDM [26] 0.95 (0.01) / 0.01 (0.01) / 0.53 (0.02) / 94.21 (1.45) 0.95 (0.01) / 0.01 (0.05) / 0.54 (0.03) / 94.52 (1.09) 0.95 (0.05) / 0.02 (0.01) / 0.54 (0.01) / 94.01 (0.58) 0.954 / 0.017 / 0.539 / 95.21

FLAIR 0.98 (0.01) / 0.00 (0.00) / 0.51 (0.01) / 96.75 (1.12) 0.98 (0.01) / 0.00 (0.00) / 0.53 (0.01) / 96.87 (0.12) 0.97 (0.02) / 0.02 (0.00) / 0.54 (0.01) / 96.28 (0.89) 0.976 / 0.007 / 0.537 / 97.10

Figure 4: t-SNE visualization of the representations learned by (c) FLAIR and its variants (a) FLAIR w/o 𝑅𝑓 𝑎𝑖𝑟 and (b) FLAIR w/o
primal-dual on RCMNIST dataset. The main parts of (a)-(c) simultaneously visualize representations of two sensitive subgroups
in the same latent space C, while the bottom-left (𝑎 = −1) and bottom-right (𝑎 = 1) visualize each group separately.

6.2 Ablation Study
To understand the roles of the transformation model 𝑇 and the

fair representation learner 𝑔 in learning a fairness-aware domain

invariant predictor, we constructed two different variants of FLAIR

for experimentation. They are: (i) FLAIR w/o g: remove 𝑔, i.e., learn

a predictor 𝑓𝑣1 = ℎ𝑠 ◦𝜔 . (ii) FLAIR w/o T : replace𝑇 with a standard

featurizer ℎ : X → X′ ⊆ R𝑑
′
and modify the corresponding

input and output dimensions of 𝑔 and 𝜔 , i.e., learn a predictor

𝑓𝑣2 = ℎ ◦ 𝑔 ◦ 𝜔. The results of ablation study for FLAIR and its two

variants on three dataset are shown in Figure 3 (a), (b) and (c).

By comparing FLAIR with its variant FLAIR w/o 𝑔, we can see

that the representations obtained by 𝑇 exhibit strong domain in-

variance but do not ensure fairness. Additionally, the improvement

of FLAIR on all three fairness metrics suggests that 𝑔 can simul-

taneously enhance individual and group fairness. The difference

between the results of them further validates the accuracy-fairness

trade-off .

Contrasting FLAIR with its variant FLAIR w/o 𝑇 further high-

lights the DG utility of 𝑇 . At the same time, it’s evident that while

𝑔 focuses only on fairness, it doesn’t necessarily result in fairer out-

comes. The reason for this is that the fair representation obtained

solely through 𝑔 lacks domain invariance. As a result, it cannot

handle covariate shift and correlation shift when generalizing to

unseen domains.

The Utility of 𝑅𝑓 𝑎𝑖𝑟 To understand how the critical component

𝑅𝑓 𝑎𝑖𝑟 in 𝑔 promotes algorithmic fairness, we created two new vari-

ants of FLAIR. They are (i) FLAIR𝑤/𝑜 𝑅𝑓 𝑎𝑖𝑟 : removing 𝑅𝑓 𝑎𝑖𝑟 from𝑔

and (ii) FLAIR𝑤/𝑜 𝑝𝑟𝑖𝑚𝑎𝑙-𝑑𝑢𝑎𝑙 : replacing the primal-dual updates
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Figure 5: The convergence curves of 𝑅𝑓 𝑎𝑖𝑟 and 𝑅𝑓 𝑎𝑖𝑟 during
training. Both of them converge after 30 iterations.
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Figure 6: Accuracy-fairness trade-off across different meth-
ods by various 𝜆2 ∈ {0.05, 0.1, 0.5, 1, 2, 5}. The upper left indi-
cates a better trade-off.

with fixed parameters 𝜆2. Figure 4 shows the visualization of the fair

content representations {c̃𝑎
𝑖
}𝑁𝑎

𝑖=1
obtained by 𝑔 and its two variants

on RCMNIST, organized by the respective sensitive subgroups.

The transition from (a) to (b) and (c) clearly shows that during

optimization 𝑅𝑓 𝑎𝑖𝑟 brings the representations of the two sensitive

subgroups closer in the latent space, ensuring that similar individu-

als from different groups get more similar representations. Addition-

ally, the clustering of each sensitive subgroup can bring closer the

distances between similar individuals within the same group. Com-

bining above two points, 𝑅𝑓 𝑎𝑖𝑟 enables FLAIR to achieve a strong

individual fairness effect. At the same time, 𝑅𝑓 𝑎𝑖𝑟 enforces statis-

tical parity between sensitive subgroups, reducing the distances

between corresponding prototypes of different groups. This also

ensures that FLAIR achieves group fairness. The transition from (b)

to (c) shows that optimizing through the primal-dual algorithm is

able to achieve better algorithmic fairness performance.

The convergence curves for both 𝑅𝑓 𝑎𝑖𝑟 and 𝑅𝑓 𝑎𝑖𝑟 during train-

ing are shown in Figure 5. Since the prior 𝜋 updates are not fully

synchronized with the posterior 𝛾 updates (as seen in line 19 of

Algorithm 1), a gap (indicated by the light blue area) exists between

the two curves. However, their convergence trends are consistent,

indicating that during training, 𝑅𝑓 𝑎𝑖𝑟 can successfully approximate

𝑅𝑓 𝑎𝑖𝑟 and does not affect the successful convergence of L𝑔𝑚𝑚 .

6.3 Sensitive Analysis
Accuracy-fairness Trade-off. To assess the trade-off performance

of FLAIR, we obtained different group fairness and DG results of

FLAIR by controlling the value of 𝜆2 (larger 𝜆2 implies FLAIR fo-

cuses more on algorithmic fairness). We compare the results with

other fairness-aware methods, as shown in Figure 6 for all three

datasets. It can be seen that the curve of the results obtained by

FLAIR under different fairness levels is positioned in the upper-

left corner among all methods. This indicates that FLAIR, while

ensuring the best fairness performance, also maintains comparable
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Figure 7: Performance of FLAIR on each domain and the av-
erage performance across different values of𝐾 on (a) RCMNIST,
(b) NYPD and (c) FairFace datasets. The x-axis is the values of
𝐾 ranging from 2 to 6.

domain generalization performance, achieving the best accuracy-

fairness trade-off. Moreover, we observe that FLAIR achieves ex-

cellent fairness performance with comparable accuracy across all

three datasets when 𝜆2 = 0.5. Therefore, we adopt this setting for

all three datasets.

Number of Prototypes. To determine the number of prototypes

𝐾 in 𝑔, we conducted a sensitivity analysis of 𝐾 . The experimental

results on three datasets with fixed other parameters and varying

values of 𝐾 from 2 to 6 are shown in Figure 7. The number of

prototypes we ultimately selected on the three datasets is 3, 3 and

4. Because at these values, FLAIR had the highest average ranking

across the four metrics as well as the best accuracy-fairness trade-

off.

7 Conclusion
In this paper, we introduce a novel approach to fairness-aware

learning that tackles the challenges of generalization from observed

training domains to unseen testing domains. In our pursuit of learn-

ing a fairness-aware invariant predictor across domains, we assert

the existence of an underlying transformation model that can trans-

form instances from one domain to another. To ensure prediction

with fairness between sensitive subgroups, we present a fair repre-

sentation approach, wherein latent content factors encoded from

the transformation model are reconstructed while minimizing sen-

sitive information. We present a practical and tractable algorithm.

Exhaustive empirical studies showcase the algorithm’s effectiveness

through rigorous comparisons with state-of-the-art baselines.
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