
Learning to Control PDEs with Differentiable Physics

Anonymous Author(s)
Affiliation
Address
email

1 Introduction1

Understanding physical environments is a key requirement for machine learning applications such as2

autonomous agents and robots [9, 2]. It is typically of vital importance to not only understand the3

unperturbed physical behavior but also anticipate how the environment reacts to an agent interacting4

with it [15, 7]. We consider partial differential equations (PDEs) as the most fundamental description5

of physical systems. The language of PDEs is general enough to describe every physical theory, from6

quantum mechanics and general relativity to turbulent flows [14]. Existing machine learning methods7

that deal with agents learning to interact with their environments have often focused on reinforcement8

learning [11, 6], but for high-dimensional environments, the computational cost of exploring the state9

space puts severe limits on the number of interaction parameters with which the agent can influence10

the physical system [10].11

Meanwhile, progress has been made in utilizing differentiable solvers to find solutions to high-12

dimensional optimization problems [15, 5, 13]. Yet existing methods are still computationally13

expensive and thus limited to short time frames. We combine differentiable physics with deep14

learning to represent solution manifolds rather than computing single solutions via optimization. In15

this way, trained models can interact with a physical environment using a large number of interaction16

parameters, and inference times are orders of magnitude faster than with classic optimization algo-17

rithms. Here the use of differentiable physics is key for a robust learning of the complex spaces of18

behavior encoded by the model PDEs.19

We employ a fully differentiable Eulerian PDE solver that can solve a large class of PDEs with20

analytic gradients. By fully integrating the numerical solver into the training process, neural networks21

can learn how to optimally control a physical system given an initial state and a target state. We22

further demonstrate that long time frames can be handled via a specialized architecture and evaluation23

scheme that separates the learning of physical behavior for different time scales. The resulting24

technique uses multiple neural networks, sharing the same architecture, and enables the inference of25

solutions to an optimal control problem for a sequence of length n in time O(n).26

2 Differentiable PDE solvers27

Let u(x, t) be described by a PDE that can be explicitly solved forward in time, i.e. time and space28

derivatives do not mix. The PDE can then be written as29

∂u

∂t
= P

(
u,
∂u

∂x
,
∂2u

∂x2
, ...,y(t)

)
(1)

where P models the physical behavior of the system and y(t) denotes any external factors that can30

influence the system. A classic solver can move the system forward in time via Euler steps:31

u(ti+1) = Solver[u(ti),y(ti)] = u(ti) + ∆t · P (u(ti), ...,y(ti)) (2)

The square brackets indicate that Solver is a functional rather than a function, i.e. it takes full fields32

as input. Each step moves the system forward by a time increment ∆t. Repeated execution produces33

a trajectory u(t) that is a solution to the PDE.34

This functionality for time advancement by itself is not well-suited to solve optimization problems,35

since gradients can only be approximated by finite differencing in these solvers. For high-dimensional36

Submitted to the ICLR 2020 Workshop ”Integration of Deep Neural Models and Differential Equations”.

or continuous systems, this method becomes computationally expensive because a full trajectory37

needs to be computed for each optimizable parameter. Differentiable solvers resolve this issue by38

solving the adjoint problem [12] via analytic derivatives. The adjoint problem computes the same39

mathematical expressions while working with lower-dimensional vectors. A differentiable solver40

can efficiently compute the derivatives with respect to any of its inputs, i.e. ∂u(ti+1)/∂u(ti) and41

∂u(ti+1)/∂y(ti). This allows for gradient-based optimization of inputs or control parameters of the42

simulation over an arbitrary number of time steps. The adjoint method is also used by most machine43

learning frameworks, where it is more commonly known as reverse mode differentiation [16, 4].44

We make use of this analogy to implement a differentiable PDE solver as a set of mathematical opera-45

tions within a deep learning framework [1]. We focus on Eulerian rather than Lagrangian methods46

since they are widely used for a large class of PDEs [14]. All solver operations are implemented47

in a differentiable manner, i.e. the automatic differentiation tools can chain the derivatives of these48

operations with built-in machine learning operations to build analytic derivatives for any combination49

of operations, thus enabling end-to-end training. This toolkit of operations enables the solver to50

handle a large class of PDEs, including the incompressible Navier-Stokes equations.51

3 Learning force-based interactions52

Assuming the physical behavior P is described by a PDE as in Eq. (1), we add a control force F (t)53

which allows the model to interact with the system:54

∂u

∂t
= P

(
u,
∂u

∂x
,
∂2u

∂x2
, ...

)
+ F (t) (3)

While the evolution of the complete state u is determined by the above equation, we allow some parts55

of u to be hidden for the control task. This restriction reflects the fact that it is often not possible to56

observe the full state of a physical system. When considering a cloud of smoke, for example, the57

smoke density might be observable while the velocity field cannot be seen directly. Mathematically,58

we model this restriction by decomposing u into an observable part o and a hidden part h with59

u = o(u) ⊗ h(u). Here, ⊗ denotes the tensor product, adding all components of the states. The60

hidden part can include spatial regions of some fields as well as entire fields.61

Using the above notation, we define the control task as follows. An initial observable state o0 of62

the PDE as well as a target state o∗ are given. We are interested in a reconstructed trajectory ur(t)63

that matches these states at t0 and t∗, i.e. o0 = o(ur(t0)),o∗ = o(ur(t∗)), and requires the least64

amount of effort over the whole time span. I.e., we aim for minimizing the forces to be applied in65

terms of their magnitude with:66

LF [u(t)] =

∫ t∗

t0

|Fu(t)|2 dt (4)

O
b

se
rv

at
io

n

𝑡∗

𝑡0

(a) Task (b) Trajectories

O
b

se
rv

at
io

n

Hidden state 𝒉

𝒐0

𝒐∗

𝒐0

𝒐∗

𝒖𝑟
𝒖∗
𝑟

Figure 1: Possible trajectories.

Taking discrete time steps ∆t, the reconstructed trajectory67

ur is a sequence of n = (t∗−t0)/∆t states. This problem68

definition is portrayed in Fig. 1. An initial observation o069

and target observation o∗ are given (a). The goal is to70

reconstruct a trajectory ur that moves from o0 to o∗ in71

the state space and requires as little force as possible, as72

shown in (b). The grey lines represent the unperturbed73

evolution of the physical system. The amount of applied74

force corresponds to how far the trajectory deviates from75

the natural evolution in this picture.76

When an observable dimension cannot be controlled directly, there may not exist any trajectory u(t)77

that matches both o0 and o∗. This can stem from either physical constraints or numerical limitations.78

In these cases, we settle for an approximation of o∗. To measure the quality of the approximation of79

the target, we define an observation loss L∗
o. The form of this loss can be chosen to fit the problem.80

For our experiments we use the filtered L2 distance between target and reconstruction:81

L∗
o(u(t∗)) = |Br(o∗)−Br (o(u(t∗))) |2 (5)

where Br denotes a spatial blur function with a fixed, problem-dependent radius r ≥ 0. We combine82

Eqs. 4 and 5 into the objective loss function83

L[u(t)] = α · LF [u(t)] + β · L∗
o(u(t∗)), (6)

2

with α, β > 0. Since our solver is differentiable, L can be used directly to optimize a machine84

learning model such as a neural network that models ur(t),o∗, t→ F (t) with weights w. We call85

this network the control force estimator (CFE).86

For a sequence of n frames, L[u(t)] depends on all n states of the trajectory u(t). Thus, for recurrent87

end-to-end training, n linked copies of the network need to be chained together. When inferring88

the force, this results in a CFE chain, shown in Fig. 2, that alternates between network and solver89

execution. When using a CFE chain, the complete sequence needs to be run forward and backward90

for each optimization step of the model. This is not only slow, it also means that gradients are passed91

through a potentially long chain of highly non-linear simulation steps. When the reconstruction ur92

is close to an optimal trajectory, this is not a problem since the gradients ∆ur are small and the93

operations executed by the solver are differentiable by construction. The solver can therefore be94

locally approximated by a first-order polynomial and the gradients can be safely backpropagated.95

For large ∆ur, such as at the beginning of training, this approximation breaks down, causing the96

gradients to become highly unstable while passing through the chain.97

This workshop paper can only provide a summary of our approach – in the full version [8], we give98

details on how a divide-and-conquer scheme can be used to resolve this problem so that the feedback99

from a differentiable solver leads to stable convergence in training. In this version we employ a100

second model, which predicts the observable state op ((ti + tj)/2) given two observations. We refer101

to this model as the observation predictor (OP).102

4 Results103

We apply our algorithm to two-dimensional fluid dynamic problems, which are highly challenging104

due to the complexities on the governing Navier-Stokes equations [3] for the velocity field v,105

P(v,∇v) = −v · ∇v + ν∇2v +∇p, (7)

subject to the hard constraints∇·v = 0 and∇×p = 0, where p denotes pressure and ν the viscosity.106

In addition, we consider a passive density ρ which moves with the fluid via ∂ρ/∂t = −v · ∇ρ. We107

set v to be hidden and ρ to be observable and allow forces to be applied to all of v.108

We run our tests on a 128 × 128 grid, resulting in more than 16,000 effective continuous control109

parameters. We train the OP and CFE networks for two different tasks: reconstruction of natural fluid110

flows and controlled shape transitions. Example sequences are shown in Fig. 3 and a quantitative111

evaluation, averaged over 100 examples, is given in Tab. 1. While all divide-and-conquer methods112

manage to approximate the target state well, there are considerable differences in the amount of113

force applied. The supervised technique, denoted as regular, exerts significantly more force than the114

differentiable solver based methods, resulting in jittering reconstructions. A prediction refinement115

scheme (denoted as refined) re-evaluates predictions over the course of a sequence. This version116

produces the smoothest transitions, converging to about half the loss of the regular, non-refined117

variant. For comparison, we run a classic optimization with hierarchical shooting that computes118

solutions for single cases, and find that it requires 1500 iterations to compute a control function that119

our trained model infers almost instantly.120

Solver𝐶𝐹𝐸Solver𝐶𝐹𝐸 Solver𝐶𝐹𝐸 𝒐(𝒖𝑟)…

𝑡0 𝑡𝑛−1 𝑡𝑛𝑡1

Δ𝒖r

𝐿 𝒐∗

Adjoint

Δ𝒘

𝐶𝐹𝐸∗…Adjoint𝐶𝐹𝐸∗Adjoint𝐶𝐹𝐸∗

Δ𝒘Δ𝒘 + + … +

(a) Forward pass

(b) Backward pass

(c) Weight update

Figure 2: Optimization scheme of a chained force prediction network. (a) The forward pass recon-
structs a trajectory by alternating between force estimation and solver execution. (b) For backpropa-
gation, the adjoint problem of the sequence is computed. (c) The weight updates from each time step
are accumulated and applied to the model.

3

Figure 3: Example reconstructed trajectory from (a) the natural flow test set and (b) the shape test set.
The target state o∗ is shown on the right.

Table 1: A comparison of methods in terms of final cost for the (a) natural flow setup and (b) the
shape transitions. The initial distribution is sampled randomly and evolved to the target state.

Execution Loss a) Force LF a) Obs. L∗
o b) Force LF b) Obs. L∗

o

Regular Supervised 243± 11 1.53± 0.23 n/a n/a
Regular Diff. Physics 22.6± 1.1 0.64± 0.08 89± 6 0.331± 0.134
Refined Diff. Physics 11.7± 0.6 0.88± 0.11 75± 4 0.126± 0.010

The next experiment increases the complexity of the fluid control problem by adding obstacles to the121

simulated domain and limiting the area that can be controlled by the network. An example sequence122

using this setup is shown in Fig. 4. Here, the goal is to move the smoke from its initial position near123

the center into one of the three buckets, i.e. separated regions, located at the top. The control forces124

can only be applied in the peripheral regions, which are outside the visible smoke distribution. Only125

by synchronizing the 5000 continuous control parameters can a directed velocity field be constructed126

in the central region. We first infer trajectories using a trained CFE network and predictions that move127

the smoke into the desired bucket in a straight line. This baseline manages to transfer 89%± 2.6% of128

the smoke into the target bucket. Next we enable the hierarchical predictions and train the OPs. This129

version manages to maneuver 99.22%± 0.15% of the smoke into the desired buckets while requiring130

19.1%± 1.0% less force.131

5 Conclusions132

We have demonstrated that deep learning models in conjunction with a differentiable physics solver133

can successfully predict the behavior of complex physical models and learn to control them. The134

introduction of a hierarchical predictor-corrector architecture allows us to learn to reconstruct long135

sequences by treating the physical behavior on different time scales separately. Based on these results,136

we believe that learning differentiable physics has significant potential to provide physical intuition137

for a wide range of systems that understand and interact with the real world.138

Figure 4: Example indirect control sequence. Obstacles are marked white, control regions in light
blue (at left, bottom and right sides). The white arrows indicate the velocity field. The domain is
enclosed in a solid box with an open top.

4

References139

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu140

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for141

large-scale machine learning. In Symposium on Operating Systems Design and Implementation,142

2016.143

[2] Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning to144

poke by poking: Experiential learning of intuitive physics. In Advances in Neural Information145

Processing Systems, 2016.146

[3] G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge University Press, 1967.147

[4] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary148

differential equations. In Advances in Neural Information Processing Systems, 2018.149

[5] Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and J Zico Kolter.150

End-to-end differentiable physics for learning and control. In Advances in Neural Information151

Processing Systems, 2018.152

[6] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical in-153

teraction through video prediction. In Advances in Neural Information Processing Systems,154

2016.155

[7] Nick Haber, Damian Mrowca, Li Fei-Fei, and Daniel LK Yamins. Learning to play with156

intrinsically-motivated self-aware agents. arXiv:1802.07442, 2018.157

[8] Philipp Holl, Vladlen Koltun, and Nils Thuerey. Learning to control pdes with differentiable158

physics. arXiv, 2019.159

[9] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A160

survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.161

[10] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval162

Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.163

arXiv:1509.02971, 2015.164

[11] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lilli-165

crap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep166

reinforcement learning. In ICML, 2016.167

[12] Lev Semenovich Pontryagin. Mathematical Theory of Optimal Processes. John Wiley, 1962.168

[13] Connor Schenck and Dieter Fox. SPNets: Differentiable fluid dynamics for deep neural169

networks. In Conference on Robot Learning, 2018.170

[14] Gordon D Smith. Numerical Solution of Partial Differential Equations: Finite Difference171

Methods. Oxford University Press, 1985.172

[15] Marc Toussaint, Kelsey Allen, Kevin Smith, and Joshua B Tenenbaum. Differentiable physics173

and stable modes for tool-use and manipulation planning. In Robotics: Science and Systems,174

2018.175

[16] Paul J Werbos. Backwards differentiation in AD and neural nets: Past links and new opportuni-176

ties. In Automatic Differentiation: Applications, Theory, and Implementations, pages 15–34.177

Springer, 2006.178

5

	Introduction
	Differentiable PDE solvers
	Learning force-based interactions
	Results
	Conclusions

