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ABSTRACT

Large Language Models (LLMs) can self-improve through reinforcement learning,
where they generate trajectories to explore and discover better solutions. However,
this exploration process is computationally expensive, often forcing current meth-
ods to assign limited exploration budgets to each task. This uniform allocation
creates problematic edge cases: easy tasks consistently succeed while difficult
tasks consistently fail, both producing zero gradients during training updates for the
widely used Group Relative Policy Optimization (GRPO). We address this problem
from the lens of exploration budget allocation. Viewing each task’s exploration
as an “item” with a distinct “value” and “cost”, we establish a connection to the
classical knapsack problem. From this, we derive an optimal assignment rule that
transfers exploration budgets from easy tasks to challenging ones. When applied
to GRPO, our method increases the effective ratio of non-zero policy gradients
by 20–40% during training. As a computational “free lunch”, it also enables sub-
stantially larger exploration budgets (e.g., 93 rollouts) for especially challenging
tasks—budgets that would be computationally prohibitive under uniform allocation.
These improvements translate to meaningful gains on mathematical reasoning
benchmarks, with average improvements of 2–4 points and peak gains of 9 points
on specific tasks. Notably, achieving comparable performance with traditional
homogeneous allocation would require about 2x the computational resources.

1 INTRODUCTION

The remarkable capabilities of Large Language Models (LLMs) have led to their widespread applica-
tion across various domains (OpenAI, 2025; Comanici et al., 2025; Anthropic, 2025; Meta, 2025;
Yang et al., 2025). While pre-training on vast text corpora endows LLMs with general knowledge
and linguistic fluency, fine-tuning them for specialized tasks often necessitates more targeted opti-
mization beyond pre-training. Reinforcement Learning (RL) has emerged as a powerful paradigm for
this purpose (Ouyang et al., 2022; Li et al., 2024; Guo et al., 2025), enabling LLMs to iteratively
self-improve by interacting with environments. A popular instantiation is RL with verifiable rewards
(Lambert et al., 2024), where LLMs generate responses and receive binary (true/false) feedback based
on their outcomes, iteratively refining their internal policies to search for optimal solutions. Initially
pioneered in mathematical reasoning (Jaech et al., 2024), this framework has since been extended to
domains like coding (Luo et al., 2025a) and agentic tasks (Team et al., 2025).

A core challenge in these applications is exploration—sampling diverse trajectories to find better
solutions. This process is computationally expensive in practice due to sequential nature of autore-
gressive generation. As such, most RL pipelines use a small number of rollouts per prompt (e.g., 8)
for exploration. However, this uniform allocation strategy could lead to some problematic outcomes.
For example, in the Group Relative Policy Optimization (GRPO) (Shao et al., 2024) algorithm,
meaningful learning signals (gradients) only emerge when both successful and failed attempts are
present in the same batch. With a uniform budget, easy tasks often result in all-success outcomes, and
hard tasks in all-failure outcomes, leading to near-zero gradients and stalled learning. This issue has
been well-documented in previous research (Yu et al., 2025; Chen et al., 2025a), and we approach it
from the broader perspective of strategic exploration budget allocation.

We argue the fundamental problem is the mismatch between a task’s difficulty and its assigned explo-
ration budget. Hard tasks, which require extensive (could even require more than 100) exploration
to find useful trajectories, receive too little effort under a uniform rule. Easy tasks, which require
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Figure 1: Illustration of our framework for allocating exploration budgets among tasks from computa-
tional resources. We model each task as an item with learning value and computational cost, then
solve the allocation problem using Knapsack optimization.

minimal exploration, waste compute by being over-sampled. Thus, a heterogeneous and customized
exploration allocation strategy is preferred.

To this end, we introduce a knapsack-based formulation: each task, when assigned a certain budget,
can be conceptualized as an ‘item” with an associated value (learning potential) and cost (compu-
tational effort of exploration). The allocation problem is thus equivalent to the classical knapsack
problem (Mathews, 1896; Pisinger & Toth, 1998), where the objective is to maximize total value
under a fixed global budget. We refer to this approach as Knapsack RL; see Figure 1 for illustration.
When applied to the popular GRPO framework, our method enables a dynamic, heterogeneous
allocation of exploration budgets, which allows sufficient exploration on training tasks.

Empirically, across Qwen series models (Yang et al., 2024; 2025) sized from 1B to 7B, we observe a
20-40% improvement in effective gradient ratios, translating into more reliable policy improvements
and average performance gains of about 2-4 points on several challenging benchmarks. To get a better
sense of this improvement, we note that achieving comparable improvements with uniform allocation
would require nearly 2x the computation. We present this as a proof-of-concept, demonstrating a
promising direction to boost the effectiveness of RL.

2 PRELIMINARY

Following (Ouyang et al., 2022; Shao et al., 2024), we model language generation as autoregressive
sampling from a conditional probability distribution πθ(y|x), where x represents the input prompt
and y represents the generated response. The parameter θ denotes the trainable parameters. Our goal
is to improve the language model via RL by maximizing the expected performance of responses
generated from the model distribution πθ:

max
θ

Ey∼πθ(·|x)[r(x, y)] (1)

In this paper, we focus on RL with verifiable rewards. Specifically, let y = (CoT,answer) denote
the concatenation of Chain-of-Thought (CoT) (Wei et al., 2022) reasoning steps CoT and the final
solution answer. The reward function r(x, y) is defined as:

r(x, y) = I(answer is correct with respect to x), (2)
where I(·) is the indicator function and r ∈ {0, 1} is binary (1 for correct, 0 for incorrect). This
outcome-based reward formulation has been widely adopted (see e.g., (Guo et al., 2025) and references
therein) and has been shown to effectively incentivize reasoning abilities (Wen et al., 2025).

Algorithm 1 RL with Classical Homogeneous Budget Allocation

1: for iteration t = 1, 2, . . . do
2: Sample a mini-batch of prompts (x1, . . . , xM )
3: Generate N responses for each prompt xi ▷ Budget Allocation
4: Evaluate the rewards (e.g., Equation (2)) and compute the gradients (e.g., Equation (3))
5: Update model parameters with estimated gradients

To optimize Equation (1), policy gradient methods (Sutton et al., 1999) are commonly employed.
Among these, REINFORCE (Williams, 1992)-style stochastic policy gradient methods have become
standard since (Li et al., 2024). These methods stochastically sample N responses from πθ and
estimate gradients using direct reward feedback. Originally designed for single-task RL, this approach
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is typically extended to multi-task RL by employing homogeneous exploration budget allocation.
Algorithm 1 summarizes this classical framework.

In Algorithm 1, the sampling process in Line 3 corresponds to exploration in RL, where the model
generates responses to search for optimal solutions. Line 5 corresponds to exploitation, updating the
model to leverage feedback from data. We adopt the widely used gradient estimator from Group
Relative Policy Optimization (GRPO) (Shao et al., 2024):

g(θ) =

M∑
i=1

N∑
j=1

∇θ log πθ(yij |xi) · (r(xi, yij)− bi) · ci (3)

where yij denotes the j-th sampled response for prompt xi, and ∇θ log πθ(yij |xi) represents
the gradient of the log-probability with respect to model parameters θ. The baseline bi and
normalization factor ci are defined as: bi = 1/N ·

∑N
j=1 r(xi, yij) and ci = 1/(σi + ϵ) with

σi =
√
1/N ·

∑N
j=1(r(xi, yij)− bi)2 is the standard deviation of rewards for prompt xi, and ϵ is

a small constant (10−6) preventing division by zero when σi = 0. Technically, GRPO computes
relative advantages within each response group (prompt), increasing likelihood of positive responses
and decreasing likelihood of negative ones.

3 DIAGNOSING EXPLORATION IN HOMOGENEOUS BUDGET ALLOCATION

In this section, we discuss the limitations of homogeneous budget allocation for GRPO and present
empirical observations that motivate our work.

3.1 MOTIVATION

Exploration in RL is computationally expensive due to the sequential nature of autoregressive
generation, often requiring substantial GPU memory and hours of computation, especially for
reasoning tasks. Thus, it is critical to assess how much each collected sample actually contributes to
gradient updates. For GRPO, we make the following observation.
Observation 1. Let gi =

∑N
j=1∇θ log πθ(yij |xi) · (r(xi, yij)− bi) · ci be the gradient for prompt i.

If σi = 0, meaning that all N sampled responses for xi yield identical rewards (all correct or all
incorrect), then (r(xi, yij) − bi) = 0 for every sample, leading to gi = 0. In this case, the model
receives no learning signal from that prompt.

This phenomenon is widely recognized as a major bottleneck for GRPO in practice (Yu et al., 2025;
Chen et al., 2025a). To formally track it, we introduce the metric effective-gradient-ratio,
which measures the proportion of individual samples that contribute non-zero gradients:

effective-gradient-ratio =
1

M ·N

M∑
i=1

N∑
j=1

I(gi,j ̸= 0), (4)

where gi,j = ∇θ log πθ(yij |xi) · (r(xi, yij)− bi) · ci is the gradient contribution from the j-th sample
of the i-th prompt. A higher value indicates that a larger fraction of samples are contributing useful
learning signals. We also define two complementary metrics: zero-gradient-ratio (by
all positive rewards): proportion of prompts yielding zero gradients due to uniformly posi-
tive rewards; and zero-gradient-ratio (by all negative rewards): proportion of
prompts yielding zero gradients due to uniformly negative rewards.

We visualize these dynamics in Figure 2 for the Qwen2.5-Math-7B model trained on the
DAPO-MATH-17K dataset. Each mini-batch contains M = 256 prompts with N = 8 rollouts
per prompt. The results reveal several concerning patterns:

Low Overall Effectiveness: The effective gradient ratio consistently remains below 60%, mean-
ing that over 40% of sampled data fails to contribute to model updates—a significant waste of
computational resources.

Dynamic Training Phases: The gradient dynamics exhibit three distinct phases:

• Early Training (0-70 iterations, approximately the first epoch): The model struggles with most
tasks, leading to predominantly all-negative rewards (green line peaks near 95%). This results in
minimal learning signals being generated.
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• Mid Training (70-600 iterations): As the model improves, it begins solving some tasks while
still failing others, creating the mixed outcomes necessary for effective gradients. The effective
gradient ratio can maintain above 40% during this phase.

• Late Training (600+ iterations): Tasks become increasingly easy, leading to a rise in all-positive
rewards (orange line increases to 40%). Simultaneously, challenging tasks still result in all-negative
rewards (the green line fluctuates around 20%). As a result, the effective-gradient-ratio steadily
decreases to about 20% by 1000 iterations.
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Figure 2: The ratio of effective gradients and
zero gradients during training.

We provide theoretical analysis toward understanding
the above empirical observations in the next section.

3.2 THEORETICAL ANALYSIS

We model reward outcomes as Bernoulli random vari-
ables to analyze the exploration budget required.
Definition 1 (Success rate). We define the success
rate p on a prompt x as the probability that the
model generates a correct response: pi ≡ p(xi) =
Ey∼πθ(·|xi)[r(y|xi)] = Pr[r(y|xi) = 1].

This formulation allows statistical analysis of stochas-
tic gradients. For N sampled responses yi1, . . . , yiN
on a prompt xi, the probability that both correct and
incorrect samples are observed is:
P(gi ̸= 0) = 1− P[all rewards are the same] = 1− P[all rewards are 1’s]− P[all rewards are 0’s]

= 1− pNi − (1− pi)
N .

This raises the question: how large must the sampling budget N be to obtain a non-zero gradient?
We answer this from two perspectives: high-probability guarantees and expected sample complexity.
Theorem 1 (Exploration Budget). Given a prompt with the success rate p ∈ (0, 1), we have that

• High probability bound: For any α ∈ (0, 1), to ensure P(gi ̸= 0) ≥ α, it suffices to take
N ≳ ln(1−α)

ln(max{pi,1−pi}) .

• Expected number of rollouts: Let Nfirst denote the number of independent rollouts required until
gi ̸= 0 is achieved for the first time. Its expectation is: E[Nfirst] = 1/p+ 1/(1− p)− 1.

Please refer to Appendix D for the proof. To illustrate, for example, if p = 0.5, we need 3 samples
on average to obtain a non-zero gradient. For a hard task with p = 0.01, we require 100 samples, and
to achieve a 90% chance of non-zero gradient, we would need 229 samples.

We show the theoretical predictions in Figure 3. We employ the Qwen2.5-Math-7B-Instruct
model to generate 256 responses for 1,000 prompts from the DAPO-Math-17K dataset. Then we
estimate p and compute the minimal budget N needed for gi ̸= 0 from the data. We exclude prompts
that with empirical success rate of 0.0 or 1.0, because our exploration budget 256 is not sufficient.
The results show that a typical budget of N = 8 only covers tasks with p ∈ [0.1, 0.9]. For tasks with
p ≈ 0 or p ≈ 1, even increasing N to 16 or 32 is insufficient. Overall, our analysis shows that the
sampling budget required for meaningful gradients could be much larger than what is practically
used. This also helps explain the low effective gradient ratio observed in Figure 2.

Existing practices typically address this kind of insufficient exploration challenge in two ways:

• Increasing the exploration budget uniformly. This involves raising N—for example, from 8 to
16 or even 32—which could help address exploration on extremely hard or easy tasks and improve
the effective gradient ratio. However, setting a very large value for N , such as N = 100, is often
impractical due to prohibitive computational costs.

• Filtering hard and easy prompts. Tasks that are too easy or too hard are dropped. This kind
of approach is leveraged in (Team et al., 2025; Yu et al., 2025). However, as we have seen, the
proportion of prompts yielding zero gradients due to all-negative rewards (the green line in Figure
2) is around 20% in late training, indicating many tasks are not yet fully solved. If we simply filter
these prompts, we may close off a crucial source for RL, where meaningful learning often comes
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Figure 3: Exploration budget required to ensure non-zero gradients based on success rate. Note that
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rendering the exploration budget may not be symmetry as the theory suggests.

from converting failures into successes. That is, removing hard prompts deprives the model of
opportunities to practice on challenging examples, limiting the information available to LLMs.

In this work, we favor addressing this issue by scaling exploration budgets, but recognize that this
first approach presents a fundamental computation-exploration dilemma. This tension motivates our
pursuit of a more principled solution for allocation of exploration budgets.

4 PROPOSED APPROACH: KNAPSACK-BASED RL

In this section, we introduce our approach to address the exploration-and-computation dilemma.
Crucially, our goal is not to demand additional computational resources, as these are typically fixed
by the user’s constraints. Given these computational resources as a fixed pool, we aim to implement a
centralized allocation strategy: assigning customized exploration budgets for each task.

The central technical question is: given a fixed total budget, what is the optimal allocation
for RL exploration? Our key insight is that task difficulty alone does not dictate the optimal
allocation—tasks also differ in their value. Easy tasks provide limited benefit, since correcting
small mistakes leads to only incremental gains, whereas solving harder tasks can yield substantial
improvements. This motivates reallocating budget from easier tasks to more challenging ones. In
short, effective allocation must jointly account for both exploration cost and learning value.

We formalize the above idea as a constrained optimization problem:

max
N1,...,NM

M∑
i=1

Value(Ni, pi) (5)

subject to
M∑
i=1

Ni = Ntotal, Nlow ≤ Ni ≤ Nup, Ni ∈ Z+,

where Ni is the number of trajectories allocated to prompt xi, and pi is the success rate. The bounds
Nlow (e.g., 2) and Nup (e.g., 128) allow to enforce coverage and prevent degenerate allocations. The
total budget Ntotal is usually set to N ×M to match the homogenous allocation rule.

This optimization problem exactly matches the structure of a classical knapsack problem (Pisinger
& Toth, 1998). Each prompt xi can be thought of as an item with a “weight” given by its allocated
budget Ni and a “value” of Value(Ni, pi). The objective is to choose budget allocations Ni that
maximize the total value while keeping the overall cost within the knapsack capacity M ×N .

4.1 FORMULATION OF TASK VALUE

In this section, we substantiate the above framework with the proposed idea. We recognize that
homogeneous budget allocation fails to take the task value into consideration. For GRPO, we address

5
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this issue by defining the value of assigning Ni exploration budget units to prompt xi as
Value(Ni, pi) = ProbNonZeroGradient(Ni, pi)× InfoGain(pi),

where ProbNonZeroGradient(Ni, pi) = 1 − pNi
i − (1 − pi)

Ni is the probability of obtaining a
non-zero gradient (see Section 3.2) for GRPO, and InfoGain(pi) quantifies the informativeness of
a gradient if one occurs. It can also be extended to other algorithms; see Appendix E. Our design
emphasizes coverage of effective gradients across prompts: it accounts for whether a non-zero
gradient is likely to appear, but not for the exact balance of positive versus negative samples.

In this work, we define InfoGain as a measure of the expected increase in success probability after a
gradient update, while noting that alternative formulations could be explored in future work. Formally,
let pti denote the success rate before the update and pt+1

i the rate after the update. We define

InfoGain = ∆pi = pt+1
i − pti.

Directly computing this requires access to the post-update success probability, which is intractable.

Proposition 1. With the Taylor expansion, the InfoGain can be approximated by pi(1− pi)
2 .

Please refer to Appendix D for detailed derivation. This modeling is admittedly idealized and not
guaranteed to be exact. Nevertheless, it captures key intuitions while remaining simple to implement.
Its behavior can be summarized as follows:

• InfoGain(pi) is maximized at pi = 1/3. This aligns with the intuition that uncertain-but-promising
samples are most valuable.

• InfoGain(pi) is asymmetric: for equally distant values of pi from 1/3, harder tasks yield larger
information gain than easier tasks. Furthermore, InfoGain(pi)→ 0 as pi → 0 or pi → 1, meaning
extremely hard or extremely easy prompts provide diminishing value.

(0.19, 16)

(0.35, 4)

(0.52, 8)

Figure 4: The interplay between success
rate, exploration budget and the value.

We visualize our defined Value(Ni, pi) in Figure 4. This
contour plot shows lines of equal value, highlighting the
interplay between the success rate pi and the exploration
budget Ni. For example, the three highlighted points
demonstrate that different combinations of pi and Ni can
yield comparable high values. A task with the success
rate pi = 0.35 (which is close to 1/3), requires a rela-
tively small exploration budget of Ni = 4 to achieve a
high value. However, for tasks with success rates further
from this optimum, such as a harder task with pi = 0.19
or an easier one with pi = 0.52, the required explo-
ration budget is now specified as Ni = 16 or Ni = 8
respectively to reach the same value level.

4.2 ALGORITHM IMPLEMENTATION

In practice, the success rate pi is not directly available
as a prior and must be estimated from collected samples.
In this work, we employ a simple heuristic: using the success rates observed in the previous epoch
as estimates for the current one. Specifically, the first epoch may follow a homogeneous budget
allocation rule, after which the proposed knapsack-based approach leverages the estimated success
rates p̂i to guide allocation. Although this strategy introduces some delay and noise, it has proven
empirically effective. More sophisticated online estimation techniques (e.g., logistic regression) that
account for task correlations present promising directions for future improvement.

These estimated p̂i values are directly used to formulate the discrete constrained optimization
problem (Equation 5), which can be solved in polynomial time using standard dynamic programming
techniques. With Numba (Lam et al., 2015) acceleration, it typically runs within 1–2 seconds.

Overall, our knapsack-based exploration method integrates seamlessly into large-scale RL training
pipelines with minimal modifications (see Listing 1 in the Appendix). Computationally, it adds
negligible overhead. Algorithmically, it introduces no additional hyperparameters to tune and does not
bias policy gradients. From a systems perspective, core components of inference (e.g., vLLM-based
accelerated generation (Kwon et al., 2023)) and training (e.g., FSDP (Zhao et al., 2023) and Megatron
(Shoeybi et al., 2019)) remain unchanged, ensuring full compatibility with existing infrastructure.
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5 EXPERIMENTS

5.1 MAIN RESULTS

Experiment Setting. We implement Knapsack-RL and baseline methods using the large-scale RL
training framework Verl (Sheng et al., 2025). Our primary focus is GRPO (Shao et al., 2024), a
widely examined method, and we refer to our specific implementation as Knapsack-GRPO. Training
utilizes the DAPO-Math-17K dataset (Yu et al., 2025), which comprises 17,917 prompts, each with a
ground truth answer for verification.

We conduct experiments with both pre-trained and instruction-tuned models. The pre-trained mod-
els include Qwen3-4B-Base (Yang et al., 2025) and Qwen2.5-Math-7B (Yang et al., 2024). For
instruction-tuned models, we utilize DeepSeek-R1-Distill-Qwen-1.5B (Guo et al., 2025) (abbreviated
as DPSK-R1-Distill-1.5B) and Qwen3-4B-Instruct-2507 (Yang et al., 2025) (abbreviated as Qwen3-
4B-Instruct). In each iteration, we employ a mini-batch size of M = 256 prompts and generate
N = 8 rollouts. Our models are trained for 1,000 iterations. The extensive training duration of 1,000
iterations for Qwen2.5-Math-7B, for example, requires about 1,400 GPU hours with A100 GPUs.

For evaluation, we follow (Luo et al., 2025b) and assess our method on several mathematical
reasoning benchmarks: AIME, AMC, MATH, MINERVA, and OLYMPIAD Bench (OLYMPIAD
for short). Given AIME’s small sample size, we combine its 2024 and 2025 editions into a single
dataset, hereafter referred to as AIME. Additionally, we include GPQA (Rein et al., 2023) as an
out-of-domain evaluation, which tests scientific reasoning across physics, chemistry, and biology. All
reported performance metrics are averaged over 16 generated responses.

Table 1: Evaluation performance (avg@16) comparison across different models and benchmarks.

AIM
E

AM
C

M
ATH

M
IN

ERVA

OLY
M

PIA
D

GPQA
Avg

DPSK-R1-Distill-1.5B 25.3 62.1 81.4 25.8 41.7 39.1 42.9
+ GRPO 27.6 71.1 84.0 27.6 46.4 36.7 45.9
+ Knapsack-GRPO 34.0 75.1 86.7 28.5 49.7 40.3 49.7
Qwen3-4B-Base 6.6 29.9 48.0 19.4 23.1 26.4 22.9
+ GRPO 20.7 56.9 80.6 31.9 44.9 46.6 43.2
+ Knapsack-GRPO 20.8 66.0 81.0 35.7 46.2 45.5 45.1
Qwen3-4B-Instruct 47.7 82.5 92.4 35.4 61.6 43.0 58.6
+ GRPO 47.0 84.9 92.5 41.8 61.8 54.4 59.2
+ Knapsack-GRPO 48.2 83.1 92.5 38.2 63.5 59.9 61.9
Qwen2.5-Math-7B 12.3 41.0 61.2 11.8 26.1 22.0 26.7
+ GRPO 23.9 70.6 81.7 33.6 41.9 40.8 45.2
+ Knapsack-GRPO 24.3 77.4 83.9 34.5 44.1 43.8 47.5

We report the evaluation performance in Table 1, observing consistent improvements across all tested
models after applying our RL training. Specifically, Knapsack-GRPO consistently outperforms
GRPO. For instance, in terms of average performance, it improves by 3.8 points for DPSK-R1-Distill-
1.5B compared to GRPO. On specific benchmarks, the improvements are even more significant: for
example, 6.4 points on AIME for DPSK-R1-Distill-1.5B, 9.1 points on AMC for Qwen3-4B-Base,
5.5 points on GPQA for Qwen3-4B-Instruct, and 6.8 points on AMC for Qwen2.5-Math-7B.

5.2 UNDERSTANDING KNAPSACK-BASED EXPLORATION

This section delves into understanding the superiority of knapsack-based exploration. We analyze
its efficacy through gradient effectiveness and task status dynamics during training, focusing on the
Qwen2.5-Math-7B model.

Effective Gradient Ratio. Figure 5 shows the effective gradient ratio during training, as defined in
Equation (4). Knapsack-based budget allocation improves this ratio by approximately 20-40% across
models. Unlike uniform allocation, the knapsack method avoids a clear decreasing trend. This stems
from dynamically distributing exploration budgets, targeting tasks with mixed successful and failed
trajectories. These observations partially explain Knapsack-GRPO’s policy improvements.
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(a) DPSK-R1-Distill-1.5B
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(b) Qwen3-4B
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(c) Qwen2.5-Math-7B

Figure 5: Effective gradient ratio during training.
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Figure 6: Prompt transition matrices for Qwen2.5-Math-7B during training. The cell (i, j) indicates
the percentage of samples transitioning from status i to status j.

Task Transition Dynamics. To understand our method’s influence on learning, we analyze prompt
evolution during training. We categorize prompts into five performance statuses based on success rate
(pi): extremely-hard (pi = 0, all failures), hard (0 < pi ≤ 0.2), medium (0.2 < pi < 0.8),
easy (0.8 ≤ pi < 1.0), and extremely-easy (pi = 1.0, all successes). Our analysis covers two
aspects: 1) prompt status transitions after training, and 2) final prompt status distribution.
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Figure 7: Distribution of sample statuses
after training.

Figure 6 visualizes the 5×5 transition matrix for Qwen2.5-
Math-7B training, illustrating prompt category transi-
tions. Knapsack-GRPO demonstrates superior efficiency
in learning challenging tasks. Specifically, the self-
absorption frequency for extremely-hard samples
(prompts remaining in that status) is 43.4% for Knapsack-
GRPO, notably lower than GRPO’s 47.1%. Further-
more, Knapsack-GRPO shows a higher transition rate to
extremely-easy tasks (last column in heatmap) than
GRPO, indicating more effectively mastered samples.

We also examine the final distribution of prompt statuses
after training, specifically by counting the training samples
in each status, as depicted in Figure 7. Knapsack-GRPO
has 3,596 extremely-hard tasks, less than GRPO’s
3,793. This 197-task reduction suggests Knapsack-
GRPO’s dynamic budget allocation makes them more
tractable. Consistent with observed transitions, Knapsack-GRPO yields 9,274 extremely-easy
tasks, surpassing GRPO’s 8,676. Despite these promising results, approximately 20% of prompts
remain in the extremely-hard category even after 1,000 training iterations. We investigate if
these are truly unsolvable: for Knapsack-GRPO, 577 of these challenging prompts recorded at least
one positive trajectory during optimization, implying they are not inherently unsolvable. Future
research could explore experience replay techniques to address these samples more effectively.
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For a more detailed understanding of the Knapsack-GRPO exploration process, additional visualiza-
tions are included in Appendix G. These reveal that our knapsack-based method can assign up to 93
exploration budgets to particular tasks, a dynamic allocation that is not computationally intractable
with a uniform budget allocation approach.

5.3 SCALABILITY

Finally, we experiment with varying rollout sizes to investigate performance under different com-
putational resource constraints. While our previous experiments focused on a total budget of
Ntotal = 256× 8 = 2048, here we examine cases with N = 4 and N = 16, respectively. Note that
the parameter N is agnostic to Knapsack-GRPO due to its different allocation strategy.
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Figure 8: Performance comparison under
different exploration budgets.

The results for the Qwen2.5-Math-7B model are shown
in Figure 8. KnapSack-GRPO demonstrates clear ad-
vantages when computational resources are limited, im-
proving performance from 39.8 to 45.5 in the low-
budget setting, while maintaining its superiority even
with larger rollouts. Notably, these results indicate
that through more efficient exploration budget alloca-
tion, KnapSack-GRPO achieves performance levels that
would require about 2x the computational resources for
standard GRPO to match.

6 RELATED WORK

Due to space constraints, we discuss works most closely
related to ours in the main text and refer to an additional
review in Appendix B. Our work is motivated by the
intuition that aligning task difficulty with computational resource allocation can improve system
efficiency. This concept has been explored in various contexts (Lin et al., 2024; Zhang et al., 2024;
Chen et al., 2025b; Zhang et al., 2025b; Wang et al., 2025b; Sun et al., 2025). To name a few, Chen
et al. (2025b) proposed leveraging advantage as an estimate of data difficulty to design a curriculum,
while Sun et al. (2025) introduced perplexity as a metric for curriculum design. Additionally, Yu et al.
(2025) presented the concept of “dynamic sampling” to address the issue of low effective gradients;
however, it is crucial to clarify that their “sampling” refers to selecting prompts that yield effective
gradients, rather than dynamically allocating exploration budgets.

We remark that these prior works primarily focus on prompt selection within frameworks that largely
maintain a homogeneous exploration budget. In contrast, our approach operates along a different
axis: the dynamic allocation of exploration resources during response rollouting. It aims to addresses
the need for more extensive exploration on challenging tasks directly. To underscore this fundamental
difference, consider that prompt selection methods might prioritize a subset of simple prompts
to achieve a high effective gradient ratio. Our work, however, aims to dynamically design the
exploration budget for all prompts to ensure that each receives sufficient exploration to generate
effective gradients, especially those that are inherently harder.

7 CONCLUSION

Motivated by the observation that RL agents require extensive exploration on challenging tasks to
gather informative feedback and drive self-improvement, we investigate the problem of optimally
allocating computational resources for exploration. We formulate this problem as a knapsack
optimization, where each task-budget pair is treated as an item with an associated cost and value.
This framework enables us to prioritize harder tasks, thereby yielding more effective gradients and
leading to superior policy improvements. This comes at no additional computational cost, effectively
offering a “free lunch”. We view this work as an initial step toward unlocking RL’s potential in LLM
post-training through scaling exploration. Looking forward, moving beyond the straightforward
stochastic rollout strategy considered here toward richer exploration methods and more structured
allocation frameworks presents a promising avenue for future research.
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ETHICS AND REPRODUCIBILITY STATEMENT

This work primarily focuses on the algorithmic design for allocating exploration budgets within
the context of RL training for language models. Our study is purely computational and does not
involve human subjects, sensitive data, or any ethically contentious datasets. By enhancing training
efficacy, our method aims to reduce overall computational costs and, consequently, mitigate the
carbon footprint associated with large-scale model development.

To ensure full reproducibility of our findings, we provide comprehensive details regarding the training
frameworks, hyper-parameters, and experimental settings in Appendix C and F. Furthermore, we are
committed to publicly releasing our code, relevant datasets, and trained models for research purposes.
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A USE OF LLMS

The drafting of this manuscript was enhanced through the use of a large language model, which
assisted in grammatical refinement and the optimization of content organization.

B ADDITIONAL RELATED WORK

Our work is motivated by a fundamental challenge in LLMs: models are trained with multiple,
heterogeneous data sources. Specifically, we study in the axis of data difficulty and note that the
difficulty of prompts varies significantly and, more critically, this difficulty evolves and changes
across training iterations. This type of data heterogeneity in RL for LLMs has been previously
recognized. Notably, Li et al. (2024) observed substantial variations in reward distributions across
different prompts, which posed significant challenges for stable gradient estimation (specifically, in
terms of variance). Their approach primarily focused on mitigating these issues through new baseline
designs, largely operating within the exploitation stage of RL by refining how models learn from
collected data. Following this, many advanced policy optimization approaches have been proposed
(e.g., (Shao et al., 2024; Ahmadian et al., 2024; Yu et al., 2025)). We refer readers to the recent
surveys (Zhang et al., 2025a; Wang et al., 2025a) and references therein for an overview. In contrast,
our work directly addresses the exploration challenge introduced by this data heterogeneity, focusing
on how to efficiently gather the most informative data from the outset.

During the preparation of our paper, we noticed a concurrent work by Yao et al. (2025) that also
investigates dynamic resource allocation. However, their approach primarily operates within the
framework of rejection sampling and RAFT (Dong et al., 2023), focusing on minimizing stochastic
gradient variances. In contrast, our study directly addresses online RL settings, employing a knapsack-
based design to explicitly balance exploration costs with the potential value derived from each task.

Our method aligns with the principle of test-time scaling (Snell et al., 2024; Brown et al., 2024),
which allocates more computational resources (e.g., via best-of-N sampling or majority voting) to
identify superior responses. Thus, our approach shares the objective of scaling response generation to
enhance the quality of identified solutions. Additionally, our work aligns with the broader strategy of
scaling computational resources in post-training to unlock performance in downstream tasks (Jaech
et al., 2024; Liu et al., 2025).

Finally, we focus on the straightforward strategy of on-policy exploration with independently sampled
rollouts, chosen for its simplicity and tractability. While our method successfully emphasizes
allocating additional resources to difficult tasks, some tasks remain unsolved. For these, more
advanced exploration strategies may be required beyond simple independent rollouts from the initial
prompt. In particular, we see strong potential in tree-based exploration methods, inspired by the
efficiency of Monte Carlo Tree Search in the challenging task AlphaGo (Silver et al., 2016). Within
the context of LLMs, techniques such as rollbacks to advantageous intermediate states—as recently
explored in Tree-RL (Hou et al., 2025) and TreePO (Li et al., 2025)—are especially promising. We
believe that integrating such intelligent state-restarting mechanisms with our framework for optimal
computational resource allocation represents a natural and impactful direction for future research.

C IMPLEMENTATION

In this section, we provide more details in implementing Knapsack-based exploration.
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Handling Extreme Cases. Our value function defined in Section 4.1 assigns a zero value to prompts
with empirical success rates of 0 or 1, which would otherwise lead to zero budget allocation for these
prompts. To prevent their complete exclusion and maintain coverage:

• For p̂i = 1.0 (prompts always solved correctly), the estimate may be not accurate from history
samples, so we allocate a small minimum budget (e.g., 2) to ensure they are still considered. This
can be achieved by set Nlow in Equation (5).

• For p̂i = 0.0 (prompts never solved correctly), we employ a fallback allocation strategy. We first
estimate the total budget required for prompts with pi ∈ (0, 1] according to Theorem 1 and the
above rule. Any remaining budget is subsequently distributed among extremely hard tasks. This
strategy is particularly beneficial in later training stages where many prompts become easy, thus
freeing up capacity to focus on hard tasks.

Rollout Balancing. In practice, the total number of trajectories (M × N ) is typically generated
by W parallel workers (where W < M ), often leveraging efficient inference engines like vLLMs
(Kwon et al., 2023). While a homogeneous allocation rule allows for a simple division of M prompts
among W workers (each performing N rollouts per prompt), our knapsack-based approach can lead
to significant imbalance in allocated rollouts per prompt. This occurs because certain prompts may be
allocated disproportionately large exploration budgets, creating an uneven workload and potentially
leading to GPU idles and inefficient resource utilization.

To address this issue, we employ a simple rollout balancing strategy: we treat each allocated rollout
for a prompt as an individual execution job. These execution jobs are then randomly dispatched
to the available workers, with the inference engine generating one response per prompt. This
approach is suitable for settings where prompts are not excessively long, thus not strictly requiring
advanced techniques like prefix caching. For scenarios involving longer prompts, we would consider
using the Karmarkar–Karp bin-packing algorithm (Karmarkar & Karp, 1982) to group prompts into
approximately balanced batches based on their allocated budgets. Workers would then process these
balanced groups of prompts, potentially utilizing prefix caching.

Listing 1: Python pseudo code implementation of knapsack RL. Two components are modified: (1)
budget allocation is replaced with knapsack optimization for better resource distribution, and (2) task
status is updated based on external feedback.

1 def budget_allocation(batch, total_budget, **kwargs):
2 - budget = np.full(len(batch), total_budget // len(batch[’prompt’]))
3 + budget = knapsack(batch[’status’], total_budget, **kwargs)
4 indices = []
5 for task_id, task_budget in enumerate(budget):
6 if task_budget > 0:
7 indices.extend([task_id] * task_budget)
8 return batch.select_idxs(indices)
9

10 gen batch = budget allocation(batch, total budget, **kwargs)
11 if rollout_balancing:
12 indicies = np.random.shuffle(np.arange(len(batch[’prompt’])))
13 batch = batch.select_idxs(indicies)
14 batch = actor.generate_sequences(gen_batch)
15 batch = compute_rewards_and_advantages(batch)
16 train dataset.update status(batch)
17 actor.update(batch)

D PROOF

Proof of Theorem 1. We prove both parts of the lemma.

Part 1: High probability bound. We want to find the minimum N such that P(gi ̸= 0) ≥ α for a
given α ∈ (0, 1). From the problem setup, we have:

P(gi ̸= 0) = 1− pNi − (1− pi)
N ,

14
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For the condition P(gi ̸= 0) ≥ α to hold, we require:

1− pNi − (1− pi)
N ≥ α

pNi + (1− pi)
N ≤ 1− α.

Let q = max{pi, 1 − pi}. Since pi ∈ (0, 1), we have q ≥ 1
2 . Without loss of generality, assume

pi ≥ 1
2 , so q = pi and 1− pi ≤ pi. The case pi <

1
2 follows by symmetry.

Since (1− pi) ≤ pi, we have (1− pi)
N ≤ pNi for N ≥ 1. Therefore:

pNi + (1− pi)
N ≤ 2pNi = 2qN .

For large N , the term qN dominates (1− q)N since q > 1
2 . More precisely, we have:

lim
N→∞

(1− q)N

qN
= lim

N→∞

(
1− q

q

)N

= 0, (6)

since (1− q)/q < 1.

Therefore, for sufficiently large N , the constraint (6) is dominated by the term qN :

qN ≲ 1− α ⇐⇒ N ln q ≲ ln(1− α). (7)
Since q < 1, we have ln q < 0, which gives:

N ≳
ln(1− α)

ln q
=

ln(1− α)

ln(max{pi, 1− pi})
.

Part 2: Expected number of rollouts (rigorous proof). Let X1, X2, . . . be i.i.d. Bernoulli random
variables with Pr(Xi = 1) = p ∈ (0, 1), where 1 denotes “success” and 0 denotes “failure”. Define

Nfirst ≡ N = min{n ≥ 1 : both 0 and 1 have appeared among X1, . . . , Xn}.

We compute E[N ] by conditioning on the first trial X1.

Case 1: X1 = 1 (probability p). After the first success, we still need to wait until the first failure
occurs. The waiting time for the first failure follows a geometric distribution with success probability
1− p, whose expectation is 1/(1− p). Thus

E[N | X1 = 1] = 1 +
1

1− p
.

Case 2: X1 = 0 (probability 1− p). By symmetry, we wait for the first success; its waiting time has
expectation 1/p, so

E[N | X1 = 0] = 1 +
1

p
.

Applying the law of total expectation:

E[N ] = p
(
1 +

1

1− p

)
+ (1− p)

(
1 +

1

p

)
= 1 +

p

1− p
+

1− p

p

=
1

p
+

1

1− p
− 1.

Hence, the expected number of rollouts until we first observe both a success and a failure is

E[Nfirst] =
1

p
+

1

1− p
− 1 .

This completes the proof of the second part of Lemma 1.

Proof of Proposition 1. We provide a rigorous derivation under the following assumptions:

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• The policy follows a softmax distribution: pk = exp(zk)∑K
j=1 exp(zj)

for action k.

• The gradient update follows the policy gradient rule with advantage A:
zk ← zk + η ·A · I[k = y] · ∇zk log py (8)

where η is the learning rate and y is the chosen action.
• We assume unit learning rate (η = 1) and unit advantage (A = 1) for simplicity.

Step 1: Taylor expansion. For small parameter changes, the change in success probability can be
approximated by:

∆py ≈
K∑

k=1

∂py
∂zk

.∆zk

Step 2: Computing partial derivatives. For the softmax probability py =
exp(zy)∑K
j=1 exp(zj)

, we have:

∂py
∂zy

= py(1− py), and
∂py
∂zk

= −pypk, for k ̸= y.

Step 3: Determining parameter updates. Under the policy gradient update rule, we have:
∇zk log py = I[k = y]− pk.

Therefore, the parameter updates are:
∆zy = I[y = y]− py = 1− py,

∆zk = I[k = y]− pk = 0− pk = −pk, for k ̸= y

Step 4: Computing InfoGain. Substituting the partial derivatives and parameter updates:

∆py =
∂py
∂zy

∆zy +
∑
k ̸=y

∂py
∂zk

∆zk

= py(1− py) · (1− py) +
∑
k ̸=y

(−pypk) · (−pk)

= py(1− py)
2 + py

∑
k ̸=y

p2k

Step 5: Simplification under first-order approximation. For the first-order Taylor approximation to
be accurate, we require small parameter updates. Under this condition, the cross-terms

∑
k ̸=y p

2
k are

second-order in the update magnitude and can be neglected compared to the main term py(1− py)
2.

Therefore, we obtain:

InfoGain ≈ py(1− py)
2 .

This completes the proof.
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Figure 9: Comparison of exact
InfoGain and approximate for-
mula.

To validate this approximation, we conduct an empirical study
with 100 actions, comparing the InfoGain computed through
exact gradient updates against our theoretical approximation from
Proposition 1. As shown in Figure 9, the two curves align closely
across different success rates, demonstrating that our formula
p(1− p)2 provides a reliable approximation for practical use.

E EXTENSIONS

In this work, we mainly focus on the widely used GRPO (Shao
et al., 2024) algorithm to design the optimal allocation strategy.
Here we discuss possible extensions for other RL algorithms by
adapting the core framework while maintaining the same task
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value function structure:
Value(Ni, pi) = ProbNonZeroGradient(Ni, pi)× InfoGain(pi).

The key difference lies in how we compute ProbNonZeroGradient(Ni, pi) for different algorithms:

• RLOO (Ahmadian et al., 2024). RLOO’s policy gradient estimator is equivalent to GRPO up to
constants, thus we may not need fundamental changes. The probability of obtaining a non-zero
gradient remains:

ProbNonZeroGradient(Ni, pi) = 1− pNi
i − (1− pi)

Ni .

• ReMax (Li et al., 2024). ReMax leverages the reward of greedy response as baseline, rather than
the averaged reward used in GRPO. In this setting, a gradient update occurs only when the sampled
trajectory differs from the greedy response. If we denote the probability of the greedy response as
α, then the probability of sampling a trajectory different from the greedy response is 1− α. The
probability of obtaining a non-zero gradient with Ni samples becomes:

ProbNonZeroGradient(Ni, α) = 1− αNi .

This represents the probability that at least one of the Ni sampled trajectories differs from the
greedy response, thereby producing a gradient signal.

• REINFORCE (Williams, 1992). There is no baseline design in vanilla REINFORCE. We can
directly calculate the ProbNonZeroGradient to account for the case where at least one trajectory
receives a positive reward:

ProbNonZeroGradient(Ni, pi) = 1− (1− pi)
Ni .

This formulation is simpler than GRPO since we only need to ensure at least one successful
trajectory occurs, rather than balancing positive and negative samples.

The proposed framework’s modularity allows for straightforward adaptation to other RL algorithms
by: (1) identifying the algorithm’s gradient computation mechanism, (2) determining conditions
for non-zero gradients, (3) calculating the corresponding ProbNonZeroGradient function, and (4)
maintaining the same InfoGain(pi) = pi(1− pi)

2 formulation across algorithms. This demonstrates
the general applicability of our value-based budget allocation approach beyond the specific GRPO
implementation.

F EXPERIMENT DETAILS

Our experiments utilized the large-scale RL training framework Verl, specifically version 0.5.0. No
modifications were made to the core training and inference code, with the exception of the advantage
calculation, where values were clipped between -5 and 5. This was implemented because, as rollout
responses were scaled, we observed their values could become significantly large in extreme cases,
thus requiring this additional clipping for numerical stability. Additional implementation details on
handling extreme cases and ensuring rollout efficiency are provided in Appendix C.

Following recommendations from (Yu et al., 2025), the learning rate was set to 10−6, with impor-
tance sampling clipping ratios (high/low) of 0.28 and 0.2, respectively. Neither KL nor entropy
regularization was employed. Models were trained with a maximum sequence length of 4K tokens,
with the exception of DPSK-R1-Distill-1.5B, which utilized 8K tokens to accommodate its typically
longer Chain-of-Thought (CoT) behaviors requiring more context.

For evaluation results reported during training, models were assessed every 10 training iterations
using 16 generated responses. To manage evaluation time, 100 evaluation samples were randomly
selected from benchmarks when the total number of samples exceeded this number.

For the final evaluation performance presented in Table 1, different maximum sequence lengths were
used to prevent response truncation: 4K tokens for Qwen2.5-Math-7B, 8K tokens for Qwen3-4B and
Qwen3-4B-Instruct, and 16K tokens for DPSK-R1-Distill-1.5B. Consequently, these results may not
perfectly align with those reported in the training curves.
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G ADDITIONAL RESULTS

G.1 VISUALIZATION OF EXPLORATION PROCESS

Exploration Budgets. To illustrate the impact of knapsack-based exploration, we visualize the
assigned exploration budgets. Specifically, we quantify the frequency with which different exploration
budgets are allocated to individual prompts during the training of Qwen2.5-Math-7B. These results
are presented in Figure 10. We observe that, even without introducing additional computational
resources, our approach can dynamically assign up to 93 exploration budgets to certain tasks. This
level of dynamic, high-budget allocation is impractical to achieve under a conventional homogeneous
budget allocation framework.

0 20 40 60 80
Exploration Budget (Single Iteration)

101

102

103

104

105

Fr
eq

ue
nc

y

Max: 93.0

Figure 10: Distribution of exploration budgets allocated by knapsack-based exploration for Qwen2.5-
Math-7B during training.

Evolution of Prompts. To illustrate the impact of exploration budgets on individual prompt learning
dynamics, we track and visualize the learning trajectories of several randomly selected prompts
from the training data in Figure 11. Each subplot corresponds to a unique prompt, identified by its
index in the title. We observe that for several examples, our framework effectively allocates more
exploration budget, leading to complete learning of the prompt (e.g., prompts in the first row, first
column, and second row, first column). Conversely, some tasks remain highly challenging, where
neither Knapsack-GRPO nor GRPO achieves satisfactory performance (e.g., the prompt in the third
row, second column).

G.2 TRAINING CURVES.

As references, the training curves for all models are displayed in Figures 12, 13, 14, and 15. Compared
with the final results in Table 1, these plots further show that Knapsack-GRPO delivers a rapid
performance improvement early in the training process. We also observe a few cases of performance
degeneration, which points to the need for exploring more stable policy optimization techniques in
future research.

G.3 ABLATION STUDIES

Without Fallback Strategy. In Appendix C, we introduced the fallback strategy, which reallocates
excess exploration budgets from already-solved prompts to those that remain unsolved. This prevents
a common failure mode: difficult prompts may otherwise receive too few resources, while easy
prompts are oversampled.

A concrete example is shown in Table 2 with 8 prompts. Without the fallback strategy, the allocation
assigns over 50 exploration units to a task with a success rate of 0.9, while the unsolved task (success
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Figure 11: Learning dynamics of randomly selected prompts throughout training, comparing GRPO
and Knapsack-GRPO. Each subplot shows the success rate evolution for a specific prompt.
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Figure 12: Evaluation performance of DPSK-R1-Distill-1.5B across training iterations.

rate 0.0) receives only 2 units. In contrast, with the fallback strategy, the unsolved task is assigned 29
units—substantially increasing its chance of making progress.

Empirically, this design proves crucial (Figure 16). In our experiments with the Qwen2.5-Math-7B
model, removing the fallback strategy led to unstable training, large performance fluctuations on
benchmarks such as AMC and OlympiadBench, and overall degraded results. This result suggests
that neglecting challenging examples during training weakens the reinforcement signal, ultimately
harming the model’s ability to generalize.

Low and Up Bounds. Our framework incorporates safeguards in the form of hyper-parameters
Nlow and Nup, as defined in Equation (5). Nup is set to 128 primarily to facilitate faster computation
of the knapsack optimization using dynamic programming; its specific value does not critically impact
performance. Conversely, Nlow is set to 2 to prevent degenerate allocation scenarios, particularly
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Figure 13: Evaluation performance of Qwen3-4B-Base across training iterations.
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Figure 14: Evaluation performance of Qwen3-4B-Instruct across training iterations.
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Figure 15: Evaluation performance of Qwen2.5-Math-7B across training iterations.
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Table 2: Comparison of budget allocation with and without fallback strategy.

With Fallback Strategy Without Fallback Strategy
Index Success Rate Cost Assignment Success Rate Cost Assignment

1 0.0 ∞ 29 0.0 ∞ 2
2 0.9 22 23 0.9 22 50
3 1.0 0 2 1.0 0.0 2
4 1.0 0 2 1.0 0.0 2
5 1.0 0 2 1.0 0.0 2
6 1.0 0 2 1.0 0.0 2
7 1.0 0 2 1.0 0.0 2
8 1.0 0 2 1.0 0.0 2
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Figure 16: Effect of the fallback strategy. Without it, exploration budgets are disproportionately
allocated to prompts with at least one successful trial, while unsolved tasks are largely ignored.

when success rates might be inaccurate, as elaborated in Appendix C. We present ablation results for
these bounds in Figure 17, which empirically support these design choices.
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Figure 17: Ablation study on the impact of Nlow and Nup constraints within the knapsack optimization
framework.
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G.4 COMPARING WITH DYNAMIC SAMPLING IN DAPO

Dynamic sampling, a technique introduced in the DAPO paper (Yu et al., 2025), selects prompts
with a mix of positive and negative rewards, filtering out those with exclusively positive or negative
outcomes. This process is repeated until a target number of prompts is accumulated, a strategy that
has been shown to be effective.

While effective, dynamic sampling operates on a different principle than our knapsack-based approach.
Dynamic sampling aims to scale up effective prompts, while our method focuses on scaling up
effective responses. Since these two approaches are parallel and can be combined, we conducted
empirical studies to explore their synergy.

We evaluated the performance of these methods using two different metrics, as shown in the training
curves in Figure 18 and Figure 19. Because dynamic sampling requires multiple exploration steps to
accumulate enough effective prompts for a single gradient update, we can analyze performance in
two ways:

• By exploration budget: Figure 18 shows performance relative to the total number of exploration
iterations. This measures how effectively total computation budget is converted into performance
gains. We found that dynamic sampling boosts GRPO’s performance on benchmarks like AIME
and OLYMPIAD, improving the score from 45.2 to 46.2. When we combined dynamic sampling
with our knapsack-based exploration, performance on the AMC benchmark improved significantly
(from 69.8 to 73.0), resulting in a total performance of 46.5. This is slightly better than dynamic
sampling alone but worse than our pure knapsack approach. We attribute this partially to the fact
that knapsack-GRPO utilizes more gradient iterations, and therefore do not consider this a negative
result.

• By gradient update iterations: Figure 19 displays performance against the number of gradient
updates. This metric assesses the value of each gradient update. The results clearly show that
effective gradients, whether from dynamic sampling or our knapsack-based exploration, lead to
greater performance gains for the same number of update iterations, which validates the core
motivation behind both techniques.
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Figure 18: Performance of Qwen2.5-Math-7B relative to the number of exploration iterations,
demonstrating how effectively the total computation budget is converted into performance gains.
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Figure 19: Performance of Qwen2.5-Math-7B as a function of the number of LLM gradient updates.
This figure validates that effective gradients, derived from either dynamic sampling or the knapsack-
based approach, lead to greater performance gains for the same number of updates.
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