
Published as a conference paper at ICLR 2023

ON THE COMPLEXITY OF NONSMOOTH AUTOMATIC DIF-
FERENTIATION

Jérôme Bolte1,2, Ryan Boustany1,2,4, Edouard Pauwels 2,3 & Béatrice Pesquet-Popescu 4

1 Toulouse School of Economics
2 Université de Toulouse
3 IRIT, CNRS. Institut Universitaire de France (IUF).
4 Thales LAS France
{jerome.bolte, ryan.boustany}@ut-capitole.fr, edouard.pauwels@irit.fr,
beatrice.pesquet@thalesgroup.com

ABSTRACT

Using the notion of conservative gradient, we provide a simple model to estimate
the computational costs of the backward and forward modes of algorithmic dif-
ferentiation for a wide class of nonsmooth programs. The overhead complexity
of the backward mode turns out to be independent of the dimension when using
programs with locally Lipschitz semi-algebraic or definable elementary functions.
This considerably extends Baur-Strassen’s smooth cheap gradient principle. We
illustrate our results by establishing fast backpropagation results of conservative
gradients through feedforward neural networks with standard activation and loss
functions. Nonsmooth backpropagation’s cheapness contrasts with concurrent
forward approaches, which have, to this day, dimensional-dependent worst-case
overhead estimates. We provide further results suggesting the superiority of back-
ward propagation of conservative gradients. Indeed, we relate the complexity of
computing a large number of directional derivatives to that of matrix multiplica-
tion, and we show that finding two subgradients in the Clarke subdifferential of a
function is an NP-hard problem.

1 INTRODUCTION

Automatic evaluation of derivatives: Algorithmic differentiation (AD) appeared around 60 years
ago (Beda et al. (1959); Wengert (1964)), and has been since then constantly developed and used in
many contexts, see Griewank et al. (1989); Griewank and Walther (2008) for a thorough discussion.
Today, it is at the core of modern learning architectures (Rumelhart et al., 1986; LeCun et al., 2015;
Baydin et al., 2018), to the point that training a neural network (NN) is ultimately a way to combine
the outputs of AD. There are many practical and theoretical developments available nowadays:
flexible and efficient numerical libraries (Abadi et al., 2016; Paszke et al., 2019; Bradbury et al.,
2018), an implicit differentiation theory (Griewank and Faure, 2003; Griewank and Walther, 2008)
and its extensions (Agrawal et al., 2019; Bai et al., 2019; Bolte et al., 2021; Blondel et al., 2021),
the adjoint method (Farrell et al., 2013; Pearlmutter, 1995; Plessix, 2006) with application to neural
ODEs (Chen et al., 2018), “piggyback” style differentiation of optimization algorithms (Griewank and
Faure, 2003; Mehmood and Ochs, 2020; Bertrand et al., 2020; Lorraine et al., 2020), or differentiation
of conjugate gradient algorithms (Gratton et al., 2014).

Backward algorithmic differentiation, or backpropagation, plays a particular role when smooth
optimization tasks are at stake, as it evaluates the gradient of a function with a cost proportional to
that of function evaluations, independently of dimension. This property, called the cheap gradient
principle (Wolfe, 1982; Griewank and Walther, 2008), is at the root of the machine learning libraries
revolution. According to the key complexity theory version of this result due to Baur and Strassen
(1983), arithmetic complexity of the evaluation of the derivative of a rational function is at most 5
times the complexity of function evaluation. Extensions exist for smooth differentiable functions
Baur and Strassen (1983); Griewank and Walther (2008) but standard computational practice of AD
consists of little known about the nonsmooth case.

1

Published as a conference paper at ICLR 2023

The objective of this paper is precisely to present a simple, general, nonsmooth cheap conservative
principle and to explore other complexity results for evaluating nonsmooth derivatives. This extends
the cheap gradient principle of smooth AD to the path differentiable world Bolte and Pauwels (2020b)
which includes semi-algebraic and more generally definable functions Coste (2000a;b), a class that
contains the vast majority of machine learning programs used in practice, see for example Bolte and
Pauwels (2020b).

Nonsmooth AD & computational complexity: Sorting values, pooling data, thresholding func-
tions, or determining closest points are some of the most essential numerical decision operations.
They are ubiquitous in machine learning and modern optimization. All of them are nonsmooth, and
most of them have a very desirable feature: they are cheap to compute, much cheaper than smoothed
surrogates. For instance, the famous ReLU activation in deep learning, whose role is to threshold
to zero negative values to allow for the inactivity of neurons, requires only one bit of encoding in
theory. On the other hand, other nonlinear activations potentially require auxiliary algorithms for
their evaluation, incurring a higher computational cost. This simplicity of use also comes with the
issue of finding an adequate way of training models and, thus differentiating objects.

The standard computational practice of AD consists in applying differential calculus rules directly
to nonsmooth objects, replacing gradients by surrogates, typically Clarke subgradients. This is how
AD is performed within TensorFlow, PyTorch or Jax. This approach has shown tremendous success
(LeCun et al., 2015) and has been massively used for the last 10 years. Yet, despite this empirical
success, Barton et al. claimed in Barton et al. (2018) that “there does not seem to exist [at this day]
a true analogous reverse AD mode to compute generalized derivatives for nonsmooth functions”,
illustrating the difficulty of nonsmooth AD. Conservative gradients were introduced as a faithful
mathematical model capturing the formal application of calculus rules to subdifferentials by Bolte and
Pauwels (2020a;b); Bolte et al. (2021). The author unfamiliar with this notion may reduce, in a ML
context, conservative gradients to outputs of calculus rules formally applied to Clarke subgradients
and Jacobians. Our goal is to provide an adequate computational complexity theory for conservative
calculus, a theory that will therefore match standard practical approaches.

Among other possible first-order options offered by nonsmooth calculus, we also investigate the
properties of directional derivatives and those of the Clarke subdifferential. For directional derivatives,
our motivation comes from the fact that this nonsmooth operation has general calculus rules, while
the Clarke subdifferential is central in terms of variational interpretation.

Contributions: The main thesis of this work is that conservative gradients have computational
properties similar to smooth derivatives, which are much more favorable than those of alternative
nonsmooth oracles such as subgradients or directional derivatives.

• We provide a simple computational model for addressing the question of complexity theory of
nonsmooth numerical programs.
• For the backward mode, we prove a cheap conservative gradient principle à la Baur-Strassen,
generalizing state of the art to nonsmooth programs modeling most NNs. We establish that, regardless
of dimension, the computational cost of a conservative gradient is of the order of that of function
evaluation. Our results provide a theoretical validation of the fact that the cost of backpropagation
does not depend on the programs’ smoothness.
• For the forward mode, we relate the computational cost of p directional derivatives to that of pˆ p
matrix multiplication. We provide lower complexity bounds that illustrate the limits to which this
deficiency may be improved. This applies to existing nonsmooth AD frameworks (Khan and Barton,
2012; 2013).
• We establish that computing two distinct elements in the Clarke subdifferential of a given point is
NP-hard for simple ReLU programs. This result also applies to the lexicographic subdifferential. In
contrast, we show that the problem can be solved in polynomial time for conservative gradients. This
reflects the computational difficulty of dealing with the Clarke subdifferential.
• A result of independent interest: deciding differentiability of a ReLU program at a point is NP-hard.

Relation with existing work: Conservative gradients were introduced in Bolte and Pauwels
(2020a;b) to model “formal subdifferentiation” used by practitioners and nonsmooth “backpropaga-
tion”. They were further studied in Lewis and Tian (2021); Davis and Drusvyatskiy (2021); Bolte
et al. (2021) and empirically investigated in Bertoin et al. (2021). Computational complexity was

2

Published as a conference paper at ICLR 2023

only qualitatively considered. We provide a rigorous description of this aspect based an arithmetic
computational cost framework capturing programming with nondifferentiable components. The quest
for a computationally cheap nonsmooth derivative has a long history in AD literature. Existing works
of Griewank (Griewank and Walther, 2008; Griewank, 2013; Griewank and Rojas, 2019; Griewank
and Walther, 2020) are essentially based on piecewise smoothness structures (Scholtes, 2012). A
cheap subgradient principle was also given in Kakade and Lee (2018), but it requires a very strong
qualification condition. As illustrated in Griewank and Rojas (2019), such qualification conditions
can be computationally hard to check in practice.

In another research line, based on chain rules for directional derivatives, Khan-Barton (Khan and
Barton, 2012; 2013; 2015; Barton et al., 2018) studied the vector forward mode AD. In particular,
they investigated the forward AD framework to evaluate elements of the lexicographic subdifferential
(see Nesterov (2005)), which is contained in the Clarke subdifferential. In the worst case, the
computational overhead ratio they obtain is proportional to the ambient dimension. This contrasts
with our cheap gradient principle, whose constant is dimension-less. While these contributions are
most relevant to nonsmooth AD, their applicability to large-scale learning models is limited, due to
the central role of forward AD.

Organization of the paper: We introduce elements of nonsmooth analysis and, in particular, the
notion of conservative gradient used throughout this work in Section 2. Section 3 describes a general
model of computation that allows one to express the computational cost and complexity of programs,
functions and their conservative gradients. This section also presents an abstract program algorithmic
differentiation framework. These elements are gathered in Section 4 which presents our extension
of the Baur-Strassen result with the cheap conservative gradient principle and its illustrations. To
conclude, in Section 5, we describe computational lower bounds for evaluating directional derivatives
and distinct subgradients for simple programs.

2 NONSMOOTH GENERALIZED GRADIENTS

They are fundamental to expressing variations of nonsmooth losses in Machine Learning. Given a
locally Lipschitz continuous function F : Rp Ñ R, the Clarke subdifferential of F is

BcF pxq “ conv

"

lim
kÑ`8

∇F pxkq : xk P diffF , xk ÝÑ
kÑ`8

x

*

(1)

where diffF is the full measure set where F is differentiable and ∇F is the standard gradient (Clarke,
1983). The subdifferential is set-valued, which we write BcF : Rp Ñ Rp. For each x P Rp, elements
of BcF pxq are called Clarke subgradients of F . A selection d in BcF , is a function d : Rp Ñ Rp such
that for all x P Rp, dpxq P BcF pxq. If F is C1 then BcF “ t∇F u everywhere so the only possible
selection is d “ ∇F . We will manipulate derived dictionaries, which typically provide a selection in
either the Clarke subdifferential, or more general set-valued maps.

Example 1 For ReLU: t ÞÑ maxp0, tq, we have BcReLUptq is t0u if t ă 0, t1u if t ą 0 and r0, 1s
if t “ 0. We may define the function ReLU1 as a selection in BcReLU :

ReLU1
ptq “ 1, if t ą 0, ReLU1

ptq “ 0, otherwise.

The chain-rule, essential to AD, generally fails for Clarke subgradients. This is why we now consider
the more flexible notion of conservative gradients.

Definition 1 (Conservative gradient) Let F : Rp Ñ R be a locally Lipschitz continuous function
and DF : Rp Ñ Rp a locally bounded, nonempty and graph closed set-valued map. Then DF is a
conservative gradient for F , if for any absolutely continuous curve γ : r0, 1s Ñ Rp,

d

dt
F pγptqq “ xv, 9γptqy @v P DF pγptqq, for almost all t P r0, 1s. (2)

In this case, F is called path differentiable. Conservative Jacobians are defined similarly. As in
Section 2, d : Rp Ñ Rp is a selection of DF if dpxq P DF pxq for all x P Rp.

3

Published as a conference paper at ICLR 2023

A rich class of path differentiable functions is given by locally Lipschitz continuous semi-algebraic
functions with the Clarke subdifferential as a conservative gradient. Actually, virtually all functions
used in machine learning are path differentiable (Bolte and Pauwels, 2020a;b). The most salient facts
about path differentiable functions and their conservative gradients are:

• (Clarke subgradient), for all x P Rp, BcF pxq Ă convpDF pxqq.
• (Gradient almost everywhere) Conservative gradients are gradients a.e (Bolte and Pauwels, 2020a).
• (First-order oracle) Selection in conservative gradients can be used as surrogate gradients, while
preserving convergence guaranties (Bolte and Pauwels, 2020a;b; Bolte et al., 2021).

Conservative Jacobians can be composed while preserving conservativity (Bolte and Pauwels, 2020a),
a feature which do not enjoy Clarke Jacobians: let F : Rp Ñ Rm, G : Rm Ñ Rl be locally Lipschitz
continuous mappings, dF : Rp Ñ Rmˆp and dG : Rm Ñ Rlˆm be selections in conservative
Jacobians for F and G respectively. Then the product mapping x ÞÑ dGpF pxqqˆdF pxq is a selection
in a conservative Jacobian for G ˝ F . The use of conservative Jacobians provides a very convenient
framework to model AD in the nonsmooth case, see Bolte and Pauwels (2020a;b).

A fundamental theorem is the following:

Theorem 1 (Path differentiable functions are ubiquitous) (Bolte and Pauwels (2020a)) Locally
Lipchitz semialgebraic (or definable) functions are path differentiable.

3 PROGRAMS, COMPLEXITY AND AUTOMATIC DIFFERENTIATION

3.1 CALCULUS MODEL, PROGRAMS, COMPUTATIONAL COST AND COMPLEXITY

A dictionary D is a finite set of real functions (e.g. t`,´,ˆ, {u), it is paired with P0pDq, a set
of elementary programs implementing them in real arithmetic. Starting from P0pDq, we aim at
capturing the notion of “program of programs” at any depth. As this is an inductive process, we call
k P N a program “level”, which is simply an induction counter needed for consistency. Recursively,
programs of level k ` 1, in Pk`1pDq, consist of combinations of outputs of programs of level k, in
PkpDq. For example if P1 and P2 are elementary programs in P0pDq, then the program which sums
the outputs of P1 and P0 is of level 1. More precisely:

Let p, q be input and output sizes respectively and m ě p`q
a memory size. A predecessor relation is a set valued map
pr : t1, . . . ,mu Ñ t1, . . . ,mu such that for i “ 1, . . . ,m
• for j P prpiq, j ă i.
• prpiq is empty if i ď p and nonempty otherwise.
An adapted program sequence pgiqmi“p`1 in PkpDq, is a set
of programs such that gi has |prpiq| input arguments and a
single output, for all i “ p` 1, . . . ,m.
Given

`

p, q,m,pr, pgiqmi“p`1

˘

, the program given in Algo-
rithm 1 is a level k ` 1 program on D .

Algorithm 1:
Program data:
`

p, q,m,pr, pgiqmi“p`1

˘

.

Input: x “ px1, . . . xpq

1: for i “ p` 1, p` 2, . . .m do
2: xi “ gipxprpiqq where
3: xprpiq “ pxjqjPprpiq.
4: end for

Return: y :“ pxjq
m
j“m´q`1.

The set of programs with dictionary D is PpDq “
Ť

kě0 PkpDq. We shall see however that PkpDq “
P1pDq for all k, using modification of the computational graph.

A cost on a dictionary D is a nonnegative function on D, it extends additively by induction on
programs on D through the rule costpP q “

řm
i“1 costpgiq where P is a program on D as described

in Algorithm 1. A direct example is the dictionary of arithmetic functions t`,´,ˆ, {u, together with
addition or multiplication by fixed constants, denoted by `c and ˆc respectively1, see also Section
A.1. Throughout the paper, we assume that dictionaries contain at least operations ` and ˆ.

Each program on D may be represented by a program in P1pDq with the same cost, by expanding all
subprograms until they reduce to an elementary program. Cost evaluation is thus well defined on
such programs. As detailed in Appendix A.1, this model of computation is equivalently expressed
using directed acyclic graphs.

1Constants need to be distinguished from variables (for instance to define a polynomial)

4

Published as a conference paper at ICLR 2023

To sum up, we have defined the set of programs PpDq on D, which includes programs of programs.
The programs gi in Algorithm 1 may be taken in PpDq. The cost of a program is evaluated through
the calls it makes to elementary programs in the dictionary.

Programs vs functions: A program P defines a unique input-output function f : we say that P
“computes” f , or “implements” f , and with a slight abuse of notation, we will identify P and f
when there is no ambiguity (e.g. derivative of P). We use the equivalence relation „ to relate
programs computing the same function. The equivalence classes correspond to functions expressible
by programs with a given dictionary D. Given a function f : Rp Ñ Rq and a program P on dictionary
D, with p inputs and q outputs, we write f “ rP s to denote the fact that P is in the equivalence class
of programs computing f , that is, P implements f .

Complexity of a function: The complexity of a function f over a dictionary D is the quan-
tity comppf,Dq “ inf tcostpP q, s.t P P PpDq, f “ rP su, the infimum being over all programs
implementing f on dictionary D. It could be infinite, if it is finite then it is attained.

3.2 AUTOMATIC DIFFERENTIATION

We pertain to programs implementing functions, that is Algorithm 1 with single outputs q “ 1.

Given a dictionary D of locally Lipschitz path differentiable functions, a derived dictionary is a set
of functions D1 Ą D which extends D and contains operations required to express at least an element
in a conservative gradient for each of the functions in D, for example, an element in the Clarke
subdifferential. We also consider a cost function on D1, which we denote by cost and which extends
to programs over D1. Given programs gi on D, i “ p` 1, . . . ,m, we define di a derived program on
D1, with |prpiq| inputs and outputs, which returns an element of a conservative gradient for gi (as for
instance a Clarke subgradient, or simply a gradient in the C1 case). By gdi, we denote a program
on D1 evaluating pgipxq, dipxqq jointly for a given x. We denote by Algorithm 1’, an extension of
Algorithm 1 which additionally returns wi “ dipxprpiqq for i “ p` 1, . . . ,m, by replacing line 2 in
Algorithm 1 with a call to gdi instead of gi. The backward (resp. forward) AD program backproppP q
(resp. forproppP q) is defined as follows:

Algorithm 2: Algorithmic differentiation of P as in Section 3.1
Input: variables pxiq

p
i“1

Forward evaluation with derivatives: evaluate wi “ dipxprpiqq, i “ p` 1, . . . ,m,
with Algorithm 1’: Algorithm 1 with gdi instead of gi on line 2.

1: Forward mode:
2: Initialize: Bxi

Bx “ ei , i “ 1, . . . , p,
from canonical basis in Rp.

3: for i “ p` 1, . . .m do
4:

Bxi

Bx
“

ÿ

jPprpiq

Bxj

Bx
wirjs

where x “ px1, . . . , xpq.
5: end for

Return: Bxm

Bx and eventually xm.

1: Backward mode:
2: Initialize: v “ em
3: for t “ m, . . . p` 1 do
4: for j P prptq do
5: Update coordinate j of v:

vrjs :“ vrjs ` vrtswtrjs

6: end for
7: end for

Return: pvrjsqpj“1 and eventually xm.

Note that Algorithm 2 starts with Algorithm 1’, i.e., Algorithm 1 with gdi instead of gi on line 2.
Its computational cost, denoted costpgdiq, should be thought of as an exogenous parameter: it may
model, for instance, the use of underlying software libraries or the hardware properties.

4 COMPUTATIONAL COMPLEXITY OF NONSMOOTH AD

We now evaluate the complexity of the forprop and backprop operations for conservative gradients
in the path-differentiable case – which encompasses, as mentioned earlier, all semi-algebraic and

5

Published as a conference paper at ICLR 2023

definable locally Lipschitz functions. We show, in particular, that backpropagation with conservative
gradients has a computational overhead ratio that is independent of the dimension. This is in contrast
with the best known algorithmic oracles for the Clarke subdifferential (see Khan and Barton (2012;
2013; 2015); Barton et al. (2018) and Appendix A.2), whose computational overhead ratio scales
linearly with the dimension.

Theorem 2 (Complexity of nonsmooth AD) Let P be a program over a dictionary D of path-
differentiable functions with p inputs as in Algorithm 1 & 2. Then, the corresponding function rP s is
path differentiable, there is a conservative gradient DP for the function rP s such that:

(i) (Cost of backward mode) At each input point x P Rp, the output of program backproppP q is in
DP pxq and we have costpbackproppP qq ď ωb costpP q, where

ωb “ max
i“p`1,m

tpcostpgdiq ` 2maxpcostp`q, costpˆqq|prpiq|q { cost pgiqu . (3)

(ii) (Cost of forward mode) At each input point x P Rp, the output of program forproppP q is in
DP pxq and we have costpforproppP qq ď ωf ˆ costpP q where

ωf “ max
i“p`1,m

tpcost pgdiq ` p|prpiq|costpˆq ` pp|prpiq| ´ 1qcostp`qq { cost pgiqu .

There is a dissymmetry between the two modes since the constant ωb is independent of the dimension
p. This is why property (i) is sometimes called the “cheap conservative gradient principle” extending
the classical smooth one which was derived by Baur and Strassen (1983) for real rational functions.
Theorem 2 describes worst case upper bounds (maximum over i), which are tight, for example if
prpiq, costs of gi and gdi are independent of i.

We will consider several examples now.

The class of ReLU programs Let DReLU be the dictionary composed of elementary arithmetic
operations, logarithm, exponential and the ReLU function:

DReLU :“ t`,ˆ,`c,ˆc, inv, exp, log,ReLUu. (4)
A ReLU program P is a program with dictionary DReLU; it can be expressed in a compositional form
(Section 3.1) with program sequences in DReLU. Note that this yields path differentiable functions.

Assumption 1 (Computational Cost) In Algorithms (2), define the dictionary D1
ReLU :“ DReLUY

tReLU1
u as in Example 1; then, all operations from D1

ReLU have unit cost (see Remark 1).

Corollary 1 (Backprop complexity of ReLU programs) Let P be a ReLU program, under As-
sumption 1, we have: costpbackproppP qq ď 5costpP q. This extends to more complex cost weighting
schemes (Remark 1) and to selection functions which virtually capture all losses in ML (Remark 2).

Table 1: Complexity constant of ωb in Theorem 2 for elementary g in DReLU and derived program
with dictionary D1

ReLU. This proves Corollary 1 (more details in appendix B.1).

g p`,ˆq p`c,ˆcq log exp inv ReLU
pcostpgdq ` 2costpˆq|pr|q { cost pgq 5 3 4 3 5 3

Remark 1 (On refined cost systems) Unit cost in Assumption 1 gives a simple interpretation to
Corollary 1: the cost of a program is the total number of numerical operations. This rough estimate of
computational complexity, could be refined with different weighting schemes. However, the obtained
constant 5 is robust to many different weighting choices, far beyond Assumption 1. We detail an
example in the Appendix B.2 for which the cost of all smooth nonlinear operations different from `
or ˆ is cnonlin ě 1 and we model the cost of sign branching in computation of ReLU and ReLU1

with constant cReLU ě 0. This yields the same constant as in Corollary 1.

Remark 2 (Beyond ReLU programs) Many other dictionaries could be considered. ReLU is an
example chosen for its simplicity, but Corollary 1 would hold similarly (with the same constant 5)
for many different nonsmooth activations or components such as absolute value, max-pooling, ELU
function, ℓ1 and ℓ8 norms. Similar results could be developed for the class of selection functions,
which encompasses the vast majority of ML building blocks (see Bolte and Pauwels (2020b)). This is
sketched in Appendix B.3.

6

Published as a conference paper at ICLR 2023

Chaining backpropagation derived programs Our approach is flexible enough to describe
“programs of programs” and backpropagation chaining. Let P be a program as in Algorithm 1, with
adapted ReLU program sequence tpgiqmi“p`1u. If costpgiq " |prpiq|, gi is a “long program”, with
many operations per input.We may set gdi “ backproppgiq using Algorithm 2, i “ p` 1, . . . ,m.
From Corollary 1, we have costpgdiq{costpgiq ď 5, and for long programs ωb » 5 in Theorem 2.
This illustrates the versatility of our approach as it captures the complexity of chaining backprop
operations, the resulting estimate being quite sharp in the regime of long programs.

Beyond backpropagation Programs may be differentiated by other means than backpropagation.
Examples include, forward propagation, with applications in optimization and algorithmic unrolling
(Mehmood and Ochs, 2020; Lorraine et al., 2020; Maclaurin et al., 2015), implicit differentiation
Agrawal et al. (2018); Winston and Kolter (2020); Bai et al. (2019); Bolte et al. (2021) with application
in optimization and hyperparameter optimization (Bertrand et al., 2020), adjoint differentiation
(Plessix, 2006) in programs with components involving ordinary differential equations (Courtier and
Rabier, 1997; Chen et al., 2018), differentiation of conjugate gradient (Gratton et al., 2014), Cholesky
algorithm (Smith, 1995), approximation of Jacobian matrices involving a non-uniform FFT (Wang
and Fessler, 2021).

Let P be a program as in Algorithm 1. Theorem 2 relates the complexity of combining derived
programs in Algorithm 2 to the following quantities, for i “ p` 1, . . . ,m:

• costpgdiq{costpgiq: the “computational overhead ratio”.
• |prpiq|costpˆq{costpgiq: the ratio between multiplication cost and average cost per input argument.

The first quantity depends on the technique used to obtain gdi. The second quantity is typically less
than 2 (at least one arithmetic operation per input) and becomes negligible for long programs (many
operations per input).

For example in Mehmood and Ochs (2020); Lorraine et al. (2020); Maclaurin et al. (2015), for one
i, the program gdi is an optimization algorithm in Rp, a long program differentiated using forward
propagation. The corresponding overhead ratio is in this case 3p ` 5 (Theorem 2). If combined
with an outer backward pass, we obtain a dimension-dependent overhead ratio, in contrast with full
backward differentiation. Our model provides computational cost estimates for mixed techniques,
here a combination of inner forward and outer backward propagation.

5 ON THE COMPUTATIONAL HARDNESS OF GENERALIZED GRADIENTS

Let P and DP be two programs such that DP evaluates jointly P and a derivative of P . In the
sequel, we use the term (computational) overhead ratio of DP to denote the quantity costpDP q

costpP q
and

computational overhead ratio of derivatives of P to denote the quantity comppDP q

costpP q
. As established in

Theorem 2, this ratio is dimensionless in the case of backpropagation with conservative gradients.
Are there other ways to compute cheap nonsmooth gradients? Toward an answer to this question, we
discuss this ratio for other nonsmooth differentiation oracles: directional derivatives (for which we
relate worst-case complexity to that of matrix multiplication), lexicographic derivatives with forward
AD (with an overhead ratio of order p Barton et al. (2018)). As for the Clarke subdifferential, we
prove the hardness of subgradients enumeration. Our motivation to estimate the complexity of these
particular types of derivatives (directional, lexicographic and Clarke) is that they serve as a basis to
alternative implementable AD approaches (see Barton et al. (2018) and references therein), and are
thus concurrent strategies of conservative gradient backpropagation. The results presented below
do not provide a definitive answer, but they strongly suggest that backpropagation of conservative
gradients has a much more favorable complexity.

5.1 THE OVERHEAD RATIO FOR EVALUATING p DIRECTIONAL DERIVATIVES

Given G : Rp Ñ R locally Lipschitz and x, d P Rp, the directional derivative of G at x in direction d
is given by limtÓ0pGpx ` tdq ´ Gpxqq{t when the limit exists. This section considers a family of
functions with p inputs and q real parameters, represented by a locally Lipschitz function F : Rp ˆ

Rq Ñ R, for which we investigate hardness of evaluation of p directional derivatives. The function
F may describe, for instance, a ReLU feedforward neural network empirical loss, parameterized by

7

Published as a conference paper at ICLR 2023

q real weights, with p inputs. For functions represented by ReLU programs, we prove an overhead
ratio of order pω´2`op1q where ω is the matrix multiplication exponent (see definition below). In all
rigor, it is not known whether ω ą 2 or ω “ 2, so the derived ratio could be essentially dimensionless
(if ω “ 2), though all practical evidences are against this so far. The best known lower bound is
ω ă 2.37 , and in practice, the matrix multiplication exponent is closer to 2.7, both corresponding to
a dimension-dependent overhead, in contrast with the smooth case with essentially dimensionless
overhead ratio to evaluate p directional derivatives (essentially a gradient).

Complexity of matrix multiplication: Throughout this section, we set D “ t`,ˆ,`c,ˆcu, with
unit costs (corresponding to polynomial functions). Denote by cppq complexity of p ˆ p matrix
multiplication. More precisely, if f : Rpˆp ˆ Rpˆp Ñ Rpˆp is such that fpA,Bq “ AB for all,
square matrices A,B P Rpˆp, we have cppq “ comppf,Dq, which we may write cppq “ pω`op1q

where ω is called the matrix multiplication exponent. Note that cppq ě p2, as one needs at least one
operation for each of the 2p2 entries.

Directional derivatives: Given a function F : RpˆRq Ñ R, we denote by F 1
1 : RpˆRqˆRpˆp Ñ

Rp the function which associates to x P Rp, y P Rq and a matrix A P Rpˆp the p directional
derivatives with respect to x variable, for fixed y, in directions given by the columns of A. The proof
of the following theorem is given in Section C.

Theorem 3 (Computational ratio for directional derivatives) There exists a function F : Rp ˆ

Rq Ñ R and a program PF implementing F on dictionary t`,ˆ,ReLU,`c,ˆcu (all operations
have unit cost), such that for any program P 1 implementing py,Aq ÞÑ F 1

1p0, y, Aq on derived
dictionary t`,ˆ,ReLU,ReLU1,`c,ˆcu,

costpP 1q{costpPF q ě pcppq ´ 5pq{p40p2q “ pω´2`op1q. (5)

Theorem 3 has q parameters, parametric dependency is required to express hardness. Indeed, for
some parameter values, computation may be trivial (e.g. null values). Alternatively, it states that for
some values of the q parameters, computing p directional derivatives has cost as in (5).

The bound in (5) is sharp up to multiplicative constants for linear ReLU networks, see Remark 5 in
Appendix A.2.

Consequences: Our overhead estimate is roughly pω´2, it constitutes a bottleneck: a “cheap
nonsmooth p directional derivatives principle”, would imply easy matrix multiplication, to the point
that ω “ 2. Since the seminal work of Strassen et al. (1969), it is known that ω ď log2p7q »
2.81. Determining the precise exponent ω has been an object of intense research Robinson (2005).
Asymptotically, one has 2 ď ω ă 2.373, see Williams (2012); Le Gall (2014), the best known bound
being given in Alman and Williams (2021). In this case, the estimate in (5) is roughly p0.373.

These estimates may involve non-constructive existence proofs, or suffer from the curse of recursion:
meaningful efficiency occurs only for inaccessible sizes. According to Dumas and Pan (2016),
for values p ď 106 the most efficient practical algorithms have a complexity of the order p2.774,
resulting in an overhead of order p0.774, in contrast with the constant overhead incurred by nonsmooth
backpropagation. More discussion is given in Appendix A.2.

Comparison with the smooth case: If F is C1, evaluating p directional derivatives is comparatively
easier because F 1px, dq “ x∇F pxq, dy for all x, d P Rp. Hence, one may first evaluate ∇F (once),
at a cost similar to that of F (cheap gradient principle), and then evaluate p scalar products, at a cost
p2. If the cost of F is of order p2 at least (for example F is a feedforward neural network with p
inputs and a layer of p hidden neurons), then this is overall proportional to the cost of computing F .

5.2 COMPUTING CLARKE SUBGRADIENTS USING FORWARD AUTOMATIC DIFFERENTIATION

In Khan and Barton (2012; 2013; 2015), several automatic differentiation strategies are proposed to
evaluate elements of the Clarke subdifferential. These approaches are based on directional (Shapiro,
1990) and lexicographic derivatives (Nesterov, 2005) which satisfy a chain rule under structural
assumptions. The chain rule may be implemented using the vector forward mode of automatic
differentiation (Barton et al., 2018), which suffers from computational overhead scaling linearly

8

Published as a conference paper at ICLR 2023

in p, contrary to the reverse mode in Theorem 2. Reducing this factor is an open question, even
for compositional functions involving only univariate nonsmoothness such as absolute value (Khan,
2018). More details are given in Appendix A.2.1.

5.3 COMPUTATIONAL HARDNESS OF SUBGRADIENT ENUMERATION

We investigate in this section the hardness finding subgradients for programs defined on the elementary
dictionary D0 “ t`,´,ReLUu with unit costs. Let us denote by PpD0q the set of such programs.
We will, with a slight abuse of notation, identify a program P P D0 “ t`,´,ReLUu with the
function it computes to state our complexity result (proof in Section D).

Theorem 4 (Clarke subgradients and NP-Hardness)
(i) The problem of finding two distinct subgradients in the Clarke subdifferential of P P PpD0q at
given input (or one single subgradient if it is reduced to a singleton) is NP-hard.
(ii) Deciding if P P PpD0q is not differentiable at some given input is NP-hard.

Remark 3 In Theorem 4, numerical parameters and inputs are constrained to be in t´1, 0, 1u, so
that the hardness result does not depend on numerical representation and only involves program size
(strong NP-hardness). See Appendix D for more details.

The above problems (i)-(ii) enter the field of computational complexity as we consider programs
P P PpD0q with a natural notion of size, given by their cost, costpP q, the number of operations
(recall that we assumed unit costs). Since the considered programs implement piecewise linear
functions, it follows from (Barton et al., 2018, Proposition 2.7) that, our hardness result also holds for
the lexicographic subdifferential Nesterov (2005), which reduces in this case to the set of neighboring
gradients (see Section D).

The counterpart of the above problem for AD conservative gradients as in Definition 2 is tractable,
illustrating a major computational difference between Clarke subdifferential and AD conservative
gradient. The proof is in Section D.4, by reduction to a graph shortest path problem.

Proposition 1 (Finding two elements in autodiff conservative gradients is tractable) Given
P P PpD0q, with conservative gradient DP given by Theorem 2, finding two elements in DP pxq at a
given input x (or one single element if DP pxq is a singleton) is solvable in polynomial time.

6 CONCLUSION

We extended the “cheap gradient” principle to nonsmooth automatic differentiation with a flexible
version of Baur-Strassen’s result: the overhead ratio of conservative gradients is independent of the
dimension. On the other hand, we showed that the potential gain in efficiency of forward AD for
multiple directional derivatives is limited due to an intrinsic connection to matrix multiplication.
Finally, we have shown that for simple ReLU networks, the enumeration of Clarke subgradients is
computationally hard, in contrast to the enumeration of conservative gradients.

The global picture is significantly different from the smooth case, with a well understood “cheap
gradient” principle that yields “cheap p directional derivatives”, illustrating the specificities of
nonsmoothness. Our results confirm the centrality of conservative gradients in nonsmooth AD and
machine learning: they generalize gradients with a clear “cheap principle”, contrary to concurrent
notions. An important open question in this context is the complexity of subgradients, or, in other
words, the existence of a “cheap subgradient principle”. We conjecture a negative answer in general.

ACKNOWLEDGMENTS AND DISCLOSURE OF FUNDING

The authors acknowledge the support of the AI Interdisciplinary Institute ANITI funding under
the grant agreement ANR-19-PI3A-0004. The authors acknowledge the support of the Association
nationale de la recherche et de la technologie (ANRT) and Thales LAS France, which contributed to
Ryan B’s grant. Jérome B. and Edouard P. acknowledge the financial support of Air Force Office
of Scientific Research, Air Force Material Command, USAF, under grant numbers FA9550-19-1-
7026 FA8655-22-1-7012, and ANR MaSDOL 19-CE23-0017-01. Jérôme B. also acknowledges the

9

Published as a conference paper at ICLR 2023

support of ANR Chess, grant ANR-17-EURE-0010, TSE-P and the Centre Lagrange. We thank our
collaborators in the Thales LAS France, especially Andrei Purica, for helpful comments. We are
grateful to Serge Gratton, Pierre Weiss and Pierre Boudier for useful reference suggestions.

REFERENCES

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,
Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete
Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system for large-scale
machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), pages 265–283, 2016. URL https://www.usenix.org/system/files/
conference/osdi16/osdi16-abadi.pdf.

Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. A rewriting system for
convex optimization problems. Journal of Control and Decision, 5(1):42–60, 2018.

Akshay Agrawal, Shane Barratt, Stephen Boyd, Enzo Busseti, and Walaa M Moursi. Differentiating
through a cone program. J. Appl. Numer. Optim, 1(2):107–115, 2019.

Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix multiplica-
tion. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
522–539. SIAM, 2021.

Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding deep neural
networks with rectified linear units. In International Conference on Learning Representations,
Conference Track Proceedings, 2018.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. Advances in Neural
Information Processing Systems, 32, 2019.

Paul I. Barton, Kamil A. Khan, Peter Stechlinski, and Harry A.J. Watson. Computationally relevant
generalized derivatives: theory, evaluation and applications. Optimization Methods and Software,
33(4-6):1030–1072, 2018. doi: 10.1080/10556788.2017.1374385. URL https://doi.org/
10.1080/10556788.2017.1374385.

Walter Baur and Volker Strassen. The complexity of partial derivatives. Theoretical Computer
Science, 22:317–330, 1983.

Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
Automatic differentiation in machine learning: a survey. Journal of Marchine Learning Research,
18:1–43, 2018.

L. M. Beda, L. N. Korolev, N. V. Sukkikh, and T. S. Frolova. Programs for automatic differentiation
for the machine BESM. Technical report, Institute for Precise Mechanics and Computation
Techniques, Academy of Science, Moscow, USSR, 1959.

David Bertoin, Jérôme Bolte, Sébastien Gerchinovitz, and Edouard Pauwels. Numerical influence of
relu’(0) on backpropagation. Advances in Neural Information Processing Systems, 34, 2021.

Quentin Bertrand, Quentin Klopfenstein, Mathieu Blondel, Samuel Vaiter, Alexandre Gramfort, and
Joseph Salmon. Implicit differentiation of lasso-type models for hyperparameter optimization. In
International Conference on Machine Learning, pages 810–821. PMLR, 2020.

Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-López,
Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentiation. arXiv
preprint arXiv:2105.15183, 2021.

Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. Real algebraic geometry, volume 36.
Springer Science & Business Media, 2013.

Jérôme Bolte and Edouard Pauwels. Conservative set valued fields, automatic differentiation,
stochastic gradient methods and deep learning. Mathematical Programming, pages 1–33, 2020a.

10

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://doi.org/10.1080/10556788.2017.1374385
https://doi.org/10.1080/10556788.2017.1374385

Published as a conference paper at ICLR 2023

Jérôme Bolte, Tam Le, Edouard Pauwels, and Tony Silveti-Falls. Nonsmooth implicit differentiation
for machine-learning and optimization. Advances in Neural Information Processing Systems, 34,
2021.

Jérôme Bolte and Edouard Pauwels. A mathematical model for automatic differentiation in machine
learning. In Conference on Neural Information Processing Systems, 2020b.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Frank H Clarke. Optimization and nonsmooth analysis. SIAM, 1983.

Michel Coste. An introduction to o-minimal geometry. Istituti editoriali e poligrafici internazionali
Pisa, 2000a.

Michel Coste. An introduction to semialgebraic geometry, 2000b.

P. Courtier and F. Rabier. The use of adjoint equations in numerical weather prediction. Atmosphere-
Ocean, 35(sup1):303–322, 1997. doi: 10.1080/07055900.1997.9687354. URL https://doi.
org/10.1080/07055900.1997.9687354.

Damek Davis and Dmitriy Drusvyatskiy. Conservative and semismooth derivatives are equivalent for
semialgebraic maps. arXiv preprint arXiv:2102.08484, 2021.

Jean-Guillaume Dumas and Victor Pan. Fast matrix multiplication and symbolic computation. arXiv
preprint arXiv:1612.05766, 2016.

Patrick E Farrell, David A Ham, Simon W Funke, and Marie E Rognes. Automated derivation of the
adjoint of high-level transient finite element programs. SIAM Journal on Scientific Computing, 35
(4):C369–C393, 2013.

Serge Gratton, David Titley-Peloquin, Philippe Toint, and Jean Tshimanga Ilunga. Differentiating the
method of conjugate gradients. SIAM Journal on Matrix Analysis and Applications, 35(1):110–126,
2014. doi: 10.1137/120889848. URL https://doi.org/10.1137/120889848.

A. Griewank and A. Rojas. Treating artificial neural net training as a nonsmooth global optimization
problem. In International Conference on Machine Learning, Optimization, and Data Science (pp.
759-770). Springer, Cham., 2019.

A. Griewank and A. Walther. Beyond the oracle: Opportunities of piecewise differentiation. In
Numerical Nonsmooth Optimization (pp. 331-361). Springer, Cham., 2020.

Andreas Griewank. On stable piecewise linearization and generalized algorithmic differentiation.
Optimization Methods and Software, 28, 07 2013. doi: 10.1080/10556788.2013.796683.

Andreas Griewank and Christèle Faure. Piggyback differentiation and optimization. In Large-scale
PDE-constrained optimization, pages 148–164. Springer, 2003.

Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and techniques of
algorithmic differentiation. SIAM, 2008.

Andreas Griewank et al. On automatic differentiation. Mathematical Programming: recent develop-
ments and applications, 6(6):83–107, 1989.

Sham M Kakade and Jason D Lee. Provably correct automatic sub-differentiation for qualified
programs. In Advances in Neural Information Processing Systems, volume 31. Curran Associates,
Inc., 2018.

Kamil A Khan. Branch-locking ad techniques for nonsmooth composite functions and nonsmooth
implicit functions. Optimization Methods and Software, 33(4-6):1127–1155, 2018.

11

http://github.com/google/jax
https://doi.org/10.1080/07055900.1997.9687354
https://doi.org/10.1080/07055900.1997.9687354
https://doi.org/10.1137/120889848

Published as a conference paper at ICLR 2023

Kamil A Khan and Paul I Barton. Evaluating an element of the clarke generalized jacobian of
a piecewise differentiable function. In Recent Advances in Algorithmic Differentiation, pages
115–125. Springer, 2012.

Kamil A Khan and Paul I Barton. Evaluating an element of the clarke generalized jacobian of
a composite piecewise differentiable function. ACM Transactions on Mathematical Software
(TOMS), 39(4):1–28, 2013.

Kamil A Khan and Paul I Barton. A vector forward mode of automatic differentiation for generalized
derivative evaluation. Optimization Methods and Software, 30(6):1185–1212, 2015.

François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th
international symposium on symbolic and algebraic computation, pages 296–303, 2014.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Adrian Lewis and Tonghua Tian. The structure of conservative gradient fields. arXiv preprint
arXiv:2101.00699, 2021.

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters by
implicit differentiation. In International Conference on Artificial Intelligence and Statistics, pages
1540–1552. PMLR, 2020.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimization
through reversible learning. In International conference on machine learning, pages 2113–2122.
PMLR, 2015.

Sheheryar Mehmood and Peter Ochs. Automatic differentiation of some first-order methods in
parametric optimization. In International Conference on Artificial Intelligence and Statistics, pages
1584–1594. PMLR, 2020.

Yu Nesterov. Lexicographic differentiation of nonsmooth functions. Mathematical programming,
104(2):669–700, 2005.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Barak A Pearlmutter. Gradient calculations for dynamic recurrent neural networks: A survey. IEEE
Transactions on Neural networks, 6(5):1212–1228, 1995.

R-E Plessix. A review of the adjoint-state method for computing the gradient of a functional with
geophysical applications. Geophysical Journal International, 167(2):495–503, 2006.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the
expressive power of deep neural networks. In international conference on machine learning, pages
2847–2854. PMLR, 2017.

Sara Robinson. Toward an optimal algorithm for matrix multiplication. SIAM news, 38(9):1–3, 2005.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning Representations by
Back-propagating Errors. Nature, 323(6088):533–536, 1986. doi: 10.1038/323533a0. URL
http://www.nature.com/articles/323533a0.

Stefan Scholtes. Introduction to piecewise differentiable equations. Springer Science & Business
Media, 2012.

12

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://www.nature.com/articles/323533a0

Published as a conference paper at ICLR 2023

Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.

Alexander Shapiro. On concepts of directional differentiability. Journal of optimization theory and
applications, 66(3):477–487, 1990.

Stephen P Smith. Differentiation of the cholesky algorithm. Journal of Computational and Graphical
Statistics, 4(2):134–147, 1995.

Volker Strassen et al. Gaussian elimination is not optimal. Numerische mathematik, 13(4):354–356,
1969.

Guanhua Wang and Jeffrey A. Fessler. Efficient approximation of jacobian matrices involving a
non-uniform fast fourier transform (nufft), 2021. URL https://arxiv.org/abs/2111.
02912.

Robert Edwin Wengert. A simple automatic derivative evaluation program. Communications of the
ACM, 7(8):463–464, 1964.

Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd. In Pro-
ceedings of the forty-fourth annual ACM symposium on Theory of computing, pages 887–898,
2012.

Ezra Winston and J Zico Kolter. Monotone operator equilibrium networks. Advances in neural
information processing systems, 33:10718–10728, 2020.

Philip Wolfe. Checking the calculation of gradients. ACM Transactions on Mathematical Software
(TOMS), 8(4):337–343, 1982.

13

https://arxiv.org/abs/2111.02912
https://arxiv.org/abs/2111.02912

Published as a conference paper at ICLR 2023

This is the appendix for “On the complexity of nonsmooth automatic differentiation”.

CONTENTS

A Further comments, discussion and technical elements 14

B Proofs related to Section 4 15

C Proofs of Section 5.1 20

D Proofs of Section 5.3 21

A FURTHER COMMENTS, DISCUSSION AND TECHNICAL ELEMENTS

A.1 COMMENTS ON SECTION 3

A.1.1 COMPUTATIONAL MODEL IN SECTION 3.1

DAG representation and examples 3.1: We start with a remark regarding representations of
programs as directed acyclic graphs and use them to illustrate the model of computation proposed
in the main text. It reduces to that of arithmetic circuit complexity for a dictionary composed of
elementary arithmetic operations.

Remark 4 (Programs as directed graphs) A predecessor relation trivially describes a directed
acyclic graph (DAG). Therefore, a program is equivalently represented as a DAG, nodes corre-
sponding either to input variables (empty predecessor) or computation (nonempty predecessor).
Directed edges connect predecessor nodes to their successors. Each computation node contains a
lower-level program (with a single output), with the number of input edges being coherent with the
number of arguments. The cost of a node is that of the underlying program and the cost of P is the
sum of the costs of its nodes. Nodes without outer edges are output nodes. See examples in Appendix
A.1.

We represent programs using the DAG representation as in Remark 4. Let us define a simple
dictionary D :“ t`,ˆu and introduce a level 0 elementary program P0 such that P0pa, bq “ a` b
meaning that P0 computes the quantity a ` b. P0 is identified with ` from the dictionary. We
also introduce a level 1 program P1 such that P1pa, b, cq “ a ˆ pb ` cq. We can construct an
equivalent level 1 program, Q1 such that Q1pa, b, cq “ a ˆ b ` a ˆ c, in this case, we have
P1 „ Q1, or rP1s “ rQ1s since they compute the same quantity. The level 2 program P2 is such
that P2pa, b, c, dq “ pa` bq ˆ pc` dq “ Q1pa, c, dq ` P1pb, c, dq and uses level 1 programs Q1 and
P1 in its computation nodes. The Directed Acyclic Graphs (DAGs) representing these programs
are given in Figure 1. Assuming costp`q “ costpˆq “ 1, we have costpP0q “ 1, costpP1q “ 2,
costpQ1q “ 3 and costpP2q “ costpQ1q ` costpP1q ` costpˆq “ 6.

a b

`

(a) P0

a b c

`

ˆ

(b) P1

b a c

ˆ ˆ

`

(c) Q1

a c db

P1Q1

`

(d) P2

Figure 1: DAG illustrating different programs with dictionary D :“ t`,ˆu. (a) P0pa, bq “ a` b,
of level 0 which is identified with ` from the dictionary, (b) P1pa, b, cq “ apb ` cq, of level 1,
(c) Q1pa, b, cq “ ab ` ac, of level 1 and equivalent to P1, (d) P2pa, b, c, dq “ pa ` bqpc ` dq “
Q1pa, c, dq ` P1pb, c, dq, of level 2.

14

Published as a conference paper at ICLR 2023

A.2 COMMENTS ON SECTION 5

A.2.1 FORWARD AD AND CLARKE SUBGRADIENTS

Nesterov (2005) introduced the notion of lexicographic subdifferential, denoted here BLF for a
Lipschitz function F : Rp Ñ R. The construction of BLF is based on successive local approximations
of F with directional derivatives, and one has BLF pxq Ă BcF pxq for all x such that the first term is
well defined.

It is known that automatic differentiation can be used to compute directional derivatives, particu-
larly the forward mode of automatic differentiation (Griewank and Walther, 2008). Based on this
observation, Khan and Barton developed several algorithms to evaluate elements of BcF , based on
directional derivatives (Khan and Barton, 2012; 2013; 2015). They concentrate on piecewise C1

functions, see for example Scholtes (2012), and propose to handle compositional structures with
different restrictions on the function class considered, such as functions in abs-normal forms (Khan
and Barton, 2012), or broader classes (Khan and Barton, 2013; Barton et al., 2018).

All these procedures either require to evaluate p directional derivatives (Khan and Barton, 2012;
2013), or rely on forward chain rule propagation for lexicographic derivatives (Khan and Barton,
2015; Barton et al., 2018), which also require to maintain p directional derivatives. For this reason,
all these methods suffer from a multiplicative computational overhead ratio of the order of p in the
worst case, and it is not known if this could be improved (Barton et al., 2018), although efforts have
been made in this direction (Khan, 2018).

A.2.2 MATRIX MULTIPLICATIONS

Remark 5 The lower bound described in Theorem 3 is sharp for a linear ReLU network F as in (11)
involving only square pˆ p matrices. Indeed, p directional derivatives of F in directions a1, . . . , ap,
can be computed with roughly Lcppq operations, using a matrix multiplication algorithm realizing the
cppq bound, for example using the forward mode of AD Khan and Barton (2012; 2013). The naive
PF algorithm for forward evaluation performs roughly 2Lp2 operations which results in the bound
(neglecting terms of order one in numerator and denominator),

comppFd, D Y tReLU,ReLU1
uq

costpPF q
ď

cppq

2p2
,

for this class of networks, to be compared with (5). Finally, we remark that in the smooth case such
complexity estimates reduce to gradient computation which can be done using backward algorithmic
differentiation with a constant multiplicative overhead ratio.

We denote by Fd, the function Fd : py,Aq ÞÑ F 1
1p0, y, Aq which computes p directional derivatives

at a given point. Setting ω “ lim suppÑ8 logpcppqq{ logppq, since P 1 is an arbitrary program
implementing Fd, we have shown that asymptotically, for any ϵ ą 0

sup
p,F“rPF s,PF PPpDYtReLUuq

comppFd, D Y tReLU,ReLU1
uq

costpPF q
ˆ p2´ω`ϵ “ `8,

where the supremum is taken over all p and all functions F : Rpˆq Ñ R implemented by a program
PF with dictionary D Y tReLUu. It is not known whether ω ą 2.

B PROOFS RELATED TO SECTION 4

Proof of Theorem 2: Given a program P as in Section 3.1, the path differentiability of rPs is
immediate by composition and the chain rule property. The associated conservative gradient DP is
constructed in Bolte and Pauwels (2020a).

We have the following cost estimates which can be deduced from the definition of the cost of a
program in Section 3.1.

• Algorithm 1 forward evaluation:

costpP q “ costpAlgorithm 1q “
m
ÿ

i“p`1

cost pgiq (6)

15

Published as a conference paper at ICLR 2023

• Algorithm 1 forward evaluation with derivatives: Algorithm 1’ with gdi instead of gi on line 2

costpAlgorithm 1’q “
m
ÿ

i“p`1

cost pgdiq (7)

• Algorithm 2 backward AD cost:

costpbackproppP qq “ costpAlgorithm 1’q `
m
ÿ

i“p`1

|prpiq|pcostp`q ` costpˆqq

“

m
ÿ

i“p`1

cost pgdiq ` |prpiq|pcostp`q ` costpˆqq. (8)

• Algorithm 2 forward AD cost:

costpforproppP qq “ costpAlgorithm 1’q `
m
ÿ

i“p`1

p|prpiq|costpˆq ` pp|prpiq| ´ 1qcostp`q

“

m
ÿ

i“p`1

cost pgdiq ` p|prpiq|costpˆq ` pp|prpiq| ´ 1qcostp`q. (9)

Let us derive the complexity bound of Algorithm 1 according to Algorithm 2.

Backward AD complexity result: Using (8) and the fact that cost has value in R˚
`, we have

costpbackproppP qq “
m
ÿ

i“p`1

cost pgdiq ` |prpiq|pcostp`q ` costpˆqq

“

m
ÿ

i“p`1

costpgiq ˆ
cost pgdiq ` |prpiq|pcostp`q ` costpˆqq

costpgiq

ď max
i“p`1,m

ˆ

cost pgdiq ` |prpiq|pcostp`q ` costpˆqq

costpgiq

˙ m
ÿ

i“p`1

costpgiq,

where the inequality is due to factorization by the maximal value. Using (6), we obtain

costpbackproppP qq ď ωb ˆ costpP q

where ωb is given in (3). This proves point (i).

Forward AD complexity result: Using (9) and the fact that cost has value in R˚
`, we have

costpforproppP qq “
m
ÿ

i“p`1

cost pgdiq ` p|prpiq|costpˆq ` pp|prpiq| ´ 1qcostp`q

“

m
ÿ

i“p`1

costpgiq ˆ
cost pgdiq ` p|prpiq|costpˆq ` pp|prpiq| ´ 1qcostp`q

costpgiq

ď max
i“p`1,m

ˆ

cost pgdiq ` p|prpiq|costpˆq ` pp|prpiq| ´ 1qcostp`q

costpgiq

˙

ˆ

m
ÿ

i“p`1

costpgiq,

where the inequality is due to factorization by the maximal value. Using (6), we obtain

costpforproppP qq ď ωf ˆ costpP q

where ωf is given in (3).

l

16

Published as a conference paper at ICLR 2023

B.1 JUSTIFICATION OF THE COMPLEXITY TABLE 1 OF THE DReLU-DICTIONARY.

The proof of Corollary 1 follows from Theorem 2 by computing the relevant constants. They are
shown in Table 1, let us justify the proposed numbers.

Case 1 (costpˆq, costp`q) Let us define gpa, bq “ a ˆ b. To evaluate g, we need one operation
from DReLU. The derived program d related to g, should satisfy dpa, bq “ pb, aq which does not
require additional operation. Therefore, from Assumption 1 we can deduce that costpgq “ 1 and
costpgdq “ 1. We get the same result for costp`q by applying identical reasoning.

Case 2 (costpˆcq, costp`cq) Let us define gpaq “ c ˆ a. To evaluate g, we need one operation
from DReLU. The derived program d related to g, should satisfy dpaq “ c which does not require
additional operation from D1

ReLU. Therefore, from Assumption 1 we can deduce that costpgq “ 1
and costpgdq “ 1. We get the same result for costp`cq by applying identical reasoning.

Case 3 (costplogq) Let us define gpaq “ logpaq. To evaluate g, we need one operation from DReLU.
The derived program d related to g, should satisfy dpaq “ 1{a, which requires the inverse operation
from D1

ReLU. Therefore, from Assumption 1 we can deduce that costpgq “ 1 and costpgdq “ 2.

Case 4 (costpexpq) Let us define gpaq “ exppaq. To evaluate g, we need one operation from DReLU.
The derived program d related to g, should satisfy dpaq “ gpaq which does not require operation
from D1

ReLU. Finally, from Assumption 1 we can deduce that costpgq “ 1 and costpgdq “ 1.

Case 5 (costpinvq) Let us define gpaq “ 1
a . To evaluate g, we need one operation from DReLU. The

derived program d related to g, should satisfy dpaq “ ´1
a2 which requires one additional multiplication

to compute the square and one p´1q multiplication operation from D1
ReLU. Finally, from Assumption

1 we can deduce that costpgq “ 1 and costpgdq “ 3.

Case 6 (costpReLUq) Let us define gpxq “ ReLUpxq “ maxpx, 0q. To evaluate g, we need to
evaluate the sign of x. The derived program ReLU1 can be computed also from the sign of x
without further operation. We have costpgq “ 1 by hypothesis, but it is also reasonable to consider
costpgdq “ 1 as both operations only require sign evaluation of the same object.

Remark 6 Since DReLU dictionary contains the ReLU function, we can build other non-smooth
functions such as the maximum and the absolute value. For example, maxtx, yu “ ReLUpx´ yq `
y “ ReLUpx´ yq ` ReLUpyq ´ ReLUp´yq.

B.2 AN EXTENSION OF TABLE 1

The justifications of the following are similar to Section B.1, simply taking into consideration different
types of operations. Taking cnonlin “ cReLU “ 1, we recover table 1. We replace ReLU by ˆReLU
which corresponds to its usage in practice and allows us to balance the cost of ReLU operations and
that of multiplications.

The justification is the same as in Section B.1 taking into consideration different types of operations.
For the ˆReLU operation, the justification is as follows.

Case 7 (ˆcostpReLUq) The operation has two argument and requires one sign evaluation and one
multiplication in the worst case, so we assign it the cost 1 ` cReLU. The differentiated program
d should compute the function pa, bq ÞÑ pReLUpbq, a ˆ ReLU1

pbqq. One can write a program to
compute jointly g and d as follows: return pa ˆ b, b, aq if b ě 0 and p0, 0, 0q if b ă 0. This only
requires a bit sign check which cost is cReLU and a multiplication. We therefore model this operation
such that costpgdq “ costpgq “ 1` cReLU.

Further refinements could be considered including various type of computational operations, such as
memory moves, these are beyond the scope of the present paper.

B.3 ADDITIONAL ELEMENTARY NONSMOOTH PROGRAMS AND COST EXAMPLES

For simplicity, we do not discuss the dictionary and its related derived dictionary as there are many
possibilities, one of them being DReLU and D1

ReLU as all the considered operations can be equivalently

17

Published as a conference paper at ICLR 2023

Table 2: Extension of cost table. cnonlin ě 1 is the cost of nonlinear operations and cReLU ě 0 is the
cost of sign evaluation for ReLU or ReLU1.

g p`,ˆq p`c,ˆcq log exp inv ˆReLU
costpgq 1 1 cnonlin cnonlin cnonlin 1` cReLU

|pr| 2 1 1 1 1 2
costpgdq 1 1 2cnonlin cnonlin cnonlin ` 2 1` cReLU

costpgdq

cost pgq
1 1 2 1 cnonlin`2

cnonlin
1

costpˆq|pr|

cost pgq
4 2 1

cnonlin
1

cnonlin
1

cnonlin
2

1`cReLU

costpgdq ` 2costpˆq|pr|

cost pgq
5 3 ď 4 ď 3 ď 5 ď 5

expressed with ReLU. We use the same framework as in B.2 and we identify the cost of comparing
two real numbers with cReLU ą 0. For each program g and associated derived program d, we let

ω “
costpgdq ` 2costpˆq|pr|

cost pgq

Table 3: Extension of cost table. cnonlin ě 1 is the cost of nonlinear operations and cReLU ě 0 is the
cost of sign evaluation for ReLU or ReLU1. For simplicity cReLU is abbreviated cR and cnonlin is
abbreviated cnl

g p`,ˆq | ¨ | ELU 3ˆ 3-max-pool } ¨ }8 } ¨ }1
costpgq 1 1` cR 2` cR ` cnl 153` 8cR n` 2ncR ´ 1 np2` cRq ´ 1
|pr| 2 1 1 9 n n

costpd, gq 1 1` cR 2` cR ` cnl 153` 8cR n` 2ncR ´ 1 np2` cRq ´ 1
costpgdq

cost pgq
1 1 1 1 1 1

costpˆq|pr|

cost pgq
4 1

1`cR
1

2`cR`cnl
9

153`8cR
n

n`2ncR´1
n

np2`cRq´1

ω 5 ď 3 ď 2 ď 1.12 ď 3 ď 2

Case 8 (Absolute value and Leaky-ReLU) Recall that |x| “ x if x ą 0 and ´x otherwise. Simi-
larly Leaky-ReLUpxq “ x if x ą 0 and ax otherwise, for some parameter a P p0, 1q so that both
cases are exactly the same. The reasoning and result are exactly the same for both operations so we
treat the absolute value. The construction is similar as what was proposed for ˆcostpReLUq treated
in the previous section.

Let g be a program to evaluate | ¨ |, in the worst case it requires one sign evaluation and one
multiplication so that costpgq “ 1` cReLU. Similarly it is possible to built a program which returns
px, 1q if x ą 0 and p´x,´1q otherwise, this computes pgdq and require the exact same operations so
that costpgdq “ costpgq “ 1` cReLU.

Case 9 (ELU)

fpxq “

"

x if x ě 0
apex ´ 1q if x ă 0

with a ą 0.

Let g be a program to evaluate the ELU function, it requires a sign evaluation and in the worst case
one nonlinear operation to evaluate ex, one multiplication to evaluate aex, and one substraction to
evaluate aex ´ a. Therefore, costpgq “ cReLU ` cnonlin ` 2. The derived program d requires the
same sign and returns 1 or aex depending on the sign. This does not require additional operation
and therefore the joint computation of g and d satisfies costpgdq “ costpgq.

18

Published as a conference paper at ICLR 2023

Case 10 (max-m-linear) Set n a number of inputs and m ě 2 a number of linear functions which
are parameters, represented by a matrix A and a fixed input vector of size n represented by x P Rn.
Setting maxm : Rm to R the function which evaluates the maximum of m numbers, we consider g a
program which evaluates the function A ÞÑ maxmpAxq. Recall that x is fixed so that the number of
inputs is m ˆ n. The multiplication requires m ˆ p2n ´ 1q multiplications and additions and the
evaluation of maxm requires pm´ 1qcReLU as it requires m´ 1 pairwise comparisons. We therefore
have costpgq “ mˆ p2n´ 1q ` pm´ 1qcReLU.

As for the derived program d, setting Mi “ 0 except for row number i which attains the maximum
in g which is set to x, we have an element of a conservative gradient for g. It is possible to jointly
compute gpAq and dpAq by invoking a program which returns ppAxqris,Miq where i is any index
realizing the max and Mi is as discussed. This does not require more operations and we have
therefore costpgdq “ costpgq “ mˆ 2n´ 1` pm´ 1qcReLU

Case 11 (Two dimensional max-pooling (3ˆ 3-max-pool)) We consider a kernel of size 3ˆ 3 for
simplicity. The goal is to differentiate with respect to the kernel weights for a fixed input. Let g denote
a program implementing such a function, it is of the same form as max-m-linear except that the
matrix A is of size 9ˆ 25 (padding values at the boundary of the 3ˆ 3 patch, this gives 5ˆ 5 “ 25
inputs and 9 outputs), but it is sparse and can be parametrized by only 9 values, and the evaluation of
the linear function for a fixed 5ˆ5 input only requires 9ˆp9`8q “ 153 addition and multiplications.
We then take the maximum of these 9 outputs so that and costpgq “ 153 ` 8cnonlin. For the same
reason as max-m-linear, we have costpgdq “ costpgq “ 153` 8cnonlin.

Case 12 (l1-norm, } ¨ }8) Denote by g a program which evaluate the l1 norm on Rn. It has n inputs.
In the worst case, its evaluation can be done with n ´ 1 addition, n multiplication by ´1 and n
pairwise comparisons. Therefore we have costpgq “ 2n` ncReLU ´ 1. For the same reasons as all
examples before, it is possible to identify a derived program d without requiring additional operation
so that costpgdq “ costpgq “ 2n` ncReLU ´ 1.

Case 13 (Median of n numbers) Denote by g a program that evaluates the median of n numbers.
This can be done by sorting the n numbers and outputting the value corresponding to tn2 u, which
requires roughly n logpnq operations, depending on the algorithm used. The sorting operation is a
permutation, one could apply the same permutation to the vector p1, 2, . . . , nq without additional
operation required. The number at position tn2 u, call it i, is the index of the value associated with the
median. Setting d to be the null vector in Rn with value 1 at position i only, we have a selection in a
conservative gradient for the median with no additional operation required. Therefore in this case
costpgq “ costpgdq.

Case 14 (Selection functions) This example encompasses virtually all examples used in machine
learning and extends the median example above. Assume that f : Rp Ñ R is locally Lipschitz, given
in the form

fpxq “ fspxqpxq

where s : Rp Ñ t1, . . . ,mu is an index selection function, and for each i “ 1, . . . ,m, fi : Rp Ñ R
is a C2 function. Let g be a program computing f , one possibility is to first evaluate spxq at cost
cs and then evaluate fspxqpxq at cost cf . As shown in Bolte and Pauwels (2020b), under very mild
restrictions on s and f (which should be expressed with logarithms, polynomials, exponentials etc ...),
the function

x ÞÑ ∇spxqfpxq

is a conservative gradient for f . It can be seen that it is possible to evaluate jointly pg, gdq by first
computing s, at a cost cs, then evaluate fs and ∇fs jointly at a cost c∇.

costpgq “ cs ` cf

costpgdq “ cs ` c∇

costpgdq

costpgq
“

cs ` c∇
cs ` cf

ď
cs ` 5cf
cs ` cf

where we used c∇ ď 5cf , the cheap gradient principle for smooth programs. This ratio is close to 5
if cs is negligible, we recover the usual ratio for smooth programs. It is close to 1 if cs dominates,
which is the case in the median example where fs just corresponds to coordinate number s of the
input and has a constant derivative.

19

Published as a conference paper at ICLR 2023

C PROOFS OF SECTION 5.1

C.1 PROOF OF THE MAIN RESULT

Proof of Theorem 3: Let U P Rpˆp be an orthogonal matrix with entries in t´1, 1u which columns
are denoted by u1, . . . , up (with squared norm p). Assume that we have as variables a matrix
M P Rpˆp and two matrices A,B P Rpˆp with columns a1, . . . , ap and b1, . . . , bp respectively.

Consider the function

F : px,B,Mq ÞÑ
1

p

p
ÿ

i“1

|rUBTMxsi|.

The pair pM,Bq will be identified as y in the statement of the theorem. Considering the dictionary
of elementary functions t`,ˆ,ReLU,`c,ˆcu, F has a representation as a program PF using the
identity |t| “ ReLUptq ` ReLUp´tq for all t P R. We may construct PF such that costpPF q “

6p2 ` 2p ď 8p2 where we count 2p2 ´ p operation for each matrix vector multiplication to evaluate
UBTMx (there are three of them), p multiplication by ´1 to evaluate ´UBTMx , 2p application
of ReLU (on UBTMx and ´UBTMx), p additions of ReLU outputs to evaluate p applications of
the absolute value, p´ 1 for the outer sum and 1 for the division. Now consider the constraints

signpUBTMaiq “ ui, i “ 1, . . . p. (10)

The set of matrices A,B,M satisfying this constraint is an open set, call it S. We now restrict our
attention to this open set and argue that costpP 1q does not change if the input variables are constrained
to be in S.

We have for all i “ 1, . . . , p and pA,B,Mq P S, the following directional derivatives with respect to
variable x

F 1
1p0, B,M, aiq “

1

p
signpUBTMaiq

TUBTMai “
1

p
uT
i UBTMai “ bTi Mai.

Setting the function G : pA,B,Mq ÞÑ
řp

i“1 F
1
1p0, B,M, aiq “ TrpMABT q, we have that G is a

polynomial and ∇MGpA,B,Mq “
řp

i“1 bia
T
i “ BAT . Note that this does not depend on M .

Fix P 1 any program implementing the directional derivatives function py,Aq ÞÑ F 1
1p0, y, Aq of F

described above, with dictionary t`,ˆ,ReLU,ReLU1,`c,ˆcu, as in the statement of the theorem.

Claim 1 There is a program P2 on dictionary D “ t`,ˆ,`c,ˆcu such that G “ rP2s (on the
whole space) and costpP2q ď costpP 1q ` p.

We use the DAG representation of programs as in Remark 4. Therefore P 1 is described by a DAG
which node are either input nodes or computation nodes implementing functions from D1

ReLU. We
will modify the program by simple modifications of the computation nodes. We may obtain a program
P0 implementing G on S with dictionary D1

ReLU with costpP0q ď costpP 1q ` p by summing the
outputs of P 1. The ReLU1 nodes in P0 represent a semialgebraic function Coste (2000a;b) with values
in a finite set. Therefore, there is a dense open semialgebraic set on which all ReLU1 nodes in P0 are
locally constant (Coste, 2000a, Theorem 6.7). Reducing S if necessary, we obtain a program P1 on
dictionary DReLU such that P1 „ P0 on S by replacing each ReLU1 node in P0 by the corresponding
constants. We have costpP1q ď costpP0q (we replace computing nodes by constants). By Lemma
1, there is a program P2 on D such that costpP2q “ costpP1q ď costpP0q ď costpP 1q ` p and
G “ rP2s (on the whole space). This proves the claim.

We may obtain a program D2 implementing ∇MG with dictionary D by backward algorithmic
differentiation on P2, that is D2 “ backproppP2q. we have therefore

comppBAT ,Dq ď costpD2q

ď costpP2, D2q

ď 5costpP2q

ď 5p` 5costpP 1q,

20

Published as a conference paper at ICLR 2023

where the first inequality is because D2 is a program computing BAT for all A,B on dictionary D, the
second is because adding computation increases the cost, the third is a property of backward algorith-
mic differentiation on D and the last one is by construction of P2. Note that comppBAT ,Dq “ cppq
by definition, therefore we have the claimed lower bound

costpP 1q

costpPF q
ě

cppq ´ 5p

5costpPF q
“

cppq ´ 5p

8p2
.

l

C.2 AN ADDITIONAL LEMMA

Lemma 1 Let Q : Rp Ñ R be a polynomial and P1 be a program (without loss of generality of level
1) on the dictionary D1 “ t`,ˆ,ReLU,`c,ˆcu, such that Q “ rP1s for all inputs restricted to
an open set S Ă Rp. Then there is a level 1 program P2 on the dictionary D “ D1ztReLUu “
t`,ˆ,`c,ˆcu such that Q “ rP2s (for all inputs in Rp). Furthermore, if costpReLUq “ costpˆcq,
then, costpP2q “ costpP1q.

Proof : We use the DAG representation of programs as in Remark 4. Therefore P1 is described
by a DAG which node are either input nodes or computation nodes implementing functions from
D1. The function computed by P1 as well as each of its nodes are semi-algebraic Bochnak et al.
(2013); Coste (2000a;b). For each ReLU node in the graph representing P1 (assume that there are
N of them) we associate a number: the function ReLU1 evaluated on its input (with the convention
that ReLU1

p0q “ 0). This defines a semialgebraic function G : Rp Ñ t0, 1uN . As it has values in a
finite set, by semialgebraicity, there is an open subset of S1 Ă S such that G is constant on S (Coste,
2000a, Theorem 6.7). Consider P2 which computation graph is the same as that of P1 except that
each absolute value node is replaced by multiplication by the corresponding ReLU1 value (which is
constant on S1). Then Q “ rP1s “ rP2s for all inputs in the open set S1. All computation nodes of
programs on D are multivariate polynomials and two polynomials which agree on an open set are
equal globally. This concludes the proof. l

D PROOFS OF SECTION 5.3

We investigate in this section the hardness of finding a Clarke subgradient for programs defined
on the elementary dictionary D0 “ t`,´,ReLUu. We start with an equivalent representation of
these programs as linear ReLU networks with skip connections and specific weight matrices. This
equivalence preserve representation size up to polynomial factors. We will then prove a hardness
result on such ReLU networks. This will provide proof arguments for Theorem 4 by the polynomial
time equivalence of the two representation. We proceed similarly to prove Proposition 1, using the
equivalence with the two representations.

D.1 POLYNOMIAL TIME EQUIVALENCE WITH LINEAR RELU NETWORKS WITH SKIP
CONNECTIONS

Given a set of matrices M1 P t´1, 0, 1up1ˆp, M2 P t´1, 0, 1up2ˆp1 , . . .ML´1 P

t´1, 0, 1upL´1ˆpL´2 , ML P t´1, 0, 1u
1ˆpL´1 we consider the function F : Rp Ñ R,

F : x ÞÑMLΦL´1pML´1ΦL´2p. . .Φ1pM1xqqq. (11)

where Φi : Rpi Ñ Rpi are given functions which apply to each coordinate, an activation function
which is either the identity or the ReLU function. There is an obvious notion of size for this
representation, corresponding to the number of free parameters (matrix entries and coordinates on
which ReLU or identity is applied), the size of the representation is pL´1 `

řL´1
i“1 pi ˆ pi´1 ` pi.

A function F given in (11) can be represented by a program on D0 of equivalent size, this correspond
to a naive implementation. Similarly, any program P P PpD0q on p inputs and with a single output
can be represented by a network as in (11) which size is at most 18costpP q3. Indeed, we may
assume that costpP q ě p{2 without loss of generality, otherwise, the program would not perform
operations on some of the input variables and it could be simplified by removing variables which
do not affect the output. Recall that m in Algorithm 1 is the memory footprint of P , in our case, it

21

Published as a conference paper at ICLR 2023

is m “ p` costpP q, the number of inputs plus the total number of operations. Note that we have
m ď 3costpP q. Each operation `, ´ or ReLU in the program can be represented by a m ˆ m
matrix composed with a certain Φ: Rm Ñ Rm which contribution to the Relu network size is at
most pm2 `mq ď 2m2 ď 18costpP q2 since m is integer and m ď 3costpP q. There are costpP q
such operations so that a program can be represented equivalently by linear Relu network, with
L “ costpP q layers which contribution to the network size is at most 18costpP q2 so that the size of
the resulting network is at most 18costpP q3, which is the desired bound since.

We have shown that working with functions represented as in equation (11) is equivalent to work
with programs in PpD0q as it is possible to switch from one to the other at a cost of an increase of
the representation size which is only cubic. Therefore we will from now on work with functions
represented as linear relu networks with skip connections as in (11), and NP-hardness or polynomial
time results on such function will be valid on PpD0q by the construction above.

D.2 FURTHER PROPERTIES OF LINEAR ReLU NETWORKS

Throughout this section F denotes a with representation as in (11). This function is positively
homogeneous, it satisfies F p0q “ 0 and it. By piecewise linearity, its Clarke subdifferential is
a polyhedron (see e.g., Arora et al. (2018); Raghu et al. (2017)). The Clarke subdifferential is a
conservative gradient for this function, and we will associate to it a different conservative gradient,
associated to Algorithm 2

Definition 2 (Autodiff conservative gradient) We consider a specific conservative gradient for F ,
it is given by Da

F pxq “ tM
T
1 D1M

T
2 D2 . . .M

T
L´1DL´1M

T
L u, where for i “ 1, . . . , L´ 1, Di is a

diagonal matrix which entries respects the sign pattern of the corresponding activation function: 1 if
the activation is identity, 0 if the activation is ReLU and the input is negative, 1 if the input is positive
and all elements in r0, 1s if the input is null. We have in particular

Da
F p0q “ tM

T
1 D1M

T
2 D2 . . .M

T
L´1DL´1M

T
L u (12)

where in this case, diagonal entries of matrices Di corresponding to ReLU activations are arbitrary
in r0, 1s and the remaining diagonal entries are 1 (corresponding to identity activations).

The autodiff conservative gradient is associated with the algorithmic differentiation of a natural
numerical program implementing F as in Subsection 3.2. Furthermore, one can check that given a
program P P PpD0q, after the transformation outlined in Section D.1, we have that Dα

F coincides with
DP in Theorem 2. In the following definition, DF could be,for example, the Clarke subdifferential
of F or the algorithmic differentiation conservative gradient Da

F .

We consider the following problem.

Problem 1 (Conservative gradient enumeration) Given matrices M1 P Rp1ˆp, M2 P Rp2ˆp1 ,
. . .ML´1 P RpL´1ˆpL´2 , ML P R1ˆpL´1 , and functions Φ1, . . . ,ΦL´1, consider F : Rp Ñ R
the associated linear ReLU network with skip connections in (11), x P Rp and DF : Rp Ñ Rp

a conservative gradient for F . Compute two distinct elements in DF pxq or one element if it is a
singleton.

This problem enters the field of computational complexity as we have associated to it a representation
size corresponding to the number of “free parameters” to be chosen: each matrix entry and the
activation (ReLU or identity) corresponding to each coordinate, resulting in a number of parameters
pL´1 `

řL´1
i“1 pi ˆ pi´1 ` pi. In what follows, we will consider integral or rational entries for

matrices and input x with the common notion of bit size. Schrijver (1998).

D.2.1 CLARKE ENUMERATION IS NP-HARD FOR RELU NETWORKS

The decision version of Problem 1, under the same assumptions, is to decide if there exists two
distinct elements in DF pxq, that is, decide if DF pxq is not reduced to a singleton.

Theorem 5 (Finding two Clarke subgradients is NP-Hard) Decision version of problem (1) with
matrix and vector entries in t´1, 0, 1u and DF “ B

cF is NP-hard.

22

Published as a conference paper at ICLR 2023

Sketch of proof: We encode a boolean formula π on p boolean variable, in a linear ReLU network
with p inputs, of size proportional to that of π. We do so by replacing ”or” operations by maxima,
”and” operations by minima, negation by multiplication by ´1 and adding ReLU operations to the
result. Using Lemma 3 in appendix D.5, the resulting F is represented by a linear ReLU network. By
construction, 0 is a global minimum of F so 0 P BcF p0q, and F takes positive values if and only if π
is satisfiable if and only if BcF p0q ‰ t0u. We detail this proof in coming sections.

Theorem 5 illustrates the hardness enumerating Clarke subgradients of linear ReLU networks. For F
as in (11) and x P Rp, BcF pxq is not a singleton if and only if F is not differentiable at x, therefore:

Corollary 2 (Deciding non-differentiability of a NN is NP-Hard) Given a linear ReLU network
as in (11) with matrices as in Theorem 5 and x P Rp, deciding if F is not differentiable at x is
NP-hard.

In the coming section, we will provide a proof for Theorem 5 and Corollary 2. By the polynomial
time equivalence of the representation of programs in PpD0q and functions as in (11) detailed in
Section D.1, this proves Theorem 4.

We add a remark on lexicographic subdifferential. It follows from (Barton et al., 2018, Proposition
2.7) that, for linear ReLU network F as in (11), the lexicographic subdifferential Nesterov (2005) is
the set of neighboring gradients and is contained in Clarke subdifferential.

Corollary 3 (Finding two lexicographic subgradients is NP-Hard) Theorem 5 remains true if
DF is the lexicographic subdifferential.

D.3 PROOF OF THE MAIN HARDNESS RESULT

Preliminary on 3-SAT We will use reduction to 3-SAT problem which is among the most well
known NP-complete problems. Recall that a boolean formula is built from boolean variables, and
operators: AND (conjunction, denoted ^) OR (disjunction, _) and NOT (negation, ␣). A literal, is
either a variable or the negation of a variable. A clause is a disjunction of literals (or a single literal).
A formula is in conjunctive normal form (CNF), if it is a conjunction of clauses or a clause. 3-SAT is
the decidability problem associated to CNF formulas with clauses containing 3 literals, such formulas
are called 3-CNF formulas.

Example 2 The formula pb1 _ b2 _␣b3q ^ pb1 _ b4 _␣b5q ^ p␣b2 _␣b3 _ b6q is 3-CNF with 6
boolean variables b1, . . . , b6 and 3 clauses.

Problem 2 (3-SAT) Given p, n P N and a boolean function π with p boolean arguments b1, . . . , bp
represented by a 3-CNF formula with n clauses, decide if there exists an assignment pb1, . . . , bpq P
t0, 1up such that πpb1, . . . , bpq “ 1.

Proof of Theorem 5:

The reduction is to 3-SAT.

Consider a 3-CNF function π in p variables b1, . . . , bp with n clauses of size 3. We may assume
without loss of generality that n is of the form 2k for k P N by adding clauses which are always
true and increasing the number of clauses by a factor at most 2. We will consider p real variables
x1, . . . , xp. Consider the first clause of π, say for example pb1 _ b2 _␣b3q. We associate to each
literal the corresponding variable x if the literal is equal to a variable, and ´x if it is the negation
of the corresponding variable, for example x1, x2,´x3. These are combined using ReLU ˝ max
resulting in the expression ReLUpmaxtx1, x2,´x3uq.

We proceed similarly for each clause, we obtain n “ 2k expressions involving ReLU ˝max where
the max is over three numbers. The max of 3 numbers is the same as the max of 4 numbers (by
copying one of the inputs) and, according to Lemma 3, can be represented by a ReLU network with
2 ReLU layers of size at most 3ˆ 2 “ 6 with weight matrices in t´1, 0, 1u.

We may therefore represent the n ReLU ˝ max expressions with a network with p inputs and
n outputs, with 3 ReLU layers (2 for each max and one for the outer ReLU) of size at most
6n (6 nodes for each max) involving matrices with entries in t´1, 0, 1u. These expressions are

23

Published as a conference paper at ICLR 2023

combined using the operator min applied to the n “ 2k clause. Thanks to Lemma 3 again, using
minta, bu “ ´maxt´a,´bu, the max over the 2k numbers can be expressed with k layers of size
at most 3ˆ 2k´1 “ 3

2n

We call the resulting network F . It has a representation as in (11), with matrices with entries in
Z3 “ t´1, 0, 1u as in Problem 1. It contains log2pnq ` 3 ReLU layers of size at most 6n and it has
therefore a description which size is polynomially bounded in n which is proportional to the bit size
representation of the 3-CNF formula π.

Example 3 If the 3-CNF formula is given by pb1 _ b2 _␣b3q ^ pb1 _ b4 _␣b5q ^ p␣b2 _␣b3 _
b6q ^ pb2 _ ␣b2 _ b6q with p “ 6 boolean variables and n “ 4 clauses, we will obtain a network
computing the following expression in 6 real variables x1, . . . , x6:

F px1, . . . , x6q

“ minpReLUpmaxpx1, x2,´x3qq,ReLUpmaxpx1, x4,´x5qq,

ReLUpmaxp´x2,´x3, x6qq,ReLUpmaxpx2,´x2, x6qqqq.

We have the following rules for min and max over real numbers a, b, c (we use the convention
signp0q “ 0).

• maxpa, b, cq ą 0 ô pa ą 0q _ pb ą 0q _ pc ą 0q.

• maxpa, b, cq ą 0 ô maxpsignpaq, signpbq, signpcqq ą 0.

• minpa, b, cq ą 0 ô pa ą 0q ^ pb ą 0q ^ pc ą 0q.

• minpa, b, cq ą 0 ô minpsignpaq, signpbq, signpcqq ą 0.

• a ą 0 ô p´a ă 0q ô signpaq ą 0.

• ReLUpmaxpsignpaq, signpbq, signpcqqq P t0, 1u.

Because of the min ˝ReLU structure, we have F pxq ě 0 for all x, furthermore, F p0q “ 0, so that 0
is a global minimum of F and 0 P BcF p0q. For any x, we have F pxq ą 0 if and only if the output
of each max is positive, if and only if each max clause contains a positive argument. We therefore
have that F pxq ą 0 if and only if F psignpxqq ą 0 where sign is the coordinatewise application of
the sign, taking value 0 at 0.

We have the following chain of equivalence

BcF p0q ‰ t0u

ô Dx P Rp, F pxq ‰ 0

ô Dx P Rp, F pxq ą 0

ô Dx P Rp, xi ‰ 0 p@i “ 1, . . . , pq F pxq ą 0

ô Dx P Rp, xi ‰ 0 p@i “ 1, . . . , pq F psignpxqq ą 0

ô Dx P t´1, 1up, F pxq ą 0

ô Dx P t´1, 1up, πpbq “ 1, bi “ Ipxi “ 1q pi “ 1 . . . pq,

where I outputs 1 if the boolean argument is true, and 0 otherwise. The first equivalence is by Lemma
2, the second is because F ě 0, the third is because F is continuous, the fourth is by the discussion
above and the fifth is obvious because all possible t´1, 1u patterns can be described as coordinatewise
sign applied vectors in Rp with nonzero entries. For the last equivalence, for xi P t´1, 1u we set
bi “ 0 if xi “ ´1 and bi “ 1 if xi “ 1. Each ReLU ˝max applied to the sign vector corresponds
to a clause and its output is in t0, 1u. The output of each ReLU ˝max clause is 1 if and only if at
least one of its argument is 1, if and only if one of the litteral of the corresponding disjunction is 1 if
and only if the disjunction applied to the corresponding boolean variables is true. Otherwise, it is 0.
Similarly, the min combination has positive output if and only if all max outputs are 1 if and only if
all the disjunctions applied to variables bi are true.

This shows that Problem 1 is NP-hard, because 0 P BcF p0q and BcF p0q ‰ t0u if and only if there
exists two distinct elements in BcF p0q. l

24

Published as a conference paper at ICLR 2023

D.4 PROOF OF FEASIBILITY FOR AUTODIFF CONSERVATIVE GRADIENT

The counterpart of Problem 1 for AD conservative gradient in Definition 2 is tractable, illustrating a
major computational difference between Clarke subdifferential and AD conservative gradient. The
proof is in Section D.4, by reduction to a graph shortest path problem. By the polynomial time
equivalence between linear ReLU network and programs on t`,´,ReLUu proved in Section D.1,
this proves Proposition 1.

Proposition 2 Problem (1) with matrix entries in Q and DF “ Da
F is polynomial time solvable.

Proof of Proposition 2: Consider the following polynomial expression:

MT
1 pQ̄1 `Q1q . . .M

T
L´1pQ̄L´1 `QL´1qM

T
L , (13)

where we decomposed Di “ Q̄i ` Qi in Definition 2, such that Q̄i is constant, diagonal, with
zero entries except for the 1 entries which are enforced by the network activation and sign pattern:
strictly positive activation before application of ReLU when network is evaluated at x, or identity
activations. Furthermore, Qi contains qi ď pi diagonal variables to be chosen in r0, 1s corresponding
to the zero activation pattern before application of ReLU, for i “ 1, . . . , L´ 1. The strictly negative
values before application of ReLU do not play an additional role, they correspond diagonal entries
constrained to 0 in both Q̄i and Qi, i “ 1, . . . , L´ 1. Note that a polynomial is constant on a box if
and only if it is constant so the polynomial expression in (13) is constant when diagonal entries are
constrained in r0, 1s, if and only if it is constant. So the problem reduces to decide if the polynomial
expression in (13) is non constant, with respect to variables Q1, . . . , QL´1. We show that this reduces
to a graph connectivity problem over 2`

řl´1
i“1 qi vertices and edge weight given by partial products

in (13).

First, the problem can be reduced to finding a non-zero value in the expression in (13). Indeed, one
can substract the value obtained choosing Qi “ 0, i “ 1, . . . , L ´ 1 and use the following block
representation:

`

MT
1 ´MT

1

˘

ˆ

Q̄1 `Q1 0
0 Q̄1

˙

. . .

ˆ

MT
L´1 0
0 MT

L´1

˙ ˆ

Q̄L´1 `QL´1 0
0 Q̄L´1

˙ ˆ

MT
L

MT
L

˙

“MT
1 pQ̄1 `Q1q . . .M

T
L´1pQ̄L´1 `QL´1qM

T
L ´ MT

1 Q̄1 . . .M
T
L´1Q̄L´1M

T
L . (14)

Therefore, expression (13) is nonconstant if and only if expression in (14) takes a nonzero value for
some assignment of Q1, . . . , QL´1. The number of variables in (13) and (14) is the same and they
have exactly the same form. Therefore we assume without loss of generality that the problem is to
decide if the polynomial expression in (13) is not equal to the null polynomial.

Expression (13) is a vector function each of its coordinates being a polynomial function. It is not
uniformly null if and only if and only if there exists a coordinate which is not the null polynomial, so
we may add a diagonal matrix Q0 with p0 “ p diagonal entries in r0, 1s (and Q̄0 “ 0 for the sake of
symmetry) and M0 P Rpˆ1 the vector of all ones and find a nonzero value for the product

MT
0 pQ̄0 `Q0qM

T
1 pQ̄1 `Q1q . . .M

T
L´1pQ̄L´1 `QL´1qM

T
L , (15)

Expression (15) is now real valued and therefore defines a polynomial. For each 0 “ 1 . . . L ´ 1,
denote by di P r0, 1s

qi , the vector containing the diagonal entries of matrix Qi, this corresponds
exactly to the variable diagonal elements of Di in Definition 2. Denote by P pd0, . . . , dLq the obtained
polynomial, P is multilinear in d0, . . . , dL´1, that is, it has an affine dependency for one block vector
if the others are fixed. Therefore the hessian of P has zero diagonal blocks and the function is
harmonic (hessian has zero trace), as a consequence, the maximum principle for harmonic functions
entails that its maximum and minimum on any polytope are attained at vertices.

For i “ 0, . . . , L ´ 1 denote by ∆i Ă Rqi , the convex hull of the origin and the canonical basis
vectors, this is a qi dimensional simplex with nonempty interior. The polynomial P in (15) is
identically zero if and only if it vanishes on the product of simplices ∆0 ˆ . . .ˆ∆L´1 (which has
non empty interior), if and only if it vanishes on the product set of the edges of these simplices by the
maximum principle. In other words, P is not identically zero, if and only if it contains a nonzero
element when each di is restricted to be an element of the canonical basis (zero vector with exactly
one nonzero entry) or the null vector.

Define a graph with a layer structure:

25

Published as a conference paper at ICLR 2023

• The source layer V´1 contains a single source node, v´1,1.
• The zero-th layer V0 contains q0 “ p nodes v0,1 . . . v0,q0 .
• Recursively, the i-th layer Vi contains qi nodes vi,1 . . . vi,qi , for i “ 1 . . . L´ 1.
• The sink layer VL contains a single node node vL,1.

We connect nodes between consecutive layers, respecting the order induced by the layer structure.
For i “ ´1, . . . L´ 1 and j “ 0, . . . , L, with j ą i, we connect layers Vi and Vj as follows

• Compute the quantity

R “

˜

j´1
ź

m“i`1

MT
mQ̄m

¸

ˆMT
j ,

where if j “ i` 1 the product reduces to the identity (R “MT
j).

• For k “ 1, . . . , qi and l “ 1, . . . , qj , add an edge with between vi,k and vj,l if Rk,l ‰ 0.

The resulting graph has a number of nodes equal to the number of ReLU functions in F plus p
additional nodes and the source and sink nodes. Computation of edges can be done in polynomial
time: it requires at most 4pL` 1q2 matrix products involving at most 2L` 1 matrices. Indeed the
product of m matrices has polynomial time complexity in the representation bit size of the m input
matrices.

In this graph, a directed path from the source to the sink visits each layer at most once, and in that
case it visits a single node. Each such path corresponds to a monomial with nonzero coefficient
appearing in the polynomial P in (15) by construction of the graph structure. Conversely each
nonzero coefficient of a given monomial in (15) is uniquely associated to a path in the graph which
corresponds to the nodes associated to variables in the monomial. Therefore, the source is connected
to the sink if and only if there is a nonzero monomial in (15), if and only if the corresponding
polynomial is nonzero. Furthermore, each path corresponds to the evaluation of the program at an
edge of the product ∆0 ˆ . . .ˆ∆L´1. Therefore finding a path connecting the source to the sink
allows to compute a nonzero element in the product and if no such path exists, the polynomial is
identically zero.

So we have shown that the truth value of problem 1 with DF “ Da
F , is the same as the source being

connected to the sink by a directed path in the graph we defined, which has size polynomialy bounded
compared to network size. Connectivity can be solved, for example using Dijkstra’s algorithm, in
time Op|V |2q where |V | is the number of nodes (or vertices). A path represents a nonzero element of
Df p0q and if no such path exists, we conclude that DF p0q “ t0u. This shows that the problem is
solvable in polynomial time and concludes the proof.

l

D.5 ADDITIONAL LEMMAS

The following lemma provides a characterization of singleton subgradient for linear ReLU networks.

Lemma 2 Let F be a linear ReLU network, then BcF p0q “ t0u if and only if F is constant.

Proof : If F is constant, the result is immediate because F ” 0. Now, suppose that BcF p0q “ t0u.
We know that F is piecewise linear and there exists a finite set of polyhedron whose union is Rp,
where F is affine linear over each polyhedron. Furthermore, F is positively homogeneous, therefore
for each x P Rp, BcF pxq “ BcF pλxq with λ ą 0. Setting R Ă Rp, the full measure set where F is
differentiable, one has that for all x P Rp and

BcF pxq “ conv

"

v P Rp, Dyk Ñ
kÑ8

0 with yk P R, vk “ ∇F pykq Ñ
kÑ8

v

*

“ t0u.

Therefore, each affine part has zero derivative on each polyhedra and by continuity we conclude that
F is constant. l

The next lemma describes an explicit representation of maximum of finitely many numbers using a
ReLU network with weights in t´1, 0, 1u.

26

Published as a conference paper at ICLR 2023

Lemma 3 Given k P N, k ą 0, there exists F , a ReLU network with k ReLU layers of size at most
3ˆ 2k´1 and weight matrices with entries in t´1, 0, 1u, with p “ 2k inputs such that for any x P Rp,

F pxq “ max
i“1,...,2k

xi.

Proof : We proceed by recursion on k. Note that for any x1, x2 P R

maxtx1, x2u “ ReLUpx1 ´ x2q ` x2 “ ReLUpx1 ´ x2q ` ReLUpx2q ´ ReLUp´x2q.

Set the matrices

A “

˜

1 ´1
0 1
0 ´1

¸

B “ p1 1 ´1q .

The function F1 : R2 Ñ R given by

F1pxq “ BReLUpAxq

satisfies F1pxq “ maxtx1, x2u. This proves the result for k “ 1.

Now assume that for k ě 1, we have a network with k ReLU layers of size at most 3ˆ2k represented
by matrices M1, . . . ,Mk`1 with entries in t´1, 0, 1u, such that the corresponding ReLU network,
as in (11) Fk : R2k Ñ R satisfies for all x P R2k ,

Fkpxq “ max
i“1,...,2k

xi.

Set F̃k the concatenation of two copies of Fk, that is F̃k : R2k`1

Ñ R2, such that for all x, y P R2k,

F̃kpx, yq “

ˆ

maxi“1,...,2k xi

maxi“1,...,2k yi

˙

.

The matrices representing F̃k can be described in block form

M̃i “

ˆ

Mi 0
0 Mi

˙

P Rp2piqˆp2pi´1q

for i “ 1, . . . , k ` 1, where p0 “ 2k and pk “ 1. This network is made of k layers of size at most
3 ˆ 2k`1, it has 2k`1 inputs and two outputs and its weight matrices have elements in t´1, 0, 1u.
The block representation of the last matrix of this network is of the form

ˆ

Mk`1 0
0 Mk`1

˙

P R2ˆl

where l is the size of the row vector Mk`1. We have

Aˆ ˜Mk`1

“

˜

1 ´1
0 1
0 ´1

¸

ˆ

ˆ

Mk`1 0
0 Mk`1

˙

“

˜

Mk`1 ´Mk`1

0 Mk`1

0 ´Mk`1

¸

P R3ˆp2lq.

We set Fk`1px, yq “ F1pFkpxq, Fkpyqq “ F1pF̃kpx, yqq for all x, y P R2k. In matrix notation we
have

Fk`1px, yq “ BReLUpAF̃kpx, yqq.

The involved matrices are Mk`2 “ B, AˆM̃k`1 and M̃k . . . M̃1. They all have entries in t´1, 0, 1u
and the corresponding network has layers of size at most 3ˆ2k`1. The result then holds by recursion.
l

27

	Introduction
	Nonsmooth generalized gradients
	Programs, complexity and Automatic Differentiation
	Calculus model, programs, computational cost and complexity
	Automatic differentiation

	Computational complexity of Nonsmooth AD
	On the computational hardness of generalized gradients
	The overhead ratio for evaluating p directional derivatives
	Computing Clarke subgradients using forward automatic differentiation
	Computational hardness of subgradient enumeration

	Conclusion
	Further comments, discussion and technical elements
	Comments on Section 3
	Computational model in Section 3.1

	Comments on Section 5
	Forward AD and Clarke subgradients
	Matrix multiplications

	Proofs related to Section 4
	Justification of the complexity Table 1 of the DReLU-Dictionary.
	An extension of Table 1
	Additional elementary nonsmooth programs and cost examples

	Proofs of Section 5.1
	Proof of the main result
	An additional Lemma

	Proofs of Section 5.3
	Polynomial time equivalence with linear ReLU networks with skip connections
	Further properties of Linear ReLU networks
	Clarke enumeration is NP-hard for ReLU networks

	Proof of the main hardness result
	Proof of feasibility for autodiff conservative gradient
	Additional lemmas

