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ABSTRACT

Robot learning requires a considerable amount of high-quality data to realize the
promise of generalization. This amount is challenging to collect entirely in the
real world. Simulation can help greatly, wherein techniques such as reinforce-
ment learning can provide broad coverage over states and actions. However, high-
fidelity physics simulators are fundamentally misspecified approximations to real-
ity, making direct zero-shot transfer challenging, especially in tasks where precise
and force-sensitive manipulation is necessary. This makes real-world fine-tuning
of policies pretrained in simulation an attractive approach to robot learning in
principle, but for many practical applications exploring the real-world dynamics
with standard RL fine-tuning techniques is too inefficient. This paper introduces
Simulation-Guided Fine-Tuning, a general framework that leverages the structure
of a value function learned in simulation to guide and accelerate real-world explo-
ration.We demonstrate our approach across several real-world manipulation tasks
for which learning successful policies using purely real-world data is very hard.
Last but not least, we provide theoretical justification for this new paradigm.

1 INTRODUCTION

Figure 1: Three dynamic, contact-rich manipulation
tasks – hammering (top), pushing (bottom left), and
inserting (bottom right) – solved in the real world us-
ing our method SGFT.

Robot learning offers a pathway to building ro-
bust, general-purpose robotic agents that can
rapidly adapt their behavior to new environ-
ments and tasks. This shifts the burden from de-
signing accurate environment models and task-
specific controllers by hand to the problem of
collecting large behavioral datasets with suffi-
cient coverage. This raises a fundamental ques-
tion: how do we cheaply obtain and leverage
such datasets at scale? Real-world data col-
lection via teleoperation (Walke et al., 2023;
team, 2024) can generate high-quality trajecto-
ries but is tedious and scales linearly with hu-
man effort. Even with community-driven tele-
operation (Mandlekar et al., 2018; Collabora-
tion, 2024), current robotics datasets are still or-
ders of magnitude smaller than those powering
vision and language applications.

Massively parallelized physics simulation
(Todorov et al., 2012; Makoviychuk et al.,
2021) is a potential solution for cheaply generating vast quantities of synthetic robotics data. More-
over, applying techniques such as reinforcement learning (RL) in simulation can cheaply generate
datasets with extensive coverage, when coupled with techniques such as automatic scene genera-
tion (Chen et al., 2024; Deitke et al., 2022) and extensive randomization of initial conditions and
dynamics parameters (Peng et al., 2018; Andrychowicz et al., 2020).

Unfortunately, simulation-generated data is not a silver bullet, as it provides cheap but ultimately
off-domain data. Namely, simulators are fundamentally misspecified approximations to reality. This
is highlighted in tasks like hammering in a nail, where the modeling of high-impact, deformable con-
tact remains an open problem (Acosta et al., 2022; Levy et al., 2024). In these regimes, no choice of

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

parameters for the physics simulator accurately capture the real-world dynamics. This gap persists
despite efforts towards improving existing physics simulators with system identification (Memmel
et al., 2024; Huang et al., 2023) identification and learning generative world models directly from
large, but ultimately finite, real-world data sets Yang et al. (2023); Bruce et al.. Thus, despite
impressive performance for many tasks, methods that transfer policies from simulation to reality
zero-shot (Kumar et al., 2021; Lee et al., 2020; Peng et al., 2018; Andrychowicz et al., 2020) still
run into failure modes when they encounter situations outside simulated training distribution (Smith
et al., 2022b).

The question becomes: can inaccurate simulation models be useful in the face of fundamental
misspecifications? A natural technique is to fine-tune policies pre-trained in a simulator using real-
world experience (Smith et al., 2022b; Zhang et al., 2023). This approach can overcome misspeci-
fication by training directly on data from the target domain. However, existing approaches employ
the unstructured exploration strategies used by standard, general reinforcement learning algorithms
Haarnoja et al. (2018), which were designed not for fine-tuning but for tabula rasa learning. As a
result, current RL fine-tuning frameworks remain to sample inefficient for real-world deployment.

We argue the following: despite inherently getting the finer details wrong, generative physics
simulators capture the rough structure of real-world dynamics well enough to distill targeted ex-
ploration strategies which can substantially accelerate real-world learning. Leveraging this insight,
we propose Simulation-Guided Fine-Tuning (SGFT), a general framework for rapid adaptation of
behaviors learned in simulation to the nuances of real-world dynamics. The key ingredient of SGFT
is to use a value function Vsim learned in the approximate simulator to guide exploration in the real-
world. We demonstrate this general framework can be built on top of generic reinforcement learning
algorithms, substantially accelerating real-world learning.

In more detail, unlike most fine-tuning strategies which aim to solve an intractable infinite-
horizon objective, SGFT solves a short-horizon H-step policy optimization problem with a re-
shaped objective. Specifically, we use Vsim to provide guidance to base policy optimization strate-
gies by leveraging the Potential-based Reward-Shaping Formalism Ng et al. (1999). This horizon-
shortening approach effectively uses Vsim to boot-strap long-horizon returns, leading to a tractable
search problem Westenbroek et al. (2022); Cheng et al. (2021). This paradigm is particularly power-
ful when built on top of a base model-based reinforcement learning (MBRL) algorithm Hafner et al.
(2019); Janner et al. (2019); Hansen et al. (2024). The central challenge for these methods (when
solving standard long-horizon objectives) is that small errors in the model rapidly compound when
unrolling predictions over multiple steps Janner et al. (2019). The short-horizon SGFT effectively
leverages experience gained in simulation to circumvent this challenge, unlocking the potential of
generative environment modeling.

We outline our contributions as follows:

1. We introduce the SGFT framework, and illustrate through extensive experiments how it is
a light-weight modification to existing sim-to-real RL finetuning frameworks Smith et al.
(2022b); Zhang et al. (2019); indeed, because these approaches generally employ algo-
rithms which already learn a value function Vsim in simulation, implementing the reshaped
SGFTobjective is only a few lines of code.

2. We implement two versions of SGFT on top of different base MBRL algorithms, and
demonstrate that SGFTcan learn highly effective policies in regimes where existing zero-
shot transfer techniques fail. Moreover, SGFT provides substantial sample complexity
gains over existing fine-tuning method. In particular, SGFTprovides a powerful framework
for learning policy with near 100% success rates, which we observe to be a significant
challenge for existing fine-tuning approaches.

3. We demonstrate theoretically how a) SGFT can learn highly performant policies, despite
the bias introduced by the short-horizon objective and b) SGFT renders standard MBRL
approaches robust to large errors in generative dynamics models, which are bound to arise
in the fine-tuning setting where only a small amount of on-task data is available. Together,
these insights underscore how SGFT effectively leverages plentiful off-domain data from
a simulator alongside small real-world data sets to substantially accelerate real-world fine-
tuning.
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2 RELATED WORK

Simulation-to-Reality Transfer. In this work, we assume that perception in simulation and reality
is approximately matched and focus primarily on the dynamics gap. To bridge this dynamics gap,
two classes of methods have been popular: 1) adapting simulation parameters to real-world data
and 2) learning adaptive or robust policies to account for changing real-world dynamics. While
going back from the real world to simulation can help target the simulation parameters more accu-
rately (Chebotar et al., 2019; Ramos et al., 2019; Memmel et al., 2024), it cannot overcome inherent
model misspecification, as we show in our experimental evaluation. Learning adaptive policies to
account for changing real-world dynamics (Qi et al., 2022; Kumar et al., 2021; Yu et al., 2017) can
help to some extent but is unable to guide exploration and adapt beyond the training dynamics range.
Another appealing approach is to search for distributions of domain randomization parameters that
will lead to maximally robust transfer in a principled fashion. For example, Tiboni et al. (2023a)
uses entropy maximization to find simulator parameters which will lead to maximally robust transfer
while accurately describing a small number of real world trajectories. This is taken further by Tiboni
et al. (2023b), which automatically evolves training distributions purely in simulation to generate a
curricula of environments which leads to polices which are both performant and robust.

Perhaps most related is Smith et al. (2022b); Zhang et al. (2023), where policies learned in sim-
ulation are fine-tuned with off-policy RL. However, besides initialization, simulation is not used to
guide exploration throughout fine-tuning. Prior work has additionally considered mixing simulated
and real data during policy optimization – either through co-training (Torne et al., 2024), simply ini-
tializing the replay-buffer with simulation data (Smith et al., 2022a; Ball et al., 2023), or adaptively
sampling the simulated dataset and up-weighting transitions that approximately match the true dy-
namics (Eysenbach et al., 2020; Liu et al., 2022; Xu et al., 2023; Niu et al., 2022). In contrast, our
approach focuses on distilling useful exploration strategies from simulation.
Fine-tuning in Reinforcement Learning. Our work is related to algorithms for RL-based fine-
tuning with online data collection, primarily starting from offline RL-aided or imitation learning-
aided initializations. These algorithms typically aim to provide an initialization that can continue
improving with standard off-policy RL (Rajeswaran et al., 2018; Nair et al., 2020; Kostrikov et al.,
2021; Hu et al., 2023; Nakamoto et al., 2024). They initialize policies and Q-functions from offline
data and continue training them with standard RL methods, but do not use the pre-training data
beyond initialization and populating the replay buffer. We utilize the pretraining in simulation not
just for initialization but also to provide guidance throughout the policy improvement process.
Reward Design in Reinforcement Learning. A significant component of our methodology is
learning dense shaped reward in simulation to guide real-world fine-tuning. This is closely tied to
the problem of reward design and reward inference in RL (Gupta et al., 2022). This is a challenging
problem if attempted tabula rasa but prior techniques have tried to infer rewards from expert de-
mos (Ziebart et al., 2008; Ho & Ermon, 2016), success examples (Fu et al., 2018; Li et al., 2021a),
LLMs (Ma et al., 2023; Yu et al., 2023), and heuristics (Margolis et al., 2024; Berner et al., 2019).
We rely on simulation to provide reward supervision using the PBRS formalism (Ng et al., 1999),
and shorten the horizon of the learning task to improve the sample comlexity of real-world learning
(Cheng et al., 2021; Westenbroek et al., 2022). Another line of work complementary to our comes
from Eysenbach et al. (2020); Liu et al. (2022); Xu et al. (2023); Niu et al. (2022), which relabel re-
wards from off-task (simulated) data, effectively up-weighting transitions that approximately match
the dynamics observed in the target domain. These works focus on the retrieval of useful samples
from prior datasets with shifted dynamics. In contrast, our approach uses prior data to guide the dis-
covery of novel sequences of states and actions in the target domain. In principle, these techniques
could be used in conjunction; we leave this to future work.
Model-Based Reinforcement Learning. A significant body of work on model-based RL learns
dynamics models to perform data augmentation (Sutton, 1991; Wang & Ba, 2019; Janner et al.,
2019; Yu et al., 2020; Kidambi et al., 2020) for downstream policy optimization algorithms, plan
online using the model (Ebert et al., 2018; Zhang et al., 2019), or to use the model as a control variate
to reduce variance of policy gradient methods (Chebotar et al., 2017; Cheng et al., 2019; 2020; Che
et al., 2018). The central challenge for each of these model-based methods is that small inaccuracies
in predictive models can quickly compound over time, leading to large model-bias. An effective
critic can be used to shorten search horizons (Hansen et al., 2024; Bhardwaj et al., 2020; Hafner
et al., 2019) yielding easier decision-making problems, but learning such a critic from scratch can
still require large amounts of on-task data. We demonstrate that, for many real-world continuous
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control problems, critics learned entirely in simulation can be robustly transferred to the real-world
and substantially accelerate model-based learning.

Figure 2: Depiction of SGFT: Rather than simply fine-tuning from a policy initialization, SGFT uses short
horizon rollouts from the learned model along with potential-based reward shaping using the learned value
function to inform efficient sim-to-real fine-tuning.

3 PRELIMINARIES

Let S and A be state and action spaces. Our goal is to control a real-world system defined by
an unknown Markovian dynamics s′ ∼ preal(·|s, a), where s, s′ ∈ S are states and a ∈ A is an
action. The usual formalism for solving tasks with RL is to define a Markov Decision Process of the
formMr = (S,A, preal, ρ0real, r, γ) with initial real-world state distribution ρ0real, reward function
r, and discount factor γ ∈ [0, 1). Given a policy π, we let dπreal(s) denote the distribution over
trajectories τ = (s0, a0, s1, a1, . . . ) generated by applying π starting at initial state s0. Defining the
value function under π as V π

real(s) = Est∼dπ
real(s)

[
∑

t γ
trt(st)], our objective is to find π∗

real ←
supπ Es∼ρ0

real
[V π

real(s)]. We define the optimal value function as V ∗
real(s) := supπ V

π
real(s).

Unfortunately, as discussed above, obtaining a good approximation to π∗
real using only real-

world data is often impractical. Thus, many approaches leverage an approximate simulation environ-
ment s′ ∼ psim(s, a) and solve an approximate MDP of the formMsim := (S,A, psim, ρ0sim, r, γ)
to train a policy πsim meant to approximate π∗

real . We let Vsim denote πsim’s value function with
respect toMsim. We do not require πsim to be optimal in simulation, but merely an approximately
optimal one that can reliably solve the given task under psim. Here, ρ0sim is the distribution over
initial conditions in the simulator.

4 SIMULATION-GUIDED FINE-TUNING

Simulation-Guided Fine-Tuning (SGFT) takes the perspective that πsim can be viewed as an ap-
proximate expert for controllingMreal. That is, πsim can capture the rough structure of behaviors
that solve the task in reality, even if it fails to transfer toMreal zero-shot. Specifically, we contend
that these behaviors are encoded into Vsim in a way that is robust to dynamics shifts. Indeed, Vsim

defines an ordering over states that are desirable to reach in the future, but says nothing about the
actions needed to reach those states. SGFT uses small amounts of real-world data to learn actions
that will increase Vsim over short horizons, and thus leverages Vsim to guide real-world exploration
towards behaviors that can solve the entire (longer-horizon) task.

4.1 REWARD SHAPING AND HORIZON SHORTENING

We implement our horizon-shortening approach using the Potential-Based Reward Shaping (PRBS)
formalism (Ng et al., 1999), which replaces the reward r(s) with r̄(s, s′) = r(s) + γΦ(s′) − Φ(s)
for some function Φ and is usually applied to infinite horizon MDPsM to form a new MDPM.
Intuitively, the addition of the potential term encourages policy search algorithms to follow Φ by
increasing its value during each transition. A well-designed Φ can guide exploration and decrease
the variance of policy search by effectively acting as a baseline, but the reshaped reward does not
change the optimal policy. Indeed, by telescoping out the rewards one may observe that

∑∞
t=0 r̄t =∑∞

t=0 rt − Φ(s0). Because Φ(s0) does not depend on the choice of the policy, the reshaped reward
does not affect the ordering over policies. However, even with an informative reshaped reward,
solving the infinite horizon reshaped MDP is still costly. This motivates us to shorten the horizon of
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the returns that we optimize in the real-world, and thus we will investigate optimizing H-step returns
of the form

∑H−1
t=0 r̄t =

∑H−1
t=0 rt+γHΦ(sH)−Φ(s0). Here, the γHΦ(sH) term can be interpreted

as a fixed approximation to the true long-horizon returns γHV ∗
real(sH), while−Φsim(s0) again acts

as a baseline to reduce variance. While this introduces bias into the returns, optimizing the H-step
return from a given initial condition presents a significantly more tractable problem.

4.2 H -STEP SIMULATION-GUIDED EXPERT POLICIES

We propose to set Φ(s) = Vsim(s) (i.e. the value of the policy πsim with respect to Msim) and
optimize the reshaped reward r̄(s, s′) = r(s) + γVsim(s′) − Vsim(s) over H-steps from every
initial condition s ∈ S , as a mean to adapt πsim fromMsim toMreal. We will use ‘tilde’ notation
π̃H = {πH,0, πH,1, . . . , πH,H−1} to denote non-stationary policies of horizon H , where πH,t is the
policy applied at time t. Consider the following H-step returns under the real-world dynamics:

V π̃H

H (s) = E

[
γHVsim(sH) +

H−1∑
t=0

γtr(st)− Vsim(s0)

∣∣∣∣s0 = s, at ∼ πH,t(·|st)

]
. (1)

V ∗
H(s) := sup

π̃H

V π̃H

H (s) Q∗
H(s, a) = Es′∼preal(s,a)

[
γV ∗

H−1(s
′) + r̄(s, s′)

]
(2)

Note that the−Vsim(s0) term in Equation (3) is not affected by the choice of π̃H , and does not affect
the ordering of policies. Thus, V π̃H

H is equivalent to the planning objective used by model predictive
control (MPC) methods (Jadbabaie et al., 2001; Hansen et al., 2024; Sun et al., 2018; Bhardwaj et al.,
2020) with H-step look-ahead and a terminal reward of Vsim (when the ground truth dynamics is
known). Thus, we define the H-step simulation-guided MPC expert via π∗

H(·|s) = π∗
H,0(·|s), where

π∗
0 is taken from the first step of the solution to π̃∗

H ← maxπ̃H
V π̃H (s). In other words, this

policy simply applies the first action generated by the optimal H-step policy at each state. Abusing
notation, note that this policy can also be calculated as π∗

H(·|s)← maxπ Q
∗
H(s, π(s)).

Intuitively, π∗
H will greedily follow Vsim at every state when H = 1, and as we take H → ∞

the behavior of πH will recover the behavior of π∗
real. Thus, π∗

H can be viewed as a policy that has
adapted the behavior of πsim to follow Vsim along the real-world dynamics, and for smaller values
of H we should expect π∗

H to retain more of the behavior of πsim. As we discuss further in Section
5, these idealized MPC policies have a number of desirable properties, when compared to directly
transferring πsim to Mreal. Of course, because these expert policies depend on the real-world
dynamics, we do not have direct access to their actions. Next, We introduce a general framework
that implicitly attempts to mimic these experts through interactions with the real-world dynamics.

4.3 THE GENERAL SGFT FRAMEWORK

Algorithm 1 Simulation-Guided Fine-tuning ( SGFT)

Require: Pretrained policy πsim and value function Vsim

1: π ← πsim, D ← ∅
2: for each iteration k do
3: for time step t = 1, ..., T do
4: at ∼ π(·|st)
5: Observe the state st+1 and the reward rt.
6: r̄t ← rt + γVsim(st+1)− Vsim(st)
7: D ← D ∪ {(st, at, r̄t, st+1)}
8: end for
9: Approx. optimize π ← maxπ Q

∗
H(s, π(sj))

using transitions in D ∀sj in D’s transitions.
10: end for

Even though we do not have di-
rect access to π∗

H , we can implic-
itly learn its actions by optimiz-
ing policies to maximize the H-
step return (Equation (3)) starting
from every initial condition s ∈
S. Specifically, note that the ex-
pert actions are given by π∗

H ←
maxπ Q

∗
H(s, π), and that many stan-

dard (model-based and model-free)
RL methods can be leveraged to solve
this short-horizon policy optimiza-
tion problem. This motivates our
conceptual Simulation-Guided Fine-
Tuning (SGFT) framework, which is
defined via the pseudo-code in Algo-
rithm 1. SGFT fine-tunes πsim to
succeed under the real-world dynamics by iteratively 1) unrolling the current policy to correct
transitions from preal and 2) using the current dataset D of transitions to approximately optimize
π ← maxπ Q

∗
H(s, π(sj)) at each state sj the agent has visited. In Sun et al. (2018) a model-
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free method for approximately achieving the optimization in step 2) is proposed1, and we discuss
how this step can be performed with model-based methods below. By approximately optimizing
π ← maxπ Q

∗
H(s, π(sj)), SGFT is implicitly attempting to learn and approximate the actions taken

π∗
H at every state the agent has visited (which is reminiscent of the learning loop used by DAgger

(Ross et al., 2011), with the obvious caveat that in our case the expert is not directly available).

What are we taking away from simulation? We are explicitly interested in applying SGFT with
small values of H , as this will yield real-world learning problems that are significantly more tractable
than the original infinite-horizon problem (Laidlaw et al., 2023; Li et al., 2021b). In this regime,
SGFT provides an ideal separation between what is learned using the simulated dynamics psim and
what is learned from interacting with real dynamics preal. For small values of H, optimizing (3)
guides policy optimization algorithms towards policies that increase the value of Vsim over H-step
windows. In the extreme case where H = 1, SGFT greedily attempts to increase the value of
Vsim each step. Conceptually, in this special case we have reduced the policy search problem to a
contextual bandits problem, which is much easier to solve than the original infinite horizon objective.
Intuitively, this is because the critic is frozen and no bootstrapping in the real-world is required.
More generally, as H becomes larger the dependence on Vsim is lessened while the dependence on
the real returns increase. In simulation, we can easily generate enough data to explore many paths
through the state space and discover which motions lead to higher returns (e.g., reach towards an
object to be manipulated). This information is distilled into Vsim during the learning process, which
provides information about where the agent should go H steps into the future. On the other hand,
by optimizing Equation (3) over short horizons, we only need to learn short sequences of actions to
move the system to states where Vsim is higher. That is, the short-horizon problem makes it easy to
learn how to get to these desirable states, even if the required sequences of intervening states and
actions differ substantially under psim and preal. Thus, SGFT approximately decomposes into a)
learning where to go in the simulator and b) learning the finer details of how to get there with small
amounts of real-world data.

4.4 LEVERAGING SHORT MODEL ROLL-OUTS

Model-based reinforcement learning (MBRL) holds the promise of learning a generative model p̂ to
rapidly identify effective policies with significantly less data than model-free methods Janner et al.
(2019). In particular, generating rollouts with the model enables an agent to reason about trajectories
not contained in the dataset of transitions the agent has observed. However, as discussed in Section
2, the central challenge for MBRL is that small errors in p̂ can quickly compound over multiple
steps, degrading the quality of the predictions. As a consequence, learning a model accurate enough
to solve long-horizon problems can often take as much data as solving the task with modern model-
free methods (Chen et al., 2021; Hiraoka et al., 2021). By bootstrapping Vsim in simulation, where
data is plentiful, the SGFT framework enables agents to act effectively over long horizons using
only short, local predictions about the real-world dynamics. As our experiments demonstrate, this
substantially improves performance compared to model-free approaches.

In what follows, we denote the following returns under the model for π̃H = {πH,t}H−1
t=0 :

V̂ π̃H

H (s) = E

[
γHVsim(sH) +

H−1∑
t=0

γtr(st)− Vsim(s0)

∣∣∣∣s0 = s, at ∼ πH,t(·|st), st+1 ∼ p̂(st, at)

]
.

(3)
V̂ ∗
H(s) := sup

π̃H

V̂ π̃H

H (s) Q̂∗
H(s, a) = Es′∼p̂(s,a)

[
γV̂ ∗

H−1(s
′) + r̄(s, s′)

]
(4)

The corresponding MPC that uses p̂ is given by:

π̂∗
H(·|s)← argmax

π
Q̂∗

H(s, π). (5)

Next, we discuss two broad approaches that use p̂ to approximately learn π̂∗
H in each iteration.

1In particular, in Sun et al. (2018) (where the authors consider general potentials Φ in the H-step re-
wards), instead of optimizing the non-stationary objective Equation (3) directly, the H-step return V̄ π

H (s) =

Edπ(s)

[
γHΦ(sH) +

∑H−1
t=0 r(s)− Φ(s0)

]
for the current (stationary) policy is used as a stand-in. This ap-

proach uses Monte-Carlo returns to estimate the advantage Āπ
H(s, a) = Q̄(s, a) − V (s, a) for π and update

π ← maxπ Āπ
H(s, π). Repeating this optimization fits policies which optimize π ← maxπ̄ Q∗

H(s, π̄(s)).
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Algorithm 2 Dyna-SGFT

Require: Pretrained policy πsim and value function Vsim

1: π ← πsim

2: for each iteration k do
3: Generate rollout {(st, at, rt, st+1)}Tt=0 under π.
4: r̄t ← rt + γVsim(st+1)− Vsim(st)
5: D ← D ∪ (st, at, r̄t, st+1)
6: Fit generative model p̂ with D.
7: for G policy updates do
8: Generate synthetic branched rollouts D̂ under π.
9: Approx. optimize π ← maxπ Q

∗
H(s, π(sj))

∀sj ∈ D using augmented dataset D̂ ∪ D
10: end for
11: end for

Algorithm 3 MPC-SGFT

Require: Pretrained value Vsim and initialized model p̂.
1: for each iteration k do
2: Generate rollout {(st, at, rt, st+1)}Tt=0 under π̂∗

H .
3: r̄t ← rt + γVsim(st+1)− Vsim(st)
4: D ← D ∪ {(st, at, r̄t, st+1)}.
5: Fit generative model p̂ with D.
6: end for

Improved Sample Efficiency with
Data Augmentation (Algorithm 2).
The generative model p̂ can be used
for data augmentation by generat-
ing a dataset of synthetic rollouts D̂
to supplement the real-world dataset
D (Janner et al., 2019; Sutton, 1990;
Gu et al., 2016). The combined
dataset can then be fed to any pol-
icy optimization strategy, such as
generic model-free algorithms. We
are specifically interested in state-of-
the-art Dyna-style algorithms (Janner
et al., 2019), which, in our context,
branch H-step rollouts from states
the agent has visited previously. As
Algorithm 2 shows, after each data-
collection phase, this approach up-
dates the generative model p̂ and then
repeatedly a) generates a dataset D̂
of synthetic H-step rollouts under the
current policy π starting from states
in D, and b) approximately solves
π ← maxπ̄ Q

∗
H(s, π̄(s)) at the ob-

served real-world states using the augmented dataset D̂ ∪ D and a base model-free method. For
example, the method from Sun et al. (2018) can be used for this purpose. In Section 6, we describe
how to implement this approach with 1-step hallucinated trajectories and SAC (Haarnoja et al.,
2018) as a base model-free algorithm.

Online Planning (Algorithm 3). The most straightforward way to approximate the behavior of
π∗
H is simply to apply the MPC controller π̂∗

H generated using the current best guess for the dynamics
p̂, as in Equation (5). Algorithm 3 provides general pseudocode for this approach, which iteratively
1) rolls out π̂∗

H (which is calculated using online optimization and p̂ (Williams et al., 2017)) then 2)
updates the model on the current dataset of transitions D. This high-level approach encompasses a
wide array of methods proposed in the literature, e.g., Ebert et al. (2018) and Zhang et al. (2019). In
Section 6, we implement this approach using the TDMPC-2 (Hansen et al., 2024).

5 THEORETICAL ANALYSIS

In this section we analyze the effectiveness of the H-step simulation-guided expert π∗
H . Specifically,

we seek suboptimality bounds for this agent and a characterization of situations when the behavior
of this idealized policy will be robust to the errors made by MBRL techniques, which leverage
an approximate model p̂ for preal that has been learned from real-world data. We are particularly
interested in understanding how SGFT with short prediction horizons H can mitigate errors in p̂
with a small number of samples. To set the stage for this analysis, we first recall several relevant
theoretical results from prior RL work.
Proposition 1. Suppose that maxs∈S |Vsim(s)−V ∗

real(s)| ≤ ϵ and that ∥p̂(s, a)−preal(s, a)∥ ≤ α.
Then for H sufficiently small and for each s ∈ S we have:

V ∗
real(s)− V

π̂∗
H

real(s) ≤ O

(
γ

1− γ
αH +

γH

1− γH
ϵ

)
, (6)

where π̂∗
H is the MPC policy under the approximate mode as in Equation (5)

This result is a direct translation of (Bhardwaj et al., 2020, Theorem 3.1) to our setting, where the
big-O notation suppresses problem-dependent constants and lower-order terms for small values of
H which are not important for our discussion. To understand the bound, first set α = 0 so that there
is no modeling error (and we recover the behavior of π∗

H ). In this case, we are incentivized to make
H larger. Intuitively, this follows from the fact that Vsim(sH) can be viewed as an approximation to
V ∗
real(sH) in the H-step look ahead objective Equation (3). Because this approximation is scaled by
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γH , the effect of errors in Vsim is diminished for larger values of H . Note, however, that this result
scales poorly for small values of H . This is especially true for long-horizon problems where γ ≈ 1.
On the other hand, the term involving α captures how errors in the model accumulate for different
horizons H , leading to mistakes in decision making. This term incentivizes us to make H as small
as possible. In particular, we are interested in understanding how we can mitigate large values of α,
which will arise in low-data regimes.

Since results like Proposition 1 simply assume uniform worst-cases bounds on the difference
between between the magnitudes of Vsim and V ∗

real, they do not capture the fact that Vsim may still
preserve an ordering over states that is useful for guiding real-world decision making, i.e., when the
geometry of Vsim enables SGFT to guide policy search algorithms towards effective policies under
the real dynamics. We use the following definition from Cheng et al. (2021), which is similar to
properties from other works (Westenbroek et al., 2022; Grune & Rantzer, 2008):
Definition 1. We say that Vsim is improvable with respect toMreal if for each s ∈ S we have:

max
a

Es′∼preal(s,a)[γVsim(s′)]− Vsim(s) ≥ −r(s). (7)

Namely, Vsim is improvable with respect toMreal if there exists a policy that can increase Vsim

enough over time for each state (with respect to the reward function). A quick intuition we make
precise later is the following: as long as Vsim reaches a maximum at desirable states in the real
world (e.g., at desired positions for an object being manipulated), then if Vsim is improvable with
respect toMreal we can greedily follow Vsim over a short horizon to reach these desirable states.
As defined in Section 3, Vsim is learned under the simulation dynamics and policy πsim such that
Vsim(s) = E[γVsim(s′) + r(s)|s′ ∼ psim(s, a), a ∼ πsim(·|s)], and thus is constructed to be
improvable with respect to Msim. We provide a pedegogical example in Section F highlighting
why this is a plausible property to assume for real-world transfer.

We now present our main theoretical result:
Theorem 1. Let the Assumptions of Proposition 1 hold. Further, suppose that Vsim is improvable
with respect toMreal. Then for H sufficiently small and each s ∈ S we have:

V ∗
real(s)− V

π̂∗
H

real(s) ≤ O

(
γ

1− γ
αH + γHϵ

)
, (8)

where π̂∗
H is the MPC policy under the approximate model, as in Equation (5).

The proof can be found in Appendix A. At a high-level, the proof uses arguments similar to
Grune & Rantzer (2008) to bound the suboptimality of the expert policy π∗

H and then combines this
bound with the perturbation bounds from Bhardwaj et al. (2020) to bound how errors in the dynamics
lead to additional suboptimaly. Note that the dependence on H and α is identical to the bound from
Proposition 1 above. However, the scaling for the term involving ϵ is improved substantially for
small values of H , especially for long-horizon problems where γ ≈ 1. Thus, we can more readily
use small values of H to combat large model bias when Vsim is improvable with respect toMreal.
This provides insight into how SGFT can rapidly learn effective policy in the real world by using
short model rollouts with a coarse model to approximate the behaviors of π̂∗

H .

6 EXPERIMENTS

We aim to answer the following questions: (1) Can SGFT facilitate online fine-tuning of policies
for dynamic, real-world robotic manipulation tasks using only small amounts of real-world data?
(2) Does SGFT improve the sample efficiency of online fine-tuning compared benchmarks? Can
SGFT learn policies that outperform direct transfer techniques which leverage extensive domain
randomization and/or system identification?

6.1 METHODS EVALUATED

Our experiments compare several approaches from three families:

SGFT Instantiations. We implement concrete instantiations of the general Dyna-SGFT and
MPC-SGFT frameworks sketched in Algorithms 2 and 3. SGFT-SAC fits a model to real world
transitions to perform data augmentation and uses SAC as a base model-free policy optimization
algorithm. Specifically, after collecting each real-world trajectory for G gradient steps we 1) gen-
erate a dataset D̂ of synthetic rollouts branched from the real dataset D, and then 2) sample from

8
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the joint replay buffer D̂ ∪ D to perform one policy updates with SAC using the reshaped reward.
We use H = 1 in all our experiments. Crucially, we set the ‘done’ flag to true at the end of each
rollout – this ensures SAC does not bootstrap its own critic from the real-world data and only uses
Vsim to bootstrap long-horizon returns. SGFT-TDMPC-2 uses TDMPC-2 Hansen et al. (2024) as
a backbone. The base method learns a critic, a policy, and an approximate dynamics model through
interactions with the environment. When acting in the world and MPC controller solves online plan-
ning problems using the approximate model, the critic as a terminal reward, and uses the policy
prior to seed an MPPI planner Williams et al. (2017). To integrate this method with SGFT, when
transferring to the real world we simply freeze the critic learned in simulation and use the reshaped
objective in Equation (3) as the online planning objective. For our experiments, we use H = 4 and
the default hyperparameters reported in Hansen et al. (2024).

Baseline Fine-tuning Methods. The SAC baseline fine-tunes the pre-trained policy to solve the
original MDPMreal using SAC Haarnoja et al. (2018) – it does not use shaping or horizon shorten-
ing. PBRS fine-tunes the policy under a reshaped infinite-horizon MDP using the reshaped reward
r̄ and SAC (Haarnoja et al., 2018) as the policy optimizer. Namely, this approach does not leverage
horizon shortening. TDMPC-2 fine-tunes the entire TDMPC-2 architecture Hansen et al. (2024) in
the real world, but does not leverage reward shaping. This serves as a state-of-the-art baseline for
MBRL. IQL fine-tunes the pre-trained policy to solve the original MDPMreal using IQL (Kostrikov
et al., 2021). It does not make use of reward shaping or horizon shortening. This serves as a state-
of-the-art baseline for fine-tuning methods.

Baseline Sim-to-Real Methods. Our Domain Randomization baseline refers to policies trained
with extensive domain randomization in simulation and transferred directly to the real world. These
policies rely only on the previous observation. Recurrent Policy + Domain Randomization uses
policies conditioned on histories of observations, similar to methods such as Kumar et al. (2021).
The history enables the agent to infer information about the dynamics parameters of the environment
it is operating in. ASID (Memmel et al., 2024) is a system identification method that performs
targeted exploration in the real world to identify the dynamics parameters of the simulator that
best match the real-world scene. Once the parameters are identified, a policy is trained under the
parameters in simulation and then deployed zero-shot to the real world.

Figure 3: Sim-to-Real Setup Simulation setup
for pretraining (top) and execution of real-world
fine-tuning (bottom) of real-world hammering
(left), insertion (middle), and pushing (right).
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Figure 4: Real-world success rates during the
course of online fine-tuning. We plot task success
rates over number of fine-tuning rollouts for the tasks
described in Sec. 6. We see that SGFT yields signifi-
cant improvements in success and efficiency.

6.2 SIM-TO-REAL EVALUATIONS

We test each methods on three real-world manipulation tasks illustrated in Figure 3, demonstrating
that both the SGFT-SAC and SGFT-TDMPC-2 instantiations of SGFT excel at learning policies
with minimal real-world data.
Hammering is a highly dynamic task involving force and contact dynamics that are impractical to
precisely model in simulation. In our setting, the robot is tasked with hammering a nail in a board.
The nail has high, variable dry friction along its shaft. In order to hammer the nail into the board,
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the robot must hit the nail with high force repeatedly. The dynamics are inherently misspecified
between simulation and reality here due to the infeasibility of accurately modeling the properties of
the nail and its contact interaction with the hammer and board.
Insertion (Heo et al., 2023) involves the robot grasping a table leg and accurately inserting it into
a table hole. The contact dynamics between the leg and the table differ between simulation and
real-world conditions. In the simulation, the robot successfully completes the task by wiggling the
leg into the hole, but in the real world this precise motion becomes challenging due to inherent noise
in the real-world observations as well as contact discrepancies between the leg and the table hole.
Pushing requires pushing a puck of unknown mass and friction forward to the edge of the table
without it falling off the edge. Here, the underlying feedback controller of the real world robot
inherently behaves differently from simulation. Additionally, retrieving and processing sensor in-
formation from cameras incurs variable amounts of latency. As a result, the controller executes
each commanded action for variable amounts of time. These factors all contribute to the sim-to-real
dynamics shift, requiring real-world fine-tuning to reconcile.

Each of these tasks is evaluated on a physical setup using a Franka FR3 robot operating with
either Cartesian position control or joint position control at 5Hz. We compute object positions by
color-thresholding pointclouds or by Aruco marker tracking, although this approach could easily be
upgraded. Further details of all tasks, reward functions, robot setups, environments and implemen-
tation details can be found in the Appendix.

6.3 ANALYSIS

The results of the real-world evaluation during fine-tuning on these three tasks are presented in Fig-
ure 4. For all three tasks, zero-shot performance seen at the start of the plot is quite poor due to the
dynamics sim-to-real gap. Moreover, the poor performance of system identification methods such
as ASID highlights the fact that these gaps are due to more than parameter misidentification, but
rather stem from fundamental misspecification.

The second class of comparison methods includes offline pretraining with online fine-tuning
techniques like IQL Kostrikov et al. (2021) and SAC Haarnoja et al. (2018). Both flavors of SGFT,
the model-free SGFT-SAC and model-based SGFT-TDMPC-2, substantially outperform these
prior techniques in terms of efficiency and asymptotic performance. This suggests that simulation
can offer more guidance during real-world policy search than just an initialization for subsequent
fine-tuning. Our full system consistently leads to significant improvement from fine-tuning, achiev-
ing 100% success for hammering and pushing within an hour of fine-tuning and 70% success for
inserting within two hours of fine-tuning. The fact that SGFT outperforms both TD-MPC2 Hansen
et al. (2024) and PBRS-SAC, suggests that efficient fine-tuning requires a combination of both short
model rollouts and value-driven reward shaping.

Last but not least, note that SGFT offers improvements on top of both SAC and TDMPC2, show-
ing the generality of the proposed paradigm. Additional evaluations and visualizations are in the
Appendix, namely a set of sim-to-sim transfer results following standard benchmarks (Appendix E),
and visualizations of transferred value functions (Appendix D).

7 LIMITATIONS AND FUTURE WORK

In this work, we present SGFT, a technique for efficient sim-to-real fine-tuning using off-policy
RL. The key idea in SGFT is to leverage learned value functions and models from simulation to
provide guidance for exploration even when simulation does not perfectly match reality through a
combination of short-horizon model hallucinations and potential-based reward shaping. There are
several limitations of SGFT that open avenues for improvement. Firstly, scaling SGFT to work from
raw perceptual inputs such as camera images rather than low-dimensional states would make this
paradigm more broadly applicable. Secondly, it is important to scale SGFT to higher-dimensional
action spaces and longer-horizon tasks. Thirdly, our choice of off-policy RL method can display a
degree of instability and a more efficient and stable base algorithm should be considered.
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A PROOFS

We first present several Lemma’s used in the proof of 1.
Lemma 1. (Bhardwaj et al., 2020, Lemma A.1.) Suppose that ∥p̂(s, a)−preal(s, a)∥1 ≤ α. Further
suppose ∆r = maxsim r(s)−minsim r(s) and ∆V = maxsim Vsim(s)−minsim Vsim(s) are finite.
Then, for each policy π̃ we may bound the H-step returns under the model and true dynamics by:

∥V̂ π̃
H(s)− V π̃

H∥∞ ≤ γ

(
1− γH−1

1− γ

∆r

2
+ γH ∆V

2

)
· αH. (9)

Proof. This result follows imediatly from the proof of (Bhardwaj et al., 2020, Lemma A.1.), with
changes to notation and noting that we assume access to the true reward.

Lemma 2. Suppose that ∥p̂(s, a) − preal(s, a)∥1 ≤ α. Further suppose ∆r = maxsim r(s) −
minsim r(s) and ∆V = maxsim Vsim(s) −minsim Vsim(s) are finite. Then for each state s ∈ S
we have:

V
π̂∗
H

H (s)− V ∗
H(s) ≤

(
1− γH−1

1− γ
∆r + γH∆V

)
(10)

where π̂∗
H ← maxπ̃H

V̂ π̃H (s).

Proof. Let π̃∗
H ← maxπ̃H

V π̃
H(s) be the optimal policy under the true dynamics. By Lemma 1 we

have both that

V ∗
H(s) ≤ V̂ π̃∗

H (s) + γ

(
1− γH−1

1− γ

∆r

2
+ γH ∆V

2

)
· αH. (11)

V̂
π̂∗
H

H (s) ≤ V
π̂∗
H

H (s) + γ

(
1− γH−1

1− γ

∆r

2
+ γH ∆V

2

)
· αH. (12)

Combining these two bounds with the fact that V̂ π̃∗
H (s) ≤ V

π̂∗
H

H (s) yields the desired result.

Lemma 3. Suppose that supa Es∼preal(s,a)[γVsim(s′)]−Vsim(s) > −r(s). Then we have V ∗
H(s) ≥

V ∗
H−1(s) for each s ∈ S. Then for each s ∈ S we have:

V ∗
H(s) ≥ V ∗

H−1(s) (13)

Proof. Fix an initial condition s0 ∈ S. Let π be arbitrary, and fix the shorthand π∗ =
{π∗

0 , . . . , π
∗
H−1} for the time-varying policy π∗ ← maxπ̂ V

π̂
H−2(s0). Then, concatenate these poli-

cies to define: π̄ = {π∗
1 , . . . , π

∗
H−2, π}, which is simply the result of applying the optimal policy for

the (H − 1)-step look ahead objective Equation (3) starting from s0, followed by applying π for a
single step. Letting the following distributions over trajectories by generated by π∗, by the definition
of V ∗

H :
V ∗
H(s0)

≥ E

[
γHVsim(sH) +

H−1∑
t=1

γtr(st)− Vsim(s0)

]
= E

[
γHVsim(sH)− γH−1Vsim(sH−1) + γHr(sH−1)

]
+ E

[
γH−1Vsim(sH−1) +

H−2∑
t=1

γtr(st)− Vsim(s0)

]

= E
[
γHVsim(sH)− γH−1Vsim(sH−1) + γHr(sH−1) + V ∗

H−1(s0)

]
Now, since our choice of π used to define π̄ was arbitrary, we choose π to be deterministic and
such that Es′∼preal(s,a)[γVsim(s′)] − Vsim(s) > −r(s) at each state s ∈ S, as guaranteed by the
assumption made for the result. This choice of policy grantees that:

E
[
γHVsim(sH)− γH−1Vsim(sH−1) + γHr(sH−1)

]
≥ 0. (14)

The desired result follows immediately by combining the two preceding bounds, and noting that
our choice of initial condition was arbitrary, meaning the preceding analysis holds for all initial
conditions.
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Lemma 4. Suppose that Vsim is improvable and further suppose that maxs∈S |Vsim(s) −
V ∗
real(s)| < ϵ. Then any policy π which satisfies A∗

H(s, π) = Q∗
H(s, π) − V ∗

H(s) ≥ −δ will
satisfy:

V ∗
real(s)− V π

real(s) ≤ γHϵ+
δ

1− γ
. (15)

Proof. Our goal is first to bound how Q∗
H(s, π) changes on expectation when applying the given

policy for a single step. We have that:

Q∗
H(s, π) + δ ≥ V ∗

H(s) (16)

V ∗
H(s) ≥ V ∗

H−1(s) (17)

Q∗
H(s, π) = E[γV ∗

H−1(s
′) + r̄(s, s′)] (18)

where the first inequality follows from the Assumption of the theorem, the second inequality follows
from Lemma 3 and is simply the definition of Q∗

H . Letting s′ ∼ preal(s, a) with a ∼ π(·|s), we can
take expectations can combine the previous relation to obtain:

γE [Q∗
H(s′, π) + r̄(s, s′)]+γδ ≥ γE [V ∗

H(s′) + r̄(s, s′)] + ≥ E
[
γV ∗

H−1(s
′) + r̄(s, s′)

]
= Q∗

H(s, π).
(19)

That is:
γE [Q∗

H(s′, π)] + r̄(s) + γδ ≥ Q∗
H(s, π). (20)

Alternatively:
r̄(s) ≥ Q∗

H(s, π)− γE[Q∗
H(s′, π)]− γδ. (21)

Next, we use this bound to provide a lower bound for V π
real(s). Because the previous analysis holds

at all states when we apply π, the following holds over the distribution of trajectories generated by
applying π starting from the initial condition s0 :

Eρπ
real(s)

[ ∞∑
t=0

γtr̄(st)

]
= V π

real(s)− Vs(s0)

≥ Eρπ
real(s)

[ ∞∑
t=0

γt

(
Q∗

H(st, π)− γQ∗
H(st+1, π)

)]
− γδ

∞∑
t=0

γt

= Q∗
H(s0, π)−

γδ

1− γ
,

where we have repeatedly telescoped out sums to cancel out terms.
Thus, we have the lower-bound:

V π
real(s) ≥ Q∗

H(s, π) + Vsim(s0)−
γδ

1− γ
(22)

Next, we may bound:

V ∗
H(s0) + Vsim(s0) ≥ E

ρπ∗
real (s0)

[
γHVsim(sH) +

H−1∑
t=0

γtr(st)

]
(23)

= E
ρπ∗

real (s0)

[
γHVsim(sH)− γHV ∗

real(sH) + γHV ∗
real(sH) +

H−1∑
t=0

γtr(st)

]
= E

ρπ∗
real (s0)

[
γHVsim(sH)− γHV ∗

real(sH)
]
+ V ∗

real(s0).

Invoking the assumption that maxs |Vsim(s) − V ∗
real(s)| < ϵ, we can combined this with the pre-

ceding bound to yield:
V ∗
H(s0) + Vsim(s0) ≥ V ∗

real(s)− γHϵ. (24)
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Finally, once more invoking the fact that Q∗
H(s, π) + δ ≥ V ∗

H(s) for each s ∈ S and combining this
with Equation (22) and Equation (23), we obtain that:

V π
real(s) ≥ Q∗

H(s, π) + Vsim(s0)−
γδ

1− γ

≥ V ∗
H(s0) + Vsim(s0)−

γδ

1− γ
− δ

≥ V ∗
real(s)−

γδ

1− γ
− δ − γHϵ

= V ∗
real(s)−

δ

1− γ
− γHϵ

from which the state result follows immediately.

Proof of Theorem 1:

Proof. The result follows directly from a combination of Lemma 4 and Lemma 2 by suppressing
problem-dependent constants and lower order terms in the discount factor γ.

B ENVIRONMENT DETAILS

Sim2Real Environment. We use a 7-DoF Franka FR3 robot with a 1-DoF parallel-jaw gripper. Two
calibrated Intel Realsense D455 cameras are mounted across from the robot to capture position of
the object by color-thresholding pointcloud readings or retrieving pose estimation from aruco tags.
Commands are sent to the controller at 5Hz. We restrict the end-effector workspace of the robot in a
rectangle for safety so the robot arm doesn’t collide dangerously with the table and objects outside
the workspace. We conduct extensive domain randomization and randomize the initial gripper pose
during simulation training. The reward is computed from measured proprioception of the robot and
estimated pose of the object. Details for each task are listed below.

Hammering. For hammering, the action is 3-dimensional and sets delta joint targets for 3 joints
of the robot using joint position control. The observation space is 12-dimensional and includes end-
effector cartesian xyz, joint angles of the 3 movable joints, joint velocites of the 3 movable joints, the
z position of the nail, and the xz position of the goal. Each trajectory is 50 timesteps. In simulation,
we randomize over the position, damping, height, radius, mass, and thickness of the nail. Details
are listed in Tab. 1.

The reward function is parameterized as r(t) = −10 · rnail−goal(t) where rnail−goal = (rnail)z −
(rgoal)z represents the distance in the z dimension of the nail head to the goal, which we set to be the
height of the board the nail is on.

Puck Pushing. For puck pushing, the action is 2-dimensional and sets delta cartesian xy position
targets using end-effector position control. The observation space is 4-dimensional and includes
end-effector cartesian xy and the xy position of the puck object. Each trajectory is 40 timesteps. In
simulation, we randomize over the position of the puck. Details are listed listed in Tab. 3.

Let ree be the cartesian position of the end effector and robj be the cartesian position of the puck
object. The reward function is parameterized as r(t) = −ree−goal(t) − robj−goal(t) + rthreshold(t) −
rtable(t) where ree−goal(t) = ∥ree(t)−robj(t)+[3.5cm, 0.0cm, 0.0cm]∥ represents the distance of the
end effector to the back of the puck, robj−goal(t) = ∥(robj(t))x−55cm∥ represents the distance of the
puck to the goal (which is the edge of the table along the x dimension), rthreshold(t) = I[robj−goal(t) ≥
2.5cm] represents a goal reaching binary signal, and rtable(t) = I[(robj(t))z ≤ 0.0] represents a
binary signal for when the object falls of the table.

Inserting. For inserting, the action is 3-dimensional and sets delta cartesian xyz position tar-
gets using end effector position control. The observation space is 9-dimensional and includes
end-effector cartesian xyz, the xyz of the leg, and the xyz of the table hole. Each trajectory is
40 timesteps. In simulation, we randomize the initial gripper position, position of the table, and
friction of both the table and the leg.

Let rpos1(t) and rpos2(t) represent the Cartesian positions of the leg and table hole. Let:

xdistance(t) = clip (|rpos1,x(t)− rpos2,x(t)|, 0.0, 0.1)
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ydistance(t) = clip (|rpos1,z(t)− rpos2,z(t)|, 0.0, 0.1)
zdistance(t) = clip (|rpos1,y(t)− rpos2,y(t)|, 0.0, 0.1)

Let the success condition be defined as:

rsuccess(t) = I [xdistance(t) < 0.01 and ydistance(t) < 0.01 and zdistance(t) < 0.01]

The reward function is now:

r(t) = rsuccess(t)− 100 ∗
(
xdistance(t)

2 + ydistance(t)
2 + zdistance(t)

2
)

Sim2Sim Environment. We additionally attempt to model a sim2real dynamics gap in simu-
lation by taking the hammering environment and create a proxy for the real environment by fixing
the domain randomization parameters, fixing the initial gripper pose, and rescaling the action mag-
nitudes before rolling out in the environment.

C IMPLEMENTATION DETAILS

Algorithm Details. We use SAC as our base off-policy RL algorithm for training in simulation and
fine-tuning in the real world. For our method, we additionally add in two networks: a dynamics
model that predicts next state given current state and action, and a state-conditioned value network
which regresses towards the Q-value estimates for actions taken by the current policy. These net-
works are training jointly with the actor and critic during SAC training in simulation.

Network Architectures. The Q-network, value network, and dynamics model are all parame-
terized by a two-layer MLP of size 512. The dynamics model is implemented as a delta dynamics
model where model predictions are added to the input state to generate next states. The policy net-
work produces the mean µa and a state-dependent log standard deviation log σa which is jointly
learned from the action distribution. The policy network is parameterized by a two-layer MLP of
size 512, with a mean head and log standard deviation head on top parameterized by a FC layer.

Pretraining in Simulation. For hammering and puck pushing, we collect 25,000,000 transitions
of random actions and pre-compute the mean and standard deviation of each observation across
this dataset. We train SAC in simulation on the desired task by sampling 50-50 from the random
action dataset and the replay buffer. We normalize our observations by the pre-computed mean
and standard deviation before passing them into the networks. We additionally add Gaussian noise
centered at 0 with standard deviation 0.004 to our observations with 30% probability during training.
For inserting, we train SAC in simulation with no normalization. We train SAC with autotuned
temperature set initially to 1 and a UTD of 1. We use Adam optimizer with a learning rate of
3× 10−4, batch size of 256, and discount factor γ = .99.

Fine-tuning in Real World. We pre-collect 20 real-world trajectories with the policy learned in
simulation to fill the empty replay buffer. We then reset the critic with random weights and continue
training SAC with a fixed temperature of α = 0.01 and with a UTD of 2d with the pretrained actor
and dynamics model. We freeze the value network learned from simulation and use it to relabel
PBRS rewards during fine-tuning. During fine-tuning, for each state sampled from the replay buffer,
we additionally hallucinate 5 branches off and add it to the training batch. As a result, our batch
size effectively becomes 1536. The policy, Q-network, and dynamics model are all trained jointly
on the real data during SAC fine-tuning. We don’t train on any simulation data during real-world
fine-tuning because we empirically found it didn’t help fine-tuning performance in our settings.
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Table 1: Domain randomization of hammer-
ing task in simulation

Name Range

Nail x position (m) [0.3, 0.4]
Nail z position (m) [0.55, 0.65]
Nail damping [250.0, 2500.0]
Nail half height (m) [0.02, 0.06]
Nail radius (m) [0.005, 0.015]
Nail head radius (m) [0.03, 0.04]
Nail head thickness (m) [0.001, 0.01]
Hammer mass (kg) [0.015, 0.15]

Table 2: Domain randomization of puck
pushing task in simulation

Name Range

Puck x position (m) [0.0, 0.3]
Puck y position (m) [-0.25, 0.25]

Table 3: Domain randomization of inserting
task in simulation

Name Range

Parts x/y position (m) [-0.05, 0.05]
Parts rotation (degrees) [0, 15]
Parts friction [-0.01, 0.01]

D QUALITATIVE RESULTS

Figure 5: Visualization of real rollout, hallucinated states, and
value function. The red dots indicate states along a real rollout
in simulation. The blue dots indicate hallucinated states branch-
ing off real states generated by the learned dynamics model. The
green heatmap indicates the value function estimates at different
states. A corresponding image of the state is shown for two states.
Since it is hard to directly visualize states and values due to the
high-dimensionality of the state space, we only show a part of the
trajectory where the puck does not move. This allows us to visual-
ize states and values along changes in only end effector xy.

We analyze the characteristics of hal-
lucinated states and value functions
in Fig. 5. We visualize a trajec-
tory of executing puck pushing in
simulation using the learned policy
in this plot. The red dots indicate
states along a real rollout in simula-
tion. The blue dots indicate halluci-
nated states branching off real states
generated by the learned dynamics
model. The green heatmap indicates
the value function estimates at differ-
ent states. A corresponding image of
the state is shown for two states. The
trajectory shown in the figure shows
the learned policy moving closer to
the puck before pushing it. The value
function heatmap shows higher val-
ues when the end effector is closer to
the puck and lower values when fur-
ther. Hallucinated states branching
off each state show generated states
for fine-tuning the learned policy.

Note that it is hard to directly
visualize states and values due to
the high-dimensionality of the state
space. To get around this for puck
pushing, we only show a part of the
trajectory where the puck does not
move. This allows us to visualize states and values along changes in only end effector xy.
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E SIM-TO-SIM EXPERIMENTS

Here we additionally test each of the proposed methods on the sim-to-sim set-up from Du et al.
(2021), which is meant to mock sim-to-real gaps but for familiar RL benchmark tasks. The results
are depicted in Figure for the Walker Walk and Cheetah run environments. For both tasks, we use
the precise settings from Du et al. (2021). Note that the general trend of these results matches our
real world experiments – SGFT substantially accelerates learning and overcoming the dynamics gap
between the ‘simulation’ and ‘real environments’.

Figure 6: Normalized Rewards for Sim-to-Sim Transfer. We plot the normalized rewards for two sim-to-
sim transfer tasks, where the rewards are normalized by the maximum reward achieved by any method.

F PEDIGOGICAL EXAMPLE:

We use the following pedagogical example to begin building an intuition for why we might expect
Vsim to also be improvable with respect toMreal.

Pedagogical Example. Consider the following case where the real and simulated dynamics are
both deterministic, namely, s′ = freal(s, a) and s′ = fsim(s, a) for some real and simulated tran-
sition maps freal and fsim. Further, assume for simplicity that πsim is deterministic. Specifically,
consider the case where s = (s1, s2) ∈ S ⊂ R2, a ∈ A = R, and the dynamics are given by:

fsim(s, a) =

[
s′1
s′2

]
=

[
s1
s2

]
+∆t

[
x2

g
l sin(x1) + a

]

freal(s, a) =

[
s′1
s′2

]
=

[
s1
s2

]
+∆t

[
x2

g
l sin(x1) + a+ e(s1, s2).

]
These are the equations of motion for a simple pendulum (Wang et al., 2022) under an Eu-
ler discretization with time step ∆t, where s1 is the angle of the arm, s2 is the angular ve-
locity, a is the torque applied by the motor, g is the gravitational constant, and l is the length
of the arm. The real-world dynamics contains unmodeled terms e(s1, s2), which might corre-
spond to complex frictional or damping effects. Consider the policy for the real world given by
πreal(s) = πsim(s) − e(s1, s2) and observe that fsim(s, πsim(s)) = freal(s, πreal(s)). This im-
plies that γVsim(freal(s, πreal(s))) − Vsim(s) = γVsim(fsim(s, πsim(s))) − Vsim(s) = −r(s),
and thus Vsim is improvable with respect toMreal, because it is improvable with respect toMsim

by definition. Note that πsim and πreal can differ substantially for a large gap e(s1, s2).

Main Insight. To make this property precise, we observe the following fact: if we assume that for
any state s, there is some a such that preal(·|s, a) = psim(·|s, πsim(s)), then Vsim is improvable
with respect toMreal. More generally, for many continuous control tasks, it is reasonable to expect
that psim approximately captures the geometry of what motions are possible under preal, even if
the actions required to realize those motions in the two MDPs differ substantially, and thus it is
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reasonable to assume Vsim is improvable. This intuition is highlighted by our real-world learning
examples in cases where we use SGFT with a prediction horizon of H = 1. In these casess the
learned policy is able to greedily follow Vsim at each state and reach the goal, even in the face of
large dynamics gaps.
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