
Published as a conference paper at ICLR 2025

TRAJECTORY-CLASS-AWARE MULTI-AGENT REIN-
FORCEMENT LEARNING

Hyungho Na1, Kwanghyeon Lee1, Sumin Lee 1, Il-Chul Moon1,2

1Korea Advanced Institute of Science and Technology (KAIST), 2summary.ai
{gudgh723}@gmail.com,{rhkdgus0414,sumlee,icmoon}@kaist.ac.kr

ABSTRACT

In the context of multi-agent reinforcement learning, generalization is a challenge
to solve various tasks that may require different joint policies or coordination with-
out relying on policies specialized for each task. We refer to this type of problem
as a multi-task, and we train agents to be versatile in this multi-task setting through
a single training process. To address this challenge, we introduce TRajectory-
class-Aware Multi-Agent reinforcement learning (TRAMA). In TRAMA, agents
recognize a task type by identifying the class of trajectories they are experienc-
ing through partial observations, and the agents use this trajectory awareness or
prediction as additional information for action policy. To this end, we introduce
three primary objectives in TRAMA: (a) constructing a quantized latent space to
generate trajectory embeddings that reflect key similarities among them; (b) con-
ducting trajectory clustering using these trajectory embeddings; and (c) building a
trajectory-class-aware policy. Specifically for (c), we introduce a trajectory-class
predictor that performs agent-wise predictions on the trajectory class; and we de-
sign a trajectory-class representation model for each trajectory class. Each agent
takes actions based on this trajectory-class representation along with its partial
observation for task-aware execution. The proposed method is evaluated on vari-
ous tasks, including multi-task problems built upon StarCraft II. Empirical results
show further performance improvements over state-of-the-art baselines.

1 INTRODUCTION

The value factorization framework (Sunehag et al., 2017; Rashid et al., 2018; Wang et al., 2020a)
under Centralized Training with Decentralized Execution (CTDE) paradigm (Oliehoek et al., 2008;
Gupta et al., 2017) has demonstrated its effectiveness across a range of cooperative multi-agent tasks
(Lowe et al., 2017; Samvelyan et al., 2019). However, learning optimal policy often takes a long
training time in more complex tasks, and the trained model often falls into suboptimal policies.
These suboptimal results are often observed in complex tasks, which require agents to search large
joint action-observation spaces.

Researchers have introduced task division methods in diverse frameworks to overcome this limita-
tion. Although previous works have used different terminologies, such as skills (Yang et al., 2019;
Liu et al., 2022), subtasks (Yang et al., 2022), and roles (Wang et al., 2020b; 2021); they have shared
the major objective, such as reducing the search space of each agent during training or encouraging
committed behavior for coordination among agents. For this purpose, agents first determine its role,
skill, or subtask often by upper-tier policies (Wang et al., 2021; Liu et al., 2022; Yang et al., 2022);
and the agents determine actions by this additional condition along with their partial observations.
Compared to common MARL approaches, these task division methods show a strong performance
in some complex tasks.

Recently, multi-agent multi-tasks have become new challenges in generalizing the learned policy
to be effective in diverse settings. These tasks require agents to learn versatile policies for solving
distinct problems, which may demand different joint policies or coordination among agents through
a single MARL training process. For example, in SMACv2 (Ellis et al., 2024), agents need to learn
policies neutralizing enemies in different initial positions and even with different unit combinations
unlike the original SMAC (Samvelyan et al., 2019). In this new challenge, the previous task division

1

Published as a conference paper at ICLR 2025

⇒

Clustering

…

ത𝑘1

ത𝑘2

ത𝑘𝑀

𝑀 trajectories

ത𝑘3

…

Trajectory-
class labels

(a) Trajectory Clustering

ത𝑘,

Trajectory-
class

Predictor

𝑜𝑖

⇔

⇒ ⇒ ෠𝑘𝑖

𝑖-th agent

Partial
observation

Predicted
trajectory-

class

(b) Trajectory-Class Prediction

Class A!

Class A!

Class B! Class B!

#1

#2

#1 #2

(c) Trajectory-Class-Aware Policy

Figure 1: Illustration of the overall procedure for trajectory-class-aware policy learning: (a) through
trajectory clustering, each trajectory is labeled. (b) Each agent predicts which trajectory class it
is experiencing based on its partial observation. (c) After identifying the trajectory class, agents
perform trajectory-class-dependent decision-making. In (c), each agent succeeds in identifying the
same trajectory class based on its partial observations denoted with different colors.

approaches show unsatisfactory performance because a specialized policy for a single task will not
work under different settings.

Motivated by this new challenge and the limitations of state-of-the-art MARL algorithms, we de-
velop a framework that enables agents to recognize task types during task execution. The agents
then use these task-type predictions or conditions in decision-making for versatile policy learning.

Contribution. This paper presents TRajectory-class-Aware Multi-Agent reinforcement learning
(TRAMA) to perform the newly suggested functionality described below.

• Constructing a quantized latent space for trajectory embedding: To generate trajectory
embeddings that reflect key similarities among them, we adopt the quantized latent space
via Vector Quantized-Variational Autoencoder (VQ-VAE) (Van Den Oord et al., 2017).
However, the naive adaptation of VQ-VAE for state embedding in MARL results in sparse
usage of quantized vectors highlighted by (Na & Moon, 2024). To address this problem
in multi-task settings, we introduce modified coverage loss considering trajectory class in
VQ-VAE training to spread quantized vectors evenly throughout the embedding space of
feasible states.

• Trajectory clustering: In TRAMA, we conduct trajectory clustering based on trajectory
embeddings in the quantized latent space to identify trajectories that share key similarities.
Since we cannot conduct trajectory clustering at every MARL training step, we introduce
a classifier to determine the class of the newly obtained trajectories from the environment.

• Trajectory-class-aware policy: After identifying the trajectory class, we train the agent-
wise trajectory-class predictor, which predicts a trajectory class using agents’ partial ob-
servations. Using this prediction, the trajectory-class representation model generates a
trajectory-class-dependent representation. This task type or trajectory-class representation
is then provided to an action policy along with local observations. In this way, agents can
learn trajectory-class-dependent policy.

Figure 1 illustrates the conceptual process of TRAMA by enumerating key functionalities on inte-
grating the trajectory-class information in decision-making.

2 PRELIMINARIES

2.1 DECENTRALIZED POMDP

Decentralized Partially Observable Markov Decision Process (Dec-POMDP) (Oliehoek & Amato,
2016) is a widely adopted formalism for general cooperative multi-agent reinforcement learning
(MARL) tasks. In Dec-POMDP, we define the tuple G = ⟨I, S,A, P,R,Ω, O, n, γ⟩, where I is
the finite set of n agents; s ∈ S is the true state of the global state space S; A = ×iAi is the joint
action space and the joint action a is formed by each agent’s action ai ∈ Ai; P (s′|s,a) is the state
transition function to new state s′ ∈ S given s and a; a reward function R provides a scalar reward
r = R(s,a, s′) ∈ R to a given transition ⟨s, a⟩ → s′; O is the observation function generating each

2

Published as a conference paper at ICLR 2025

agent’s observation oi ∈ Ωi from the joint observation space Ω = ×iΩi; and finally, γ is a discount
factor. At each timestep, an agent receives a local observation oi and takes an action ai ∈ Ai given
oi. Given the global state s and joint action a, state transition function P (s′|s,a) determines the
next state s′. Then, R provides a common reward r = R(s,a, s′) to all agents. For MARL training,
we follow the conventional value factorization approaches under the CTDE framework. Please refer
to Appendix A.3 for details.

2.2 MULTI-AGENT MULTI-TASK

This section introduces a formal definition of a multi-agent multi-task T , under dec-POMDP set-
tings. In this paper, we omit the term multi-agent and denote multi-task for conciseness.

Definition 2.1 (Multi-agent multi-task T) A partially observable multi-agent multi-task T is de-
fined by a tuple ⟨I, S,A, P,R,Ω, O, n, γ,K⟩, where K is a set of tasks, S = ∪kSk and Ω = ∪kΩk

for task-specific state space Sk and joint observation space Ωk. Then, a partially-observable single-
task Tk for k ∈ K is defined by a tuple of ⟨I, Sk,A, P,R,Ωk, O, n, γ⟩, such that ∀k1, k2 ∈ K,
Sk1 ∩ Sck2 ̸= ∅ and Ωk1 ∩Ωc

k2
̸= ∅.

Support Difference Although each task Tk shares the governing transition P , reward R, and ob-
servation O functions, Definition 2.1 implies that ∀k1, k2 ∈ K, dom(P)k1 ∩ dom(P)ck2 ̸= ∅,
dom(R)k1 ∩ dom(R)ck2 ̸= ∅ and dom(O)k1 ∩ dom(O)ck2 ̸= ∅, where subscript k1 and k2 repre-
sent task specific values. For example, two tasks with different unit combinations in SMACv2 (Ellis
et al., 2024) satisfy this condition. Figure 2 illustrates the state diagram of multi-task settings. Thus,
agents need to learn generalizable policies to maximize the expected return obtained from T .

Figure 2: State Diagram
of multi-task setting

Unsupervised Multi-Task Importantly, in multi-task setting in this pa-
per, task ID k is unknown in both training and execution. This differs
from general multi-task learning, where task ID is generally given during
training (Omidshafiei et al., 2017; Hansen et al., 2024; Yu et al., 2020;
Tassa et al., 2018). This unsupervised multi-task setting is practical for
multi-agent tasks. For example, in a football game, allied teammates
predict opponents’ strategies based on their observations during compe-
tition to respond appropriately. In such cases, a task label indicating the
opponents’ strategy (or task type) is not provided to the allied team or
cooperating agents.

This setting can also be viewed as a formal definition of SMACv2 task (Ellis et al., 2024). To address
this challenging multi-task problem, TRAMA begins by identifying which task a given trajectory
belongs to through clustering, assuming that trajectories from the same task are more similar than
those from different tasks.

2.3 QUANTIZED LATENT SPACE GENERATION WITH VQ-VAE

In this paper, we utilize VQ-VAE (Van Den Oord et al., 2017) to generate trajectory embeddings in
a discretized latent space. We follow VQ-VAE adoption in MARL introduced by LAGMA (Na &
Moon, 2024). The VQ-VAE for state embedding in MARL contains an encoder network feϕ : S →
Rd, a decoder network fdϕ : Rd → S, and trainable embedding vectors used as codebook with size
nc denoted by e = {e1, e2, ...enc

} where ej ∈ Rd for all j = {1, 2, ..., nc}. An encoder output
x = feϕ(s) ∈ Rd is replaced to discretized latent xq by quantization process [·]q , which maps x to
the nearest embedding vector in codebook e as follows.

xq = [x]q = ez,where z = argminj ||x− ej ||2 (1)

Then, a decoder fdϕ reconstructs the original state s given quantized vector input xq . We follow the
objective presented by LAGMA to train an encoder feϕ, a decoder fdϕ , and codebook e.

LtotV Q(ϕ, e) = LV Q(ϕ, e) + λcvr
1

|J (t)|
∑

j∈J (t)

||sg[feϕ(s)]− ej ||22 (2)

LV Q(ϕ, e) = ||fdϕ([feϕ(s)]q)− s||22 + λvq||sg[feϕ(s)]− xq||22 + λcommit||feϕ(s)− sg[xq]||22 (3)

3

Published as a conference paper at ICLR 2025

Here, sg[·] represents a stop gradient. λvq, λcommit, and λcvr are scale factors for corresponding
terms. We follow a straight-through estimator to approximate the gradient signal for an encoder
(Bengio et al., 2013). The last term in Eq. (2) is a coverage loss to spread the quantized vectors
throughout the embedding space. J (t) is a timestep-dependent index, which designates some por-
tion of quantized vectors to a given timestep. Although the previous coverage loss works well in
general MARL tasks, it is observed that such J (t) has limitations in multiple tasks. We modify this
J (t) by identifying types of trajectories during the training. As a result, we expand the index to
include timestep and task type, and thus the indexing function is now J (t, k), incorporating both
timestep t and trajectory class k.

3 METHODOLOGY

This section presents TRajectory-class-Aware Multi-Agent reinforcement learning (TRAMA). To
learn trajectory-class-dependent policy, we first generate trajectory embeddings before performing
trajectory clustering. To this end, we construct a (1) quantized latent space using modified VQ-
VAE. With the trajectory embeddings in quantized latent space, we then describe the process for (2)
trajectory clustering and trajectory classifier learning. Finally, we present the (3) trajectory-
class-aware policy, which consists of a trajectory-class predictor and a trajectory-class representa-
tion model, in addition to the action policy network.

ℎ𝑔,𝑡−1
𝑖 ℎ𝑔,𝑡

𝑖GRUℎ𝑡−1
𝑖 ℎ𝑡

𝑖GRU

ത𝑘

𝑓𝜓 ෡𝐾

labeled?

Sampled Quantized Sequence

ഥ𝐾 ⇔

𝑜𝑡
𝑖

𝑄𝜃
𝑖

𝜏𝓏

ഥ𝐾

Yes ⇔

෠𝑘𝑡
𝑖

~ CE Loss on 𝜁

𝑔𝑡
𝑖

No

Replay Buffer𝜏𝑠

𝑠𝑡 𝑥𝑡 𝑥𝑞,𝑡

𝑓𝜙
𝑑

Ƹ𝑠𝑡

Coverage
Loss

VQ
Codebook

𝑓𝜓

ത𝑘

𝑓𝜃
𝑔

(∙ |෠𝑘𝑡
𝑖)

𝜋𝜁(∙ |𝑜𝑡
𝑖 , ℎ𝑔,𝑡−1

𝑖)𝜋𝜃(∙ |𝑜𝑡
𝑖 , ℎ𝑡−1

𝑖 , 𝑔𝑡
𝑖)

one-hot encoding

K-means

CE Loss on 𝜓

~

Trajectory-Class
Representation Model

𝑓𝜓

𝑓𝜙
𝑒

𝜏𝑧

Standard CTDE framework

Mixing Network

𝑄𝜃
𝑡𝑜𝑡 = 𝑓(𝑄𝜃

1 , 𝑄𝜃
2, ⋯ , 𝑄𝜃

𝑛)

Environment

(c) Trajectory-Class-Dependent Policy

(a) Quantized Latent Space Generation (b) Trajectory Clustering and Classifier Learning

[𝜏𝓏 , ഥ𝐾]

Figure 3: Overview of TRAMA framework. The purple dashed line represents a gradient flow.

3.1 QUANTIZED LATENT SPACE GENERATION WITH MODIFIED VQ-VAE

This paper adopts VQ-VAE (Van Den Oord et al., 2017) for trajectory embedding in quantized latent
space. In this way, trajectory embedding can be represented by the sequence of quantized vectors. As
illustrated in Section 2.3, LAGMA (Na & Moon, 2024) presents the coverage loss utilizing timestep
dependent indexing J (t) to distribute quantized vector evenly throughout the embedding space of
states stored in the current replay buffer D, denoted as χ = {x ∈ Rd : x = feϕ(s), s ∈ D}. However,
in multi-task settings, state distributions are different according to tasks, so Lcvr with J (t) does not
guarantee quantized vectors evenly distributed over χ. To resolve this, we additionally consider
the trajectory class k in the coverage loss through a modified indexing function, J (t, k), which
designates specific quantized vectors in the codebook, according to (t, k) pair. When the class of a
given trajectory τst=0 = {st=0, st=1, · · · , st=T } is identified as k, we consider a state st ∈ τst to
belong to the k-th class and denote this state as skt . Then, the modified coverage loss, considering
both timestep t and the trajectory class k, is expressed as follows.

Lcvr(e) =
1

|J (t, k)|
∑

j∈J (t,k)

||sg[feϕ(skt)]− ej ||22 (4)

Eq. (4) adjusts quantized vectors assigned to the k-th class towards embedding of sk. The details

4

Published as a conference paper at ICLR 2025

(a) Training with J (t) (b) Training with J (t, k) (c) Clustering of (a) (d) Clustering of (b)

Figure 4: PCA of sampled embedding x ∈ D. Colors from red to purple (rainbow) represent early
to late timestep in (a) and (b). (a) and (b) are the results of sample multi-tasks with three different
unit combinations with various initial positions. (c) and (d) are the clustering results of (a) and (b),
respectively, and each color (red, green, and blue) represents each class.
Here, the class number ncl = 3 is assumed.

of J (t, k) are presented in Appendix C. Then, with a given skt , the final loss function LtotV Q to train
VQ-VAE becomes

LtotV Q(ϕ, e) = LV Q(ϕ, e) + λcvr
1

|J (t, k)|
∑

j∈J (t,k)

||sg[feϕ(skt)]− ej ||22. (5)

Figure 4 illustrates the embedding results with the proposed coverage loss compared to the original
J (t). As in Figure 4 (b), the proposed coverage loss J (t, k) distributes quantized vectors more
evenly throughout χ in multiple tasks compared to the cases with J (t) in (a). Notably, we assumed
the number of classes as ncl = 6 in (b). Still, our model successfully captured three distinct initial
unit combinations in the task, as illustrated by the three red branches in Figure 4 (b). However,
to adopt this modified coverage loss, we need to determine which trajectory class a given state
belongs to. Thus, we conduct clustering to annotate the trajectory class. Then, we use pseudo-class
k̄ obtained from clustering for Eq. (5).

3.2 TRAJECTORY CLUSTERING AND CLASSIFIER LEARNING

Trajectory Clustering With a given trajectory τst=0
, we get a quantized latent sequence with VQ-

VAE as τχt=0
= [feϕ(τst)]q = {xq,t=0, xq,t=1, · · · , xq,t=T }. Here, only the indices of quantized

vectors, i.e., τZt=0 = {zt=0, zt=1, · · · , zt=T }, are required to express τχt=0 . Thus, we can efficiently
store the quantized sequence τZt=0 to D along with the given trajectory, τst=0 . In addition to MARL
training, we sample M trajectory sequences [τmZt=0

]Mm=1 from D and conduct K-means clustering
(Lloyd, 1982; Arthur & Vassilvitskii, 2006) periodically.

Figure 5: Preserved Labels

With the m-th index sequence τmZt=0
, we compute a trajectory em-

bedding ēm using quantized vectors e in the codebook.

ēm =

T∑
t=0

emj=zt (6)

Then, with trajectory embeddings [ēm]Mm=1, we conduct K-means
clustering with the predetermined number of class ncl. In this pa-
per, the class labels are denoted as K̄ = {k̄m=1, k̄m=2, ..., k̄m=M}.
Figures 4 (c) and (d) illustrate the clustering results with trajectory
embedding constructed by Eq. 6 based on quantized vectors of (a) and (b), respectively. The visual
results and their silhouette score emphasize the importance of the distribution of quantized vectors.
Appendix D.4 provides further analysis. However, the problem is that the class labels may change
whenever the clustering is updated. Consistent class labels are important because we update the
agent-wise predictor based on these labels. To resolve this, we conduct centroid initialization with
the previous centroid results. Figure 5 shows the ratio of preserved labels after clustering with and
without considering centroid initialization.

Trajectory Classifier Training Even though we determine trajectory-class labels K̄ stored in D at
a specific training time, we do not have labels for new trajectories obtained by interacting with the

5

Published as a conference paper at ICLR 2025

environment. To determine the labels for such trajectories before additional clustering update, we
develop a classifier fψ(·|ēm) to predict a trajectory-class k̂m based on ēm. We train fψ whenever
clustering is updated in parallel to MARL training through cross-entropy loss, Lψ with M samples.

L(ψ) = − 1

M

M∑
m=1

1k̄m=k̂m
log(fψ(k̂m|ēm)) (7)

Here, 1 is an indicator function. Figure 6 illustrates the loss classifier as training proceeds. With
centroid initialization, the classifier learns trajectory embedding patterns more coherently than the
case without it.

3.3 TRAJECTORY-CLASS-AWARE POLICY

Figure 6: Classifier Loss

Trajectory-Class Predictor After obtaining the class labels K̄ for
sampled trajectories either determined by clustering or a classi-
fier fψ , we can train a trajectory-class predictor πζ shared by all
agents. Unlike the trajectory classifier fψ , a trajectory-class pre-
dictor πζ only utilizes partial observation given to each agent. In
other words, each agent makes a prediction on which trajectory
type or class it is experiencing based on its partial observation, such
as k̂it ∼ πζ(·|hig,t). Here, hig,t represents the observation history
computed by GRUs in πζ . With predetermined trajectory labels for
sampled batches size of B, we train πζ with the following loss.

L(ζ) = − 1

B

B∑
b=1

[
[

T−1∑
t=0

n∑
i=1

1k̄=k̂it
log(πζ(k̂it|oit, hig,t))]

]
b

(8)

Trajectory-Class Representation Learning Base on πζ , each agent predicts k̂it at each timestep
t. Then, the i-th agent utilizes one-hot encoding of k̂it as an additional condition or prior when
determining its action. Instead of directly utilizing this one-hot vector, we train a trajectory-class
representation model fgθ (·|k̂it) to generate a more informative representation, git. The purpose of git
is to generate coherent information for decision-making and to enable agents to learn a trajectory-
class-dependent policy. As illustrated in Figure 3, we directly train fgθ through MARL training. In
addition, we use a separate network for action policy πθ and utilize the additional class representa-
tion git along with partial observation oit for decision-making.

3.4 OVERALL LEARNING OBJECTIVE

This paper adopts value function factorization methods (Rashid et al., 2018; Wang et al., 2020a;
Rashid et al., 2020; Zheng et al., 2021) presented in Section A.3 to train individual Qiθ via Qtotθ . For
a mixer structure, we mainly adopt QPLEX (Wang et al., 2020a), which guarantees the complete
Individual-Global-Max (IGM) condition (Son et al., 2019). The loss function for the action policy
Qiθ and fgθ can be expressed as

L(θ) = Ek∼p(k)
[
E⟨o,a,r,o′⟩k∼D,k̂∼πζ(·|o),g∼fg

θ (·|k̂)
[
(
r + γmaxa′Qtotθ−(o

′, g′,a′)−Qtotθ (o, g,a)
)2
]
]
.

= Eo,a,r,o′∼D,k̂∼πζ(·|o),g∼fg
θ (·|k̂)

[
(
r + γmaxa′Qtotθ−(o

′, g′,a′)−Qtotθ (o, g,a)
)2
].

(9)
Here, p(k) is the portion of samples ⟨o,a, r,o′⟩k generated by Tk within D. However, since we
randomly sample a tuple from D, the expectation over k can be omitted. In addition, g represents
the joint trajectory-class representation. With this loss function, we train Qiθ, fgθ , and πζ together
with the following learning objective:

L(θ, ζ) = L(θ) + λζL(ζ). (10)

Here, λζ is a scale factor. Note that θ denotes neural network parameters contained in both Qθ and
fgθ . Algorithm 2 in Appendix C specifies the learning procedure with loss functions specified by
Eqs. (5), (7), (8) and (10).

6

Published as a conference paper at ICLR 2025

4 RELATED WORKS

4.1 TASK DIVISION METHODS IN MARL

In the field of MARL, task division methods are introduced in diverse frameworks. Although pre-
vious works use different terminology, such as a subtask (Yang et al., 2022), role (Wang et al.,
2020b; 2021) or skill (Yang et al., 2019; Liu et al., 2022), they share the primary objective, such as
reducing search space during training or encouraging committed behaviors among agents utilizing
conditioned policies. HSD (Yang et al., 2019), RODE (Wang et al., 2020b), LDSA (Yang et al.,
2022) and HSL (Liu et al., 2022) adopt a hierarchical structure where upper-tier policy network
first determines agents’ roles, skills, or subtasks, and then agents determine actions based on these
additional conditions along with their partial observations. These approaches share a commonality
with goal-conditioned RL in single-agent tasks; however, the major difference is that the goal is not
explicitly defined in MARL. MASER (Jeon et al., 2022) adopts a subgoal generation scheme from
goal-conditioned RL when it generates an intrinsic reward. On the other hand, TRAMA first clusters
trajectories considering their commonality among multi-tasks. Then, agents predict task types by
identifying the trajectory class and use this prediction as additional information for action policy. In
this way, agents utilize trajectory-class-dependent or task-specific policies.

Appendix A presents additional related works regarding state space abstraction and some prediction
methods developed for MARL.

5 EXPERIMENTS

In this section, we evaluate TRAMA through multi-task problems built upon SMACv2 (Ellis et al.,
2024) and conventional MARL benchmark problems (Samvelyan et al., 2019; Ellis et al., 2024). We
have designed the experiments to observe the following aspects.

• Q1. The performance of TRAMA in multi-task problems and conventional benchmark
problems compared to state-of-the-art MARL frameworks

• Q2. The impact of the major components of TRAMA on agent-wise trajectory-class pre-
diction and overall performance

• Q3. Trajectory-class distribution in the embedding space

To compare the performance of TRAMA, we consider various baseline methods: popular baseline
methods such as QMIX (Rashid et al., 2018) and QPLEX (Wang et al., 2020a); subtask-based meth-
ods such as RODE (Wang et al., 2021), LDSA (Yang et al., 2022), and MASER (Jeon et al., 2022);
memory-based approach such as EMC (Zheng et al., 2021) and LAGMA (Na & Moon, 2024). For
the baseline methods, we follow the hyperparameter settings presented in their original paper and
implementation. For TRAMA, the details of hyperparameter settings are presented in Appendix B.

5.1 COMPARATIVE EVALUATION ON BENCHMARK PROBLEMS

Figure 7: Performance comparison of TRAMA against
baseline algorithms on p5 vs 5 and t5 vs 5 in SMACv2
(multi-tasks). Here, ncl=8 is assumed.

We first evaluate TRAMA on the
conventional SMACv2 tasks (multi-
tasks) such as p5 vs 5 and t5 vs 5
in (Ellis et al., 2024). In Figure 7,
TRAMA shows better learning ef-
ficiency and performance compared
to other baseline methods, including
a memory-based approach such as
EMC (Zheng et al., 2021), utilizing
an additional memory buffer. Besides
multi-task problems, we conduct ad-
ditional experiments on the original
SMAC (Samvelyan et al., 2019) tasks
to see how TRAMA works in single-task settings. Figure 8 illustrates the results, and TRAMA
shows comparable or better performance compared to other methods. Notably, TRAMA succeeds

7

Published as a conference paper at ICLR 2025

in learning the best policy at the end in super hard tasks such as MMM2 and 6h vs 8z. In the fol-
lowing section, we present a parametric study on ncl and explain how we determine the appropriate
value based on the tasks.

Figure 8: Performance comparison of TRAMA compared to baseline algorithms on SMAC task
(single-task).

5.2 COMPARATIVE EVALUATION ON VARIOUS MULTI-TASK PROBLEMS

To test MARL algorithms on additional multi-task problems, we introduce the four modified tasks
built upon SMACv2 as presented in Table 1. In these new tasks, two types of initial position distribu-
tions are considered, and initial unit combinations are randomly selected from the designated sets.
In addition, agents get rewards only when each enemy unit is fully neutralized, similar to sparse
reward settings in (Jeon et al., 2022; Na & Moon, 2024). Appendix B provides further details of
multi-task problems and SMACv2.

Table 1: Task configuration of multi-task problems

Name Initial Position Type Unit Combinations (ncomb)

SurComb3 Surrounded {3s2z, 2c3z, 2c3s}
reSurComb3 Surrounded and Reflected {3s2z, 2c3z, 2c3s}
SurComb4 Surrounded {1c2s2z, 3s2z, 2c3z, 2c3s}

reSurComb4 Surrounded and Reflected {1c2s2z, 3s2z, 2c3z, 2c3s}

To evaluate performance, we consider the overall return value instead of the win-rate, as the learned
policy may be specialized for specific tasks while being less effective for others among multiple
tasks. Figure 9 illustrates the overall return values for multi-task problems. As illustrated in Figure
9, TRAMA consistently demonstrates better performance compared to other baseline methods.

Figure 9: The mean return of TRAMA compared to baseline algorithms on four multi-task problems
presented in Table 1.

To see how well each agent predicts the trajectory class, we present the learning loss of Lζ and the
overall accuracy of the prediction on reSurComb4 task in Figure 10. Appendix D.7 presents an
additional analysis for a trajectory-class prediction made by agents. Notably, the agents accurately
identify which types of trajectory classes they are experiencing based on their partial information
throughout the episodes. In this case, agents can coherently generate trajectory-class representation
g through fgθ and condition on this additional prior information for decision-making. With this extra
information, agents can learn distinct policies based on trajectory class and execute different joint
policies specialized for each task, resulting in improved performance. In Section 5.5, we will discuss
how trajectories are divided into different classes and represented in the embedding space.

8

Published as a conference paper at ICLR 2025

5.3 PARAMETRIC STUDY

(a) Lζ (b) Accuracy [%]

Figure 10: With ncl=4, learning loss
of πζ and the mean accuracy of
the trajectory-class prediction made by
agents in (reSurComb4).

In this study, we check the performance variation ac-
cording to key parameter ncl to evaluate the impact of
the number of trajectory classes on the general perfor-
mance. We considered ncl = {2, 4, 8, 16} for multi-
task problems SurComb3 and SurComb4, and ncl =
{4, 6, 8, 16} for the original SMACv2 task p5 vs 5. Fig-
ure 11 presents the overall return according to differ-
ent ncl. To evaluate the efficiency of training and per-
formance together, we compare cumulative return, µ̄R,
which measures the area below the mean return curve.
The high value of µ̄R represents better performance. In
Figure 11 (d), µ̄R is normalized by its possible maximum
value. From Figure 11 (d), we can see that peaks of µ̄R
occur around ncl = 4 for SurComb3 and SurComb4, and ncl = 8 for p5 vs 5, respectively.
Interestingly, these numbers seem highly related to variations in unit combinations. In SurComb3

(a) SurComb3 (b) SurComb4 (c) p5 vs 5 (d) Normalized µ̄R

Figure 11: Parametric study of ncl on surComb3, surComb4 and p5 vs 5.

and SurComb4, 3 and 4 unit combinations are possible, and thus ncl = 4 well captures the tra-
jectory diversity. Therefore, it is recommended to determine ncl considering the diversity of unit
combinations of multi-tasks. When a larger ncl is selected, the agent-wise prediction accuracy may
degrade because the number of options increases. However, some classes share key similarities even
though they are labeled as different classes. Trajectory embedding in quantized embedding space
can efficiently capture these similarities. Thus, agents can still learn coherent policies specialized on
each task in multi-task settings even with different trajectory class labels. We will further elaborate
on this in Section 5.5.

5.4 ABLATION STUDY

In this subsection, we conduct the ablation study to see the effect of major components of TRAMA.
First, to see the importance of coherent label generation in class clustering, we consider No-Init
representing clustering without centroid initialization presented in Section 3.2. In addition, we ab-
late the proposed coverage loss J (t, k) and consider J (t) instead when constructing quantized
embedding space. Figure 12 illustrates the corresponding results.

(a) Preserved Label Ratio (b) Lζ (c) t=10 (d) Mean Return

Figure 12: Ablation study on SurComb4.

In Figure 12 (a), without centroid initialization, the trajectory class labels change frequently, and the
loss for πζ fluctuates as illustrated in (b). As a result, πζ in both TRAMA (No-Init) and TRAMA
(No-Init & J (t)) predicts trajectory class labels almost randomly as illustrated in Figure 12 (c), lead-
ing to degraded performance as shown in Figure 12 (d). In the case of TRAMA (J (t)), coherent

9

Published as a conference paper at ICLR 2025

Figure 13: Visualization of embedding results and test episodes for SurComb4. Here, ncl=8 is
assumed, and gray dots represent quantized vectors in the VQ codebook. Solid lines represent each
test episode, while colored dots represent the majority opinion on the trajectory class predictions
made by agents. Each color denotes a different class.

labels are generated due to centroid initialization. However, prediction accuracy is lower and fluc-
tuates compared to the full version of TRAMA, as the quantized vectors are not evenly distributed
over χ as described in Figure 4. Therefore, TRAMA without J (t, k) cannot sufficiently capture the
key differences in trajectories. In Appendix D, we present additional ablation studies regarding the
class representation model fgθ .

5.5 QUALITATIVE ANALYSIS

In this section, we evaluate how the trajectory classes are identified in the quantized embedding
space. We consider SurComb4 task as a test case and assume ncl = 8 for this test. Figure 13 illus-
trates the visualization of embedding results and test episodes. Notably, four branches are developed
in quantized embedding space after training, and each branch is highly related to the initial unit com-
binations. The result implies that the initial unit combinations significantly influence the trajectories
of agents. Although the larger number of ncl is chosen compared to the number of possible unit
combinations (ncomb = 4) in SurComb4, two classes are assigned to each branch in the quantized
embedding space, making the model less sensitive to misclassification within each pair. In Figure
13, classes 4 and 8 are assigned to 3s2z; classes 2 and 3 to 1c2s2z; classes 5 and 6 to 2c3z;
and classes 1 and 7 to 2c3s. By identifying the trajectory class, agents can generate additional
prior information and utilize trajectory-class-dependent policies conditioned on this prediction. As
we can see, this trajectory-class identification is important in solving multi-task problems T . Thus,
it would be interesting to see how TRAMA predicts trajectory classes in out-of-distribution tasks.
As TRAMA learns to identify trajectory class in an unsupervised manner, without task ID, agents
can identify similar tasks among in-distribution tasks. Then, agents rely on these predictions during
decision-making, thereby promoting a joint policy that benefits OOD tasks. Appendix D.6 presents
OOD experiments and their corresponding qualitative analysis, demonstrating TRAMA’s generaliz-
ability across various OOD tasks.

6 CONCLUSION

This paper presents TRAMA, a new framework that enables agents to recognize task types by iden-
tifying the class of trajectories and to use this information for action policy. TRAMA introduces
three major components: 1) construction of quantized latent space for trajectory embedding, 2)
trajectory clustering, and 3) trajectory-class-aware policy. The constructed quantized latent space
allows trajectory embeddings to share the key commonality between trajectories. With these tra-
jectory embeddings, TRAMA successfully divides trajectories into clusters with similar task types
in multi-tasks. Then, with a trajectory-class predictor, each agent predicts which trajectory types
agents are experiencing and uses this prediction to generate trajectory-class representation. Finally,
agents learn trajectory-class-aware policy with this additional information. Experiments validate the
effectiveness of TRAMA in identifying task types in multi-tasks and in overall performance.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENT

This work was supported by the IITP(Institute of Information & Communications Technology Plan-
ning & Evaluation)-ITRC(Information Technology Research Center) grant funded by the Korea
government(Ministry of Science and ICT)(IITP-2025-RS-2024-00437268).

REFERENCES

David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. Technical
report, Stanford, 2006.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Nicolas Carion, Nicolas Usunier, Gabriel Synnaeve, and Alessandro Lazaric. A structured pre-
diction approach for generalization in cooperative multi-agent reinforcement learning. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/3c3c139bd8467c1587a41081ad78045e-Paper.pdf.

Filippos Christianos, Georgios Papoudakis, Muhammad A Rahman, and Stefano V Albrecht. Scal-
ing multi-agent reinforcement learning with selective parameter sharing. In International Confer-
ence on Machine Learning, pp. 1989–1998. PMLR, 2021.

Sanjoy Dasgupta. Experiments with random projection. arXiv preprint arXiv:1301.3849, 2013.

Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan,
Jakob Foerster, and Shimon Whiteson. Smacv2: An improved benchmark for cooperative multi-
agent reinforcement learning. Advances in Neural Information Processing Systems, 36, 2024.

Aditya Grover, Maruan Al-Shedivat, Jayesh Gupta, Yuri Burda, and Harrison Edwards. Learning
policy representations in multiagent systems. In International conference on machine learning,
pp. 1802–1811. PMLR, 2018.

Marek Grześ and Daniel Kudenko. Multigrid reinforcement learning with reward shaping. In Inter-
national Conference on Artificial Neural Networks, pp. 357–366. Springer, 2008.

Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent control using
deep reinforcement learning. In International conference on autonomous agents and multiagent
systems, pp. 66–83. Springer, 2017.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
crete world models. arXiv preprint arXiv:2010.02193, 2020.

Nicklas Hansen, Hao Su, and Xiaolong Wang. TD-MPC2: Scalable, robust world models for contin-
uous control. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=Oxh5CstDJU.

Hado Hasselt. Double q-learning. Advances in neural information processing systems, 23, 2010.

He He, Jordan Boyd-Graber, Kevin Kwok, and Hal Daumé III. Opponent modeling in deep rein-
forcement learning. In International conference on machine learning, pp. 1804–1813. PMLR,
2016.

Siyi Hu, Fengda Zhu, Xiaojun Chang, and Xiaodan Liang. Updet: Universal multi-agent reinforce-
ment learning via policy decoupling with transformers. arXiv preprint arXiv:2101.08001, 2021.

Jeewon Jeon, Woojun Kim, Whiyoung Jung, and Youngchul Sung. Maser: Multi-agent reinforce-
ment learning with subgoals generated from experience replay buffer. In International Conference
on Machine Learning, pp. 10041–10052. PMLR, 2022.

11

https://proceedings.neurips.cc/paper_files/paper/2019/file/3c3c139bd8467c1587a41081ad78045e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/3c3c139bd8467c1587a41081ad78045e-Paper.pdf
https://openreview.net/forum?id=Oxh5CstDJU

Published as a conference paper at ICLR 2025

Nan Jiang, Alex Kulesza, and Satinder Singh. Abstraction selection in model-based reinforcement
learning. In International Conference on Machine Learning, pp. 179–188. PMLR, 2015.

Guangyu Li, Bo Jiang, Hao Zhu, Zhengping Che, and Yan Liu. Generative attention networks for
multi-agent behavioral modeling. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pp. 7195–7202, 2020.

Zhuo Li, Derui Zhu, Yujing Hu, Xiaofei Xie, Lei Ma, Yan Zheng, Yan Song, Yingfeng Chen, and
Jianjun Zhao. Neural episodic control with state abstraction. arXiv preprint arXiv:2301.11490,
2023.

Yuntao Liu, Yuan Li, Xinhai Xu, Yong Dou, and Donghong Liu. Heterogeneous skill learning for
multi-agent tasks. Advances in Neural Information Processing Systems, 35:37011–37023, 2022.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):
129–137, 1982.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments. Neural Information Processing Systems
(NIPS), 2017.

Hyungho Na and Il-chul Moon. Lagma: Latent goal-guided multi-agent reinforcement learning.
arXiv preprint arXiv:2405.19998, 2024.

Hyungho Na, Yunkyeong Seo, and Il-chul Moon. Efficient episodic memory utilization of coopera-
tive multi-agent reinforcement learning. arXiv preprint arXiv:2403.01112, 2024.

Frans A Oliehoek and Christopher Amato. A concise introduction to decentralized POMDPs.
Springer, 2016.

Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. Optimal and approximate q-value func-
tions for decentralized pomdps. Journal of Artificial Intelligence Research, 32:289–353, 2008.

Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P How, and John Vian. Deep
decentralized multi-task multi-agent reinforcement learning under partial observability. In Inter-
national Conference on Machine Learning, pp. 2681–2690. PMLR, 2017.

Georgios Papoudakis and Stefano V Albrecht. Variational autoencoders for opponent modeling in
multi-agent systems. arXiv preprint arXiv:2001.10829, 2020.

Georgios Papoudakis, Filippos Christianos, and Stefano Albrecht. Agent modelling under partial ob-
servability for deep reinforcement learning. Advances in Neural Information Processing Systems,
34:19210–19222, 2021.

Roberta Raileanu, Emily Denton, Arthur Szlam, and Rob Fergus. Modeling others using oneself in
multi-agent reinforcement learning. In International conference on machine learning, pp. 4257–
4266. PMLR, 2018.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and
Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent reinforce-
ment learning. In International conference on machine learning, pp. 4295–4304. PMLR, 2018.

Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted qmix: Expanding
monotonic value function factorisation for deep multi-agent reinforcement learning. Advances in
neural information processing systems, 33:10199–10210, 2020.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas
Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson.
The starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

Siqi Shen, Chennan Ma, Chao Li, Weiquan Liu, Yongquan Fu, Songzhu Mei, Xinwang Liu, and
Cheng Wang. Riskq: risk-sensitive multi-agent reinforcement learning value factorization. Ad-
vances in Neural Information Processing Systems, 36:34791–34825, 2023.

12

Published as a conference paper at ICLR 2025

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning
to factorize with transformation for cooperative multi-agent reinforcement learning. In Interna-
tional conference on machine learning, pp. 5887–5896. PMLR, 2019.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

Yunhao Tang and Shipra Agrawal. Discretizing continuous action space for on-policy optimization.
In Proceedings of the aaai conference on artificial intelligence, volume 34, pp. 5981–5988, 2020.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. arXiv preprint arXiv:2008.01062, 2020a.

Tonghan Wang, Heng Dong, Victor Lesser, and Chongjie Zhang. Roma: Multi-agent reinforcement
learning with emergent roles. arXiv preprint arXiv:2003.08039, 2020b.

Tonghan Wang, Tarun Gupta, Anuj Mahajan, Bei Peng, Shimon Whiteson, and Chongjie Zhang.
Rode: Learning roles to decompose multi-agent tasks. In Proceedings of the International Con-
ference on Learning Representations (ICLR), 2021.

Jiachen Yang, Igor Borovikov, and Hongyuan Zha. Hierarchical cooperative multi-agent reinforce-
ment learning with skill discovery. arXiv preprint arXiv:1912.03558, 2019.

Mingyu Yang, Jian Zhao, Xunhan Hu, Wengang Zhou, Jiangcheng Zhu, and Houqiang Li. Ldsa:
Learning dynamic subtask assignment in cooperative multi-agent reinforcement learning. Ad-
vances in Neural Information Processing Systems, 35:1698–1710, 2022.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

Xiaopeng Yu, Jiechuan Jiang, Wanpeng Zhang, Haobin Jiang, and Zongqing Lu. Model-based op-
ponent modeling. Advances in Neural Information Processing Systems, 35:28208–28221, 2022.

Chongjie Zhang and Victor Lesser. Multi-agent learning with policy prediction. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 24, pp. 927–934, 2010.

Lulu Zheng, Jiarui Chen, Jianhao Wang, Jiamin He, Yujing Hu, Yingfeng Chen, Changjie Fan, Yang
Gao, and Chongjie Zhang. Episodic multi-agent reinforcement learning with curiosity-driven
exploration. Advances in Neural Information Processing Systems, 34:3757–3769, 2021.

Derui Zhu, Jinfu Chen, Weiyi Shang, Xuebing Zhou, Jens Grossklags, and Ahmed E Hassan. Deep-
memory: model-based memorization analysis of deep neural language models. In 2021 36th
IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 1003–1015.
IEEE, 2021.

13

Published as a conference paper at ICLR 2025

A ADDITIONAL RELATED WORKS AND PRELIMINARIES

A.1 STATE SPACE ABSTRACTION

It has been effective in grouping similar characteristics into a single cluster, which is called state
space abstraction, in various settings such as model-based RL (Jiang et al., 2015; Zhu et al., 2021;
Hafner et al., 2020) and model-free settings (Grześ & Kudenko, 2008; Tang & Agrawal, 2020).
NECSA, introduced by (Li et al., 2023), is the model that facilitates the abstraction of grid-based
state-action pairs for episodic control, achieving state-of-the-art (SOTA) performance in a general
single-reinforcement learning task. The approach could alleviate the usage of inefficient memory
in conventional episodic control. However, an additional dimensionality reduction process is in-
evitable, such as random projection in high-dimensional tasks in (Dasgupta, 2013). In (Na et al.,
2024), EMU utilizes a state-based semantic embedding for efficient memory utilization. LAGMA
(Na & Moon, 2024) employs VQ-VAE for state embedding and estimates the overall value of ab-
stracted states to generate incentive structure encouraging transitions toward goal-reaching trajec-
tories. Unlike previous works, we use state-space abstraction to generate trajectory embedding in
quantized latent space, ensuring that these embeddings share key similarities. We then cluster the
trajectories into several classes based on task commonality. In this way, TRAMA can learn a task-
aware policy by identifying trajectory classes in multi-tasks.

A.2 PREDICTIONS IN MARL

Predictions in MARL are generally used to model the actions of agents (Zhang & Lesser, 2010; He
et al., 2016; Grover et al., 2018; Raileanu et al., 2018; Papoudakis et al., 2021; Yu et al., 2022).
In (Carion et al., 2019; Li et al., 2020; Christianos et al., 2021), models also include groups or
agents’ tasks for their prediction. The authors in (He et al., 2016) utilize the Q-value to predict
opponents’ actions, assuming varying opponents’ policies. On the other hand, Raileanu et al. (2018)
presents the model to predict other agents’ actions by updating hidden states. Papoudakis & Al-
brecht (2020) introduce the opponent modeling adopting variational autoencoder (VAE) and A2C
without accessibility to opponents’ information. LIAM (Papoudakis et al., 2021) learns the trajec-
tories of the modeled agent using those of the controlled agent. On the other hand, in our approach,
agents predict which trajectory class they are experiencing to generate additional inductive bias for
decision-making based on this prediction.

A.3 CENTRALIZED TRAINING WITH DECENTRALIZED EXECUTION (CTDE)

Under Centralized Training with Decentralized Execution (CTDE) framework, value factorization
approaches have been introduced by (Sunehag et al., 2017; Rashid et al., 2018; Son et al., 2019;
Rashid et al., 2020; Wang et al., 2020a) to solve fully cooperative multi-agent reinforcement learning
(MARL) tasks, and these approaches achieved state-of-the-art performance in challenging bench-
mark problems such as SMAC (Samvelyan et al., 2019). Value factorization approaches utilize the
joint action-value function Qtotθ with learnable parameter θ. Then, the training objective L(θ) can
be expressed as

L(θ) = Eo,a,r,o′∼D[
(
r + γmaxa′Qtotθ−(o

′,a′)−Qtotθ (o,a)
)2
], (11)

where D is a replay buffer; o is the joint observation; Qtotθ− is a target network with online parameter
θ− for double Q-learning (Hasselt, 2010; Van Hasselt et al., 2016); and Qtotθ and Qtotθ− include both
mixer and individual policy network.

B EXPERIMENT DETAILS

B.1 EXPERIMENT DESCRIPTION

In this section, we present details of SMAC (Samvelyan et al., 2019), SMACv2 (Ellis et al., 2024)
and multi-task problems presented in Table 1 built upon StarCraft II. To test the generalization of
policy, SMACv2 contains highly varying initial positions and different unit combinations within one
map, unlike the original SMAC tasks. In new tasks, agents may require different strategies against

14

Published as a conference paper at ICLR 2025

enemies with different unit combinations and initial positions. TRAMA makes agents recognize
which task they are solving and then utilize these predictions as additional conditions for action
policy. Figure 14 compares the different characteristics between single-task and multi-tasks.

Single-Task

⋯

Init. distribution Init. distributionFixed
Unit Combination

Varying
Unit Combination

Multi-Task

Reflected Surrounded Reflected

Figure 14: Comparison between single-task and multi-tasks.

In SMACv2, unit combinations for agents are randomly selected from a set of given units based on
the predefined selection probability for each unit. For example, in t5 vs 5, five units are drawn
from three possible units, such as Marine, Marauder and Medivac, according to predetermined
probabilities. Initial unit positions are randomly selected between Surrounded and Reflected.

On the other hand, in our multi-tasks presented in Table 1, initial unit combinations are selected from
the predefined sets. For example, three unit combinations are possible among {3s2z, 2c3z, 2c3s}
in SurComb3. Here, s, z, and c represent Stalker, Zealot, and Colossus, respectively. In
addition, in our multi-tasks, we adopt sparse reward settings similar to (Jeon et al., 2022; Na &
Moon, 2024) unlike SMACv2. Table 2 presents the reward structure of the multi-tasks we presented.

Table 2: Reward settings for multi-tasks.

Condition Sparse reward

All enemies die (Win) +200
Each enemy dies +10
Each ally dies -5

Note that both SMAC (Samvelyan et al., 2019) and SMACv2 (Ellis et al., 2024) normalize the reward
output by the maximum reward agents can get so that the maximum return (without considering
discount factor) becomes 20. Due to this setting, the maximum return in our multi-tasks becomes
around 3.5. Table 3 presents details of tasks evaluated in the experiment section.

Table 3: Task Specification

Task nagent Dim. of state space Dim. of action space Episodic length

Multi-task

SurComb3 5 130 11 200
reSurComb3 5 130 11 200
SurComb4 5 130 11 200

reSurComb4 5 130 11 200

SMACv2 p5 vs p5 5 130 11 200
t5 vs t5 5 120 11 200

SMAC

1c3s5z 9 270 15 180
5m vs 6m 5 120 11 70
MMM2 10 322 18 180
6h vs 8z 6 140 14 150

15

Published as a conference paper at ICLR 2025

B.2 EXPERIMENT SETTINGS

For the performance evaluation, we measure the mean return computed with 128 samples: 32
episodes for four different random seeds. For baseline methods, we follow the settings presented
in the original papers or their original codes. We use almost the same hyperparameters throughout
the various tasks except for ncl. For VQ-VAE training, we use the fixed hyperparameters for all
tasks, such as λvq=0.25, λcommit=0.125, λcvr=0.125 in Eq. (5), nψ=500, and nvqfreq=10. Here, nψ
is the update interval for clustering and classifier learning, and nvqfreq represents the update interval
of VQ-VAE. Algorithm 2 presents details of TRAMA training and the parameters used in overall
training. Table 4 summarizes the task-dependent hyperparameter settings for TRAMA. Here, the
dimension of latent space is denoted as d.

Table 4: Hyperparameter settings for TRAMA experiments.

Task nc d ncl ϵT

Multi-task

SurComb3

256 4

4

50KreSurComb3 6
SurComb4 4

reSurComb4 8

SMACv2 p5 vs p5 256 4 8 50Kt5 vs t5 8

SMAC

1c3s5z

256 4

3
50K5m vs 6m 3

MMM2 3
6h vs 8z 4 200K

B.3 INFRASTRUCTURE AND CODE IMPLEMENTATION

For experiments, we mainly use GeForce RTX 3090 and GeForce RTX 4090 GPUs. Our code is
built on PyMARL (Samvelyan et al., 2019) and the open-sourced code from LAGMA (Na & Moon,
2024). Our official code is available at: https://github.com/aailab-kaist/TRAMA.

B.4 TRAINING AND COMPUTATIONAL TIME ANALYSIS

This section presents the total training time required for each model to learn each task. Before that,
we present the computational costs of newly introduced modules in TRAMA. Table 5 presents the
results. In Table 5, the MARL training module includes training for prediction and VQ-VAE mod-
ules. The computational cost is about 20% increased compared to the model without a prediction
and VQ-VAE modules, overall training time does not increase much compared to other complex
baseline methods as illustrated in Table 6. This is because most computational load in MARL of-
ten comes from rolling out sample episodes by interacting with the environment. In addition, as
VQ-VAE module is periodically updated, we measure the mean computational time with VQ-VAE
updates. Clustering and classifier training are called sparsely compared to MARL training; over-
all, additional computational costs are not burdensome. In addition, we can expedite computational
costs for classifier training, as a classifier already converges to optimal one after sufficient training,
as illustrated in Figure 6.

Table 5: Computational costs of TRAMA modules.

Module Computing time per call [s]

MARL training module 0.83
Clustering 0.13∼0.3
Classifier training 2∼15

16

Published as a conference paper at ICLR 2025

Training times of all models are measured in GeForce RTX 3090 or RTX 4090. In Table 6, marker
(*) represents the training time measured by GeForce RTX 4090. Others are measured by RTX 3090.
As in Table 6, TRAMA does not take much training time compared to other baseline methods, even
with a periodic update for trajectory clustering, classifier learning, and VQ-VAE training. Again, as
a classifier already converges to optimal one after sufficient training as illustrated in Figure 6, we
can further expedite training speed by reducing the frequency of updating the classifier, fψ .

Table 6: Training time for each model in various tasks (in hours).

Model 5m vs 6m (2M) 1c3s5z (2M) p5 vs 5 (5M) SurComb3 (5M)

EMC 8.6 23.1 23.2 21.6*
MASER 12.7 12.9 21.8 23.5
RODE 6.0 10.5 15.0 20.6

TRAMA 9.1 10.5 12.8* 15.1

C IMPLEMENTATION DETAILS

In this section, we present the implementation details of TRAMA. In TRAMA, we additionally
consider the trajectory class k as an additional condition along with timestep t for selecting indices of
quantized vectors during VQ-VAE training. We denote this indexing function as J (t, k). Algorithm
1 presents details of J (t, k).

Algorithm 1 Compute J (t, k)

1: Input: For given the number of codebook nc, the maximum batch time T , the current timestep
t, the number of trajectory class ncl, and the index of trajectory class k

2: if t == 0 then
3: nK = ⌊nc/ncl⌋
4: d = nK/T
5: Keep the values of nK , d until the end of the episode
6: end if
7: is = nK × (k − 1)
8: if d ≥ 1 then
9: J (t, k) = is + ⌊d× t⌋ : 1 : is + ⌊d× (t+ 1)⌋

10: else
11: J (t, k) = is + ⌊d× t⌋
12: end if
13: Return J (t, k)

The computed J (t, k) for a given (t, k) pair is then used for coverage loss in Eq. (5) to spread the
quantized vectors throughout the embedding space of feasible states, χ. Since Eq. (5) is expressed
for a given skt , we further elaborate on the expression considering batch samples. Modified VQ-VAE
loss objective for given state st, nearest vector xt,q = [feϕ(st)]q and given class k is expressed as
follows.

LtotV Q(ϕ, e, st, k) = LV Q(ϕ, e, st) + λcvr
1

|J (t, k)|
∑

j∈J (t,k)

||sg[feϕ(st)]− ej ||22 (12)

LV Q(ϕ, e, st) =
||fdϕ([feϕ(st)]q)− st||22 + λvq||sg[feϕ(st)]− xt,q||22 + λcommit||feϕ(st)− sg[xt,q]||22

(13)

For batch-wise training for VQ-VAE, we train VQ-VAE with the following learning objective:

LbatchV Q (ϕ, e) =
1

B

B∑
b=1

T−1∑
t=0

LtotV Q(ϕ, e, st,b, k̄b) (14)

17

Published as a conference paper at ICLR 2025

Algorithm 2 presents the overall training algorithm for all learning components of TRAMA, in-
cluding feϕ, fdϕ , e in VQ-VAE; trajectory classifier fψ; trajectory-class predictor πζ ; trajectory-class
representation model fgθ ; action policy Qiθ for i ∈ I; and Qtotθ for mixer network.

Algorithm 2 Training algorithm for TRAMA

1: Parameter: Batch size B for MARL training, batch size M for classifier training, classifier
update interval nψ , VQ-VAE update interval nϕ, and the maximum training time Tenv

2: Input: Individual Q-network Qiθ for n agents, trajectory-class representation model fgθ , VQ-
VAE encoder feϕ, VQ-VAE decoder fdϕ , VQ-VAE codebook e, trajectory-class predictor πζ ,
replay buffer D, trajectory classifier fψ

3: Initialize network parameter θ, ϕ, ψ, e
4: tenv = 0
5: nepisode = 0
6: while tenv ≤ Tenv do
7: Interact with the environment via ϵ-greedy policy with [Qiθ]

n
i=1 and get a trajectory τst=0

8: tenv = tenv + tepisode
9: nepisode = nepisode + 1

10: Encode τst=0
by feϕ and get a quantized latent sequence τχt=0

= [feϕ(τst)]q by Eq. (1)
11: Get indices sequence τZt=0

from τχt=0

12: Append {τst=0
, τZt=0

} to D
13: Get B sample trajectories [{τst=0

, τZt=0
, k̄}]Bb=1 ∼ D

14: for b ≤ B do
15: if k̄b is None then
16: Get trajectory-class label k̄b via fψ
17: end if
18: end for
19: if mod(nepisode, nϕ) then
20: Compute Loss LbatchV Q (ϕ, e) by Eq. (14) with [{τst=0 , τZt=0 , k̄}]Bb=1

21: Update ϕ, e
22: end if
23: Compute Loss L(θ, ζ) by Eq. (10) with [{τst=0

, τZt=0
, k̄}]Bb=1

24: Update θ, ζ
25: if mod(nepisode, nψ) then
26: Get M sample trajectories [τZt=0

]Mm=1 ∼ D
27: Compute a trajectory embedding [ēm]Mm=1
28: Get class labels K̄ by K-means clustering of [ēm]Mm=1
29: Compute Loss L(ψ) by Eq. (7) with [ēm]Mm=1 and K̄
30: Update ψ
31: end if
32: end while

18

Published as a conference paper at ICLR 2025

D ADDITIONAL EXPERIMENTS

D.1 OMITTED EXPERIMENT RESULTS

In Section 5, we evaluate the various methods based on their mean return values instead of the
mean win-rate. In single-task settings, both win-rate and return values show similar trends since
agents learn policy to defeat enemies with a fixed unit combination under marginally perturbed initial
positions. On the other hand, in multi-task settings, agents’ policies may converge to suboptimality
specialized on specific tasks, preventing them from gaining rewards in other tasks. In such a case,
a high win-rate derived by specializing in certain tasks does not guarantee the generalization of
policies in multi-task problems. Thus, we measure the mean return values instead. In the following,
we present the omitted win-rate performance of experiments presented in Section 5.

In Figures 15 and 16, TRAMA shows the best or comparable performance compared to other base-
line methods. However, the performance gap between TRAMA and other methods is not distinc-
tively observed in these win-rate curves due to the aforementioned reason. Thus, measuring the
mean return value is more suitable for multi-task problems.

Figure 15: The mean win-rate of TRAMA compared to baseline algorithms on four multi-task
problems presented in Table 1.

Figure 16: Performance comparison of TRAMA with win-rate against baseline algorithms on
p5 vs 5 and t5 vs 5 in SMACv2. Here, ncl=8 is assumed.

On the other hand, in Figure 17, similar performance trends are observed, illustrating the better
performance of TRAMA in some tasks.

D.2 PERFORMANCE COMPARISON WITH ADDITIONAL BASELINE METHODS

In this section, we present additional performance comparison with some omitted baseline methods,
such as Updet (Hu et al., 2021) and RiskQ (Shen et al., 2023). Updet utilizes transformer architecture
for agent policy based on the entity-wise input structure. Please note that this input structure is
different from the conventional input settings of a single feature vector, which are widely adopted in
MARL baseline methods (Rashid et al., 2018; Wang et al., 2020a; Zheng et al., 2021; Na & Moon,
2024). Therefore, we modified the input structure provided by the environment to evaluate Updet
in SMACv2 tasks. RiskQ introduces the Risk-sensitive Individual-Global-Max (RIGM) to consider
the common risk metrics such as the Value at Risk (VaR) metric or distorted risk measurements.

19

Published as a conference paper at ICLR 2025

Figure 17: The mean win-rate of TRAMA compared to baseline algorithms on SMAC task.

For evaluation, we consider four multi-task problems presented in Table 1 and the conventional
SMACv2 tasks, such as p5 vs 5 and t5 vs 5. We use the default settings presented in their codes
for evaluation.

Figure 18: The mean return comparison of various models multi-task problems.

Figure 19: The mean win-rate comparison of various models on multi-task problems.

Figure 20: The mean return comparison of various models on SMACv2 p5 vs 5 and t5 vs 5.

In Figures 18 - 21, TRAMA shows the best performance compared to additional baseline methods,
in terms of both return and win-rate in all multi-task problems.

20

Published as a conference paper at ICLR 2025

Figure 21: The mean win-rate comparison of various models on SMACv2 p5 vs 5 and t5 vs 5.

D.3 ADDITIONAL ABLATION STUDY

In this subsection, we present additional ablation studies on multi-task problems, such as
SurComb3 and reSurComb4 to evaluate the impact of trajectory-class representation g gener-
ated by fgθ . To this end, we ablate fgθ in TRAMA and consider the one-hot vector, instead of gi,
as an additional condition to individual policies. We denote this model as TRAMA (one-hot). In
addition, we also ablate J(t, k) and consider J(t) to understand further the role of J(t, k). Figure
22 illustrates the results.

(a) SurComb3 (b) reSurComb4

Figure 22: Ablation studies on SurComb3 and reSurComb4.

Similar to the results in Figure 12, J(t, k) improves the performance as the quantized vectors are
evenly distributed throughout χ, yielding the clusters of trajectories with task similarities. On the
other hand, the one-hot vector also gives additional information to the policy network as agents
predict the trajectory class labels accurately, generating consistent signals to the policy for a given
trajectory class. However, trajectory-class representation signifies this impact and further improves
the performance of TRAMA.

We also conduct an additional ablation study on the conventional SMACv2 tasks (Ellis et al., 2024)
to see the effectiveness of the trajectory-class representation. Figure 23 illustrates the result.

(a) p5 vs 5 task. (b) t5 vs 5 task.

Figure 23: Additional ablation tests on trajectory-class representation, g.

21

Published as a conference paper at ICLR 2025

In Figure 23, we can see that one-hot vector as an additional conditional information for decision-
making also benefits the general performance. However, the trajectory-class representation signifies
this gain, illustrated by the comparison between TRAMA (our) and TRAMA (one-hot).

D.4 ADDITIONAL ABLATION STUDY ON CLUSTERING MODULE

In this section, we study the effect of the distribution of quantized vector throughout the embedding
space, χ = {x ∈ Rd : x = feϕ(s), s ∈ D}. We utilize VQ-VAE embeddings to generate trajectory
embeddings via Eq. 6, so that it can capture the commonality among trajectories. Although we do
not have prior knowledge of |K|, we can identify some tasks sharing similarity based on trajectory
embeddings by assuming ncl. In addition, we can utilize some adaptive algorithm to determine
optimized ncl. Please see Appendix D.5 for an adaptive clustering method.

In addition, even though k1 and k2 are actually different tasks if their differences are marginal, then
they can be clustered into the same trajectory class. This mechanism is important since similar
tasks may require a similar joint policy. Thus, having the exact trajectory class representation as
an additional condition can be more beneficial in decision-making than having a vastly different
trajectory-class representation, which could encourage different policies.

If quantized embedding vectors are not evenly distributed through the embedding space, the seman-
tically dissimilar trajectories may share the same quantized vectors, which is unwanted. Without
well-distributed quantized vectors, it becomes hard to construct distinct and meaningful clustering
results. To see the importance of the distribution of embedding vectors in VQ-VAE, we ablate the
coverage loss: (1) training with λcvr considering J (t) only, and (2) TRAMA model, i.e., training
with λcvr considering J (t, k). In addition to Figure 4 in Section 3.1, Figure 24 presents additional
ablation results on SMACv2 task p5 vs 5.

(a) Training with J (t) (b) Training with J (t, k) (c) Clustering of (a) (d) Clustering of (b)

Figure 24: PCA of sampled trajectory embedding and VQ-VAE embedding vectors (gray circles).
Colors from red to purple (rainbow) represent early to late timestep in (a) and (b). In (c) and (d), five
clusters are assumed (ncl = 5), and each trajectory embedding is colored with a designated class
(red, green, blue, purple and yellow). p5 vs 5 task is used for testing, and we ablate components
related to coverage loss.
From Figures 4 and 24, we can see that having evenly distributed VQ-VAE embedding vectors is
critical in clustering, which is highlighted by Silhouette score and the result of visualization. Since
tasks in p5 vs 5 can have marginal differences, the clustering results are unclear compared to the
results from the customized multi-task problems in Figure 4.

D.5 IMPLEMENTATION DETAILS OF CLUSTERING AND ADAPTIVE CLUSTERING METHOD

This section presents some details of the K-means++ clustering we adopt and a possible adaptive
clustering method based on the Silhouette score. For centroid initialization, centroids are initially
selected randomly from the data points. Then next centroid is selected probabilistically, where the
probability of selecting a point is proportional to the square of its distance from the nearest existing
centroid. At first, we iterate K-means with 10 different initial centroids. However, as we discussed
in Section 3.2, generating coherent labels is also important. Thus, once we get the previous centroid
value, we use this prior value as an initial guess for the centroid and run K-means just once with it.

As discussed in Section 5.3, we may select ncl large enough so that TRAMA can capture the possible
diversity of unit combinations in multi-task problems. To consider some automatic update for ncl,

22

Published as a conference paper at ICLR 2025

we implement a possible adaptive clustering algorithm by adjusting ncl based on the Silhouette
scores of candidate ncl values. We test this on multi-task problems and Figure 25 presents the result.
We maintain other components in TRAMA the same. We initially assume ncl = 2 and ncl = 6 for
adaptive methods. In Figure 25, the adaptive clustering method succeeded in finding optimal ncl = 3
or ncl = 4, in terms of Silhouette score. When an initial value ncl = 2 is close to the optimal value,
the overall performance in terms of return shows better performance as it quickly converges to the
value ncl = 3 and generates coherent label information for trajectory-class predictor.

(a) ncl variation (b) Return value

Figure 25: Test of adaptive clustering method on SurComb4 multi-task problem.

Interestingly, the presented adaptive method converges to ncl = 3 instead of ncl = 4. In Figure
13, the clusters for 1c2s2z and 3s2z are close and share common units, such as 2s2z. Thus, in
terms of Silhouette score, ncl = 3 has a marginally higher score and thus adaptive method, which
converged to ncl = 3, yields a similar performance in the case of fixed ncl = 4.

23

Published as a conference paper at ICLR 2025

D.6 EXPERIMENTS ON OUT-OF-DISTRIBUTION (OOD) TASKS

In this section, we present additional experiments on Out-Of-Distribution (OOD) tasks. Here, for
ko ∈ Kood, we define OOD tasks as Tko such that Tko /∈ T train according to Definition 2.1. In other
words, ∀ko ∈ Kood and ∀ki ∈ Ktrain, Sko ∩ Scki ̸= ∅ and Ωko ∩Ωc

ki
̸= ∅ should be satisfied. Thus,

we can view OOD tasks as unseen tasks.

For this test, we use four models trained under different seeds for each method, and the correspond-
ing win-rate and return curves are presented in Figure 26.

(a) Winrate (b) Return

Figure 26: Performance comparison of various models on SurComb4.

In this test, we construct OOD tasks by differentiating either the unit combination or initial position
distribution so that agents experience different observation distributions throughout the episode.
Table 7 presents details of OOD tasks. We set two different types of unit combinations in OOD
tasks, in addition to in-distribution (ID) unit combinations, (1) one similar to ID unit distribution
and (2) the other largely different unit combinations. For example, unit combinations in OOD (#1)
or OOD (#4) share some units with ID unit distribution. Specifically, 1c2s1z are common units in
both the ID task with 1c2s2z and the OOD task with 1c3s1z. On the other hand, OOD (#2) or
OOD (#5) accompanies largely different unit combinations.

In addition, we also construct OOD via largely different initial positions in OOD (#3) ∼ OOD (#5).
Thus, we can expect that OOD (#5) is the most out-of-distributed task among various task settings
in Table 7.

Table 7: Task configuration of OOD tests

Name Initial Position Type Unit Combinations (ncomb)

ID (SurComb4) Surrounded {1c2s2z, 3s2z, 2c3z, 2c3s}
OOD (#1) Surrounded {1c4s, 1c3s1z, 2s3z}
OOD (#2) Surrounded {5s, 5z, 5c}
OOD (#3) Surrounded and Reflected {1c2s2z, 3s2z, 2c3z, 2c3s}
OOD (#4) Surrounded and Reflected {1c4s, 1c3s1z, 2s3z}
OOD (#5) Surrounded and Reflected {5s, 5z, 5c}

Based on four models of each method trained with different seeds, we evaluate them across six
different task settings, as shown in Table 7. For the evaluation, we run 50 test episodes per each
trained model, resulting in a total of 4 × 50 = 200 runs per method. Tables 9 and 8 present test
results. In the tables, the star marker (*) represents the best performance for a given task among
various methods.

In Tables 9 and 8, TRAMA shows the better or comparable performance, in terms of both win-rate
and return, in all cases including OOD tasks. In the OOD (#2) task, the differences in the win-rate are
not evident compared to other baseline methods. This is reasonable because TRAMA cannot gain
significant benefits from identifying similar task classes and encouraging similar policies through
trajectory-class representations when there is no clear task similarity. In addition, TRAMA also
shows the best performance in OOD tasks with highly perturbed initial positions, as in OOD (#3) ∼
OOD (#5).

24

Published as a conference paper at ICLR 2025

Table 8: Return of OOD tests

TRAMA QMIX QPLEX EMC

ID (SurComb4) 3.063∗±0.489 2.201±0.398 2.323±0.119 2.348±0.406
OOD (#1) 2.706∗±0.461 2.077±0.422 2.248±0.471 1.661±0.220
OOD (#2) 1.259∗±0.148 0.939±0.463 1.049±0.240 0.774±0.326
OOD (#3) 2.307∗±0.488 1.899±0.299 2.025±0.221 2.153±0.557
OOD (#4) 2.317∗±0.280 1.484±0.219 1.993±0.199 1.457±0.127
OOD (#5) 0.921∗±0.679 0.532±0.200 0.792±0.282 0.605±0.295

Table 9: Win-rate of OOD tests

TRAMA QMIX QPLEX EMC

ID (SurComb4) 0.707∗±0.025 0.540±0.059 0.667±0.034 0.613±0.025
OOD (#1) 0.625∗±0.057 0.475±0.062 0.525±0.073 0.430±0.057
OOD (#2) 0.280∗±0.020 0.270±0.057 0.265±0.017 0.275±0.057
OOD (#3) 0.620∗±0.111 0.465±0.050 0.545±0.050 0.525±0.084
OOD (#4) 0.545∗±0.052 0.355±0.071 0.475±0.059 0.365±0.033
OOD (#5) 0.220∗±0.141 0.160±0.037 0.215±0.050 0.205±0.062

Discrepancy between return and win-rate in multi-task problems In Tables 8 and 9, the win-rate
difference (in ratio) between TRAMA and QPLEX is about 6% while the return difference (in ratio)
is about 32%.

This discrepancy can be observed in multi-task problems since a trained model can be specialized
on some tasks yet less effective in other tasks, making not much reward. For example, both models
A and B succeed in solving task 1 while failing on task 2 at the same frequency. However, if model
A nearly succeeds in solving task 2 but ultimately fails, while model B completely fails in solving
task 2, this scenario results in a similar win-rate for A and B but a different return.

In another case, both models A and B become specialized in one of the tasks, but the total return
from tasks 1 and 2 can differ. If task 1 yields a larger return compared to task 2 for success, and
model A overfits to task 1 while model B overfits to task 2, this scenario results in a similar win rate
for A and B but a different return, i.e., a larger return for model A.

In both cases, model A is preferred over model B. This highlights why it is important to focus on
the return difference when evaluating model performance in multi-task problems.

Qualitative analysis on trajectory class prediction in OOD tasks To understand how TRAMA
predicts trajectory classes in OOD tasks, we first evaluate how accurately agents in TRAMA predict
trajectory classes in in-distribution (ID) tasks.

(a) Clustering Results (b) Episode instances (ID)

Figure 27: Qualitative analysis on in-distribution task (SurComb4).

Figure 27(a) presents the clustering results of the ID task to determine which cluster corresponds
to which type of task. From this result, we identify types of task denoted by each trajectory class

25

Published as a conference paper at ICLR 2025

in Figure 27(b) and present some test episodes #A ∼ #D. We also present the overall prediction
made by agents across all timesteps in each test episode by the conventional box plot. The box plot
denotes 1st (Q1) and 3rd (Q3) quartiles with a color box and median value with a yellow line within
the color box.

(a) Case #A (b) Case #B (c) Case #C (d) Case #D

Figure 28: Overall prediction on trajectory class made by agents (ID task). Please refer to Figure 27
for each episode case.

In Figure 28, agents are confident in predicting trajectory class. In Case #A, agents predict a possi-
bility that the given task belongs to class 4 instead of class 3, as their unit combinations can be quite
similar, such as 1c2z, when some units are lost.

(a) Episode instances (OOD#1) (b) Episode instances (OOD#2)

Figure 29: Qualitative analysis on out-of-distribution tasks (OOD #1 and OOD #2).

Figures 29 present qualitative analysis results of out-of-distribution tasks, OOD#1 and OOD#2 and
Figures 30 and 31 illustrate the predictions made by agents for each test case. In Figure 30, agents
predict the class of a given out-of-distribution task as the closest class experienced during training.
Some tasks in OOD#1 share some portion of unit combinations, yielding strong predictions on Case
#B and Case #C. This may yield OOD task adaptation, as a predicted trajectory class representation
can encourage a joint policy that is effective in tasks sharing some units with ID tasks.

On the other hand, when there is no evident similarity between OOD tasks and ID tasks, agents
make weak predictions on trajectory class as presented in Figure 31(c). In this case, we can detect
highly OOD tasks by setting a certain threshold of confidence level, such as 50%.

(a) Case #A (b) Case #B (c) Case #C

Figure 30: Overall prediction on trajectory class made by agents (OOD#1 task). Please refer to
Figure 29(a) for each episode case.

26

Published as a conference paper at ICLR 2025

(a) Case #A (b) Case #B (c) Case #C

Figure 31: Overall prediction on trajectory class made by agents (OOD#2 task). Please refer to
Figure 29(b) for each episode case.

D.7 TRAJECTORY CLASS PREDICTION

In this section, we present the omitted results of trajectory class predictions made by agents. We
present the accuracy of predictions in ratio. Tables 10, 11, and 12 demonstrate the prediction accu-
racy of each training time (tenv). Columns of each Table represent each timestep (tepisode) within
episodes. Throughout various multi-task problems, agents accurately predict the trajectory class. In
the results, agents predict more accurately as the timestep proceeds since they get more information
for prediction through their observations.

Table 10: The accuracy of trajectory class prediction (1M)

tenv=1M tepisode=0 tepisode=10 tepisode=20 tepisode=30

SurComb3 0.841±0.062 0.855±0.044 0.861±0.044 0.886±0.043
SurComb4 0.766±0.085 0.791±0.104 0.848±0.096 0.876±0.088

reSurComb3 0.980±0.014 0.991±0.011 0.997±0.004 0.997±0.004
reSurComb4 0.838±0.092 0.900±0.044 0.920±0.055 0.934±0.046

Table 11: The accuracy of trajectory class prediction (3M)

tenv=3M tepisode=0 tepisode=10 tepisode=20 tepisode=30

SurComb3 0.880±0.038 0.909±0.062 0.925±0.041 0.930±0.04
SurComb4 0.908±0.063 0.939±0.025 0.941±0.023 0.947±0.022

reSurComb3 0.947±0.046 0.961±0.029 0.975±0.017 0.968±0.023
reSurComb4 0.889±0.062 0.927±0.037 0.933±0.045 0.931±0.042

Table 12: The accuracy of trajectory class prediction (5M)

tenv=5M tepisode=0 tepisode=10 tepisode=20 tepisode=30

SurComb3 0.853±0.034 0.902±0.046 0.933±0.052 0.945±0.044
SurComb4 0.925±0.084 0.939±0.070 0.963±0.049 0.957±0.045

reSurComb3 0.963±0.071 0.953±0.094 0.967±0.066 0.972±0.056
reSurComb4 0.886±0.024 0.913±0.017 0.917±0.035 0.930±0.027

27

	Introduction
	Preliminaries
	Decentralized POMDP
	Multi-agent Multi-Task
	Quantized Latent Space Generation with VQ-VAE

	Methodology
	Quantized Latent Space Generation with modified VQ-VAE
	Trajectory Clustering and Classifier Learning
	Trajectory-Class-Aware Policy
	Overall Learning Objective

	Related Works
	Task Division Methods in MARL

	Experiments
	Comparative Evaluation on Benchmark Problems
	Comparative Evaluation on Various Multi-Task problems
	Parametric Study
	Ablation Study
	Qualitative Analysis

	Conclusion
	Additional Related Works and Preliminaries
	State Space Abstraction
	Predictions in MARL
	Centralized Training with Decentralized Execution (CTDE)

	Experiment Details
	Experiment Description
	Experiment Settings
	Infrastructure and Code Implementation
	Training and Computational Time Analysis

	Implementation Details
	Additional Experiments
	Omitted Experiment Results
	Performance Comparison with Additional Baseline methods
	Additional Ablation Study
	Additional Ablation Study On Clustering Module
	Implementation Details of Clustering and Adaptive Clustering Method
	Experiments on Out-Of-Distribution (OOD) Tasks
	Trajectory class prediction

