
Fused Gromov-Wasserstein Graph Mixup for
Graph-level Classifications

Xinyu Ma1 Xu Chu2∗ Yasha Wang1,3 Yang Lin1 Junfeng Zhao1
Liantao Ma1,3 Wenwu Zhu2

1School of Computer Science, Peking University
2Department of Computer Science and Technology, Tsinghua University

3National Research and Engineering Center of Software Engineering, Peking University
maxinyu@pku.edu.cn, chu_xu@mail.tsinghua.edu.cn

Abstract

Graph data augmentation has shown superiority in enhancing generalizability and
robustness of GNNs in graph-level classifications. However, existing methods
primarily focus on the augmentation in the graph signal space and the graph
structure space independently, neglecting the joint interaction between them. In this
paper, we address this limitation by formulating the problem as an optimal transport
problem that aims to find an optimal inter-graph node matching strategy considering
the interactions between graph structures and signals. To solve this problem, we
propose a novel graph mixup algorithm called FGWMixup, which seeks a "midpoint"
of source graphs in the Fused Gromov-Wasserstein (FGW) metric space. To
enhance the scalability of our method, we introduce a relaxed FGW solver that
accelerates FGWMixup by improving the convergence rate from O(t−1) to O(t−2).
Extensive experiments conducted on five datasets using both classic (MPNNs) and
advanced (Graphormers) GNN backbones demonstrate that FGWMixup effectively
improves the generalizability and robustness of GNNs. Codes are available at
https://github.com/ArthurLeoM/FGWMixup.

1 Introduction

In recent years, Graph Neural Networks (GNNs) [1, 2] have demonstrated promising capabilities in
graph-level classifications, including molecular property prediction [3, 4], social network classifica-
tion [5], healthcare prediction [6, 7], etc. Nevertheless, similar to other successfully deployed deep
neural networks, GNNs also suffer from data insufficiency and perturbation, requiring the application
of regularization techniques to improve generalizability and robustness [8]. Data augmentation is
widely adopted for regularization in deep learning. It involves creating new training data by applying
various semantic-invariant transformations to the original data, such as cropping or rotating images in
computer vision [9], randomly inserting and rephrasing words in natural language [10, 11], etc. The
augmented data fortify deep neural networks (DNNs) against potential noise and outliers underlying
insufficient samples, enabling DNNs to learn more robust and representative features.

Data augmentation for GNNs requires a unique design due to the distinctive properties of attributed
graphs [12], such as irregular sizes, misaligned nodes, and diverse topologies, which are not encoun-
tered when dealing with data in the Euclidean spaces such as images and tabular data. Generally, the
augmentation for GNNs necessitates the consideration of two intertwined yet complementary input
spaces, namely the graph signal space X and the graph structure space A, which are mapped to an
aligned latent space H with GNNs. The graph signal space X consists of node features. Current

∗Corresponding Author

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/ArthurLeoM/FGWMixup

GNNs rely on parameterized nonlinear transformations to process graph signals, which can be effi-
ciently encoded and serve as crucial inputs for downstream predictions. Therefore, the augmentation
of graph signals is significant for regularizing the GNN parameter space. On the other hand, the graph
structure space A consists of information about graph topology. Traditional Message Passing Neural
Networks (MPNNs), such as GCN and GIN, perform feature aggregation based on edge connectivity.
Great efforts [13, 14, 15, 16] have been further exerted on enhancing the expressive power of GNNs
[17], which carry out new GNN architectures with stronger sensitivity to graph topology compared
with MPNNs. Hence, a good augmentation method should also consider the graph structure space.

Recently, huge efforts have been made to design graph data augmentation methods based on the two
spaces. Mainstream research [18, 19, 20, 21, 22] considers the augmentation in the graph signal
space and the graph structure space independently. For instance, ifMixup [19] conducts Euclidean
mixup in the graph signal space, yet fails to preserve key topologies of the original graphs. G-Mixup
[20] realizes graph structure mixup based on the estimated graphons, yet fails to assign semantically
meaningful graph signals. In fact, the graph signal and structure spaces are not isolated from each
other, and there are strong entangling relations between them [23]. Therefore, a joint modeling of
the interaction between the two spaces is essential for conducting graph data augmentation
(joint modeling problem for short).

Aiming at graph data augmentation and addressing the joint modeling problem, we design a novel
graph mixup [24] method considering the interaction of the two spaces during the mixup procedure.
The key idea is to solve a proper inter-graph node matching strategy in a metric space that measures
the distance with respect to both graph signals and structures. We propose to compute the distance
metric by solving an optimal transport (OT) problem [25]. The OT problem solves the optimal
coupling between nodes across graphs in the fused Gromov-Wasserstein metric space [26], wherein
the distance between points takes the interaction between the graph signals and structures into
account. Specifically, following [26], graphs can be modeled as probability distributions embedded
in the product metric space X × A. Our objective is to solve an augmented graph that minimizes
the weighted sum of transportation distances between the distributions of the source graphs and
the objective graph in this metric space. Developing from the Gromov-Wasserstein metric [27],
Fused Gromov-Wasserstein (FGW) distance [26] has been designed to calculate the transportation
distance between two unregistered probability distributions defined on different product metric spaces
comprising two components, such as graph signals and structures, which defines a proper distance
metric for attributed graphs. In short words, the solved graph is the augmented mixup graph in a
space considering the interaction between the graph signals and structures.

However, trivially adopting FGW distance solvers [28, 26] is not scalable to large graph datasets due
to a heavy computation burden. The computational bottleneck of FGW-based solvers is the nested
triple-loop optimization [29], mainly due to the polytope constraint for the coupling matrix in the
FGW solver. Inspired by [30], we disentangle the polytope constraint into two simplex constraints
for rows and columns respectively, thence executing mirror descent with projections on the two
simplexes in an alternating manner to approximate the original constraint. We prove that with a
bounded gap with the ideal optimum, we may optimize the entire algorithm into a double-loop
structure at convergence rate O(t−2), improving the O(t−1) rate of traditional FGW solvers.

In summary, we highlight the contributions of this paper: We address the challenge of enhancing the
generalizability and robustness of GNNs by proposing a novel graph data augmentation method that
models the interaction between the graph signal and structure spaces. We formulate our objective as
an OT problem and propose a novel graph mixup algorithm dubbed FGWMixup that seeks a "midpoint"
of two graphs defined in the graph structure-signal product metric space. We employ FGW as the
distance metric and speed up FGWMixup by relaxing the polytope constraint into disentangled simplex
constraints, reducing the complexity from nested triple loops to double loops and meanwhile improve
the convergence rate of FGWMixup. Extensive experiments are conducted on five datasets and four
classic (MPNNs) and advanced (Graphormers) backbones. The results demonstrate that our method
substantially improves the performance of GNNs in terms of their generalizability and robustness.

2 Methodology

In this section, we formally introduce the proposed graph data augmentation method dubbed
FGWMixup. We first introduce Fused Gromov-Wasserstein (FGW) distance that presents a dis-
tance metric between graphs considering the interaction of graph signal and structure spaces.

2

Then we propose our optimization objective of graph mixup based on the FGW metric and the
algorithmic solutions. Finally, we present our acceleration strategy. In the following we denote
∆n := {µ ∈ Rn

+|
∑

i µi = 1} as the probability simplex with n-bins, and Sn(A) as the set of
symmetric matrices of size n taking values in A ⊂ R.

2.1 Fused Gromov-Wasserstein Distance

In OT problems, an undirected attributed graph G with n nodes is defined as a tuple (µ,X,A). µ ∈
∆n denotes the probability measure of nodes within the graph, which can be modeled as the relative
importance weights of graph nodes. Common choices of µ are uniform distributions [31] (µ = 1n/n)
and degree distributions [32] (µ = [deg(vi)]i/(

∑
i deg(vi))) . X = (x(1), · · · ,x(n))⊤ ∈ Rn×d

denotes the node feature matrix with d-dimensional feature on each node. A ∈ Sn(R) denotes a
matrix that encodes structural relationships between nodes, which can be selected from adjacency
matrix, shortest path distance matrix or other distance metrics based on the graph topologies. Given
two graphs G1 = (µ1,X1,A1) and G2 = (µ2,X2,A2) of sizes n1 and n2 respectively, Fused
Gromov-Wasserstein distance can be defined as follows:

FGWq(G1, G2) = min
π∈Π(µ1,µ2)

∑
i,j,k,l

(
(1− α)d

(
x
(i)
1 ,x

(j)
2

)q

+ α |A1(i, k)−A2(j, l)|q
)
πi,jπk,l,

(1)
where Π(µ1,µ2) := {π ∈ Rn1×n2

+ |π1n2 = µ1,π
⊤1n1 = µ2} is the set of all valid couplings

between node distributions µ1 and µ2, d(·, ·) is the distance metric in the feature space, and α ∈ [0, 1]
is the weight that trades off between the Gromov-Wasserstein cost on graph structure and Wasserstein
cost on graph signals. The FGW distance is formulated as an optimization problem that aims to
determine the optimal coupling between nodes in a fused metric space considering the interaction of
graph structure and node features. The optimal coupling matrix π∗ serves as a soft node matching
strategy that tends to match two pairs of nodes from different graphs that have both similar graph
structural properties (such as k-hop connectivity, defined by A) and similar node features (such as
Euclidean similarity, defined by d(·, ·)). In fact, FGW also defines a strict distance metric on the
graph space (∆,X ,A) when q = 1 and As are distance matrices, and defines a semi-metric whose
triangle inequality is relaxed by 2q−1 for q > 1. In practice, we usually choose q = 2 and Euclidean
distance for d(·, ·) to calculate FGW distance.

Solving FGW Distance Solving FGW distance is a non-convex optimization problem, whose
non-convexity comes from the quadratic term of the GW distance. There has been a line of research
contributing to solving this problem. [26] proposes to apply the conditional gradient (CG) algorithm
to solve this problem, and [28] presents an entropic approximation of the problem and solves the
optimization through Mirror Descent (MD) algorithm according to KL-divergence.

2.2 Solving Graph Mixup in the FGW Metric Space

Building upon the FGW distance and its properties, we propose a novel graph mixup method
dubbed FGWMixup. Formally, our objective is to solve a synthetic graph G̃ = (µ̃, X̃, Ã) of size
ñ that minimizes the weighted sum of FGW distances between G̃ and two source graphs G1 =
(µ1,X1,A1) and G2 = (µ2,X2,A2) respectively. The optimization objective is as follows:

arg min
G̃∈(∆ñ,Rñ×d,Sñ(R))

λFGW(G̃,G1) + (1− λ)FGW(G̃,G2), (2)

where λ ∈ [0, 1] is a scalar mixing ratio, usually sampled from a Beta(k, k) distribution with hyper-
parameter k. This optimization problem formulates the graph mixup problem as an OT problem that
aims to find the optimal graph G̃ at the "midpoint" of G1 and G2 in terms of both graph signals and
structures. When the optimum G̃∗ is reached, the solutions of FGW distances between G̃∗ and the
source graphs G1, G2 provide the node matching strategies that minimize the costs of aligning graph
structures and graph signals. The label of G̃ is then assigned as yG̃ = λyG1 + (1− λ)yG2 .

In practice, we usually fix the node probability distribution of G̃ with a uniform distribution (i.e.,
µ̃ = 1ñ/ñ) [26]. Then, Eq.2 can be regarded as a nested bi-level optimization problem, which
composes the upper-level optimization w.r.t. the node feature matrix X̃ and the graph structure Ã,

3

and the lower-level optimization w.r.t. the couplings between current G̃ and G1, G2 denotes as π1,π2.
Inspired by [28, 26, 33], we propose to solve Eq.2 using a Block Coordinate Descent algorithm,
which iteratively minimizes the lower-level and the upper-level with a nested loop framework. The
algorithm is presented in Alg.1. The inner loop solves the lower-level problem (i.e., FGW distance
and the optimal couplings π(k)

1 ,π
(k)
2) based on X̃(k), Ã(k) at the k-th outer loop iteration, which is

non-convex and requires optimization algorithms introduced in Section 2.1. The outer loop solves
the upper-level problem (i.e., minimizing the weighted sum of FGW distances), which is a convex
quadratic optimization problem w.r.t. X̃(k) and Ã(k) with exact analytical solution (i.e., Line 7,8).

Algorithm 1 FGWMixup: Solving Eq.2 with BCD Algorithm
1: Input: µ̃, G1 = (µ1,X1,A1), G2 = (µ2,X2,A2)

2: Optimizing: X̃ ∈ Rñ×d, Ã ∈ Sñ(R),π1 ∈ Π(µ̃,µ1),π2 ∈ Π(µ̃,µ2).
3: for k in outer iterations and not converged do:
4: G̃(k) := (µ̃, X̃(k), Ã(k))

5: Solve argmin
π

(k)
1

FGW(G̃(k), G1) with MD or CG (inner iterations)

6: Solve argmin
π

(k)
2

FGW(G̃(k), G2) with MD or CG (inner iterations)

7: Update Ã(k+1) ← 1
µ̃µ̃⊤ (λπ

(k)
1 A1π

(k)
1

⊤
+ (1− λ)π

(k)
2 A2π

(k)
2

⊤
)

8: Update X̃(k+1) ← λdiag(1/µ̃)π
(k)
1 X1 + (1− λ)diag(1/µ̃)π

(k)
2 X2

9: end for
10: return G̃(k), yG̃ = λyG1

+ (1− λ)yG2

2.3 Accelerating FGWMixup

Algorithm 1 provides a practical solution to optimize Eq.2, whereas the computation complexity is
relatively high. Specifically, Alg.1 adopts a nested double-loop framework, where the inner loop
is the FGW solver that optimizes the couplings π, and the outer loop updates the optimal feature
matrix X̃ and graph structure Ã accordingly. However, the most common FGW solvers, such as MD
and CG, require another nested double-loop algorithm. This algorithm invokes (Bregman) projected
gradient descent type methods to address the non-convex optimization of FGW, which involves taking
a gradient step in the outer loop and projecting to the polytope-constrained feasible set w.r.t. the
couplings in the inner loop (e.g., using Sinkhorn [30] or Dykstra [34] iterations). Consequently, this
makes the entire mixup algorithm a triple-loop framework, resulting in a heavy computation burden.

Therefore, we attempt to design a method that efficiently accelerates the algorithm. There lie two
efficiency bottlenecks of Alg.1: 1) the polytope constraints of couplings makes the FGW solver
a nested double-loop algorithm, 2) the strict projection of couplings to the feasible sets probably
modifies the gradient step to another direction that deviates from the original navigation of the
gradient, possibly leading to a slower convergence rate. In order to alleviate the problems, we
are motivated to slightly relax the feasibility constraints of couplings to speed up the algorithm.
Inspired by [29, 30], we do not strictly project π to fit the polytope constraint Π(µi,µj) := {π ∈
Rn1×n2

+ |π1n2
= µ1,π

⊤1n1
= µ2} after taking each gradient step. Instead, we relax the constraint

into two simplex constraints of rows and columns respectively (i.e., Π1 := {π ∈ Rn1×n2
+ |π1n2

=

µ1}, Π2 := {π ∈ Rn1×n2
+ |π⊤1n1

= µ2}), and project π to the relaxed constraints Π1 and Π2 in an
alternating fashion. The accelerated algorithm is presented in Alg.2, dubbed FGWMixup∗.

Alg.2 mainly substitutes Line 5 and Line 6 of Alg.1 with a single-loop FGW distance solver (Line
7-12 in Alg.2) that relaxes the joint polytope constraints of the couplings. Specifically, we remove
the constant term in FGW distance, and denote the equivalent metric as FGW(G1, G2). The
optimization objective of FGW(G1, G2) can be regarded as a function of π, and we name it the
FGW function f(π) (See Appendix A.1 for details). Then we employ entropic regularization on
f(π) and select Mirror Descent as the core algorithm for the FGW solver. With the negative entropy
ϕ(x) =

∑
i xi log xi as the Bregman projection, the MD update takes the form of:
π ← π ⊙ exp(−γ∇πf(π)), π ← Projπ∈Πi

(π) := arg min
π∗∈Πi

∥π∗ − π∥ , (3)

where γ is the step size. The subgradient of FGW w.r.t. the coupling π can be calculated as:
∇πf(π) = (1− α)D − 4αA1πA2, (4)

4

Algorithm 2 FGWMixup∗: Accelerated FGWMixup
1: Input: µ̃, G1 = (µ1,X1,A1), G2 = (µ2,X2,A2)

2: Optimizing: X̃ ∈ Rñ×d, Ã ∈ Sñ(R),π1 ∈ Π(µ̃,µ1),π2 ∈ Π(µ̃,µ2).
3: for k in outer iterations and not converged do:
4: G̃(k) := (µ̃, X̃(k), Ã(k))

5: D
(k)
1 :=

(
d(X̃(k)[i],X1[j])

)
ñ×n1

, D(k)
2 :=

(
d(X̃(k)[i],X2[j])

)
ñ×n2

6: for i in {1, 2} do
7: while not convergence do: ▷ Solve argmin

π
(k)
i

FGW(G̃(k), Gi)

8: π
(k)
i ← π

(k)
i ⊙ exp

(
γ(4αÃ(k)π

(k)
i Ai − (1− α)D

(k)
i)

)
9: π

(k)
i ← diag(µ̃./π

(k)
i 1ñ)π

(k)
1 ▷ Bregman Projection on row constraint

10: π
(k)
i ← π

(k)
i ⊙ exp

(
γ(4αÃ(k)π

(k)
i Ai − (1− α)D

(k)
i)

)
11: π

(k)
i ← π

(k)
i diag(µi./π

(k)
i

⊤
1ni

) ▷ Bregman Projection on column constraint
12: end while
13: end for
14: Update Ã(k+1) ← 1

µ̃µ̃⊤ (λπ
(k)
1 A1π

(k)
1

⊤
+ (1− λ)π

(k)
2 A2π

(k)
2

⊤
)

15: Update X̃(k+1) ← λdiag(1/µ̃)π
(k)
1 X1 + (1− λ)diag(1/µ̃)π

(k)
2 X2

16: end for
17: return G̃(k), yG̃ = λyG1

+ (1− λ)yG2

where D = (d(X1[i],X2[j]))n1×n2
is the distance matrix of node features between two graphs. The

detailed derivation can be found in Appendix A.2.

Our relaxation is conducted in Line 9 and 11, where the couplings are projected to the row and
column simplexes alternately instead of directly to the strict polytope. Although this relaxation may
sacrifice some feasibility due to the relaxed projection, the efficiency of the algorithm has been greatly
promoted. On the one hand, noted that Π1 and Π2 are both simplexes, the Bregman projection w.r.t.
the negative entropy of a simplex can be extremely efficiently conducted without invoking extra
iterative optimizations (i.e., Line 9, 11), which simplifies the FGW solver from a nested double-loop
framework to a single-loop one. On the other hand, the relaxed constraint may also increase the
convergence efficiency due to a closer optimization path to the unconstrained gradient descent.

We also provide some theoretical results to justify our algorithm. Proposition 1 presents a convergence
rate analysis on our algorithm. Taking 1/γ as the entropic regularization coefficient, our FGW solver
can be formulated as Sinkhorn iterations, whose convergence rate can be optimized from O(t−1)
to O(t−2) by conducting marginal constraint relaxation. Proposition 2 presents a controlled gap
between the optima given by the relaxed single-loop FGW solver and the strict FGW solver.
Proposition 1. Let (X , µ), (Y, ν) be Polish probability spaces, and π ∈ Π(µ, ν) the prob-
ability measure on X × Y with marginals µ, ν. Let πt be the Sinkhorn iterations π2t =
argminΠ(∗,ν) H(·|π2t−1), π2t+1 = argminΠ(µ,∗) H(·|π2t), where H(p|q) = −

∑
i pi log

qi
pi

is the
Kullback-Leibler divergence, and Π(∗, ν) is the set of measures with second marginal ν and arbitrary
first marginal (Π(µ, ∗) is defined analogously). Let π∗ be the unique optimal solution. We have the
convergence rate as follows:

H(πt|π∗) +H(π∗|πt) = O(t−1), (5)

H(µt|µ) +H(µ|µt) +H(νt|ν) +H(ν|νt) = O(t−2), (6)

Proposition 1 implies the faster convergence of marginal constraints than the strict joint constraint.
This entails that with t Sinkhorn iterations of solving FGW, the solution of the relaxed FGW solver
moves further than the strict one. This will benefit the convergence rate of the whole algorithm with a
larger step size of π(k)

i in each outer iteration.
Proposition 2. Let C1, C2 be two convex sets, and f(π) denote the FGW function w.r.t. π. We
denote X as the critical point set of strict FGW that solves minπ f(π) + Iπ∈C1

+ Iπ∈C2
, defined

by:X = {π ∈ C1 ∩ C2 : 0 ∈ ∇f(π) +NC1
(π) +NC2

(π)}, and NC(π) is the normal cone to C

5

at π. The fix-point set Xrel of the relaxed FGW solving minπ,ω f(π) + f(ω) + h(π) + h(ω) is
defined by: Xrel = {π ∈ C1, ω ∈ C2 : 0 ∈ ∇f(π) + ρ(∇h(ω) − ∇h(π)) + NC1(π), and 0 ∈
∇f(ω) + ρ(∇h(π)−∇h(ω)) +NC2(ω)} where h(·) is the Bregman projection function. Then, the
gap between Xrel and X satisfies:

∃τ ∈ R, ∀(π∗, ω∗) ∈ Xrel, dist(
π∗ + ω∗

2
,X) := min

x∈X

∥∥∥∥π∗ + ω∗

2
− x

∥∥∥∥ ≤ τ/ρ. (7)

This bounded gap ensures the correctness of FGWMixup∗ that as long as we select a step size γ = 1/ρ
that is small enough, the scale of the upper bound τ/ρ will be sufficiently small to ensure the
convergence to the ideal optimum of our algorithm. The detailed proofs of Propositions 1 and 2 are
presented in Appendix B.

3 Experiments

3.1 Experimental Settings

Datasets We evaluate our methods with five widely-used graph classification tasks from the graph
benchmark dataset collection TUDataset [35]: NCI1 and NCI109 [36, 37] for small molecule
classification, PROTEINS [38] for protein categorization, and IMDB-B and IMDB-M [5] for social
networks classification. Noted that there are no node features in IMDB-B and IMDB-M datasets,
we augment the two datasets with node degree features as in [2, 19, 20]. Detailed statistics on these
datasets are reported in Appendix D.1.

Backbones Most existing works select traditional MPNNs such as GCN and GIN as the backbone.
However, traditional MPNNs exhibit limited expressive power and sensitivity to graph structures
(upper bounded by 1-Weisfeiler-Lehman (1-WL) test [17, 37]), while there exist various adavanced
GNN architectures [13, 14, 16] with stronger expressive power (upper bound promoted to 3-WL test).
Moreover, the use of a global pooling layer (e.g., mean pooling) in graph classification models may
further deteriorate their perception of intricate graph topologies. These challenges may undermine the
reliability of the conclusions regarding the effectiveness of graph structure augmentation. Therefore,
we attempt to alleviate the problems from two aspects. 1) We modify the READOUT approach of
GIN and GCN to save as much structural information as we can. Following [39], we apply a virtual
node that connects with all other nodes and use the final latent representation of the virtual node to
conduct READOUT. The two modified backbones are dubbed vGIN and vGCN. 2) We select two
Transformer-based GNNs with stronger expressive power as the backbones, namely Graphormer [39]
and Graphormer-GD [16]. They are proven to be more sensitive to graph structures, and Graphormer-
GD is even capable of perceiving cut edges and cut vertices in graphs. Detailed information about the
selected backbones is introduced in Appendix D.2.

Comparison Baselines We select the following data augmentation methods as the comparison
baselines. DropEdge [40] randomly removes a certain ratio of edges from the input graphs. DropNode
[41] randomly removes a certain portion of nodes as well as the edge connections. M-Mixup [42]
conducts Euclidean mixup in the latent spaces, which interpolates the graph representations after the
READOUT function. ifMixup [19] applies an arbitrary node matching strategy to conduct mixup on
graph node signals, without preserving key topologies of original graphs. G-Mixup [20] conducts
Euclidean addition on the estimated graphons of different classes of graphs to conduct class-level
graph mixup. We also present the performances of the vanilla backbones, as well as our proposed
method w/ and w/o acceleration, denoted as FGWMixup∗ and FGWMixup respectively.

Experimental Setups For a fair comparison, we employ the same set of hyperparameter configura-
tions for all data augmentation methods in each backbone architecture. For all datasets, We randomly
hold out a test set comprising 10% of the entire dataset and employ 10-fold cross-validation on the
remaining data. We report the average and standard deviation of the accuracy on the test set over
the best models selected from the 10 folds. This setting is more realistic than reporting results from
validation sets in a simple 10-fold CV and allows a better understanding of the generalizability [43].
We implement our backbones and mixup algorithms based on Deep Graph Library (DGL) [44] and
Python Optimal Transport (POT) [45] open-source libraries. More experimental and implementation
details are introduced in Appendix D.3 and D.4.

6

PROTEINS NCI1 NCI109 IMDB-B IMDB-M
Methods vGIN vGCN vGIN vGCN vGIN vGCN vGIN vGCN vGIN vGCN

M
PN

N
s

vanilla 74.93(3.02) 74.75(2.60) 76.98(1.87) 76.91(1.80) 75.70(1.85) 75.89(1.35) 71.30(4.96) 72.30(4.34) 49.00(2.64) 49.47(3.76)
DropEdge 73.59(2.50) 74.48(4.18) 76.47(2.85) 76.16(2.04) 75.38(2.05) 75.77(1.55) 73.30(3.85) 73.30(3.29) 49.47(2.66) 49.40(3.52)
DropNode 74.48(2.91) 75.11(3.00) 76.89(1.25) 77.42(1.71) 73.98(2.16) 75.45(1.90) 71.50(3.23) 73.20(5.58) 49.80(3.29) 50.00(3.41)
M-Mixup 74.40(3.00) 75.65(4.51) 76.45(3.39) 77.76(2.75) 75.41(2.78) 75.79(1.85) 72.20(4.83) 72.80(4.45) 49.13(3.25) 49.47(2.56)
ifMixup 74.76(3.71) 74.04(2.27) 76.16(1.78) 77.37(2.56) 76.13(1.87) 76.74(1.56) 72.50(3.98) 72.40(5.14) 49.07(3.16) 49.73(4.67)
G-Mixup 74.84(2.99) 74.57(2.88) 76.42(1.79) 77.79(1.88) 75.55(2.32) 76.38(1.79) 72.40(4.82) 72.20(6.45) 49.47(4.73) 49.60(3.90)
FGWMixup 75.02(3.86) 76.01(3.19) 78.32(2.65) 78.37(2.40) 76.40(1.65) 76.79(1.81) 73.00(3.69) 73.40(5.12) 49.80(2.63) 50.80(4.06)
FGWMixup∗ 75.20(3.30) 75.20(3.03) 77.27(2.71) 78.47(1.74) 76.64(2.60) 76.52(1.59) 73.50(4.54) 74.00(2.90) 49.20(3.38) 50.47(5.44)

Methods Graphormer GraphormerGD Graphormer GraphormerGD Graphormer GraphormerGD Graphormer GraphormerGD Graphormer GraphormerGD

G
ra

ph
or

m
er

s

vanilla 75.47(3.16) 76.01(2.02) 61.56(3.70) 77.49(2.01) 65.54(3.04) 74.99(1.23) 70.40(5.00) 71.50(4.20) 48.87(4.10) 47.47(2.98)
DropEdge 75.20(4.02) 75.12(3.22) 63.07(3.21) 74.94(2.44) 66.73(3.50) 74.73(3.22) 71.10(5.65) 72.30(3.93) 49.60(4.09) 46.67(3.85)
DropNode 75.20(2.13) 76.28(3.49) 64.96(2.18) 76.20(1.95) 63.73(3.46) 74.78(2.07) 71.60(5.18) 71.30(5.18) 48.47(4.08) 47.67(2.83)
M-Mixup 75.11(3.78) 74.39(3.83) 62.31(3.48) 75.47(1.45) 66.54(2.70) 74.61(1.86) 71.10(4.83) 70.50(4.70) 49.67(4.25) 48.00(3.85)
G-Mixup 75.74(3.12) 74.85(3.52) 63.07(4.40) 76.06(3.12) 65.03(2.98) 74.90(2.04) 72.10(6.38) 71.10(5.01) 46.93(5.18) 46.80(4.41)
FGWMixup 76.82(2.35) 77.18(3.48) 66.45(2.58) 78.20(1.88) 67.36(3.21) 76.01(3.04) 72.60(5.08) 72.40(4.48) 49.73(3.80) 48.87(4.03)
FGWMixup∗ 76.19(3.20) 76.46(3.41) 64.26(3.25) 76.62(3.06) 67.46(2.82) 75.45(1.80) 71.70(4.17) 71.90(4.35) 50.27(4.26) 48.53(2.95)

Table 1: Test set classification accuracy (%) from 10-fold CV on five benchmark datasets. Results are
presented with the form of avg.(stddev.), and the best-performing method is highlighted in boldface.
Note: ifMixup has no results on Graphormers because it generates graphs with continuous edge
weights and is inapplicable for the Spatial Encoding module in the Graphormer-based architectures.

3.2 Experimental Results

Main Results We compare the performance of various GNN backbones on five benchmark datasets
equipped with different graph data augmentation methods and summarize the results in Table 1. As
is shown in the table, FGWMixup and FGWMixup∗ consistently outperform all other SOTA baseline
methods, which obtain 13 and 7 best performances out of all the 20 settings respectively. The
superiority is mainly attributed to the adoption of the FGW metric. Existing works hardly consider the
node matching problem to align two unregistered graphs embedded in the signal-structure fused metric
spaces, whereas the FGW metric searches the optimum from all possible couplings and conducts
semantic-invariant augmentation guided by the optimal node matching strategy. Remarkably, despite
introducing some infeasibility for acceleration, FGWMixup∗ maintains consistent performance due
to the theoretically controlled gap with the ideal optimum, as demonstrated in Prop. 1. Moreover,
FGWMixup and FGWMixup∗ both effectively improve the performance and generalizability of various
GNNs. Specifically, our methods achieve an average relative improvement of 1.79% on MPNN
backbones and 2.67% on Graphormer-based backbones when predicting held-out unseen samples.
Interestingly, most SOTA graph data augmentation methods fail to bring notable improvements
and even degrade the performance of Graphormers, which exhibit stronger expressive power and
conduct more comprehensive interactions between graph signal and structure spaces. For instance,
none of the baseline methods improve GraphormerGD on NCI109 and NCI1 datasets. However, our
methods show even larger improvements on Graphormers compared to MPNNs, as we explicitly
consider the interactions between the graph signal and structure spaces during the mixup process. In
particular, the relative improvements of FGWMixup reach up to 7.94% on Graphormer and 2.95% on
GraphormerGD. All the results above validate the effectiveness of our methods. Furthermore, we also
conduct experiments on large-scale OGB [46] datasets, and the results are provided in Appendix E.5.

Robustness against Label Corruptions In this subsection, we evaluate the robustness of our
methods against noisy labels. Practically, we introduce random label corruptions (i.e., switching to
another random label) with ratios of 20%, 40%, and 60% on the IMDB-B and NCI1 datasets. We
employ vGCN as the backbone model and summarize the results in Table 2. The results evidently
demonstrate that the mixup-series methods consistently outperform the in-sample augmentation
method (DropEdge) by a significant margin. This improvement can be attributed to the soft-labeling
strategy employed by mixup, which reduces the model’s sensitivity to individual mislabeled instances
and encourages the model to conduct more informed predictions based on the overall distribution
of the blended samples. Notably, among all the mixup methods, FGWMixup and FGWMixup∗ exhibit
stable and consistently superior performance under noisy label conditions. In conclusion, our methods
effectively enhance the robustness of GNNs against label corruptions.

Analysis on Mixup Efficiency We run FGWMixup and FGWMixup∗ individually with identical
experimental settings (including stopping criteria and hyper-parameters such as mixup ratio, etc.) on
the same computing device and investigate the run-time computational efficiencies. Table 3 illustrates

7

Methods IMDB-B NCI1
20% 40% 60% 20% 40% 60%

vanilla 70.00(5.16) 59.70(5.06) 47.90(4.30) 70.58(1.29) 61.95(2.19) 48.25(4.87)
DropEdge 68.30(5.85) 59.40(5.00) 50.10(1.92) 69.51(2.27) 60.32(2.60) 49.61(1.28)
M-Mixup 70.70(5.90) 59.70(5.87) 50.90(1.81) 71.53(2.75) 63.24(2.59) 48.66(3.02)
G-Mixup 67.50(4.52) 59.10(4.74) 49.40(2.87) 72.46(1.95) 63.26(4.39) 50.01(1.26)
FGWMixup 70.10(4.39) 61.90(6.17) 50.80(3.19) 72.92(1.56) 62.99(1.35) 50.12(3.51)
FGWMixup∗ 70.80(3.97) 61.80(5.69) 51.00(1.54) 72.75(2.29) 63.55(2.60) 50.02(3.38)

Table 2: Experimental results of robustness against label corruption with different ratios.

Avg. Mixup Time (s) / Fold
Datasets PROTEINS NCI1 NCI109 IMDB-B IMDB-M

FGWMixup 802.24 1711.45 1747.24 296.62 212.53
FGWMixup∗ 394.57 637.41 608.61 85.69 74.53

Speedup 2.03× 2.67× 2.74× 3.46× 2.85×

Table 3: Comparisons of algorithm execution efficiency between FGWMixup and FGWMixup∗.

the average time spent on the mixup procedures of FGWMixup and FGWMixup∗ per fold. We can
observe that FGWMixup∗ decreases the mixup time cost by a distinct margin, providing at least 2.03×
and up to 3.46× of efficiency promotion. The results are consistent with our theoretical analysis of
the convergence rate improvements, as shown in Proposition 1. More detailed efficiency statistics
and discussions are introduced in Appendix E.3.

Infeasibility Analysis on the Single-loop FGW Solver in FGWMixup∗ We conduct an experiment
to analyze the infeasibility of our single-loop FGW solver compared with the strict CG solver.
Practically, we randomly select 1,000 pairs of graphs from PROTEINS dataset and apply the two
solvers to calculate the FGW distance between each pair of graphs. The distances of the i-th pair of
graphs calculated by the strict solver and the relaxed solver are denoted as di and d∗i , respectively.
We report the following metrics for comparison:

• MAE: Mean absolute error of FGW distance, i.e., 1
N

∑
|di − d∗i |.

• MAPE: Mean absolute percentage error of FGW distance, i.e., 1
N

∑ |di−d∗
i |

di
.

• mean-FGW: Mean FGW distance given by the strict CG solver, i.e., 1
N

∑
di.

• mean-FGW*: Mean FGW distance given by the single-loop solver, i.e., 1
N

∑
d∗i .

• T-diff: L2-norm of the difference between two transportation plan matrices (divided by the
size of the matrix for normalization).

MAE MAPE mean-FGW mean-FGW* T-diff

0.0126(0.0170) 0.0748(0.1022) 0.2198 0.2143 0.0006(0.0010)

Table 4: Infeasibility analysis on the single-loop FGW solver in FGWMixup∗.

The results are shown in Table 4. We can observe that the MAPE is only 0.0748, which means the
FGW distance estimated by the single-loop relaxed solver is only 7.48% different from the strict CG
solver. Moreover, the absolute error is around 0.01, which is quite small compared with the absolute
value of FGW distances (~0.21). We can also find that the L2-norm of the difference between two
transportation plan matrices is only 0.0006, which means two solvers give quite similar transportation
plans. All the results imply that the single-loop solver will not produce huge infeasibility or make the
estimation of FGW distance inaccurate.

3.3 Further Analyses

Effects of the Trade-off Coefficient α We provide sensitivity analysis w.r.t. the trade-off coefficient
α of our proposed mixup methods valued from {0.05, 0.5, 0.95, 1.0} on two backbones and two

8

Methods PROTEINS NCI1
α=0.95 α=0.5 α=0.05 α=1.0 α=0.95 α=0.5 α=0.05 α=1.0

vGIN-FGWMixup 75.02(3.86) 75.38(2.58) 74.86(2.40) 74.57(2.62) 78.32(2.65) 77.42(1.93) 77.62(2.37) 75.91(2.93)
vGCN-FGWMixup 76.01(3.19) 75.47(3.56) 74.93(2.74) 74.40(3.57) 78.37(2.40) 77.93(1.68) 78.00(1.00) 77.27(0.92)
vGIN-FGWMixup∗ 75.20(3.30) 74.57(3.30) 74.39(3.01) 73.94(3.86) 77.27(2.71) 77.23(2.47) 76.59(2.14) 77.20(1.69)
vGCN-FGWMixup∗ 75.20(3.03) 74.57(3.52) 74.84(3.16) 74.66(2.91) 78.47(1.74) 77.66(1.48) 78.93(1.91) 77.71(1.97)

Table 5: Experimental results of different α on PROTEINS and NCI1 datasets.

Figure 1: Test performance of our methods with different graph size settings on NCI1 and PROTEINS
datasets using vGCNs as the backbone.

FGWMixup FGWMixup *
76.0

76.5

77.0

77.5

78.0

78.5

79.0

A
cc

ur
ac

y
(%

)

NCI1

76.0

76.5

77.0

77.5

78.0

78.5

79.0

FGWMixup FGWMixup *

74.0

74.5

75.0

75.5

76.0

A
cc

ur
ac

y
(%

)

PROTEINS

74.0

74.5

75.0

75.5

76.0

 Adaptive Median 2×Med. 0.5×Med. Vanilla

datasets. Note that α controls the weights of the node feature alignment and graph structure alignment
costs, and α = 1.0 falls back to the case of GW metric where node features are not incorporated.
From the results shown in Table 5, we can observe that: 1) when FGW falls back to GW (α =1), where
node features are no longer taken into account, the performance will significantly decay (generally
the worst among all investigated α values). This demonstrates the importance of solving the joint
modeling problem in graph mixup tasks. 2) α=0.95 is the best setting in most cases. This empirically
implies that it is better to conduct more structural alignment in graph mixup. In practice, we set α to
0.95 for all of our reported results.

Effects of Mixup Graph Sizes We investigate the performance of FGWMixup and FGWMixup∗ with
various mixup graph sizes (node numbers), including adaptive graph sizes (i.e., weighted average size
of the mixup source graphs, ñ = λn1 + (1− λ)n2, which is selected as our method) and fixed graph
sizes (i.e., the median size of all training graphs, 0.5 × and 2 × the median). The ablation studies are
composed on NCI1 and PROTEINS datasets using vGCN backbone as motivating examples, and the
results are illustrated in Fig.1. We can observe that the best performance is steadily obtained when
selecting graph sizes with an adaptive strategy, whereas the fixed graph sizes lead to unstable results.
Specifically, selecting the median or larger size may occasionally yield comparable performances, yet
selecting the smaller size can result in an overall performance decay of over 1%. This phenomenon
is associated with the graph size generalization problem [47, 48] that describes the performance
degradation of GNNs caused by the graph size distributional shift between training and testing data.
The fixed strategy may aggravate this problem, particularly for small graphs that struggle to generalize
to larger ones. In contrast, the adaptive strategy can potentially combat this distributional shift by
increasing the data diversity and reach better test time performance.

Effects of GNN Depths To validate the improvement of our methods across various model depths,
we evaluate the performance of FGWMixup and FGWMixup∗ using vGCNs equipped with different
numbers (3-8) of layers. We experiment on NCI1 and PROTEINS datasets, and the results are
illustrated in Fig.2. We can observe that our methods consistently improve the performance on NCI1
under all GCN depth settings by a significant margin. The same conclusion is also true for most cases
on PROTEINS except for the 7-layer vGCN. These results indicate a universal improvement of our
methods on GNNs with various depths.

Other Discussions More further analyses are introduced in the Appendix, including qualitative
analyses of our mixup results (see Appendix E.1), further discussions on G-Mixup (see Appendix
E.2), and sensitivity analysis of the hyperparameter k in Beta distribution where mixup weights are
sampled from (see Appendix E.4).

9

Figure 2: Test performance of our methods using vGCNs with varying numbers of layers on NCI1
and PROTEINS datasets.

3 4 5 6 7 8
GCN Depth

76.5

77.0

77.5

78.0

78.5

79.0
A

cc
ur

ac
y

(%
)

NCI1

3 4 5 6 7 8
GCN Depth

72.5
73.0
73.5
74.0
74.5
75.0
75.5
76.0

A
cc

ur
ac

y
(%

)

PROTEINS

vanilla FGWMixup FGWMixup *

4 Related Works

Graph Data Augmentation There are currently two mainstream perspectives of graph data aug-
mentation for graph-level classifications. A line of research concentrates on graph signal augmen-
tation [41, 18, 19]. Node Atrribute Masking [41] assigns random node features for a certain ratio
of graph nodes. IfMixup [19] conducts Euclidean mixup on node features from different graphs
with arbitrary node alignment strategy, whereas it damages the critical topologies (e.g., rings, bi-
partibility) of the source graphs. Another line of work focuses on graph structure augmentation
[49, 20, 21, 22, 50, 41, 51]. Approaches like Subgraph[49, 41], DropEdge[40] and GAug[50] conduct
removals or additions of graph nodes or edges to generate new graph structures. Graph Transplant[21]
and Submix[22] realize CutMix-like augmentations on graphs, which cut off a subgraph from the
original graph and replace it with another. G-Mixup [20] estimates a graph structure generator (i.e.,
graphon) for each class of graphs and conducts Euclidean addition on graphons to realize structural
mixup. However, as GNNs can capture the complex interaction between the two entangled yet
complementary input spaces, it is essential to model this interaction for a comprehensive graph data
augmentation. Regrettably, current works have devoted little attention to this interaction.

Optimal Transport on Graphs Building upon traditional Optimal Transport (OT) [25] methods
(e.g., Wasserstein distance[52]), graph OT allows defining a very general distance metric between
the structured/relational data points embedded in different metric spaces, where the data points are
modeled as probability distributions. It proceeds by solving a coupling between the distributions that
minimizes a specific cost. The solution of graph OT hugely relies on the (Fused) Gromov-Wasserstein
(GW) [27, 26] distance metric. Further works employ the GW couplings for solving tasks such as
graph node matching and partitioning [53, 32, 54], and utilize GW distance as a common metric
in graph metric learning frameworks [55, 31, 56]. Due to the high complexity of the GW-series
algorithm, another line of research [28, 57, 58, 29] concentrates on boosting the computational
efficiency. In our work, we formulate graph mixup as an FGW-based OT problem that solves the
optimal node matching strategy minimizing the alignment costs of graph structures and signals.
Meanwhile, we attempt to accelerate the mixup procedure with a faster convergence rate.

5 Conclusion and Limitation

In this work, we introduce a novel graph data augmentation method for graph-level classifications
dubbed FGWMixup. FGWMixup formulates the mixup of two graphs as an optimal transport problem
aiming to seek a "midpoint" of two graphs embedded in the graph signal-structure fused metric space.
We employ the FGW distance metric to solve the problem and further propose an accelerated algorithm
that improves the convergence rate from O(t−1) to O(t−2) for better scalability of our method.
Comprehensive experiments demonstrate the effectiveness of FGWMixup in terms of enhancing
the performance, generalizability, and robustness of GNNs, and also validate the efficiency and
correctness of our acceleration strategy.

Despite the promising results obtained in our work, it is important to acknowledge its limitations.
Our focus has primarily been on graph data augmentation for graph-level classifications. However, it
still remains a challenging question to better exploit the interactions between the graph signal and
structure spaces for data augmentation in other graph prediction tasks, such as link prediction and node
classification. Moreover, we experiment with four classic (MPNNs) and advanced (Graphormers)
GNNs, while there remain other frameworks that could be taken into account. We expect to carry out
a graph classification benchmark with more comprehensive GNN frameworks in our future work.

10

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.82241052).

References
[1] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional

networks. arXiv preprint arXiv:1609.02907, 2016.

[2] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations.

[3] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning,
pages 1263–1272. PMLR, 2017.

[4] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine
learning. Chemical Science, 9(2):513–530, 2018.

[5] Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
1365–1374, 2015.

[6] Xinyu Ma, Yasha Wang, Xu Chu, Liantao Ma, Wen Tang, Junfeng Zhao, Ye Yuan, and Guoren
Wang. Patient health representation learning via correlational sparse prior of medical features.
IEEE Transactions on Knowledge and Data Engineering, 2022.

[7] Yongxin Xu, Xu Chu, Kai Yang, Zhiyuan Wang, Peinie Zou, Hongxin Ding, Junfeng Zhao,
Yasha Wang, and Bing Xie. Seqcare: Sequential training with external medical knowledge
graph for diagnosis prediction in healthcare data. In Proceedings of the ACM Web Conference
2023, pages 2819–2830, 2023.

[8] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–
115, 2021.

[9] Suorong Yang, Weikang Xiao, Mengcheng Zhang, Suhan Guo, Jian Zhao, and Furao Shen.
Image data augmentation for deep learning: A survey. arXiv preprint arXiv:2204.08610, 2022.

[10] Jason Wei and Kai Zou. Eda: Easy data augmentation techniques for boosting performance
on text classification tasks. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 6382–6388, 2019.

[11] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. Advances in Neural Information Processing Systems, 28, 2015.

[12] Zhiqiang Xu, Yiping Ke, Yi Wang, Hong Cheng, and James Cheng. A model-based approach to
attributed graph clustering. In Proceedings of the 2012 ACM SIGMOD International Conference
on Management of Data, pages 505–516, 2012.

[13] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful
graph networks. Advances in Neural Information Processing Systems, 32, 2019.

[14] Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any
gnn with local structure awareness. arXiv preprint arXiv:2110.03753, 2021.

[15] Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai,
Gopinath Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph
aggregation networks. arXiv preprint arXiv:2110.02910, 2021.

[16] Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power of
gnns via graph biconnectivity. arXiv preprint arXiv:2301.09505, 2023.

11

[17] Pan Li and Jure Leskovec. The expressive power of graph neural networks. Graph Neural
Networks: Foundations, Frontiers, and Applications, pages 63–98, 2022.

[18] Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, Juncheng Liu, and Bryan Hooi. Nodeaug:
Semi-supervised node classification with data augmentation. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 207–217,
2020.

[19] Hongyu Guo and Yongyi Mao. ifmixup: Towards intrusion-free graph mixup for graph
classification. arXiv e-prints, pages arXiv–2110, 2021.

[20] Xiaotian Han, Zhimeng Jiang, Ninghao Liu, and Xia Hu. G-mixup: Graph data augmentation
for graph classification. In International Conference on Machine Learning, pages 8230–8248.
PMLR, 2022.

[21] Joonhyung Park, Hajin Shim, and Eunho Yang. Graph transplant: Node saliency-guided graph
mixup with local structure preservation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 7966–7974, 2022.

[22] Jaemin Yoo, Sooyeon Shim, and U Kang. Model-agnostic augmentation for accurate graph
classification. In Proceedings of the ACM Web Conference 2022, pages 1281–1291, 2022.

[23] Antonio Ortega, Pascal Frossard, Jelena Kovačević, José MF Moura, and Pierre Vandergheynst.
Graph signal processing: Overview, challenges, and applications. Proceedings of the IEEE,
106(5):808–828, 2018.

[24] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.

[25] Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

[26] Vayer Titouan, Nicolas Courty, Romain Tavenard, and Rémi Flamary. Optimal transport for
structured data with application on graphs. In International Conference on Machine Learning,
pages 6275–6284. PMLR, 2019.

[27] Facundo Mémoli. Gromov–wasserstein distances and the metric approach to object matching.
Foundations of Computational Mathematics, 11:417–487, 2011.

[28] Gabriel Peyré, Marco Cuturi, and Justin Solomon. Gromov-wasserstein averaging of kernel
and distance matrices. In International Conference on Machine Learning, pages 2664–2672.
PMLR, 2016.

[29] Jiajin Li, Jianheng Tang, Lemin Kong, Huikang Liu, Jia Li, Anthony Man-Cho So, and Jose
Blanchet. A convergent single-loop algorithm for relaxation of gromov-wasserstein in graph
data. arXiv preprint arXiv:2303.06595, 2023.

[30] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in
Neural Information Processing Systems, 26, 2013.

[31] Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer, and Nicolas Courty.
Template based graph neural network with optimal transport distances. arXiv preprint
arXiv:2205.15733, 2022.

[32] Hongteng Xu, Dixin Luo, Hongyuan Zha, and Lawrence Carin Duke. Gromov-wasserstein
learning for graph matching and node embedding. In International Conference on Machine
Learning, pages 6932–6941. PMLR, 2019.

[33] Rémi Flamary, Nicolas Courty, Devis Tuia, and Alain Rakotomamonjy. Optimal transport
with laplacian regularization: Applications to domain adaptation and shape matching. In NIPS
Workshop on Optimal Transport and Machine Learning OTML, 2014.

[34] Meyer Scetbon, Marco Cuturi, and Gabriel Peyré. Low-rank sinkhorn factorization. In
International Conference on Machine Learning, pages 9344–9354. PMLR, 2021.

12

[35] Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv
preprint arXiv:2007.08663, 2020.

[36] Nikil Wale and George Karypis. Comparison of descriptor spaces for chemical compound
retrieval and classification. In Sixth International Conference on Data Mining (ICDM’06),
pages 678–689. IEEE, 2006.

[37] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9),
2011.

[38] Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J
Smola, and Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics,
21(suppl_1):i47–i56, 2005.

[39] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in
Neural Information Processing Systems, 34:28877–28888, 2021.

[40] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. arXiv preprint arXiv:1907.10903, 2019.

[41] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
Graph contrastive learning with augmentations. Advances in Neural Information Processing
Systems, 33:5812–5823, 2020.

[42] Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. Mixup for node and graph
classification. In Proceedings of the Web Conference 2021, pages 3663–3674, 2021.

[43] Yoshua Bengio and Yves Grandvalet. No unbiased estimator of the variance of k-fold cross-
validation. Advances in Neural Information Processing Systems, 16, 2003.

[44] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.
Deep graph library: A graph-centric, highly-performant package for graph neural networks.
arXiv preprint arXiv:1909.01315, 2019.

[45] Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon,
Stanislas Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo
Gautheron, Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko,
Antoine Rolet, Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander
Tong, and Titouan Vayer. Pot: Python optimal transport. Journal of Machine Learning Research,
22(78):1–8, 2021.

[46] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
Advances in neural information processing systems, 33:22118–22133, 2020.

[47] Davide Buffelli, Pietro Lió, and Fabio Vandin. Sizeshiftreg: a regularization method for
improving size-generalization in graph neural networks. In Advances in Neural Information
Processing Systems, 2022.

[48] Beatrice Bevilacqua, Yangze Zhou, and Bruno Ribeiro. Size-invariant graph representations for
graph classification extrapolations. In International Conference on Machine Learning, pages
837–851. PMLR, 2021.

[49] Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. Graphcrop: Subgraph
cropping for graph classification. arXiv preprint arXiv:2009.10564, 2020.

[50] Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil Shah. Data
augmentation for graph neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 11015–11023, 2021.

13

[51] Hyeonjin Park, Seunghun Lee, Sihyeon Kim, Jinyoung Park, Jisu Jeong, Kyung-Min Kim,
Jung-Woo Ha, and Hyunwoo J Kim. Metropolis-hastings data augmentation for graph neural
networks. Advances in Neural Information Processing Systems, 34:19010–19020, 2021.

[52] Cédric Villani. Topics in Optimal Transportation. Number 58. American Mathematical Soc.,
2003.

[53] Hongteng Xu, Dixin Luo, and Lawrence Carin. Scalable gromov-wasserstein learning for graph
partitioning and matching. Advances in Neural Information Processing Systems, 32, 2019.

[54] Samir Chowdhury and Tom Needham. Generalized spectral clustering via gromov-wasserstein
learning. In International Conference on Artificial Intelligence and Statistics, pages 712–720.
PMLR, 2021.

[55] Cédric Vincent-Cuaz, Titouan Vayer, Rémi Flamary, Marco Corneli, and Nicolas Courty. Online
graph dictionary learning. In International Conference on Machine Learning, pages 10564–
10574. PMLR, 2021.

[56] Benson Chen, Gary Bécigneul, Octavian-Eugen Ganea, Regina Barzilay, and Tommi Jaakkola.
Optimal transport graph neural networks. arXiv preprint arXiv:2006.04804, 2020.

[57] Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer, and Nicolas Courty.
Semi-relaxed gromov-wasserstein divergence with applications on graphs. arXiv preprint
arXiv:2110.02753, 2021.

[58] Meyer Scetbon, Gabriel Peyré, and Marco Cuturi. Linear-time gromov wasserstein distances
using low rank couplings and costs. In International Conference on Machine Learning, pages
19347–19365. PMLR, 2022.

[59] Promit Ghosal and Marcel Nutz. On the convergence rate of sinkhorn’s algorithm. arXiv
preprint arXiv:2212.06000, 2022.

[60] Heinz H Bauschke. Projection algorithms and monotone operators. 1996.

[61] Zhi-Quan Luo and Paul Tseng. Error bound and convergence analysis of matrix splitting
algorithms for the affine variational inequality problem. SIAM Journal on Optimization, 2(1):43–
54, 1992.

[62] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information
Processing Systems, 30, 2017.

[63] Douglas J Klein and Milan Randić. Resistance distance. Journal of Mathematical Chemistry,
12:81–95, 1993.

[64] Hongteng Xu, Peilin Zhao, Junzhou Huang, and Dixin Luo. Learning graphon autoencoders for
generative graph modeling. arXiv preprint arXiv:2105.14244, 2021.

[65] Nikolay Sakharnykh and Braun Hugo. Efficient maximum flow allgorithm.

14

A Problem Properties

A.1 FGW Distance Metric

Fused Gromov-Wasserstein Distance [26] are defined in Eq.1. It can also be rewritten as follows:

FGW(G1, G2) = min
π∈Π(µ1,µ2)

⟨(1− α)D + αL(A1,A2)⊗ π,π⟩, (8)

where D = {d(x(i)
1 ,x

(j)
2)}ij is the distance matrix of node features, and L(A1,A2) =

{|A1(i, k)−A2(j, ℓ)|}i,j,k,ℓ is a 4-dimensional tensor that depicts the structural distances. We
denote ⟨U ,V ⟩ = tr(U⊤V) as the matrix scalar product. The ⊗ operator conducts tensor-matrix
multiplication as: L ⊗ T

def.
=

(∑
k,ℓ Li,j,k,ℓTk,ℓ

)
i,j

. Then according to Proposition 1 in [28], when

we take the ℓ2-norm to calculate the structural distance, we have:

L(A1,A2)⊗ π = cA1,A2 − 2A1πA2, (9)

where cA1,A2
= A⊙2

1 µ11
⊤
n2

+ 1n1
µ⊤

2 A
⊙2
2 , and ⊙2 denotes the Hadamard square (i.e., U⊙2 =

U ⊙U). Taking Eq.9 into Eq.8, we can rewrite the minimizer as:

RHS = (1− α)⟨D,π⟩+
︷ ︸︸ ︷
α⟨A⊙2

1 µ11
⊤
n2
,π⟩+ α⟨1n1

µ⊤
2 A

⊙2
2 ,π⟩−2α⟨A1πA2,π⟩

= α(A⊙2
1 µ⊤

1 µ1 +A⊙2
2 µ⊤

2 µ2)︸ ︷︷ ︸
constant

+⟨(1− α)D − 2αA1πA2,π⟩
(10)

The items in the overbrace become a constant because the marginals of π are fixed as µ1 and µ2,
respectively. Therefore, we can remove the constant term and formulate an equivalent optimization
objective denoted as FGW(G1, G2), which can be rewritten as:

FGW(G1, G2) = min
π∈Π(µ1,µ2)

⟨(1− α)D − 2αA1πA2,π⟩

= min
π∈Π(µ1,µ2)

(1− α) tr(π⊤D)− 2α tr(π⊤A1πA2).
(11)

We denote the above optimization objective as a function f(π) w.r.t. π, and we call it the FGW
function in the main text.

A.2 Mirror Descent and the Relaxed FGW Solver in FGWMixup∗

Definition 1 (Normal Cone). Given any set C and point x ∈ C, we can define normal cone as:

NC(x) = {g : g⊤x ≥ g⊤y,∀y ∈ C}

There are some properties of normal cone. The normal cone is always convex, and ProjC(x+ z) =
x, ∀x ∈ C, z ∈ NC(x) always holds.

Proposition 3 (The Update of Mirror Descent). The update of Mirror Descent takes the form of
x(k+1) = argminx∈X Dϕ(x, y

(k+1))), where ϕ(·) is a Bregman Projection, and ∇ϕ(y(k+1)) =

∇ϕ(ω(k))−∇f(π)/ρ.

Proof. For a constrained optimization problem minx∈X f(x),X ⊂ D, Mirror Descent iteratively
updates x with x(k+1) = argminx∈X ∇f(x(k))⊤x + ρDϕ(x, x

(k)) with Bregman divergence
Dϕ(x, y) := ϕ(x)− ϕ(y)− ⟨∇ϕ(y), x− y⟩. We further have:

x(k+1) = argmin
x∈X
∇f(x(k))⊤x+ ρDϕ(x, x

(k))

⇒0 ∈ ∇f(x(k))⊤/ρ+∇ϕ(x(k+1))−∇ϕ(x(k)) +NX (x(k+1))

⇒x(k+1) = argmin
x∈X

Dϕ(x, y
(k+1))), where ∇ϕ(y(k+1)) = ∇ϕ(x(k))−∇f(x(k))/ρ

(12)

15

Figure 3: The illustration of the MD procedure.

Primal Space
Dual Space

在
此
处
键
入
公
式
。

𝒳

𝒟
𝑥(")

∇𝜙(𝒟)

∇𝜙
𝑥("$%)

∇𝜙(𝑦("#$))

∇𝜙(𝑥("))

−∇𝑓(𝑥 !)/𝜌

𝑦("$%)

①

②

③

④

This updating procedure is vividly depicted by Fig.3. For each update of x(k), MD conducts the
following steps:

1 Apply mirror mapping (∇ϕ(·)) on x(k) from the primal space D to the dual space∇ϕ(D).
2 Take a gradient step in the dual space, which is δ(k+1) = ∇ϕ(x(k))−∇f(x(k))/ρ.

3 Inversely mapping (∇ϕ−1(·)) the dual space back to the primal space, which is y(k+1) =
∇ϕ−1(δ(k+1)), also written as∇ϕ(y(k+1)) = ∇ϕ(x(k))−∇f(x(k))/ρ.

4 The updated point may fall out of the constraints of X . Thus, Bregman projection is
conducted to project y(k+1) to x(k+1) ∈ X , where x(k+1) = argminx∈X Dϕ(x, y

(k+1))).

The relaxed FGW conducts projections to constraints of rows and columns alternately, which is
written as minπ f(π) + I{π∈Π1} + I{π∈Π2}, where I is the indicator function. We adopt the operator
splitting strategy, and the optimization can be formulated as:

Fρ(π, ω) = f(π) + f(ω) + I{π∈Π1} + I{ω∈Π2} (13)

We apply Mirror Descent algorithm with Bregman divergence Dϕ(x, y) to solve this problem, whose
update takes the form of:

π(k+1) = arg min
π∈Π1

∇f(π)⊤π + ρDϕ

(
π, ω(k)

)
ω(k+1) = arg min

ω∈Π2

∇f(ω)⊤ω + ρDϕ

(
ω, π(k+1)

) (14)

Let’s take the MD update of π as an example. Taking relative entropy as ϕ(x) =
∑

i xi log xi,
we can solve y(k+1) (conducting steps 1 to 3) with exact analytical solutions. Specifically,
∇ϕ(x) =

∑
i(1 + log xi) , and the update w.r.t. π writes:

π(k+1) = arg min
π∈Π1

Dϕ(π, y
(k+1)), where log(y(k+1)) = log(ω(k))−∇f(ω(k))/ρ

⇒π(k+1) = arg min
π∈Π1

Dϕ(π, y
(k+1)), where y(k+1) = ω(k) ⊙ exp(−∇f(ω(k))/ρ).

(15)

Furthermore, under this setting, we also have an exact solution of the projection step 4
argminπ∈Π1

Dϕ(π, y
(k+1))) = diag(µ1./y

(k+1)1n2
)y(k+1). Then the MD update procedure can

be formulated according to Prop. 3 as follows:

π(k+1) ← ω(k) ⊙ exp(−∇f(ω(k))/ρ), π(k+1) ← diag(µ1./π
(k+1)1n2)π

(k+1) (16)

Furthermore, the sub-gradient of our FGW optimizing objective w.r.t. π is calculated as follows:

∇f(π) = ∇πFGW(G1, G2) = (1− α)D − 4αA1πA2. (17)

Taking Eq.17 into Eq.16, we have the update of π, and a similar procedure is conducted for ω. Setting
ρ to 1/γ, the final update procedure is shown in Line 8-11 in Alg.2.

16

B Proofs of Theoretical Results

B.1 Proof of Proposition 1

Proof. From Corollary 4.6 of [59] we have: for any Sinkhorn iteration optimizing π ∈ Π(µ, ν) on
two different marginals alternately µ, ν, let t1 = inf{t ≥ 0 : H(µ2t|µ) ≤ 1} − 1, when iterations
t ≥ 2t1:

H (µ2t | µ) +H (µ | µ2t) ≤ 10
C2

1 ∨H (π∗ | R)

(⌊t/2⌋ − t1) t
= O

(
t−2

)
,

H (π2t | π∗) +H (π∗ | π2t) ≤ 5
C2

1 ∨
(
H (π∗ | R)

1/2
C1

)
√
(⌊t/2⌋ − t1) t

= O
(
t−1

)
,

(18)

where C1 is a constant, and R is a fixed reference measure.

B.2 Proof of Proposition 2

Definition 2 (Bounded Linear Regularity, Definition 5.6 in [60]). Let C1, C2, · · · , CN be closed
convex subsets of Rn with a non-empty intersection C. We call the set {C1, C2, · · · , CN} is bounded
linearly regular if for every bounded subset B of Rn, there exists a constant κ > 0 such that

d(x,C) ≤ κ max
i∈{1,...,N}

d(x,Ci),∀x ∈ B, where d(x, C) := min
x′∈C
∥x− x′∥.

The BLR condition naturally holds if all the Ci are polyhedral sets.
Definition 3 (Strong Convexity). A differentiable function f(·) is strongly convex with the constant
m, if the following inequality holds for all points x, y in its domain:

(∇f(x)−∇f(y))⊤(x− y) ≥ m∥x− y∥2,
where ∥·∥ is the corresponding norm.

In Mirror Descent algorithm, the Bregman divergence Dh(x, y) requires h to be strongly convex.

Proof. Recall that the fixed point set of relaxed FGW is Xrel = {π∗ ∈ C1, ω
∗ ∈ C2 : 0 ∈

∇f(π∗)+ρ(∇h(ω∗)−∇h(π∗))+NC1
(π∗), and 0 ∈ ∇f(ω∗)+ρ(∇h(π∗)−∇h(ω∗))+NC2

(ω∗)}.
Let p ∈ NC1

(π∗) and q ∈ NC2
(ω∗), Xrel is denoted as:

Xrel = {π∗ ∈ C1, ω
∗ ∈ C2 :∇f(π∗) + ρ(∇h(ω∗)−∇h(π∗)) + p = 0, p ∈ NC1

(π∗)

∇f(ω∗) + ρ(∇h(π∗)−∇h(ω∗)) + q = 0, q ∈ NC2
(ω∗)} (19)

We denote π̂ = ProjC1∩C2
(π∗). According to Definition 2, as C1 and C2 are both polyhedral

constraints and satisfy the BLR condition, we have:

∥π̂ − π∗∥+ ∥π̂ − ω∗∥ ≤ 2 ∥π̂ − π∗∥+ ∥π∗ − ω∗∥
= 2d (π∗, C1 ∩ C2) + ∥π∗ − ω∗∥
≤ (2κ+ 1) ∥π∗ − ω∗∥ .

(20)

The first inequality holds based on the triangle inequality of the norm distances, and the second
inequality holds based on the definition of point-to-space distance in Def.2. Moreover, according to
the definition of Xrel, for any (π∗, ω∗) ∈ Xrel, we have:

∇f (ω∗)
⊤
(π̂ − π∗) + ρ (∇h (π∗)−∇h (ω∗))

⊤
(π̂ − π∗) + p⊤ (π̂ − π∗) = 0, p ∈ NC1

(π∗)

∇f (π∗)
⊤
(π̂ − ω∗) + ρ (∇h (ω∗)−∇h (π∗))

⊤
(π̂ − ω∗) + q⊤ (π̂ − ω∗) = 0, q ∈ NC2

(ω∗)
(21)

Summing up the equations above, we have:

∇f (ω∗)
⊤
(π̂ − π∗) +∇f (π∗)

⊤
(π̂ − ω∗) + ρ (∇h (π∗)−∇h (ω∗))

⊤
(ω∗ − π∗) + p⊤ (π̂ − π∗) + q⊤ (π̂ − ω∗)

(a)
= ∇f (ω∗)

⊤
(π̂ − π∗) +∇f (π∗)

⊤
(π̂ − ω∗)− ρ (Dh (π

∗, ω∗) +Dh (ω
∗, π∗)) + p⊤ (π̂ − π∗) + q⊤ (π̂ − ω∗) = 0

(22)

17

The (a) equation holds based on the definition of Bregman Divergence Dh(x, y) := h(x)− h(y)−
⟨∇h(y), x − y⟩. Furthermore, due to the property of normal cones NC1(π

∗),NC2(ω
∗), we have

p⊤ (π − π∗) ≤ 0,∀π ∈ C1 and q⊤ (ω − ω∗) ≤ 0,∀ω ∈ C2. Taking π and ω as π̂ ∈ C1 ∩ C2, we
have p⊤ (π̂ − π∗) + q⊤ (π̂ − ω∗) ≤ 0. Therefore, from 22 we have the following inequality:

∇f (ω∗)
⊤
(π̂ − π∗) +∇f (π∗)

⊤
(π̂ − ω∗)− ρ (Dh (π

∗, ω∗) +Dh (ω
∗, π∗)) ≥ 0

⇒ ρ (Dh (π
∗, ω∗) +Dh (ω

∗, π∗)) ≤ ∇f (ω∗)
⊤
(π̂ − π∗) +∇f (π∗)

⊤
(π̂ − ω∗)

≤ ∥f (ω∗)∥∥π̂ − π∗∥+ ∥∇f (π∗)∥∥π̂ − ω∗∥
(b)

≤ Cf (∥π̂ − π∗∥+ ∥π̂ − ω∗∥)
(20)

≤ Cf (2κ+ 1)∥π∗ − ω∗∥.

(23)

The (b) inequality holds as the optimization objective is a quadratic function with bounded constraints,
which means the gradient norm has a natural constant upper bound Cf . For the left hand side of the
inequality above, the sum of Bregman divergences is also lower bounded by

Dh (π
∗, ω∗) +Dh (ω

∗, π∗) = (∇h (π∗)−∇h (ω∗))
⊤
(π∗ − ω∗) ≥ σ∥π∗ − ω∗∥2, (24)

as h(·) is σ-strongly convex in the definition of Bregman Divergence. Therefore, combining (24) and
(23), we have:

∥π∗ − ω∗∥ ≤ Cf (2κ+ 1)

σρ
(25)

Based on this important result, we analyze the distance between X and Xrel, which is given by
dist(π

∗+ω∗

2 ,X) := minx∈X

∥∥∥π∗+ω∗

2 − x
∥∥∥, π∗ ∈ C1, ω

∗ ∈ C2. By adding up the two equations in
19 depicting the conditions on π∗ and ω∗ of Xrel, we have:

∇f(π∗) +∇f(ω∗) + p+ q = 0
(c)⇒ ∇f(π

∗ + ω∗

2
) +

p+ q

2
= 0 (26)

The (c) derivation holds due to the linear property of the subgradient of FGW w.r.t. π (see Eq.17).
Invoking this equality, we present the following uppper bound analysis on dist(π

∗+ω∗

2 ,X):

dist

(
π∗ + w∗

2
,X

)
(d)

≤ ϵ

∥∥∥∥π∗ + w∗

2
− projC1∩C2

(
π∗ + w∗

2
−∇f

(
π∗ + w∗

2

))∥∥∥∥
(e)
= ϵ

∥∥∥∥π∗ + w∗

2
− projC1∩C2

(
π∗ + p+ w∗ + q

2

)∥∥∥∥
(f)
=

ϵ

2

∥∥∥∥projC1
(π∗ + p) + projC1

(w∗ + q)− 2 projC1∩C2

(
π∗ + p+ w∗ + q

2

)∥∥∥∥
(g)

≤ Mϵ

2
∥π∗ − w∗∥ ,

(27)
The (d) inequality comes from the Luo-Tseng error bound condition [61] and Prop.3.1 in [29]. The
(e) holds based on Eq.26. The (f) equality holds based on the property of the normal cone, which
is ProjC(x + z) = x, ∀x ∈ C, z ∈ NC(x). The (g) inequality holds by invoking Lemma 3.2 in
[29], which tells

∥∥projC1
(x) + projC2

(y)− 2 projC1∩C2

(
x+y
2

)∥∥ ⩽ M
∥∥projC1

(x)− projC2
(y)

∥∥.
Finally, combining (25) and (27), we can obtain the desired result, i.e.,

∀(π∗, ω∗) ∈ Xrel, dist(
π∗ + ω∗

2
,X) ≤ (2κ+ 1)ϵCfM

2σρ
= τ/ρ (28)

where τ :=
(2κ+1)ϵCfM

2σ is a constant.

C Complete Mixup Procedure

We provide the complete mixup procedure of our method in Algorithm 3. We conduct augmentation
only on the training set, and we mixup graphs from every pair of classes. For a specific mixup of two

18

Datasets graphs avg nodes med nodes avg edges med edges feat dim classes

PROTEINS 1113 39.05 26 72.82 98 3 2
NCI1 4110 29.76 27 32.30 58 37 2

NCI109 4127 29.57 26 32.13 58 38 2
IMDB-B 1000 19.77 17 193.06 260 N/A 2
IMDB-M 1500 13.00 10 131.87 144 N/A 3

Table 6: Detailed statistics of experimented datasets.

graphs, we apply our proposed algorithm FGWMixup(∗) (Alg.1, 2) to obtain the synthetic mixup graph
G̃ = (µ̃, X̃, Ã). However, the numerical solution does not ensure a discrete adjacency matrix Ã.
Thus, we adopt a thresholding strategy to discretize Ã, setting entries below and above the threshold
to 0 and 1, respectively. The threshold is linearly searched between the maximum and minimum
entries of Ã, aiming to minimize the density difference between the mixup graph and the original
graphs. The mixup graphs are added to the training set for augmentation, and the training, validating
and testing procedures follow the traditional paradigms.

Algorithm 3 The whole mixup procedure
1: Input: Training set G = {(Gi, yi)}i, mixup ratio β

2: Output: Augmented training set G̃
3: N = |G|, Ny = |{yi}i|, G̃ = G
4: for i ̸= j in range (Ny) do
5: for k in range (2βN/Ny(Ny − 1)) do
6: Randomly sample Gi = (µi,Xi,Ai) from class yi and Gj = (µj ,Xj ,Aj) from yj
7: Generate new mixup graph and its label G̃, ỹ = FGWMixup(∗)(Gi, Gj), G̃ = (µ̃, X̃, Ã) .
8: Search the threshold θ to discretize Ã: Ã← {1 if aij ≥ θ else 0}ij , which minimizes

the density differences between Ã and A1 , A2.
9: G̃ ← G̃ ∪ {G̃}

10: end for
11: end for
12: return G̃

D Experimental Settings

D.1 Dataset Information

PROTEINS, NCI1, NCI109, IMDB-BINARY (IMDB-B) and IMDB-MULTI (IMDB-M) are the five
benchmark graph classification datasets used in our experiments. When preprocessing the datasets, we
remove all the isolated nodes (i.e., 0-degree nodes) in order to avoid invalid empty message passing
of MPNNs. We present the detailed statistics of the preprocessed datasets in Table 6, including
the number of graphs, the average/median node numbers, the average/median edge numbers, the
dimension of node features, and the number of classes.

D.2 Backbones

We adopt two categories of GNN frameworks as the backbones. The first category is the virtual-node-
enhanced Message Passing Neural Networks (MPNNs), including vGCN and vGIN. The second
category is the Graph Transformer-based networks, including Graphormer and GraphormerGD. The
details of these GNN layers are listed as follows:

• vGCN [1]: Graph Convolution Network is developed from the spectral GNNs with 1-order
approximation of Chebychev polynomial expansion. The update of features can be regarded
as message passing procedure. The graph convolution operator of each layer in the vGCN is

19

defined as: X(l+1) = σ(ÃX(l)W(l)), where Ã is the renormalized adjacency matrix, and W
is the learnable parameters. We apply ReLU as the activation function σ(·).

• vGIN [2]: Graph Isomorphism Network takes the idea from the Weisfeiler-Lehman kernel, and
define the feature update of each layer through explicit message passing procedure. The GIN
layer takes the form of: x(l+1)

v = MLP(l+1)
((

1 + ϵ(l+1)
)
· x(l)

v +
∑

u∈N (v) x
(l)
u

)
, where ϵ is

a learnable scalar. We apply two-layer MLP with ReLU activation in our implementation.

• Graphormer [39]: Graphormer adopts the idea of the Transformer [62] architecture, which
designs a multi-head global QKV-attention across all graph nodes, and encode graph topologies
as positional encodings (spatial encoding in Graphormers). A Graphormer layer conducts
feature updating as follows:

Ah
(
X(l)

)
= softmax

(
X(l)Wl,h

Q (X(l)Wl,h
K)⊤ + ϕl,h(D)

)
;

X̂(l) = X(l) +

H∑
h=1

Ah
(
X(l)

)
X(l)Wl,h

V Wl,h
O ;

X(l+1) = X̂(l) +GELU
(
X̂(l)Wl

1

)
Wl

2,

where ϕ(·) is the spatial encoding module implemented as embedding tables, and D is the
shortest path distance of the graph. A is the attention matrix.

• GraphormerGD [16]: GraphormerGD is an enhanced version of Graphormer, where the graph
topologies are encoded with a General Distance metric defined by the combination of the
shortest path distance (SPD) and the resistance distance [63] (RD). It mainly modifies the
calculation of the attention matrix A in Graphormer:

Ah
(
X(l)

)
= ϕl,h

1 (Dsp,Dr)⊙ softmax
(
X(l)Wl,h

Q (X(l)Wl,h
K)⊤ + ϕl,h

2 (Dsp,Dr)
)

where ϕ(·) is an MLP taking SPD embedding and RD gaussian kernel embedding as inputs.

For all the backbones, we apply the virtual node READOUT approach (which is the official READ-
OUT function of Graphormers) instead of traditional global pooling. We apply 6 network layers and
take 64 as the hidden dimension for all the backbones on all datasets. GraphormerGD has a specical
model design on PROTEINS dataset, which applies 5 layers and 32 as the hidden dimension due to
the GPU memory limitation.

D.3 Experimental Environment

Hardware Environment The experiments in this work are conducted on two machines: one with 8
Nvidia RTX3090 GPUs and Intel Xeon E5-2680 CPUs, one with 2 Nvidia RTX8000 GPUs and Intel
Xeon Gold 6230 CPUs.

Software Environment Our experiments are implemented with Python 3.9, PyTorch 1.11.0, Deep
Graph Library (DGL) [44] 1.0.2, and Python Optimal Transport (POT) [45] 0.8.2. The implementation
of all the backbone layers are based on their DGL implementations. For the FGW solver, FGWMixup
uses the official FGW distance solver implemented in POT, and FGWMixup∗ uses the accelerated
FGW algorithm implemented on our own.

D.4 Implementation Details

For our mixup algorithm FGWMixup, we follow [31] and apply the Euclidean distance as the metric
measuring the distance of the node features and the graph adjacency matrix as the structural distances
between nodes. We sample the mixup weight λ from the distribution Beta(0.2, 0.2) and the trade-off
coefficient of the structure and signal costs α are tuned in {0.05, 0.5, 0.95}. We set the size of the
generated mixup graphs as the weighted average of the source graphs, which is ñ = λn1+(1−λ)n2.
The maximum number of iterations of FGWMixupis set to 200 for the outer loop optimizing X and
A, and 300 for the inner loop optimizing couplings π. The stopping criteria of our algorithm are the
relative update of the optimization objective reaching below a threshold, which is set to 5e-4. For

20

FGWMixup∗, we select the step size of MD γ from {0.1, 1, 10}. The mixup ratio (i.e., the proportion
of mixup samples to the original training samples) is set to 0.25.

For the training of GNNs, MPNNs are trained for 400 epochs and Graphormers are trained for 300
epochs, both using AdamW optimizer with a weight decay rate of 5e-4. The batch size of GNNs
are chosen from {32, 128}, and the learning rate is chosen from {1e-3, 5e-4, 1e-4}. Dropout is
employed with a fixed dropout rate 0.5 to prevent overfitting. All the hyperparameters are fine-tuned
by grid search on validation sets. For a fair comparison, we employ the same set of hyperparameter
configurations for all data augmentation methods in each backbone architecture. For more details,
please check our code published online at https://github.com/ArthurLeoM/FGWMixup.

E Further Experimental Analyses

E.1 Qualitative Analyses

We present two mixup examples of FGWMixup in Figure 4 to demonstrate that augmented graphs
by FGWMixup can preserve key topologies of the original graphs and have semantically meaningful
node features simultaneously. In Example 1, we can observe that the mixup graph adopts an overall
trident structure and a substructure (marked green) from G1, and adopts several substructures from
G2 (marked red), finally formulating a new graph sample combined properties from both graphs. In
Example 2, we can observe that the mixup graph is quite similar to G2, but breaks the connection of
two marked (red arrow pointed) edges and formulates two disconnected subgraphs, which is identical
to the overall structure of G1. Moreover, in both examples, we can observe that the preserved
substructures are not only topologically alike, but also highly consistent in node features. The two
examples demonstrate that FGWMixup can both preserve key topologies and generate semantically
meaningful node features.

Figure 4: Two examples of FGWMixup. In each example, the subfigures on the left and middle are
the original graphs to be mixed up, denoted as G1 and G2, respectively. The subtitle denotes the
mixup ratio λ. The subfigure on the right is the synthetic mixup graph. The node features are one-hot
encoded and distinguished with the feature ID and corresponding color.

G1 G2

(a)

(a)

(b)
(c) (c)

(b)

G1 G2

Example 1

Example 2

21

https://github.com/ArthurLeoM/FGWMixup

E.2 Further Discussions on G-Mixup

In this subsection, we conduct further analyses on G-Mixup for a better understanding of its differences
from our methods.

G-Mixup with GW Graphon Estimator G-Mixup does not originally apply GW metrics to
estimate the graphons (as they introduce in Table 1 and 6 in their paper [20]). In our implementation,
we select the USVT method as the graphon estimator for G-Mixup. Yet it is also practical to apply
GW metric to estimate graphons as an ablation study. Here, we also provide the experimental results
of G-Mixup+GW and G-Mixup+GW* (GW with our single-loop solver) on PROTEINS as shown in
Table 7.

Backbone G-Mixup G-Mixup+GW G-Mixup+GW* FGWMixup

vGIN 74.84(2.99) 74.48(2.54) 74.03(4.46) 75.02(3.86)
vGCN 74.57(2.88) 74.57(3.18) 74.84(2.15) 76.01(3.19)

Table 7: Experimental results of different graphon estimators of G-Mixup on PROTEINS.

No matter what metrics are applied for the graphon estimation, we want to emphasize that G-Mixup
does not model the joint distribution of graph structure and signal spaces, but regards them as two
disentangled and independent factors. However, our main contribution and the greatest advantage
compared with G-Mixup comes from the joint modeling of graph structure and signal spaces. This
also explains why FGWMixup can outperform.

Extend G-Mixup with FGW-based Attributed Graphon Estimator In [64], Xu et al. introduce
an attributed graphon estimation algorithm, which makes us naturally think of an extended version
of G-Mixup. With the attributed graphon, G-Mixup can also consider the joint modeling problem.
Though it is not the contribution and the core idea from G-Mixup to address our proposed joint
modeling problem, we are also interested in whether this extension can improve the performance of
G-Mixup. Hence, we conduct experiments with the extended version of G-Mixup using FGW as the
attributed graphon estimator (denoted as G-Mixup+FGW) on PROTEINS and NCI1 datasets, and the
results are shown in Table 8.

Dataset Backbone G-Mixup G-Mixup+FGW FGWMixup

PROTEINS vGIN 74.84(2.99) 74.66(3.51) 75.02(3.86)
vGCN 74.57(2.88) 74.30(2.85) 76.01(3.19)

NCI1 vGIN 77.79(1.88) 78.18(1.73) 78.37(2.40)
vGCN 76.42(1.79) 75.91(1.54) 78.32(2.65)

Table 8: Experimental results of G-Mixup extended with FGW attributed graphon estimator on
PROTEINS and NCI1.

We can observe that FGW does not significantly improve the performance of G-Mixup and still cannot
outperform our methods. The main reason lies in that the node matching problem remains unsolved
using the linear interpolation strategy of two graphons introduced in G-Mixup. Though the intra-class
node matching has been done with FGW graphon estimation, the graphons of different classes are
not ensured with an aligned node distribution, which requires the inter-class node matching for an
appropriate mixup. This is the core reason for the limited performance of G-Mixup series methods.

E.3 Algorithm Efficiency

In this subsection, we provide additional details regarding the runtime efficiency analyses.

Further Comparisons between FGWMixup and FGWMixup∗ Table 9 presents the average time
spent on a single iteration of π update (i.e, FGW solver convergence) and the average iterations
taken for updating X and A until convergence. We can observe that the convergence of a single
FGW procedure does not appear to be significantly accelerated. This is because the gradient step

22

has been taken twice for an alternating projection process, which incurs double time for the gradient
calculation (with a complexity of O(n3), n is the graph size). In contrast, the strict solver only takes
one gradient step for each projection. Therefore, despite a faster convergence rate of the relaxed
FGW, the extra gradient step makes the overall convergence time of the relaxed FGW solver similar
to that of the strict FGW solver. However, a notable improvement is observed in the convergence
rate of the outer loop responsible for updating X and A, resulting from the larger step of π that the
relaxed FGW provides, as shown in Prop.1. Considering the two factors above, the overall mixup
time has been efficiently decreased by up to 3.46 × with FGWMixup∗.

Dataset Single FGW Iter. Time (s) Avg. Outer Loop Converge Iter. (#)
FGWMixup∗ FGWMixup FGWMixup∗ FGWMixup Speedup

PROTEINS 0.0181 0.0225 80.64 153.69 1.91×
NCI1 0.0140 0.0120 54.25 170.23 3.14×

NCI109 0.0136 0.0123 53.12 169.98 3.20×
IMDB-B 0.0162 0.0119 20.03 95.48 4.77×
IMDB-M 0.0081 0.0060 14.26 60.91 4.27×

Table 9: More algorithm execution efficiency details of FGWMixup and FGWMixup∗.

Comparisons between Our Methods and Compared Baselines We present the averaged ef-
ficiencies of different mixup methods and time spent on training vanilla backbones of each fold
on PROTEINS and NCI1 datasets in Table 10. As the efficiency of G-Mixup hugely relies on the
graphon estimation approach, we also include G-Mixup with GW graphon estimators (denoted as
G-Mixup+GW) in the table.

We can observe that our methods and G-Mixup+GW are slower than the other data augmentation
methods. The main reason is that the complexity of calculating (F)GW distances between two graphs
is cubic (O(mn2 + nm2))[28], where m,n are the sizes of two graphs. Moreover, when calculating
barycenters, we need an outer loop with T iterations and M graphs. In total, the time complexity
of mixing up two graphs of size n is O(MTn3). FGWMixup∗ boosts the efficiency by enhancing
the convergence rate and reducing the required iterations T (see Table 9 for more details), whereas
G-Mixup+GW will have to go over the whole dataset to calculate graphons, which is much more
time-consuming than FGWMixup.

However, sacrificing complexity to pursue higher performance has been the recent trend of technical
development, e.g. GPT-4. Moreover, we believe that the current time complexity of FGWMixup∗ is
still acceptable compared with our performance improvements, as most compared graph augmentation
methods cannot effectively enhance the model performance as shown in Table 1.

More importantly, in practice, the main computational bottleneck of (F)GW-based method is the
OT network flow CPU solver in the current implementation based on the most widely used POT lib.
In other words, GPU-based network flow algorithms have not been applied in current computation
frameworks. Moreover, mini-batch parallelization is not yet deployed in POT. However, recent
works [65] from NVIDIA have focused on accelerating network flow algorithms on GPU, which may
probably be equipped on CUDA and allow a huge acceleration for GW solvers in the near future.
Hence, we firmly believe that the fact that our method is not yet optimized in parallel on GPUs is only
a temporary problem. Just as some other works (e.g., MLP, LSTM, etc.) that have brought enormous
contributions in the past era, they are initially slow when proposed, but have become efficient with
fast-following hardware supports.

Dataset DropEdge DropNode G-Mixup ifMixup G-Mixup+GW FGWMixup FGWMixup∗
PROTEINS 0.192 0.229 6.34 2.08 2523.78 802.24 394.57

NCI1 0.736 0.810 10.31 5.67 9657.48 1711.45 637.41

Table 10: Average mixup efficiency (clock time spent, seconds) of all compared baselines on each
fold of PROTEINS and NCI1 datasets.

23

E.4 Sensitivity Analysis on Varying Beta Distribution Parameter k

We empirically follow the setting in [24] to select the beta distribution parameter k = 0.2 where
the mixup method is first proposed. We also provide the sensitivity analysis of the Beta distribution
parameter k on PROTEINS and NCI1 datasets in Table 11.

Methods PROTEINS NCI1
k=0.2 k=0.5 k=1.0 k=2.5 k=0.2 k=0.5 k=1.0 k=2.5

vGIN-FGWMixup 75.02(3.86) 75.02(2.67) 74.93(2.93) 74.39(1.07) 78.32(2.65) 76.37(2.06) 76.59(2.39) 77.71(2067)
vGCN-FGWMixup 76.01(3.19) 75.47(3.12) 75.95(2.58) 74.30(4.12) 78.37(2.40) 78.00(1.40) 77.98(1.50) 77.96(1.73)
vGIN-FGWMixup∗ 75.20(3.30) 73.59(2.38) 73.86(2.81) 76.10(2.97) 77.27(2.71) 77.25(2.09) 77.32(1.78) 77.01(2.14)
vGCN-FGWMixup∗ 75.20(3.03) 74.29(4.62) 75.38(3.41) 74.21(4.52) 78.47(1.74) 78.71(1.49) 78.10(1.71) 77.96(1.02)

Table 11: Experimental results of different k on PROTEINS and NCI1 datasets.

From the results, we can find that Beta(0.2, 0.2) is the overall best-performed setting. There are
also a few circumstances where the other settings outperform. In our opinion, different datasets and
backbones prefer different optimal settings of k. However, we should choose the one that is overall
the best across various settings.

E.5 Experiments on OGB Datasets

We also conduct experiments on several OGB benchmark datasets[46], including ogbg-molhiv and
ogbg-molbace. We conduct binary classification (molecular property prediction) on these datasets
with AUROC (Area Under Receiver Operating Characteristic) as the reported metric. The split of
training, validating, and testing datasets are provided by the OGB benchmark. In spite of the existence
of edge features in OGB datasets, in this work, both of our GNN backbones and augmentation methods
do not encode or consider the edge features. We select vGCN and vGIN (5 layers and 256 hidden
dimensions) as the backbones and train the models five times with different random seeds, and we
report the average and standard deviation of AUROCs as the results. The dataset information and the
predicting performances are listed in Table 12.

From the table, we can observe evident improvements on both datasets and backbones with our
methods. FGWMixup∗ obtains the best performance on ogbg-molhiv dataset, with 2.69% and 3.46%
relative improvements on vGCN and vGIN respectively, and FGWMixup obtains the best on ogbg-
molbace dataset with 1.14% and 8.86% relative improvements. Meanwhile, our methods provide a
much more stable model performance where we reduce the variance by a significant margin, which
demonstrates that our methods can resist the potential noises underlying the data and increase the
robustness of GNNs. These additional experimental results further indicate the effectiveness of our
methods in improving the performance of GNNs in terms of their generalizability and robustness.

24

Stats ogbg-molhiv ogbg-molbace
Graphs 41,127 1,513

Avg. Nodes 25.5 34.1
Avg. Edges 27.5 36.9

Feature Dim. 9 9

Backbones Methods ogbg-molhiv ogbg-molbace
vanilla 73.72(2.45) 76.62(4.59)

DropEdge 74.07(2.68) 75.31(4.57)
vGCN G-Mixup 74.65(1.42) 69.80(6.41)

FGWMixup 75.24(2.78) 77.49(2.71)
FGWMixup∗ 75.70(1.15) 76.40(2.45)

vanilla 72.61(1.01) 69.77(1.33)
DropEdge 72.97(1.61) 72.68(4.92)

vGIN G-Mixup 74.52(1.58) 73.74(7.07)
FGWMixup 72.68(1.47) 75.95(2.42)
FGWMixup∗ 75.12(1.02) 74.02(2.18)

Table 12: Statistics and experimental results on OGB benchmark datasets. The reported metrics are
AUROCs taking the form of avg.(stddev.).

25

	Introduction
	Methodology
	Fused Gromov-Wasserstein Distance
	Solving Graph Mixup in the FGW Metric Space
	Accelerating FGWMixup

	Experiments
	Experimental Settings
	Experimental Results
	Further Analyses

	Related Works
	Conclusion and Limitation
	Problem Properties
	FGW Distance Metric
	Mirror Descent and the Relaxed FGW Solver in FGWMixup*

	Proofs of Theoretical Results
	Proof of Proposition 1
	Proof of Proposition 2

	Complete Mixup Procedure
	Experimental Settings
	Dataset Information
	Backbones
	Experimental Environment
	Implementation Details

	Further Experimental Analyses
	Qualitative Analyses
	Further Discussions on G-Mixup
	Algorithm Efficiency
	Sensitivity Analysis on Varying Beta Distribution Parameter k
	Experiments on OGB Datasets

