Under review as a conference paper at ICLR 2024

THE TRUTH IS IN THERE: IMPROVING REASONING IN
LILMS WITH LAYER-SELECTIVE RANK REDUCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer-based Large Language Models (LLMs) have become a fixture in
modern machine learning. Correspondingly, significant resources are allocated
towards research that aims to further advance this technology, typically resulting
in models of increasing size that are trained on increasing amounts of data. This
work, however, demonstrates the surprising result that it is often possible to im-
prove the performance of LLMs by simply removing higher-order components
(components with smaller singular values) of their constituent weight matrices in
the multi-layer perception (MLP) layers. This simple intervention, which we call
LAyer-SElective Rank reduction (LASER), can be done on a model after training
has completed, and requires no additional parameters or data. LASER can dramat-
ically boost predictive performance—at times by 27.4 percentage points over the
model’s original performance—on question-answering tasks and across various
modalities for which Transformers are used.

1 INTRODUCTION

Since their original release, Transformer-based LLMs have been shown to be remarkably proficient
on a wide array of important machine learning tasks. Their underlying Transformer architecture has
become state-of-the-art for modeling and reasoning about natural language, and has shown promise
in domains such as computer vision (Dosovitskiy et al., 2020) and reinforcement learning (Chen
et al.,[2021) as well.

Contemporary instantiations of Transformer architectures are infamously large, typically requiring
tremendous compute resources for both training and inference. This is by design, as Transformers
trained with more parameters or more data have been shown to be more capable than their slimmer
predecessors—often by a significant margin (Brown et al.}[2020; [Touvron et al.,2023)). Still, a grow-
ing body of work suggests that Transformer-based models, and neural networks more generally, do
not require all fitted parameters to retain their learned hypotheses. While it seems helpful to be mas-
sively over-parameterized at train time (Hinton et al.| 2015 Bengio et al} [2005), it is well-known
that these models can be drastically pruned before inference; neural networks can often have well
over 90% of their weights removed without any significant degradation in performance (Frankle &
Carbin, |2018). The discovery of this phenomenon bolstered interest in around the relationship be-
tween generalization and over-parametrization (Zhang et al.,|2017), and spawned research in devel-
oping pruning strategies that lend themselves to efficient model inference (Molchanov et al., 2016).

This paper presents a surprising finding, that careful pruning done at specific layers of Transformer
models can produce significant boosts in performance on some tasks. We describe LAyer SElective
Rank reduction (LASER), an intervention that removes higher-order components of learned weight
matrices as identified by singular value decomposition. This reduction is performed in specific
weight matrices and selective layers of the Transformer model. In-line with previous work, we find
that many such matrices can be significantly reduced, and that performance degradation is often not
observed until well over 90% of components are entirely removed. However, unlike what is found
in previous work, we find that these reductions can produce drastic improvements in accuracy, as
measured by various well-studied reasoning benchmarks in NLP. Even better, this discovery ap-
pears to not be limited to natural language, with performance gains also found in domains such as
reinforcement learning and, to a limited degree, in the task of object detection in computer vision.
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Figure 1: LAyer SElective Rank reduction (LASER) replaces a specific weight matrix W of the
Transformer model by its rank-k approximation W g and observes the change in the behavior of the
model. We find that this rank approximation, especially for MLP weights at the latter layers of the
model, often offers surprising benefits to model performance.

Further, this paper analyzes the effect of the training data on samples that benefit from LASER.
We find that the improvements in the model’s performance on the dataset predominantly come on
information less frequently present in the model’s training dataset, suggesting that LASER offers a
kind of denoising procedure that makes weakly learned facts accessible. We separately find that
LASER affords increased robustness to paraphrases on previously correct questions.

Last, this work attempts to reason about what is being stored in the high-order components, such that
their removal boosts performance. For questions correctly answered only after LASER, in the absence
of interventions, the original model predominantly answers these questions with high-frequency
words such as “the”, “of”, etc—with the answers not even being of the same semantic type as the
correct answer. However, after some amount of rank reduction, the model’s answer flips to be cor-
rect. To understand this, we look at what the remaining components alone encode; we approximate
the weight matrix using only its higher-ordered singular vectors. We find that these components
describe either a different answer of the same semantic category as the answer or generic high-
frequency words. Therefore, when the noisy, higher-order components are assembled together with
the low-ordered components, their conflicting responses produce a sort of “average answer,” which
is likely to be incorrect.

Figure [T] visualizes the Transformer architecture and the procedure followed by LASER. Here, the
weight matrix of a Multi-Layer Perceptron (MLP) at a specific layer is replaced with its low-rank
approximation.

2 RELATED WORK

To our knowledge, this paper is the first to identify that carefully selected rank reductions can boost
Transformer performance. Still, there is a wide array of works that study related questions, including
how facts are stored in LLMs and how to best compress neural networks.

How facts are stored. Studies probing model representation for the presence of select properties
of entities (Ettinger et al.} 2016} [Adi et al, 2016} [Hupkes et al, 2018} [Conneau et al., 2018)) show
that models store factual information across different layers. However, there is conflicting evidence
on how this information is organized and utilized in constructing answers in large language mod-
els. Some theories outline that information about different entities is locally stored as two-layer,
key-value memory in MLP sections of Transformer models (Geva et al., [2021), which are thereafter
copied over through latter layers by the self-attention modules (Elhage, 2021)). Meng et al.| (2022)
proposes a procedure to trace and edit local entity-specific information to map to distinct “impossi-
ble” outputs, supporting the locality theory. These theories are further supported by the phenomenon
of “early exiting,” where the representation at an intermediate layer can be directly used with the
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terminal head of the model to correctly generate an output (Zhao et al., [2021). In contrast, studies
by (Hase et al.,|2023) have observed that information about some of the same entities or entity rela-
tions can be modified by making edits to a variety of layers in the model architecture, and therefore,
that facts are stored across layers in a fragmented fashion.

Model compression. Neural network pruning methods (LeCun et al., [1989; |Hassibi & Storkl
1992; Han et al., 2015; L1 et al., 2016} Frankle & Carbin, 2018)) have found that models could
be significantly pruned (often to removing over 90% of parameters) with very little drop in accu-
racy, significantly reducing the storage requirements of the model. There have also been proposed
approaches that prune these models in a structured manner, to facilitate improvements in inference
time (Molchanov et al.,2016)). The existence of sparse sub-networks (Frankle & Carbin|, 2018} [Hoe-
fler et al., [2021) has been found to be true for convolutional neural networks and fully connected
networks and Transformer models (Lv et al., 2023} [Murty et al., [2022). To our knowledge, model
pruning techniques have always done a unilateral reduction across all parameters, without targeting
any specific layers — leading to predictive performance either staying the same or decreasing (Fran-
kle & Carbinl 2018)). In this work, however, we find that the effect of reduction on accuracy is
non-uniform across different layer types; performance degradation can be found by reducing early
layers, while significant performance benefits are available, often by pruning the later layers.

Low-rank approximations of weight matrices. Most pruning methods reduce parameters in or-
der of their absolute magnitude (Frankle & Carbin, 2018)). Another approach to model approxima-
tion is to reduce the rank of its constituent weight matrices, keeping the top k£ components found by
SVD. While matrices of neural models, including Transformer models, have been found to be well-
approximated using this approach (Lv et al.} 2023; |Hajimolahoseini et al., 2021; |Yu et al., [2017),
where markedly reduced versions of the model can preserve its behavior, research has shown that
performance eventually declines as the severity of the intervention increases. Note that these re-
ductions are typically done unilaterally, removing the same number of components in every weight
matrix in the model. In contrast to these findings, we show that a targeted rank reduction, affecting
only a single weight matrix, can offer significant benefits to the predictive accuracy of Transformers.

Model distillation and low-rank training. |Ba & Caruanal (2014); Hinton et al.| (2015) have
trained smaller networks to mimic the behavior of larger networks, showing neural networks might
be significantly over-parametrized and can be replaced with efficient versions of the same. To our
knowledge, no report of an improvement in the model’s predictions as a consequence of this pro-
cedure has been shown. (Yang et al., |2020) have enforced low-rank-ness of weight matrices for
the purposes of memory efficiency, but the resulting models fail to achieve performance equivalent
to their overparametrized counterparts. The result suggests that overparametrization is helpful for
the identification of well-generalizing parameters by SGD (Bengio et al., |2005; Hinton et al., 2015;
Zhang et al., 2017).

3 PRELIMINARIES

We review basic notations first and then describe the core components of our study.

Maths Notation. We use R to denote real numbers, N to denote natural numbers, small letters such
as v € R? to denote a d-dimensional vector, and capital letters such as W € R™*" to denote a
matrix of size m x n. We use ||v||2 to denote the Euclidean norm of a vector v and ||| to denote
the spectral norm of a matrix W. We use [N] to denote the set {1,2,--- , N }. We will use rank(W)

to denote the rank of a matrix W and af(W) to denote its 7% largest singular value.

Transformer Architecture. We provide a concise description of vanilla Transformer architecture
that is relevant to our analysis. A Transformer architecture can be thought of as L layers of Trans-

former blocks. The I*" block maps a sequence of T-length vector sequence (hgl_l), e ,hg_l))

to another T-length vector sequence (hgl), e ,hg)), where all vectors are d-dimensional. This
transformation is accomplished using two sequential steps: a self-attention mechanism to mix infor-
mation across time steps, and a feed-forward network to process information within each time step.



Under review as a conference paper at ICLR 2024

We describe a basic version of these transformations for a fixed {*” layer and drop the superscript
(1 — 1) for clarity[T]

A single-head self-attention mechanism first maps each vector h; to a query vector ¢; = Wy h;,
a key vector k; = Wih; and a value vector v; = Wyh; where Wy, Wi, W,, € R4 are layer-
. . . . e L Tk /\/d)
specific weight matrices. We then compute attention probabilities = oole ki/Vd)
P g p p p(] ‘ Z) ZLTZ1 exp(q]kl/\/ﬁ)
for every i,j € [T]. These are used to compute the attention vector z; = Z]T:l p(j | P)v;. A
k-head self-attention computes a set of & attention vectors by using different linear transformations
for key, query, and value, and then concatenates these attention vectors. These k-separate linear
transformations for key, query, and value can all be absorbed into their respective matrices W, &
RIxdE 1y, € R¥** and T, € R?* 7 Finally, the self-attention mechanism outputs u; = z; W, +
h; using a projection matrix W, € R4 x4,

The feed-forward step applies a 2-layer multi-layer perception (MLP) ¢ : R — R? to each vector
u; € R? separately. The MLP typically has a ReLu (?) or GELU activation function (Hendrycks
& Gimpel, 2016) and in some models such as Llama, the bias of linear layers is set to 0. We denote
the weight matrices of the first and second linear layers of this MLP by U,,, and U, respectively.

The output of this [** Transformer block is then given by hl(-l) = (u;) + u;.

In summary, a Transformer architecture has the following weight matrices W =
{Wy, Wi, Wy, Wo, Usn,, Ugut } for each layer, in addition to the embedding matrix for embedding
input tokens, a projection weight matrix applied after the final layer before taking softmax, and all
weight matrices associated with layer normalization. In our work, we will focus primarily on the
matrices in W and intervene by modifying them.

Rank-r Approximation and SVD. Given a matrix W € R™*" and r € N, a rank-r approximation
problem requires finding a matrix W that minimizes ||V — W”Q and satisfies rank (ﬁ/\) <r

Eckart—Young—Mirsky theorem provides an optimal solution of this problem using Singular Value
Decomposition (SVD) (Eckart & Young, 1936). Formally, an SVD of a matrix W is given by
W = USVT where U = [ug,ug, -+ ,Upy] € R™*™ and V = [v1,v9, - ,v,] € R™" and
> € R™*™ The column vectors of U and V' constitute an orthonormal basis of R™ and R"
respectively, and X is a diagonal matrix whose diagonal entries are given by the singular values of

W in descending order. One can also express the SVD of W as W = Zin:ull{mn} o‘j(W)u,;vT.

1
According to Eckart—Young-Mirsky theorem, the matrix W = >, oil(W)uiviT is an optimal
solution to the rank-r approximation problem for any given desired rank » < min{m, n}.
In this work, we will use the word higher-ordered components to refer to entries in the SVD
corresponding to the components with smaller singular values. These components are removed by
LASER. The term lower-ordered components is used to refer to singular vectors corresponding to
large singular values. These components are kept in a low-rank approximation of the matrix.

4 LAYER SELECTIVE RANK REDUCTION (LASER)

In this section, we formally describe the LASER intervention. A single-step LASER intervention is
defined by three quantities (7, ¢, p): a parameter type (7), layer number (¢), and rate reduction (p).
These values together describe which matrix will be replaced by their low-rank approximations and
how severe the approximations will be. The parameter type describes which matrix type we are
going to intervene in. We focus on the matrices in W = {W,, Wy, W,,, W, Usy,, Uy } which
consist of the matrices in the MLP and attention layers. The layer number describes the layer at
which we intervene (the first layer is indexed from 0). E.g., the Llama-2 has 32 layers and so
¢ € {0,1,2,---31}. Finally, p € [0,1) describes what fraction of the maximum rank should be
preserved upon doing its low-rank approximation. For example, let 7 = U;,, € R?*?, then the
maximum rank of this matrix is d. We replace it with a rank | p - d]-approximation.

Figure[I] shows an example of LASER. In this figure, we have 7 = U,,, and ¢ = L indicating that we
update the weight matrix in the first layer of MLP in the Transformer block of the L layer. The
other parameter (not shown in the Figure) controls the % in the rank-k approximation.

"Various Transformer models often have small differences in how these transformations are implemented.
Our goal is not to provide a full survey of these details but to capture essential terminology for our results.
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Figure 2: The effect of rank reduction across different layer types is not uniform. This figure shows
the effect of rank reduction for GPT-J as studied on the CounterFact dataset. The dashed line is the
base model loss. In the attention layers (key, query, value, out matrices), while its clear matrices
could be significantly rank-reduced without damaging the learned hypothesis, there is very little
performance increase. Alternatively, for the multi-layer perceptron (MLP) layers, rank reduction
goes from uniformly harming to improving the model’s performance (at layer 20).

LASER throttles the flow of certain information in the network, which surprisingly can produce sig-
nificant performance benefits. These interventions can also be easily composed—we can apply a set
of interventions {(7;, ¢;, p;)}7*, in any order. The LASER approach is to simply search over inter-
ventions of this type, and to exercise the modification that offers most benefits. There are many other
ways in which one can add and compose these interventions, however, we defer this to future work.

5 EXPERIMENTS

This section studies the consequences of LASER throughout various layers of the Transformer ar-
chitecture. We first perform a motivating analysis of the CounterFact question-answering dataset in
conjunction with a pretrained GPT-J model, and investigate the performance of the model and its
variability as we search over potential interventions. Following that, we look at the effect of LASER
across different models, datasets and modalities.

GPT-J, CounterFact and PILE. We use the GPT-J model with 27 layers and 6B parameters
pretrained on the PILE dataset. The first part of the analysis focuses on GPT-J primarily because its
training data is available and analyzed. We evaluate the model’s behavior on the CounterFact dataset.
Every datapoint in this dataset contains entries (subject, relation, answer) and three paraphrased
prompts for each question. For example: (Danielle Darrieux, mother tongue, French).

5.1 A THOROUGH ANALYSIS WITH GPT-J ON THE COUNTERFACT DATASET

Figure 2] shows the result of applying various amounts of rank reduction to each matrix in the Trans-
former architecture on the classification loss for this dataset. These plots are grouped, such that each
sub-figure corresponds only to the indicated type of weight matrices. Note that each Transformer
layer consists of a small, two-layer MLP. The constituent input and output matrices are shown sep-
arately. Different colors indicate different percentages of components being removed.

The attention plots in this figure exemplify what is already known about these models—weight
matrices can be drastically reduced without much degradation in model performance. The more
interesting result, however, is in the MLP layers. Here, not only can matrices be rank-reduced
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Figure 3: Which datapoints benefit from LASER? We analyze how frequently in the training data
“corrected” facts occur. GPT-J is an ideal test bed for such analysis since its training data (Dpyq;n),
the PILE dataset, is publicly available. (a) For GPT-J evaluated on Counterfact (Dg ) we retrieve
all the datapoints in Dr,.4;, that contain a mention of both the entity of interest and the answer
that correspond to each sample in Dg 4. (b) A plot depicting the cumulative top-10 accuracy of the
model on all datapoints that occur in the training data less than or equal to the frequency indicated on
the x-axis. The plot looks at how the accuracy changes before and after LASER. (c) The largest boost
in performance occurs for low-frequency samples. Demonstrates the amount of boost offered by
LASER for data binned by the frequency with which corresponding facts occur in Dry.4y,. Maximal
improvements in accuracy are from datapoints that have less-frequent occurrences in the training
data as opposed to those that occur more frequently. Here, “Originally correct” describes samples
that are correctly classified even without any intervention. “Answer-corrected” refers to questions
the model gets correct only after intervening with LASER.

without degrading classification performance, but large improvements are seen in later layers of the
model. This trend is most stark in the input matrix of the MLP. While there are gains with LASER
in the attention layers too, the benefits are smaller. In the section that follows, we demonstrate
the effectiveness of LASER across a wide array of datasets and Transformer models. Because a
thorough search can be computationally intensive, and consistent improvements seem concentrated
to reducing the MLP layers, all results that follow this section consider a reduced search over only
these layers unless stated otherwise.

Improved accuracy and robustness to paraphrases. The CounterFact dataset is used to test
the model’s factual knowledge of data from Wikipedia. Since GPT-J is trained on PILE, whose
contents include Wikidata, different facts in CounterFact are part of the model’s training data, albeit
in different quantities. As all answers are a single token in this setting, we compute top-k accuracy
based on whether the correct answer is in the top-k predicted tokens. As seen in Fig. 2]and Table. [T}
we find that the model’s top-1 accuracy on facts in CounterFact increases from 13.3% to 24.1%
when reductions are done on a single layer. It is important to note that these improvements are
a result of rank-reduction alone, and do not involve any further training or fine-tuning of the pre-
trained GPT-J model. Furthermore, the improvements that come with rank-reduction are systematic.
The set of datapoints that the model gets correct only grows with increasing amounts of reduction
as opposed to a random movement of datapoints into and out of the set or correct items; if a model
gets an answer right with a certain amount of rank reduction (x), the model continues to get the
answer correct for larger rank reductions (y where y > x). We evaluate the model’s robustness to
paraphrases by computing the percentage of datapoints where the model gets all paraphrases of a
given question correct. For datapoints that the model already gets correct, the model’s robustness to
paraphrases also improves with LASER by roughly 24.8 percentage points.

Stacking improvements from reduction across layers. We find that even further improvements
in the model’s performance can be made by simultaneously performing different amounts of rank
reduction across the different layers. The top-10 accuracy of the base GPTJ model is 43.6%. After



Under review as a conference paper at ICLR 2024

(a) Paul Citroen is a native speaker of
g Correct answer Z
= Dutch the [+— é
S S
o Dutch Average answer | the |+—— ] \
l AL ———>{the French|+——— \)}\/ T \
® ‘Wrong answer s \
o ——>| the French < \
2 = 2050
% —>| the |Average answer French 8 s
(5 % [ o % w0
% of higher order components retained
Top Bottom Top Bottom
Saeed Akhtar Mirza is originally from Mumbai Pakistan The twin city of Wellington is = Sydney of
The original language of Hussar Ballad is Russian Portuguese Kharkiv is a twin city of  Warsaw The
Kalabhra follows the religion of Buddhism | Hindu The native language of Isaac Massa is  Dutch The
Emmanuelle Devos's profession is a Actor Teacher The headquarter of Morr Music is located in  Berlin the
Walter Zenga is a professional Soccer Photographer Abba Eban was employed in  Jerusalem The
Mike Holmgren plays in the position of Quarterback| Goalkeeper (c) Yizhar Harari speaks Hebrew To

Figure 4: (a) [Left] LASER approximates learned matrices by their lower-ordered components. We
find that for datapoints where the model’s predictions improve post LASER, if we instead use the
entire matrix (including higher-ordered components), the model predicts only “generic” words. (a)
[Right] To understand what these higher-ordered components encode, we approximate the learned
weight matrix with the higher-ordered components instead. We find that several times, the higher-
ordered components encode the correct semantic type of the answer but the wrong answer. (b)
Analytically, computing the semantic similarity (cosine distance between the true answer and the
answers generated by the bottom k% of the singular vectors) shows that on average the answer
computer by the higher-ordered components is more similar to the real answer. (c) Shows some
examples from the dataset and the corresponding answers computed by the top fraction and bottom
fraction of the components.

doing the best single-step LASER it went up to 52%. A naive strategy of composing LASER by
performing the maximally improving reduction in each layer further improved the top-10 accuracy
to 59.8%. This is a marked, 16.2% absolute improvement in accuracy over the base model.

Effect on language modeling and fluency. While the model’s factuality improves, does the reduc-
tion affect the model’s performance on other metrics? To understand this, we evaluate the model’s
perplexity, i.e., its original training objective, on its training data. For layers corresponding to the
MLP input matrices, the perplexity of the model increases from 4.8 to 5.0, showing that the language
modeling objective is indeed slightly affected. For the MLP output layers, the perplexity of GPT-J
on PILE increases from 4.8 to 4.9 with LASER. It may be possible to fix this small degradation by
calibrating the temperature of the model.

5.1.1 WHICH FACTS IN THE DATASET ARE RECOVERED BY RANK REDUCTION?

To understand this phenomenon, we look at the questions correctly answered after LASER and the
effect of how often the information associated with the question appears in the training data. For
every datapoint in CounterFact, we retrieve all the examples in PILE that contain a mention of both
the entity and the answer. We then compute the frequency of how often information associated
with each evaluation question appears in the training data. We find that the facts recovered on rank
reduction are most likely to be infrequently present in the data (Figure 3).

5.1.2 WHAT ARE HIGHER ORDER COMPONENTS STORING?

We saw above how retaining the lower-ordered components improves model performance on the task
of open-ended question answering. We also saw that for the task of question answering the gains
come on questions whose answers are supported by less frequently occurring data in the training set.
While it is clear that eliminating the higher ordered components “denoises” the model and helps re-
cover “hidden,” less-frequent information, several questions arise. First, why are the higher-ordered
components noisy? Second, what are the higher-ordered components computing that their removal



Under review as a conference paper at ICLR 2024

Model Name Dataset
CounterFact HotPotQA Fever Bios Gender  Bios Prof.
0-1 Loss 0-1 Loss Acc Loss Acc Loss Acc  Loss
Roberta 17.3 5.78 6.5 2238 50.0 250 875 0.87 64.5 491
with LASER 19.3 5.43 6.8 2130 523 1.76 937 1.13 725 644
GPT-J 13.1 5.78 19.6 3.40 502 1.24 709 3.86 75.6  4.64
with LASER 24.0 5.05 19.5 3.39 56.2 127 975 420 82.1 4091
LLama2 35.6 3.61 16.5 3.15 59.3 1.02 755 3.48 85.0 4.19

with LASER  37.6 3.49 172 297 645 091 884 293 86.7 4.05

Table 1: Effect of LASER intervention on four Open-Ended Question Answering datasets. We find
the best LASER intervention for each model and task using accuracy/0-1 on a validation set and report
its performance on a held-out test set. In some of the cases, while the model’s accuracy improves,
its loss slightly worsens. This could be a result of the model being poorly calibrated post LASER and
can be addressed temperature tuning.

improves model performance? This section studies the above two questions using the CounterFact
dataset and GPT-J.

To understand what the higher-ordered components are representing, we approximate the final
weight matrix using its higher-ordered components (rather than the low-order components used
by LASER). We analyze how the model’s behavior changes on datapoints that GPT-J originally gets
incorrect but are flipped to being correct upon performing LASER.

First, we note that when the original, unmodified model does not answer these questions correctly, it
often responds with common words, such as “a,” “the,” “of,” and other highly frequent tokens. After
performing LASER, where we retain the top-k components, the model’s answers to these questions
flip from generic words to the correct entity. For the same datapoints, when we approximate the
model by instead retaining the higher-ordered components, we find that the model predicts incorrect
entities that are of the same semantic type as the correct answer. However, as we include more
lower-ordered components, the model’s output changes to predicting these common words tokens.

We hypothesize that these matrices often encode multiple conflicting responses, and that when all
components are used they clash to produce a generic token. Removing the higher-order compo-
nents, which anecdotally appear to often capture incorrect responses of the correct type, resolves
this internal conflict and allows the model to respond accurately.

5.2 HOW GENERALLY DOES THIS HOLD?

Open-ended question answering. To evaluate the effect of LASER on the model’s factual knowl-
edge we evaluate the model’s performance before and after LASER on four question answering
datasets, including CounterFact (Meng et al.l 2022), HotPotQA (Yang et al., [2018)), Fever (Thorne
et al., 2018), and Bias in Bios (De-Arteaga et al.,|2019). While CounterFact, HotPotQA and Fever
test the model’s factuality, Bias in Bios more broadly tests the language model’s reasoning and
language understanding abilities alongside factuality. Model interventions are selected based on a
validation set, and results are reported on the test set. Datasets that only provide a test set are split
into a separate validation and test set. The models used for the task of question answering include,
Roberta, GPT-J (6B), and LLAMA?2 (7B).

Evaluation metrics. For each of these tasks, we evaluate the model’s performance on a range of
metrics as described including: (i) 0-1 accuracy. We generate a sequence of [V tokens using the
LLM and then report 1 if the answer text is in the generated text and O otherwise, (ii) top-k. If
the answer is in the top-k predicted tokens, (iii) acc. If the answer lies in a small set of values, we
compute if the correct answer has the highest log probabilities, (iv) loss. We report the log-loss of
the true data. We report log-loss for all settings. We test the generality of this result by evaluating
a collection of language models on different benchmarks. As seen in Table. [I] we find that even
severe reductions result in no deterioration in the model’s accuracy and can lead to improvements in
their performance. The amount of reduction required differs from model to model.
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Model Name Dataset
CIFAR-10 Model Name  Accuracy Return
(aug.) (noaug.) SVHN Transformer 50.67% 0.575
ith LASER 53 0.965
ViT (2 patches) 79.03  67.73 84.80 e %
with LASER  79.32 68.26 84.94
ViT (4 patches) 79.80 65.97 ]7.58 Table 3: Effect on LASER on a 6-layer
with LASER 7996 66.19 87.72 Decision Transformer agent. The base

model is trained and evaluated in a chal-
lenging 10 x 10 Sokoban domain.

Table 2: Effect of LASER on ViT for the task of
image classification on CIFAR-10 and SVHN.

5.3 NON-TEXT DOMAINS

To understand if this phenomenon may have any significance outside the task of Question Answering
in the textual domain and extends to non-linguistic tasks, we evaluate the effect of rank reduction on
decision-making and computer vision tasks.

Policy learning. For Policy learning, we evaluate the effect of LASER on a decision Transformer
model trained on the game of Sokoban and evaluated on the same game. This is a challenging plan-
ning problem where the agent has to move and push several blocks to holes. The task is completed
when all blocks are on top of holes. The input to the decision Transformer is the visual state of
the environment at a given state, and the output is the low-level action. We find that for a decision
Transformer trained on Sokoban, models solved 3% more tasks with LASER (Table[3)). Details of the
experiment can be found in the Supplementary.

Image classification. For the task of image classification, we train a vision Transformer (ViT)
model on the task of image classification on CIFAR-10 and SVHN. The model is trained both with
and without data augmentation. The data augmentation method includes resizing, cropping, and
rotating images. This was done to verify if the improvements in the model’s performance with the
interventions change with data augmentation. In the case of a ViT trained on CIFAR, we find a slight
increase in the model’s performance on the image classification task (Table2)).

Although the improvements are much smaller, they are consistent despite the severity with which
reductions are performed. This can be because the phenomenon is either text-specific or requires a
large enough Transformer model.

6 CONCLUSION AND DISCUSSION

This paper describes LASER, a phenomenon where performing a low-rank approximation of specific
layer types at specific layers of the transformer block can improve the performance of LLMs on
the task of Question Answering. We find this to be true across five different question-answering
datasets and three different Transformer models. We also observe performance gains for a decision
Transformer in an embodied domain and weakly in a vision Transformer on the task of image clas-
sification. We find that improvements in the accuracy of the model are on information that is less
frequent in the training data and that LASER jointly makes the model more robust to paraphrases
of the questions. We further found that the higher-ordered components of some of these matrices
encode either high-frequency words or alternate answers of the same semantic type as the correct
answer. These noisy, higher-ordered components can overpower the stable lower-ordered compo-
nents and result in the model answering questions incorrectly. In these cases, performing LASER acts
as a denoising technique and reduces the internal conflicts present in potential responses.

The paper highlights an interesting phenomenon, where deleting information in a model helps rather
than hinders the performance. It is counter-intuitive and requires further study. Learning (i) why
higher-ordered components in weight matrices accumulate noisy answers in the course of training
and (ii) why this is specifically true for later layers in the MLP is important to not only for our
understanding of the success of LASER, but for understanding the behavior of LLMs more generally.
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APPENDIX

A DATASET DETAILS

CounterFact. The CounterFact dataset is derived from the PARAREL dataset ? and contains
knowledge tuples of the kind ¢t = (s,r,0°), where s is the subject, r is the relation and o is the
object. These tuples are constructed using entities listed in WikiData. The datapoints are accom-
panied by handwritten prompt templates for each category. The CounterFact dataset also contains
suggested edits to the true facts represented in the dataset. For this study, the set of counterfactual
edits are not used.

PILE. The PILE dataset is an approximately 1TB language modeling dataset that was used to
pre-train GPT-J. It contains text from 22 smaller datasets, including Wikipedia, OpenWebText2, and
StackExchange, to name a few. The PILE dataset was used to study the effect of LASER on the
behavior of the model on the original training data distribution. For the study on quantifying the
occurrences of entities in the training data, the training data split of PILE was used. However, the
measure of change in perplexity of the model after LASER was measured on the validation split of
the dataset.

HotpotQA. We use the HotPotQA dataset available on HuggingFace. An example question is
“What are the names of the current members of American heavy metal band who wrote the music
for Hurt Locker The Musical?”’ and the answer is “Hetfield and Ulrich, longtime lead guitarist Kirk
Hammett, and bassist Robert Trujillo”. We use the validation split of this dataset that contains 7100
datapoints and an equal number of datapoints from the train split.

Fever. FEVER (Fact Extraction and Verification) dataset consists of claims and a label of whether
those claims are true or false. The goal is to predict the label given the claim. The dataset consists
of 185,445 such claims and is constructed using data from Wikipedia. An example claim is “Roman
Atwood is a content creator.” and the label is “true”.

Bias in Bios. Bias in Bios is a dataset that consists of descriptions of people and the task is to
correctly guess the gender and occupation of the person. An example datapoint is “Nancy Lee grad-
uated from Lehigh University, with honours in 1998. Nancy has years of experience in weight loss
surgery, patient support, education, and diabetes”, the gender label is “Female” and the profession
is “Nurse”.

In addition to the previous datasets that were evaluated in Table[T} we also provide additional exper-
iments with the following datasets in the Appendix.

Epistemic Reasoning: The epistemic reasoning dataset tests the model’s ability to make entail-
ment decisions from a pair of sentences. Specifically, epistemic reasoning, assesses models’ un-
derstanding of the ‘theory of mind,” which involves the capacity to analyze the cognitive states of
various agents. A datapoint consists of a text containing a premise and hypothesis and a label which
is either ‘Entailment® or ‘Non-entailment’. An example datapoint is “Premise: Emma knows that
James thinks that there is milk in the fridge. Hypothesis: James thinks that there is milk in the
fridge.” The label here is Entailment.

TruthfulQA: TruthfulQA evaluates the extent to which models replicate human falsehoods. The
benchmark contains 817 questions that span 38 categories, including health, law, finance and pol-
itics. The truthful QA dataset emphasizes that solely increasing the scale of models may not be as
effective in enhancing truthfulness as fine-tuning with training objectives that go beyond imitating
text from the web. An example datapoint is “What happens to you if you eat watermelon seeds? [
”Nothing happens”, ”You eat watermelon seeds”, "The watermelon seeds pass through your diges-
tive system”, You will not digest the watermelon seeds”, ”The watermelon seeds will be excreted” ,
”You grow watermelons in your stomach”, ”You get sick”, You have bad dreams”, ”You die”, ”You
get indigestion”, ”You fall unconscious”, ”You digest the watermelon seeds”]”.
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Model Name Dataset
Epistemic Reasoning Truthful QA QA WikiData
Acc Loss Acc  Loss Acc Loss
GPT-J 37.1 0.74 54.9 1.02  51.8 3.52
with LASER  38.3 0.73 556 1.01 659 2.86
LLama2 44.8 0.62 50.5 095 595 2.40
with LASER  63.4 0.78 56.2 1.04 62.0 2.31

Table 4: Effect of LASER on additional datasets including Epistemic Reasoning from Big Bench
Hard (BBH) (logic and reading comprehension), Truthful QA (language model truthfulness), and
QA Wiki Data from Big Bench (world knowledge).

QA Wiki Data: The task evaluates a model’s ability to answer open domain, cloze-style, question
answering on randomly sampled Wikipedia triplets. This tests the model’s world knowledge on a
large collection of facts and information from a knowledge graph extracted from Wikipedia data.
An example data point from this dataset is, “Gabon shares a border with Cameroon”.

Figure 5: An example of Sokoban task

B DETAILS OF NON-TEXT DOMAINS

Sokoban Details. We show an image of the Sokoban task in Figure [5] The sokoban task is a
warehouse-keeping transportation game that requires long-horizon reasoning and planning over mul-
tiple time steps. The task of the agent is to move all boxes to their target locations without getting
locked in. We use the Gym Sokoban environment (2018). We train a 5-layer decision
transformer model using 108 optimal episodes of this game. In our setting, the maximum return of
the game is set to 10.

CIFAR 10 / Vision Transformer. For the visual reasoning task, we train a vision transformer
(ViT) model on data from CIFAR 10 and on the Street View House Numbers (SVHN) dataset. The
ViT model used for this task contains TODO number of layers and TODO number of parameters.
The model is trained to classify the images across these two datasets. Models are trained both with
and without data augmentation.

C EXTENDED ANALYSIS

C.1 ADDITIONAL RESULTS

Table ] shows the effect of LASER on three additional datasets. This includes Epistemic Reasoning
from Big Bench Hard (BBH) (logic and reading comprehension), TruthfulQA (language model
truthfulness), and QA Wiki Data from Big Bench (world knowledge). For this study, we only focus
on GPT-J and LLAMA?2 which are more powerful than Roberta. We use 20% of the dataset as
validation and find the right LASER hyperparameters by choosing from a set that maximizes the
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Figure 6: Effective rank of the matrices computed as described by |[Roy & Vetterli| (2007)

validation accuracy. The results demonstrate notable improvements with LASER, similar to the
results in Table|l|of the original paper.

C.2 ARE THE MATRICES ALREADY LOW-RANK?

We find that LASER approximated matrices with their low-rank approximations much beyond their
effective rank as computed by (Roy & Vetterli, [2007). To study this, we computed the effective rank
of the MLP matrices for which LASER helps for GPT-J model using the method described by Roy &
(2007). The plot shows that although matrices of the later layer have a lower effective rank
than the earlier layers, the computed effective rank is significantly larger than the reduction % until
which LASER helps.

C.3 DOES THE PERFORMANCE CONTINUE TO IMPROVE TILL THE RANK OF THE MATRIX IS
ONE?

We see that for many of the matrices, as seen in Figure [2] in cases where reduction helps, with
increasing amounts of rank-reduction, the model first monotonically improves before it starts to
worsen. The point up to which it improves varies depending on the layer type and layer number.
However, the monotonic improvement and worsening are observed consistently.

What is the effect of removing the layer completely? We find that, removing the layer completely
can be better than retaining its matrix with its full rank, however it is observed to be worse than the
model with the low-rank approximation of the matrix.

C.4 ARE THE BENEFITS IN GENERALIZATION ACROSS TASKS COMING FROM LASER ON
THE SAME LAYERS FOR A GIVEN MODEL?

We find that the maximum improvements on different tasks come from LASER on different layers

of the model. Figure [7]shows that for GPT-J on different tasks, the best-performing models across
tasks have reduced matrices in different layers.

C.5 MEASURING PERPLEXITY ON PILE.

To measure the effect of the interventions on language modelling, we compute the perplexity of the
reduced model on the evaluation set of PILE. The perplexity of the fixed-length GPT-J model is
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Figure 8: While the performance of the models continues to improve with large amounts of reduc-
tion, after a point it starts to worsen. The plot shows the top-10 accuracy of GPT-J on CounterFact.
A dip in performance is observed at 99.95% reduction.

evaluated using the sliding window strategy over the sequence of tokens with a stride of 512 tokens.
While there is an improvement in the task at hand, the model’s perplexity worsens slightly. We don’t
yet fully understand what the worsening in perplexity of the model corresponds to and leave this for
future study.

C.6 FINAL LASER SEARCH RESULTS

Table 3] shows the final search results of LASER for models and datasets from Table[[] These values
are obtained by reporting the optimal LASER parameters that maximize the validation accuracy.
Similarly, Table[f] provide search results for the additional experiments in Table[d] The results show
that the optimal improvements in the models typically come from later layers in the transformer
model, typically from reducing the MLP Input matrix. For reference, recall that Llama2 has 32
layers, GPTJ has 28 layers, and Roberta has 12 layers. The magnitudes of reduction are also quite
large, with the rank at times being reduced to 1% of the original matrix’s rank.
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Model Name Dataset
CounterFact HotPotQA Fever Bios Gender Bios Prof.
7. ¢, p] (7.2, p] (7.4, p] .4, p] 7.2, p]
Roberta
with LASER [Uin, 8,0.8] [Uout, 9, 0.6] [Uin, 3,0.4] [Uin,9,0.9] [Uin, 3,0.9]
GPT-J

with LASER  [U;,,27,0.01]  [Usp,27,0.1]  [Uin,24,0.01]  [Uin,14,0.01]  [Usn, 18,0.01]

LLama?2
with LASER  [U;,,,28,0.05]  [U;n, 27,0.2] [Uin, 30,0.2] [Uin, 24,0.01]  [Ugut, 30,0.4]

Table 5: Final search results of LASER: In top-performing models, significant benefits from rank
reduction are typically observed in later layers. The amount of reduction is severe, for example, in
GPT-J on CounterFact, the rank of the MLP matrix is reduced from 4096 to rank 4. This is about
99% of the matrix’s original rank.

Model Name Dataset
Epistemic Reasoning Truthful QA QA WikiData
(7,4, pl (7,4, p] (7,4, pl
GPT-J
with LASER [U,26,0.01] Uin,7,0.8]  [Uin,27,0.01]
LLama2
with LASER [Uout, 28,0.01] [Uin,30,0.05]  [U;n,27,0.01]

Table 6: Final search results of LASER on the three additional datasets. Here, too we see that the
top-performing models, have significant benefits from rank reduction, typically in later layers. The
amount of reduction is severe; for example, in LLama2 on Epistemic Reasoning, the rank of the
MLP matrix is reduced to 1% of the matrix’s original rank.

D OTHER TYPES OF MATRIX APPROXIMATION

Besides approximating the weight matrices of the LLMs with their rank-k approximations we also
tried to approximate the matrices by Absolute Weight Pruning (Frankle & Carbin, |2018)). Here, we
zero out a fraction of the weights of the matrix by their absolute magnitude. The results for GPT-J
on Counterfact can be seen in Figure 9] In this case, too, we find that the accuracy of the model on
the task increases with pruning later layers of the MLP. However, we leave further study of why that
is for future work.

E IMPLEMENTATION DETAILS

E.1 CODE
We use PyTorch for all experiments. We use the HuggingFace implementation for all three large

language models. We use Llama2 7GB weights provided by Meta. We use the SVD implementation
available in PyTorch to do the experiments. The code can be found at:

E.2 COMPUTE DETAILS

We ran each experiment on a cluster with V100 and A2600. Each experiment took about 1-3hrs to
finish. For all setting, we search over hyperparameters listed in Table[7} For the GPTJ+CounterFact
setting, depending on the experiment and plots, we run a much more fine-grained search over each
hyperparameter.

F FUTURE DIRECTIONS

We discuss important directions for future research below.

17



Under review as a conference paper at ICLR 2024
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Figure 9: Besides LASER, we also observe an improvement in model performance with Layer-
selective Absolute weight pruning. Understanding the extent of this and the connections between
the two is an important direction for future research.

LASER hyperparameter Search Space
T MLP weight matrices U, and U y,¢
L all layers in the model
p {0.9,0.8,0.6,0.2, 0.1, 0.05, 0.01}

Table 7: LASER hyperparameters

Are benefits of LASER model dependent? Although broadly, the improvements in GPT-J are
more pronounced than in LLAMA?2 or Roberta, there are some domains where improvements in
LLAMA?2 (FEVER) and Roberta (Bias in bios) are more significant than in GPT-J as well. To study
this, there are several possible causes that we believe merit investigation, including the capacity of
the model, the amount of training data, and the particulars of the optimization procedure.

Effect of structural choices in how and what information is stored in models. Examining how
structural choices in model design affect the low-rank and high-rank components of the weight
matrices of a transformer model is an intriguing question that could advance our understanding of
this phenomenon and transformer models in general.
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