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Abstract

Instruction tuning has enabled large language
models (LLMs) to achieve remarkable perfor-
mance, but its success heavily depends on the
availability of large-scale, high-quality instruc-
tion—response pairs. However, current meth-
ods for scaling up data generation often over-
look a crucial aspect: the alignment between
instructions and responses. We hypothesize
that high-quality instruction-response pairs are
not defined by the individual quality of each
component, but by the extent of their alignment
with each other. To address this, we propose
a Mutual Alignment Framework (MAIN) that
ensures coherence between the instruction and
response through mutual constraints. Experi-
ments demonstrate that models such as LLaMA
and Mistral, fine-tuned within this framework,
outperform traditional methods across multiple
benchmarks. This approach underscores the
critical role of instruction-response alignment
in enabling scalable and high-quality instruc-
tion tuning for LLMs.

1 Introduction

Large Language Models (LLMs) have demon-
strated unprecedented capabilities in comprehend-
ing human intent and performing cross-task gener-
alization through contextual learning(Brown et al.,
2020). A key breakthrough in aligning model be-
haviors with human expectations is primarily at-
tributed to instruction tuning, a supervised learn-
ing paradigm that bridges the gap between pre-
trained models’ latent knowledge and explicit task
requirements (Ouyang et al., 2022). Through multi-
task training on (instruction, response) pairs, this
approach enables systematic knowledge elicita-
tion while maintaining task-agnostic generalization
(Chung et al., 2024). The effectiveness of this pro-
cess is significantly influenced by the availability
of high-quality instruction-response pairs at scale.
In essence, the quality of data used in instruction
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Figure 1: This figure illustrates a common interaction
where a person and a dog adjust their behaviors to align
instruction with response, evolving through repeated
interactions to achieve mutual understanding.

tuning is critical to determining the performance
and overall effectiveness of the model.

Instruction-tuning methods currently follow two
primary approaches. The first involves engaging
domain experts (Kopf et al., 2024; Conover et al.,
2023; Bach et al., 2022) to manually create instruc-
tions for specific tasks, ensuring high precision but
facing challenges related to scalability and cost.
The second approach (Wang et al., 2022a; Peng
et al., 2023) leverages LLMs to generate responses
based on given prompts. Although this approach
is more scalable, it risks introducing inaccuracies
or hallucinations (Zhang et al., 2023). Recent
research has explored an alternative: leveraging
human-written documents as typical responses and
using LLMs to infer user instructions (Koksal et al.,
2023; Li et al., 2023a; Chen et al., 2024; Nguyen
et al., 2024), a process known as instruction back-
translation. These approaches primarily focused on
making the generated data resemble human data,
without considering the inherent relationship be-
tween the instruction and the response. We contend
that the alignment between the instruction and the



response is also essential.

As shown in Figure 1, the interaction between a
person and a dog illustrates the bidirectional nature
of training. Both the person and the dog adjust
their behaviors to achieve mutual alignment. Sim-
ilar to how a good command to a dog is one that
elicits a proper response, generating an instruction-
response pair must be aligned for optimal effective-
ness. The quality of the instruction is validated by
the response it triggers, and the same logic applies
in reverse. Generating a high-quality pair requires
careful alignment through mutual interaction. The
instruction must clearly guide the response, while
the response should accurately reflect the instruc-
tion, ensuring that both are mutually reinforcing.

The interdependence between instructions and
responses introduces a dual-variable optimization
problem, where optimizing one requires simulta-
neous consideration of the other, as neither can
be fully optimized in isolation. Drawing inspi-
ration from the alternating update strategy used
in Expectation-Maximization (EM) algorithms
(Moon, 1996), we propose a method to synthesize
high-quality data, called MAIN. This framework it-
eratively optimizes both instructions and responses,
enhancing their mutual alignment. Through this
co-adaptive process, the alignment of instruction-
response pairs improves progressively. We be-
lieve that the aligned pairs can significantly benefit
model’s capabilities. Furthermore, we propose a
simple but effective filtering strategy, mutual fil-
ter, which selects pairs with superior alignment,
ultimately boosting the quality of the fine-tuning
dataset.

To validate the effectiveness of our pro-
posed MAIN, we test model with our generated
instruction-tuning data on multiple benchmark
tasks. Our experiments demonstrate significant im-
provements in output quality, instruction-following,
and reasoning ability. Specifically, for the LLaMA-
2-7B model, our generated data yield a 5.85% im-
provement in output quality compared to the most
competitive baseline, Dog Instruct (Chen et al.,
2024), and a 3.60% increase in instruction follow-
ing ability over Better Alignment (Nguyen et al.,
2024). Experimental results show that our method
substantially boosts the model’s capabilities in var-
ious areas, surpassing traditional approaches. In
summary, our main contributions are as follows:

* We emphasize the critical importance of
mutual alignment between instructions

and responses in synthesizing high-quality
instruction-tuning data.

* Propose a mutual alignment framework that
reinforces the inner connection between in-
structions and responses, and develop an effi-
cient data filtering method based on this frame-
work.

Extensive experiments on multiple benchmark
datasets show that our approach outperforms
existing methods in enhancing instruction tun-
ing effectiveness.
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Figure 2: An overview of the data synthesis process,
including mutual alignment, data augmentation, and
data curation steps, aimed at creating high-quality, well-
aligned instruction-response pairs from both seed and
unlabelled data.

2 Methodology

In this section, we present our proposed Mutual
Alignment Framework, designed to enhance in-
struction tuning performance by establishing and
strengthening the intrinsic alignment between in-
structions and responses.

2.1 Preliminary

Data The framework utilizes two primary
datasets: a limited set of high-quality, human-
annotated instruction-response pairs seed data
Dyeeda = {(I,R)} and a larger collection of un-
labelled responses Dypjabelled = {Ru}, extracted
from web corpus.

Models The forward model My := p(R|I) is de-
signed to follow instructions, generating responses
given instructions, while the reverse model M, :=
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Figure 3: An overview of our method for iteratively aligning instructions and responses through mutual optimization.

p(I|R) learns to generate instructions given re-
sponses.

2.2 Data Synthesis Framework: MAIN

We present our data synthesis process as shown in
the Figure 2. Our Approach assumes access to a
base language model, a small set of high-quality
seed data, and a large collection of unlabelled re-
sponses. The overall preocess performs three core
steps: Mutual Alignment, Data Augmentation,
Data Curation.

e Mutual Alignment: This step is to obtain a
reverse model M, := p(I|R) from the seed
data Dge.q based on the base model My ge.
This step would align the internal relationship
between instruction and response.

e Data Augmentation: This step is to gen-
erate candidate pairs from unlabelled data,
which leverages the trained reverse model
M, = p(I|R) to generate predicted instruc-
tions based on the unlabelled data Dypiabelled,
obtaining the augmented data pairs Dy =
(R, I'}.

» Data Curation: This step involves data filter-
ing to obtain the curated, well-aligned pairs.
In detail, we leverage our proposed mutual-
filter mechanism to select high-quality sam-
ples from the augmented pairs D,,,. These
retained samples are used to form the fi-
nal training dataset with seed data Dgyer =
[ﬁlter(Daug), Dseed] for fine-tuning the base
model.

2.3 Mutual Alignment

Achieving strong alignment between instructions
and responses is critical for effective instruction
tuning. However, establishing a robust relationship
between these two components presents a challeng-
ing dual-variable problem, as neither direction can
be optimized in isolation. Inspired by the itera-
tive principles of the Expectation-Maximization
algorithm, we propose mutual alignment that treats
instruction-to-response and response-to-instruction
generation as complementary tasks, modeled as
a forward generation process and a reverse gen-
eration process, respectively. By alternately opti-
mizing one direction while regulating the other,
our method iteratively minimizes discrepancies
until convergence is reached, ultimately yield-
ing a model that produces highly aligned instruc-
tion—response pairs.

An overview of our approach is provided in Fig-
ure 3, and Algorithm 1 details the iterative opti-
mization process.

Forward Model Alignment. To capture the
alignment from responses to instructions, we let
the forward model learn the distribution that the
reverse model simulates. Specifically, at each it-
eration k, the reverse model generates synthetic
instructions I for the responses, forming a target
distribution that reflects how instructions should
ideally relate to responses. The forward model is
then trained to approximate this distribution.

j = Mf(R), VR € Dgeed- (1)

These synthetic pairs (I, R) are merged with the
original seed data (I, R) to form the training set.



Algorithm 1 Mutual Alignment

Input: Seed data Deeq = {(I, R)},
Unlabelled data Dygjabetied = { Ru }»
Base model Myase,
Number of iterations /N
Output: Final reverse model M, forward model
up
1: Initialize forward model MJQ — Mpase:
2: Initialize reverse model MQ — Mpase;
3: for k =0to N do
4:  Use Mf to generate I from R in Dseed;
5:  Construct Dy = {(f, R)} U Dgeeds
6:  Update M ]’f on Dy by minimizing the loss
L ¢ (Equation (2)) to obtain M JIEH;
7. Use M J’f“ to generate R from I in Dyeeq;

Construct D, = {(R, 1)} U Dseeds
Update MF on D, by minimizing the loss
L, (Equation (4)) to obtain M**1;

10: end for

11: Return M and M}V

The forward model is then updated to M JIEH by
optimizing a weighted loss function:

Ly=a-LI,R) +(1—a) L(I,R). (2

The first loss term £(I, R) aligns the forward
model with the synthetic instructions generated by
the reverse model, ensuring that the forward model
learns how responses correspond to instructions as
modeled by the reverse model. The second loss
term £(I, R) maintains consistency with the origi-
nal human-annotated instructions, thereby prevent-
ing the forward model from overfitting to synthetic
data. The parameter o controls the balance be-
tween synthetic and human-annotated instructions,
with its dynamic adjustment described in Dynamic
Weighting. This process encourages the forward
model to adapt to the instruction distribution in-
duced by the reverse model.

Reverse Model Alignment. Similarity, the re-
verse model is trained to capture the alignment
from instruction to response as guided by the for-
ward model. The reverse model now is updated
based on the latest forward model M JIE"H that gen-

erates synthetic responses R conditioned on the
seed instructions:

~

R = ME(D),

f VI € Dseed- (3)

And it is optimized using similar weighted loss
function:

Lr=a- LRI+ (1—a) LRI).

Dynamic Weighting The objective of dynamic
weighting is to maintain a balanced contribution
of synthetic and seed data, thereby improving the
alignment between the forward and reverse models.
The weighting parameter o € [0, 1] is critical in
this process, as it determines the relative influence
of synthetic and seed data during fine-tuning. A
static weighting scheme may result in suboptimal
alignment: excessive reliance on synthetic data
introduces noise, whereas an overemphasis on seed
data can limit the model’s generalization ability.
To mitigate this, we employ a dynamic adjustment
mechanism that updates « based on the relative
loss contributions of synthetic and seed data at each
step. Specifically, for forward model alignment, o
is updated as: A

L£(I,R)
L(I,R)+ L(I,R)

&)

o=

This formulation adaptively adjusts the weight
of synthetic data based on its relative loss, ensuring
a balance between learning from synthetic exam-
ples and maintaining stability with seed data. By
dynamically adjusting «, the model effectively inte-
grates new information from synthetic pairs while
maintaining consistency with the high-quality seed
data.

2.4 Data Augmentation

After optimizing the mutual alignment between
instructions and responses, we expand our train-
ing data by generating synthetic instructions for
unlabelled responses. Specifically, for each unla-
belled response R, € Dynlabelled, the reverse model
produces a corresponding synthetic instruction I.
This yields candidate instruction—response pairs of
the form {R,,, I'}, which serve as approximations
of how users might naturally formulate instructions
for the given responses. However, not all candi-
date pairs are of high quality, so further curation is
necessary.

2.5 Data Curation

To further improve data alignment, we introduce
a simple yet effective filtering mechanism. We as-
sume that high-quality instruction-response pairs



should be well-aligned, where the predicted in-
struction generated by the reverse model can be
decoded by the forward model to recover the re-
sponse, which should closely resemble the original.
This process is akin to the interaction between an
encoder and a decoder (Cho et al., 2014). Thus,
we select the most well-aligned pairs. Using the
candidate pairs {R,, I’} from the Augmentation
stage, we then employ the forward model to gener-
ate synthetic responses &’ based on I’:

R = MM(T). (6)

We compute the Cross-Entropy between the syn-
thetic responses R’ and the original unlabelled re-
sponses R,:

Lep(R,Ry) == logp(R' | I',Ry). ()

Candidate pairs are sorted in ascending order by
their values, and only those with the smallest val-
ues—indicating the highest degree of mutual align-
ment are retained.:

Dﬁlter - [ﬁlter<Daug)a Dseed] (8)

This straightforward mechanism, relying solely on
our mutual alignment model, effectively curates a
high-quality subset of data for fine-tuning.

3 Experiment

3.1 Experimental Setup

Data. The seed data consists of 3,200 human-
annotated (instruction, response) examples from
the Open Assistant dataset (Kopf et al., 2024), serv-
ing as a reliable baseline for fine-tuning. The un-
labelled data is Falcon RefinedWeb (Penedo et al.,
2023) that is a massive English web dataset con-
taining raw responses without paired instructions.
We sampled 502k segments.

Mutual Alignment Framework. In the MAIN,
we used the LLaMA-2-7B model (Touvron et al.,
2023) as the base model for mutual alignment ex-
periments, and additionally validated the general-
ization of our approach using the Mistral-7B-v1
model (Jiang et al., 2023). For each iteration, both
the forward and reverse models are trained for one
epoch. The learning rate is set to 1 x 1075 with
a linear decay schedule. The adaptation parame-
ter, denoted as a, dynamically adjusts based on the
formula in 5. The batch size is set to 32. For data

curation, we selected the top 16,800 pairs from the
unlabelled data based on cross-entropy and com-
bined them with the seed data to create the final
fine-tuning dataset.

Base model & fine-tuning. We use the pre-
trained LLaMA-2-7B model and Mistral-7B-v1
model as the base models for fine-tuning respec-
tively. Detailed hyperparameter configurations are
provided in Appendix A.

3.2 Evaluation

To evaluate our framework, we conduct experi-
ments across three benchmarks that assess different
aspects of model performance.

AlpacaEval. We assess output preference using
805 instructions from the AlpacaEval dataset (Li
et al., 2023b). Model outputs are compared against
text-davinci-003 in a pairwise setting, with GPT-4-
based judgments determining win rates.

IFEval. Instruction-following ability is evaluated
with IFEval (Zhou et al., 2023), which reports accu-
racy across four metrics: Prompt-level Strict (P-S),
Instruction-level Strict (I-S), Prompt-level Loose
(P-L (Zhou et al., 2023), ensuring a comprehensive
assessment of instruction adherence.

OpenLLM. Reasoning ability is measured via
the Open LLM Leaderboard (Beeching et al.,
2023) using the Language Model Evaluation
Harness (Gao et al., 2023). We evaluate on
ARC (Clark et al., 2018), HellaSwag (Zellers
et al., 2019), Winogrande (Sakaguchi et al., 2021),
MMLU (Hendrycks et al., 2020), and Truth-
fulQA (Lin et al., 2021).

3.3 Baselines

We compare our framework to several baseline ap-
proaches, all evaluated on the Falcon-RefinedWeb
dataset with 20K samples.

Longform. This method (Koksal et al., 2023)
prompts a large language model to generate in-
structions for human-written texts.

Humpback. This method (Li et al., 2023a) is a
two-stage curation process that filters and selects
high-quality instruction—response pairs before fine-
tuning.

Dog Instruct. This method (Chen et al., 2024)
involves a post-processing step that refines the re-
sponses to align with standard Al-generated output.



Better Alignment. This method (Nguyen et al.,
2024) first generates instructions via back-
translation, then filters low-quality pairs to obtain
high-quality response.

4 Experimental Results

This section presents the experimental results, in-
cluding quantitative evaluations, an ablation study,
and a case study, to assess the effectiveness of our
approach.

4.1 Quantitative Results

We conduct experiments across three benchmarks,
each assessing a different aspect of the MAIN: Al-
pacaEval evaluates output quality, IFEval measures
instruction-following ability, and OpenLLM tests
reasoning capability.

Output Quality. As shown in Table 1, our
method achieves the highest win rate in AlpacaEval
dataset, surpassing the leading baseline. Specifi-
cally, on Llama-2-7B, our method achieves a win
rate of 58.20%, representing a 5.85% improvement
over the best baseline Dog Instruct (Chen et al.,
2024). On Mistral-7B, our method outperforms
Better alignment (Nguyen et al., 2024) by 3.15%,
reaching a win rate of 48.94% compared to 45.79%.
These results confirm that our MAIN method en-
hances instruction-response alignment more effec-
tively than previous approaches, leading to outputs
that better align with human expectations.

Instruction Following. Table 1 illustrates the
performance of our method in IFEval dataset,
where it outperforms previous approaches. Com-
pared to the best-performing baseline Better align-
ment (Nguyen et al., 2024), our approach achieves
consistent improvements across all evaluation met-
rics. Specifically, on Llama-2-7B, we see an in-
crease of 2.59% in P-S and 3.42% in I-S. For
Mistral-7B, we observe a 5.12% improvement in
P-S and a 4.84% improvement in I-S over Bet-
ter alignment (Nguyen et al., 2024). These re-
sults highlight the crucial role of enhanced data
alignment in fine-tuning, which allows our model
to better interpret and respond to user instruc-
tions, thereby driving its superior performance in
instruction-following tasks.

Reasoning Ability. As shown in Table 1, our
method demonstrates strong improvements in rea-
soning and factual accuracy across multiple down-
stream tasks. On Llama-2-7B, our approach shows

a 2.02% improvement over the best baseline, Bet-
ter Alignment, on ARC-Challenge and a 1.63%
improvement on Truthful QA. In particular, ARC-
Challenge benefits from our method’s ability to
better capture common-sense reasoning patterns,
which likely leads to more accurate responses. On
Mistral-7B, the most significant improvements are
observed in TruthfulQA, where our method outper-
forms Better Alignment by 5.03%, and in MMLU,
with a 2.65% increase. These benchmarks, which
require accurate factual recall and complex reason-
ing, show how our method strengthens the model’s
ability to provide correct and contextually appro-
priate answers.

These results underline the effectiveness of our
MAIN in enhancing both reasoning and factual
accuracy. By refining the alignment of instruction
and response pairs during fine-tuning, our model is
better equipped to handle complex reasoning tasks
and provide more precise, reliable outputs across
various challenging benchmarks.

4.2 Ablation Study

We perform further ablation studies to analyze the
effect of filtering stragety and dynamic weighting.

Filtering Stragety. Effective filtering plays a cru-
cial role in improving alignment quality by remov-
ing noisy or misaligned instruction-response pairs.
Table 2 presents a results comparing models trained
with no filtering, score-based filtering, and our
mutual-filter approach. Our mutual-filter method
achieves the highest win rate, surpassing both no fil-
tering and score-based filtering. It consistently im-
proves instruction-following accuracy, demonstrat-
ing that our simple mutual-filter approach, with-
out additional model-based scoring, effectively se-
lects high-quality instruction-response pairs for
fine-tuning.

In contrast, score-based filtering provides little
benefit and even underperforms compared to unfil-
tered data. This is due to the score-based approach,
used in Humpback (Li et al., 2023a) and Better
Alignment (Nguyen et al., 2024), relying on a rank-
ing model fine-tuned on seed data rather than a
dedicated scoring model. Without a clear optimiza-
tion objective for instruction-response alignment,
it struggles to identify high-quality pairs, leading
to suboptimal fine-tuning.

Our mutual filter, by leveraging mutual-
alignment models, directly favors instruction-
response pairs with strong semantic coherence. By



Base Model Method Output quality Instruction following Reasoning ability
IFEval .
AlpacaEval ARC_C MMLU HellaSwag Winogrande TruthfulQA
P-S I-S P-L I-L

Humpback (Li et al., 2023a) 41.02 1546 1839 2642 2991 5590 4491 79.42 73.32 44.48
Longform (Koksal et al., 2023) 35.64 1523 17.56 26.10 2929 5572 45.02 78.98 73.21 45.07
Llama-2-7B Dog Instruct(Chen et al., 2024) 5235 1552 1940 28.17 32.01 56.06 45.62 79.89 74.13 45.77
Better Alignment (Nguyen et al., 2024) 50.37 1682 19.69 27.70 31.52 5592 45.84 80.33 74.12 45.30
MAIN 58.20 20.22 2336 3117 3537 57.08 45.47 81.22 74.51 47.40
A over Best Result +5.85 +3.40 +3.67 +43.00 +3.36 +1.02 -0.37 +0.89 +0.38 +1.63
Humpback (Li et al., 2023a) 40.48 17.19 28.05 20.88 3237 54.01 49.26 79.12 73.24 4548
Longform (Koksal et al., 2023) 37.62 1698 27.89 20.75 32.10 53.98 48.12 78.25 71.60 44.88
Mistral-7B Dog Instruct(Chen et al., 2024) 45.34 1823 2848 2132 3347 5315 49.10 79.07 73.21 45.98
Better Alignment(Nguyen et al., 2024) 45.79 18.35 2945 2149 34.10 54.20 50.28 78.37 71.48 44.73
MAIN 48.94 2347 3429 26.60 38.84 5512 52.93 79.38 72.38 49.76
A over Best Result +3.15 +5.12 +4.84 4511 +474 4092 +2.65 +0.31 -0.86 +3.78

Table 1: Benchmarking results of different instruction tuning methods on Llama-2-7B and Mistral-7B using Falcon
RefinedWeb dataset given same data quantity. A over Best Result quantify improvements relative to the strongest

baseline method across evaluation categories.

eliminating misaligned samples without requiring
additional supervision, it ensures a more effective
training dataset, resulting in improved instruction-
following and generalization capabilities.

Filtering Method Win Rate  P-S I-S P-L I-L

Ours w/o filtering 56.40 1941 23.11 29.74 34.17
Ours + score-Based filtering 55.26 17.63 20.21 29.11 33.72
Ours + mutual filter 58.20 20.22 2336 31.17 3537

Table 2: Performance evaluation of LLaMA-2-7B fine-
tuned on the Falcon-RefinedWeb dataset (20K samples)
under three filtering conditions: no filtering, score-based
filtering, and our proposed mutual filter. All conditions
operate on instruction-response pairs generated by the
same reverse model.

Dynamic Weighting. Balancing the contribution
of aligned instruction-response pairs is crucial for
achieving both strong alignment and robust gen-
eralization. The weighting parameter « controls
this balance during training by adjusting the rel-
ative influence of synthetic and seed data. To
evaluate its effectiveness, we compare fixed val-
ues (o = 0.3,0.5,0.7,0.8,1.0) with our adaptive
approach (o« = Dynamic), which continuously up-
dates « throughout training.

As shown in Figure 4, increasing a generally
improves instruction-following ability and output
quality by emphasizing well-aligned pairs. How-
ever, excessively high e makes the model overly re-
liant on generated instruction-response pairs, lead-
ing to unstable training and degraded performance.

To mitigate this, our dynamic weighting strategy
adaptively balances aligned and seed data, prevent-
ing instability while maintaining strong alignment.
The results show that this approach significantly
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Figure 4: Evaluation of dynamic weighting strategies on
LLaMA-2-7B training, comparing fixed and adaptive
« values using the Falcon-RefinedWeb dataset, with
performance assessed on AlpacaEval and IFEval.

improves output quality and instruction-following.

4.3 Case Study

As shown in Figure 5, the two examples, both ex-
tracted from unlabeled data, illustrate the effective-
ness of our approach. In the first case, the MAIN
instruction explicitly requests specific details about
the victim, the shooter, and the events surround-
ing the shooting, providing clear guidance for the
response. In contrast, the baseline instruction is
more general, only asking for a brief article about
the shooting without specifying key details. In the
second case, the MAIN instruction emphasizes a
critical event: a wave of car burglaries in the sub-
urbs, while the baseline instruction remains vague,
simply requesting a summary of events in suburban
areas.



Response: A shootin is refusing to cooperate with a Kokomo Police
Department investigation, leaving detectives to pursue other witnesses. D

Liggin, 2 [ , was found shortly before 4:30 p.m. Saturday outside the St.
Joseph Hospital Emergency Room. He had a gunshot wound to his left leg and a
cut on his left arm.With Liggin not talking... The video im lit

Response: | Your ( -ins has occurred over the past

weekend, with several incidents reported in nearby nc 100ds. In Shorewood,
three vehicles were illegally entered...One vehicle was ransacked, though nothing
was taken, while another had items like a GPS and an iPod stolen from an
unlocked car. Local authorities are urging residents to lock their cars and report

any suspicious activity.

=)
|u| MAIN Instruction: Can you please write a short article about a recent
shooting in Kokomo Indiana? I'd like it to include details about the

victim, the shooter, and the events leading up to the shooting.

Baseline Instruction: Can you please write a short article about a

shooting?

=)
IUI

—

MAIN Instruction: Write a report on the recent wave of car break-ins

in the suburbs.

Baseline Instruction: Give a summary of recent things happening in

suburban areas.

Figure 5: Method Comparison for Instruction Generation: A Case Study on the Effectiveness of Reverse Model

Approaches in Aligning Instructions with Responses

In both cases, the reverse model’s MAIN instruc-
tions are more focused and specific, resulting in
responses that are better aligned with the intended
context. In contrast, the baseline instructions are
more general. These examples demonstrate that our
method generates instructions that are more closely
aligned with the responses, improving instruction-
response coherence and enhancing the overall qual-
ity of the generated content.

5 Related Work

5.1 Instruction Tuning

Instruction tuning fine-tunes pre-trained LLMs
on instruction-response pairs, enabling models to
generalize across tasks without task-specific fine-
tuning (Wei et al., 2021; Mishra et al., 2021; Wang
et al., 2022b). Subsequent work (Mishra et al.,
2021; Sanh et al., 2021) focused on cross-task gen-
eralization through diverse inputs.

5.2 Data Generation

Effective instruction tuning relies on large-scale,
high-quality datasets, typically generated in two
ways: human-crafted or model-generated.

Human-Crafted Data Datasets curated by do-
main experts, like OpenAssistant Conversations
(Kopf et al., 2024) and Databricks Dolly-15k
(Conover et al., 2023), are high quality but costly.
Crowdsourced platforms like ShareGPT (Chiang
et al., 2023) also contribute valuable data, espe-
cially user-uploaded conversations.

Model-Generated Data To reduce manual anno-
tation costs, methods like Self-Instruct (Wang et al.,

2022a) and Alpaca-GPT4 (Peng et al., 2023) gener-
ate instruction-response pairs automatically. How-
ever, issues like hallucinations (Zhang et al., 2023)
persist. New approaches, such as Better Align-
ment (Nguyen et al., 2024) and Dog-Instruct(Chen
et al., 2024), pair human responses with inferred
instructions to reduce hallucinations and improve
scalability. Our proposed MAIN builds on this by
iteratively optimizing instruction-response align-
ment to ensure high-quality data.

6 Conclusion

In this paper, we redefine the alignment between
instructions and responses, emphasizing its crucial
role in optimizing instruction tuning for LLMs. By
introducing the Mutual Alignment Framework, we
present an innovative approach that iteratively opti-
mizes both instructions and responses to enhance
their alignment. Additionally, we propose mutual
filter, a simple yet effective method for selecting
instruction-response pairs with superior alignment.
Our experimental results demonstrate that models
fine-tuned within this framework outperform base-
lines across multiple evaluation benchmarks, in-
cluding AlpacaEval, IFEval, and OpenLLM. These
findings highlight the importance of mutual align-
ment in instruction tuning and how it can optimize
fine-tuning data to enhance model performance. In
conclusion, this work offers valuable insights for
refining instruction-response pairs, enabling more
efficient and scalable instruction tuning in future
LLM developments.



Limitations

The mutual alignment approach requires more com-
putational resources and time compared to tradi-
tional supervised fine-tuning methods. Specifically,
the iterative optimization process can be computa-
tionally intensive, particularly for very large mod-
els. Due to these resource demands, we have eval-
uated the effectiveness of our method only on the
LLaMA-2-7B and Mistral-7B models. In future
work, we will explore the scalability of our ap-
proach across larger models and a wider range
of datasets to assess its generalizability and ap-
plicability. Additionally, efforts will be made to
develop more efficient algorithms for optimizing
instruction-response alignment and adapting the
framework to various tasks and domains.
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A Training Details

Hyperparameter Assignment
Computing Infrastructure 8 A100-80GB GPUs
Number of epochs 2

Batch size per GPU 64

Maximum sequence length 1024
Maximum learning rate 2e-5
Optimizer Adam

Adam epsilon le-8

Adam beta weights 0.9, 0.999
Learning rate scheduler warmup linear
Weight decay 0.1

Warmup steps 100

Learning rate decay linear

Table 3: Hyperparameters used in the experiments.

Training is conducted with hyperparameters
aligned to established supervised fine-tuning (SFT)
practices (Zhou et al., 2024; Touvron et al., 2023).
The learning rate is set to 2 x 10~°, with a weight
decay of 0.1, a batch size of 64, and a dropout rate
of 0.1. Additionally, each iterative phase of train-
ing is limited to one epoch. For text generation,



we apply nucleus sampling (Holtzman et al., 2019)
with a temperature (1") of 0.7 and a top-p value of
0.9. These settings balance diversity and relevance
in the generated outputs. More hyperparameters
listed in Table 3

B Ablation of Iteration.

To analyze the impact of iteration count N, we
vary N from 1 to 20 and evaluate its effect on Al-
pacaEval and IFEval dataset. As shown in Table
4, increasing NN initially improves performance,
as iterative refinement enables the forward and re-
verse models to progressively align their outputs,
enhancing instruction-response consistency.
However, beyond a certain point, performance
begins to decline. Excessive iterations reinforce
suboptimal patterns leading to overfitting. This un-
derscores the necessity of selecting an optimal N
that balances refinement and generalization. Our re-
sults emphasize the importance of properly tuning
N to maximize the benefits of mutual alignment.

Iterations NV Win Rate

N=1 50.11
N=2 55.72
N =3 58.20
N =4 55.89
N =5 55.60
N =10 54.41
N =15 54.29
N =20 54.52

Table 4: Ablation study on the effect of iteration count
N. We analyze the influence of varying the number
of training iterations (N = 1,2, 3,4,5,10,15,20) on
Llama-2-7B fine-tuned on Falcon-RefinedWeb.
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