
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

KNAPSACK RL: UNLOCKING EXPLORATION OF LLMS
VIA OPTIMIZING BUDGET ALLOCATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) can self-improve through reinforcement learning,
where they generate trajectories to explore and discover better solutions. However,
this exploration process is computationally expensive, often forcing current meth-
ods to assign limited exploration budgets to each task. This uniform allocation
creates problematic edge cases: easy tasks consistently succeed while difficult
tasks consistently fail, both producing zero gradients during training updates for the
widely used Group Relative Policy Optimization (GRPO). We address this problem
from the lens of exploration budget allocation. Viewing each task’s exploration
as an “item” with a distinct “value” and “cost”, we establish a connection to the
classical knapsack problem. From this, we derive an optimal assignment rule that
transfers exploration budgets from easy tasks to challenging ones. When applied
to GRPO, our method increases the effective ratio of non-zero policy gradients
by 20–40% during training. As a computational “free lunch”, it also enables sub-
stantially larger exploration budgets (e.g., 93 rollouts) for especially challenging
tasks—budgets that would be computationally prohibitive under uniform allocation.
These improvements translate to meaningful gains on mathematical reasoning
benchmarks, with average improvements of 2–4 points and peak gains of 9 points
on specific tasks. Notably, achieving comparable performance with traditional
homogeneous allocation would require about 2x the computational resources.

1 INTRODUCTION

The remarkable capabilities of Large Language Models (LLMs) have led to their widespread applica-
tion across various domains (OpenAI, 2025; Comanici et al., 2025; Anthropic, 2025; Meta, 2025;
Yang et al., 2025). While pre-training on vast text corpora endows LLMs with general knowledge
and linguistic fluency, fine-tuning them for specialized tasks often necessitates more targeted opti-
mization beyond pre-training. Reinforcement Learning (RL) has emerged as a powerful paradigm for
this purpose (Ouyang et al., 2022; Li et al., 2024; Guo et al., 2025), enabling LLMs to iteratively
self-improve by interacting with environments. A popular instantiation is RL with verifiable rewards
(Lambert et al., 2024), where LLMs generate responses and receive binary (true/false) feedback based
on their outcomes, iteratively refining their internal policies to search for optimal solutions. Initially
pioneered in mathematical reasoning (Jaech et al., 2024), this framework has since been extended to
domains like coding (Luo et al., 2025a) and agentic tasks (Team et al., 2025).

A core challenge in these applications is exploration—sampling diverse trajectories to find better
solutions. This process is computationally expensive in practice due to sequential nature of autore-
gressive generation. As such, most RL pipelines use a small number of rollouts per prompt (e.g., 8)
for exploration. However, this uniform allocation strategy could lead to some problematic outcomes.
For example, in the Group Relative Policy Optimization (GRPO) (Shao et al., 2024) algorithm,
meaningful learning signals (gradients) only emerge when both successful and failed attempts are
present in the same batch. With a uniform budget, easy tasks often result in all-success outcomes, and
hard tasks in all-failure outcomes, leading to near-zero gradients and stalled learning. This issue has
been well-documented in previous research (Yu et al., 2025; Chen et al., 2025a), and we approach it
from the broader perspective of strategic exploration budget allocation.

We argue the fundamental problem is the mismatch between a task’s difficulty and its assigned explo-
ration budget. Hard tasks, which require extensive (could even require more than 100) exploration
to find useful trajectories, receive too little effort under a uniform rule. Easy tasks, which require

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Illustration of our framework for allocating exploration budgets among tasks from computa-
tional resources. We model each task as an item with learning value and computational cost, then
solve the allocation problem using Knapsack optimization.

minimal exploration, waste compute by being over-sampled. Thus, a heterogeneous and customized
exploration allocation strategy is preferred.

To this end, we introduce a knapsack-based formulation: each task, when assigned a certain budget,
can be conceptualized as an ‘item” with an associated value (learning potential) and cost (compu-
tational effort of exploration). The allocation problem is thus equivalent to the classical knapsack
problem (Mathews, 1896; Pisinger & Toth, 1998), where the objective is to maximize total value
under a fixed global budget. We refer to this approach as Knapsack RL; see Figure 1 for illustration.
When applied to the popular GRPO framework, our method enables a dynamic, heterogeneous
allocation of exploration budgets, which allows sufficient exploration on training tasks.

Empirically, across Qwen series models (Yang et al., 2024; 2025) sized from 1B to 7B, we observe a
20-40% improvement in effective gradient ratios, translating into more reliable policy improvements
and average performance gains of about 2-4 points on several challenging benchmarks. To get a better
sense of this improvement, we note that achieving comparable improvements with uniform allocation
would require nearly 2x the computation. We present this as a proof-of-concept, demonstrating a
promising direction to boost the effectiveness of RL.

2 PRELIMINARY

Following (Ouyang et al., 2022; Shao et al., 2024), we model language generation as autoregressive
sampling from a conditional probability distribution πθ(y|x), where x represents the input prompt
and y represents the generated response. The parameter θ denotes the trainable parameters. Our goal
is to improve the language model via RL by maximizing the expected performance of responses
generated from the model distribution πθ:

max
θ

Ey∼πθ(·|x)[r(x, y)] (1)

In this paper, we focus on RL with verifiable rewards. Specifically, let y = (CoT,answer) denote
the concatenation of Chain-of-Thought (CoT) (Wei et al., 2022) reasoning steps CoT and the final
solution answer. The reward function r(x, y) is defined as:

r(x, y) = I(answer is correct with respect to x), (2)
where I(·) is the indicator function and r ∈ {0, 1} is binary (1 for correct, 0 for incorrect). This
outcome-based reward formulation has been widely adopted (see e.g., (Guo et al., 2025) and references
therein) and has been shown to effectively incentivize reasoning abilities (Wen et al., 2025).

Algorithm 1 RL with Classical Homogeneous Budget Allocation

1: for iteration t = 1, 2, . . . do
2: Sample a mini-batch of prompts (x1, . . . , xM)
3: Generate N responses for each prompt xi ▷ Budget Allocation
4: Evaluate the rewards (e.g., Equation (2)) and compute the gradients (e.g., Equation (3))
5: Update model parameters with estimated gradients

To optimize Equation (1), policy gradient methods (Sutton et al., 1999) are commonly employed.
Among these, REINFORCE (Williams, 1992)-style stochastic policy gradient methods have become
standard since (Li et al., 2024). These methods stochastically sample N responses from πθ and
estimate gradients using direct reward feedback. Originally designed for single-task RL, this approach

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

is typically extended to multi-task RL by employing homogeneous exploration budget allocation.
Algorithm 1 summarizes this classical framework.

In Algorithm 1, the sampling process in Line 3 corresponds to exploration in RL, where the model
generates responses to search for optimal solutions. Line 5 corresponds to exploitation, updating the
model to leverage feedback from data. We adopt the widely used gradient estimator from Group
Relative Policy Optimization (GRPO) (Shao et al., 2024):

g(θ) =

M∑
i=1

N∑
j=1

∇θ log πθ(yij |xi) · (r(xi, yij)− bi) · ci (3)

where yij denotes the j-th sampled response for prompt xi, and ∇θ log πθ(yij |xi) represents
the gradient of the log-probability with respect to model parameters θ. The baseline bi and
normalization factor ci are defined as: bi = 1/N ·

∑N
j=1 r(xi, yij) and ci = 1/(σi + ϵ) with

σi =
√
1/N ·

∑N
j=1(r(xi, yij)− bi)2 is the standard deviation of rewards for prompt xi, and ϵ is

a small constant (10−6) preventing division by zero when σi = 0. Technically, GRPO computes
relative advantages within each response group (prompt), increasing likelihood of positive responses
and decreasing likelihood of negative ones.

3 DIAGNOSING EXPLORATION IN HOMOGENEOUS BUDGET ALLOCATION

In this section, we discuss the limitations of homogeneous budget allocation for GRPO and present
empirical observations that motivate our work.

3.1 MOTIVATION

Exploration in RL is computationally expensive due to the sequential nature of autoregressive
generation, often requiring substantial GPU memory and hours of computation, especially for
reasoning tasks. Thus, it is critical to assess how much each collected sample actually contributes to
gradient updates. For GRPO, we make the following observation.
Observation 1. Let gi =

∑N
j=1∇θ log πθ(yij |xi) · (r(xi, yij)− bi) · ci be the gradient for prompt i.

If σi = 0, meaning that all N sampled responses for xi yield identical rewards (all correct or all
incorrect), then (r(xi, yij) − bi) = 0 for every sample, leading to gi = 0. In this case, the model
receives no learning signal from that prompt.

This phenomenon is widely recognized as a major bottleneck for GRPO in practice (Yu et al., 2025;
Chen et al., 2025a). To formally track it, we introduce the metric effective-gradient-ratio,
which measures the proportion of individual samples that contribute non-zero gradients:

effective-gradient-ratio =
1

M ·N

M∑
i=1

N∑
j=1

I(gi,j ̸= 0), (4)

where gi,j = ∇θ log πθ(yij |xi) · (r(xi, yij)− bi) · ci is the gradient contribution from the j-th sample
of the i-th prompt. A higher value indicates that a larger fraction of samples are contributing useful
learning signals. We also define two complementary metrics: zero-gradient-ratio (by
all positive rewards): proportion of prompts yielding zero gradients due to uniformly posi-
tive rewards; and zero-gradient-ratio (by all negative rewards): proportion of
prompts yielding zero gradients due to uniformly negative rewards.

We visualize these dynamics in Figure 2 for the Qwen2.5-Math-7B model trained on the
DAPO-MATH-17K dataset. Each mini-batch contains M = 256 prompts with N = 8 rollouts
per prompt. The results reveal several concerning patterns:

Low Overall Effectiveness: The effective gradient ratio consistently remains below 60%, mean-
ing that over 40% of sampled data fails to contribute to model updates—a significant waste of
computational resources.

Dynamic Training Phases: The gradient dynamics exhibit three distinct phases:

• Early Training (0-70 iterations, approximately the first epoch): The model struggles with most
tasks, leading to predominantly all-negative rewards (green line peaks near 95%). This results in
minimal learning signals being generated.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

• Mid Training (70-600 iterations): As the model improves, it begins solving some tasks while
still failing others, creating the mixed outcomes necessary for effective gradients. The effective
gradient ratio can maintain above 40% during this phase.

• Late Training (600+ iterations): Tasks become increasingly easy, leading to a rise in all-positive
rewards (orange line increases to 40%). Simultaneously, challenging tasks still result in all-negative
rewards (the green line fluctuates around 20%). As a result, the effective-gradient-ratio steadily
decreases to about 20% by 1000 iterations.

0 200 400 600 800 1000
Iterations

0

20

40

60

80

100

Ef
fe

ct
iv

e
Gr

ad
ie

nt
 R

at
io

 (%
)

0

20

40

60

80

100

Ze
ro

 G
ra

di
en

t R
at

io
(%

)

GRPO - Effective Gradient Ratio
GRPO - Zero Gradient Ratio (by all positive rewards)
GRPO - Zero Gradient Ratio (by all negative rewards)

Figure 2: The ratio of effective gradients and
zero gradients during training.

We provide theoretical analysis toward understanding
the above empirical observations in the next section.

3.2 THEORETICAL ANALYSIS

We model reward outcomes as Bernoulli random vari-
ables to analyze the exploration budget required.
Definition 1 (Success rate). We define the success
rate p on a prompt x as the probability that the
model generates a correct response: pi ≡ p(xi) =
Ey∼πθ(·|xi)[r(y|xi)] = Pr[r(y|xi) = 1].

This formulation allows statistical analysis of stochas-
tic gradients. For N sampled responses yi1, . . . , yiN
on a prompt xi, the probability that both correct and
incorrect samples are observed is:
P(gi ̸= 0) = 1− P[all rewards are the same] = 1− P[all rewards are 1’s]− P[all rewards are 0’s]

= 1− pNi − (1− pi)
N .

This raises the question: how large must the sampling budget N be to obtain a non-zero gradient?
We answer this from two perspectives: high-probability guarantees and expected sample complexity.
Theorem 1 (Exploration Budget). Given a prompt with the success rate p ∈ (0, 1), we have that

• High probability bound: For any α ∈ (0, 1), to ensure P(gi ̸= 0) ≥ α, it suffices to take
N ≳ ln(1−α)

ln(max{pi,1−pi}) .

• Expected number of rollouts: Let Nfirst denote the number of independent rollouts required until
gi ̸= 0 is achieved for the first time. Its expectation is: E[Nfirst] = 1/p+ 1/(1− p)− 1.

Please refer to Appendix D for the proof. To illustrate, for example, if p = 0.5, we need 3 samples
on average to obtain a non-zero gradient. For a hard task with p = 0.01, we require 100 samples, and
to achieve a 90% chance of non-zero gradient, we would need 229 samples.

We show the theoretical predictions in Figure 3. We employ the Qwen2.5-Math-7B-Instruct
model to generate 256 responses for 1,000 prompts from the DAPO-Math-17K dataset. Then we
estimate p and compute the minimal budget N needed for gi ̸= 0 from the data. We exclude prompts
that with empirical success rate of 0.0 or 1.0, because our exploration budget 256 is not sufficient.
The results show that a typical budget of N = 8 only covers tasks with p ∈ [0.1, 0.9]. For tasks with
p ≈ 0 or p ≈ 1, even increasing N to 16 or 32 is insufficient. Overall, our analysis shows that the
sampling budget required for meaningful gradients could be much larger than what is practically
used. This also helps explain the low effective gradient ratio observed in Figure 2.

Existing practices typically address this kind of insufficient exploration challenge in two ways:

• Increasing the exploration budget uniformly. This involves raising N—for example, from 8 to
16 or even 32—which could help address exploration on extremely hard or easy tasks and improve
the effective gradient ratio. However, setting a very large value for N , such as N = 100, is often
impractical due to prohibitive computational costs.

• Filtering hard and easy prompts. Tasks that are too easy or too hard are dropped. This kind
of approach is leveraged in (Team et al., 2025; Yu et al., 2025). However, as we have seen, the
proportion of prompts yielding zero gradients due to all-negative rewards (the green line in Figure
2) is around 20% in late training, indicating many tasks are not yet fully solved. If we simply filter
these prompts, we may close off a crucial source for RL, where meaningful learning often comes

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(0-
0.0

1]

(0.
01

 - 0
.1]

(0.
1-0

.2]

(0.
2-0

.3]

(0.
3-0

.4]

(0.
4-0

.5]

(0.
5-0

.6]

(0.
6-0

.7]

(0.
7-0

.8]

(0.
8-0

.9]

(0.
9-0

.99
]

(0.
99

-1.
0)

Success Rate

0

100

200

300

400

500

600

Bu
dg

et

102

24
6 3 3 3 3 3 4 6

18

124128

28
6 4 3 3 3 3 4 6

19

256

294

65

15 8 6 4 4 6 8 15

45

589Budget Required (from Samples)
Budget Required (with Expectation)
Budget Required (with Probability 0.9)

Figure 3: Exploration budget required to ensure non-zero gradients based on success rate. Note that
success rates with in the same bins are grouped from real samples, which may not be symmetry,
rendering the exploration budget may not be symmetry as the theory suggests.

from converting failures into successes. That is, removing hard prompts deprives the model of
opportunities to practice on challenging examples, limiting the information available to LLMs.

In this work, we favor addressing this issue by scaling exploration budgets, but recognize that this
first approach presents a fundamental computation-exploration dilemma. This tension motivates our
pursuit of a more principled solution for allocation of exploration budgets.

4 PROPOSED APPROACH: KNAPSACK-BASED RL

In this section, we introduce our approach to address the exploration-and-computation dilemma.
Crucially, our goal is not to demand additional computational resources, as these are typically fixed
by the user’s constraints. Given these computational resources as a fixed pool, we aim to implement a
centralized allocation strategy: assigning customized exploration budgets for each task.

The central technical question is: given a fixed total budget, what is the optimal allocation
for RL exploration? Our key insight is that task difficulty alone does not dictate the optimal
allocation—tasks also differ in their value. Easy tasks provide limited benefit, since correcting
small mistakes leads to only incremental gains, whereas solving harder tasks can yield substantial
improvements. This motivates reallocating budget from easier tasks to more challenging ones. In
short, effective allocation must jointly account for both exploration cost and learning value.

We formalize the above idea as a constrained optimization problem:

max
N1,...,NM

M∑
i=1

Value(Ni, pi) (5)

subject to
M∑
i=1

Ni = Ntotal, Nlow ≤ Ni ≤ Nup, Ni ∈ Z+,

where Ni is the number of trajectories allocated to prompt xi, and pi is the success rate. The bounds
Nlow (e.g., 2) and Nup (e.g., 128) allow to enforce coverage and prevent degenerate allocations. The
total budget Ntotal is usually set to N ×M to match the homogenous allocation rule.

This optimization problem exactly matches the structure of a classical knapsack problem (Pisinger
& Toth, 1998). Each prompt xi can be thought of as an item with a “weight” given by its allocated
budget Ni and a “value” of Value(Ni, pi). The objective is to choose budget allocations Ni that
maximize the total value while keeping the overall cost within the knapsack capacity M ×N .

4.1 FORMULATION OF TASK VALUE

In this section, we substantiate the above framework with the proposed idea. We recognize that
homogeneous budget allocation fails to take the task value into consideration. For GRPO, we address

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

this issue by defining the value of assigning Ni exploration budget units to prompt xi as
Value(Ni, pi) = ProbNonZeroGradient(Ni, pi)× InfoGain(pi),

where ProbNonZeroGradient(Ni, pi) = 1 − pNi
i − (1 − pi)

Ni is the probability of obtaining a
non-zero gradient (see Section 3.2) for GRPO, and InfoGain(pi) quantifies the informativeness of
a gradient if one occurs. It can also be extended to other algorithms; see Appendix E. Our design
emphasizes coverage of effective gradients across prompts: it accounts for whether a non-zero
gradient is likely to appear, but not for the exact balance of positive versus negative samples.

In this work, we define InfoGain as a measure of the expected increase in success probability after a
gradient update, while noting that alternative formulations could be explored in future work. Formally,
let pti denote the success rate before the update and pt+1

i the rate after the update. We define

InfoGain = ∆pi = pt+1
i − pti.

Directly computing this requires access to the post-update success probability, which is intractable.

Proposition 1. With the Taylor expansion, the InfoGain can be approximated by pi(1− pi)
2 .

Please refer to Appendix D for detailed derivation. This modeling is admittedly idealized and not
guaranteed to be exact. Nevertheless, it captures key intuitions while remaining simple to implement.
Its behavior can be summarized as follows:

• InfoGain(pi) is maximized at pi = 1/3. This aligns with the intuition that uncertain-but-promising
samples are most valuable.

• InfoGain(pi) is asymmetric: for equally distant values of pi from 1/3, harder tasks yield larger
information gain than easier tasks. Furthermore, InfoGain(pi)→ 0 as pi → 0 or pi → 1, meaning
extremely hard or extremely easy prompts provide diminishing value.

(0.19, 16)

(0.35, 4)

(0.52, 8)

Figure 4: The interplay between success
rate, exploration budget and the value.

We visualize our defined Value(Ni, pi) in Figure 4. This
contour plot shows lines of equal value, highlighting the
interplay between the success rate pi and the exploration
budget Ni. For example, the three highlighted points
demonstrate that different combinations of pi and Ni can
yield comparable high values. A task with the success
rate pi = 0.35 (which is close to 1/3), requires a rela-
tively small exploration budget of Ni = 4 to achieve a
high value. However, for tasks with success rates further
from this optimum, such as a harder task with pi = 0.19
or an easier one with pi = 0.52, the required explo-
ration budget is now specified as Ni = 16 or Ni = 8
respectively to reach the same value level.

4.2 ALGORITHM IMPLEMENTATION

In practice, the success rate pi is not directly available
as a prior and must be estimated from collected samples.
In this work, we employ a simple heuristic: using the success rates observed in the previous epoch
as estimates for the current one. Specifically, the first epoch may follow a homogeneous budget
allocation rule, after which the proposed knapsack-based approach leverages the estimated success
rates p̂i to guide allocation. Although this strategy introduces some delay and noise, it has proven
empirically effective. More sophisticated online estimation techniques (e.g., logistic regression) that
account for task correlations present promising directions for future improvement.

These estimated p̂i values are directly used to formulate the discrete constrained optimization
problem (Equation 5), which can be solved in polynomial time using standard dynamic programming
techniques. With Numba (Lam et al., 2015) acceleration, it typically runs within 1–2 seconds.

Overall, our knapsack-based exploration method integrates seamlessly into large-scale RL training
pipelines with minimal modifications (see Listing 1 in the Appendix). Computationally, it adds
negligible overhead. Algorithmically, it introduces no additional hyperparameters to tune and does not
bias policy gradients. From a systems perspective, core components of inference (e.g., vLLM-based
accelerated generation (Kwon et al., 2023)) and training (e.g., FSDP (Zhao et al., 2023) and Megatron
(Shoeybi et al., 2019)) remain unchanged, ensuring full compatibility with existing infrastructure.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

5.1 MAIN RESULTS

Experiment Setting. We implement Knapsack-RL and baseline methods using the large-scale RL
training framework Verl (Sheng et al., 2025). Our primary focus is GRPO (Shao et al., 2024), a
widely examined method, and we refer to our specific implementation as Knapsack-GRPO. Training
utilizes the DAPO-Math-17K dataset (Yu et al., 2025), which comprises 17,917 prompts, each with a
ground truth answer for verification.

We conduct experiments with both pre-trained and instruction-tuned models. The pre-trained mod-
els include Qwen3-4B-Base (Yang et al., 2025) and Qwen2.5-Math-7B (Yang et al., 2024). For
instruction-tuned models, we utilize DeepSeek-R1-Distill-Qwen-1.5B (Guo et al., 2025) (abbreviated
as DPSK-R1-Distill-1.5B) and Qwen3-4B-Instruct-2507 (Yang et al., 2025) (abbreviated as Qwen3-
4B-Instruct). In each iteration, we employ a mini-batch size of M = 256 prompts and generate
N = 8 rollouts. Our models are trained for 1,000 iterations. The extensive training duration of 1,000
iterations for Qwen2.5-Math-7B, for example, requires about 1,400 GPU hours with A100 GPUs.

For evaluation, we follow (Luo et al., 2025b) and assess our method on several mathematical
reasoning benchmarks: AIME, AMC, MATH, MINERVA, and OLYMPIAD Bench (OLYMPIAD
for short). Given AIME’s small sample size, we combine its 2024 and 2025 editions into a single
dataset, hereafter referred to as AIME. Additionally, we include GPQA (Rein et al., 2023) as an
out-of-domain evaluation, which tests scientific reasoning across physics, chemistry, and biology. All
reported performance metrics are averaged over 16 generated responses.

Table 1: Evaluation performance (avg@16) comparison across different models and benchmarks.

AIM
E

AM
C

M
ATH

M
IN

ERVA

OLY
M

PIA
D

GPQA
Avg

DPSK-R1-Distill-1.5B 25.3 62.1 81.4 25.8 41.7 39.1 42.9
+ GRPO 27.6 71.1 84.0 27.6 46.4 36.7 45.9
+ Knapsack-GRPO 34.0 75.1 86.7 28.5 49.7 40.3 49.7
Qwen3-4B-Base 6.6 29.9 48.0 19.4 23.1 26.4 22.9
+ GRPO 20.7 56.9 80.6 31.9 44.9 46.6 43.2
+ Knapsack-GRPO 20.8 66.0 81.0 35.7 46.2 45.5 45.1
Qwen3-4B-Instruct 47.7 82.5 92.4 35.4 61.6 43.0 58.6
+ GRPO 47.0 84.9 92.5 41.8 61.8 54.4 59.2
+ Knapsack-GRPO 48.2 83.1 92.5 38.2 63.5 59.9 61.9
Qwen2.5-Math-7B 12.3 41.0 61.2 11.8 26.1 22.0 26.7
+ GRPO 23.9 70.6 81.7 33.6 41.9 40.8 45.2
+ Knapsack-GRPO 24.3 77.4 83.9 34.5 44.1 43.8 47.5

We report the evaluation performance in Table 1, observing consistent improvements across all tested
models after applying our RL training. Specifically, Knapsack-GRPO consistently outperforms
GRPO. For instance, in terms of average performance, it improves by 3.8 points for DPSK-R1-Distill-
1.5B compared to GRPO. On specific benchmarks, the improvements are even more significant: for
example, 6.4 points on AIME for DPSK-R1-Distill-1.5B, 9.1 points on AMC for Qwen3-4B-Base,
5.5 points on GPQA for Qwen3-4B-Instruct, and 6.8 points on AMC for Qwen2.5-Math-7B.

5.2 UNDERSTANDING KNAPSACK-BASED EXPLORATION

This section delves into understanding the superiority of knapsack-based exploration. We analyze
its efficacy through gradient effectiveness and task status dynamics during training, focusing on the
Qwen2.5-Math-7B model.

Effective Gradient Ratio. Figure 5 shows the effective gradient ratio during training, as defined in
Equation (4). Knapsack-based budget allocation improves this ratio by approximately 20-40% across
models. Unlike uniform allocation, the knapsack method avoids a clear decreasing trend. This stems
from dynamically distributing exploration budgets, targeting tasks with mixed successful and failed
trajectories. These observations partially explain Knapsack-GRPO’s policy improvements.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000
Iterations

50

60

70

80

Ef
fe

ct
iv

e
Gr

ad
ie

nt
 R

at
io

 (%
)

GRPO
Knapsack-GRPO

(a) DPSK-R1-Distill-1.5B

0 200 400 600 800 1000
Iterations

30

40

50

60

70

80

Ef
fe

ct
iv

e
Gr

ad
ie

nt
 R

at
io

 (%
)

GRPO
Knapsack-GRPO

(b) Qwen3-4B

0 200 400 600 800 1000
Iterations

10

20

30

40

50

60

70

80

Ef
fe

ct
iv

e
Gr

ad
ie

nt
 R

at
io

 (%
)

GRPO
Knapsack-GRPO

(c) Qwen2.5-Math-7B

Figure 5: Effective gradient ratio during training.

ex
tre

mely
-h

ar
d

ha
rd

med
ium ea

sy

ex
tre

mely
-ea

sy

Final Status

extremely-hard

hard

medium

easy

extremely-easy

In
it

ia
l S

ta
tu

s

47.1 5.4 18.3 7.6 21.7

13.0 4.1 26.8 14.1 42.0

1.6 1.1 15.3 15.9 66.1

0.2 0.0 3.2 9.0 87.6

0.0 0.0 1.0 5.5 93.5

0

20

40

60

80

100

(a) GRPO

ex
tre

mely
-h

ar
d

ha
rd

med
ium ea

sy

ex
tre

mely
-ea

sy

Final Status

extremely-hard

hard

medium

easy

extremely-easy

In
it

ia
l S

ta
tu

s

43.4 3.2 16.8 10.8 25.8

9.0 1.7 23.8 16.9 48.6

0.8 0.4 11.9 14.9 72.1

0.0 0.0 4.2 4.9 90.9

0.1 0.0 2.2 2.5 95.2

0

20

40

60

80

100

(b) Knapsack-GRPO

Figure 6: Prompt transition matrices for Qwen2.5-Math-7B during training. The cell (i, j) indicates
the percentage of samples transitioning from status i to status j.

Task Transition Dynamics. To understand our method’s influence on learning, we analyze prompt
evolution during training. We categorize prompts into five performance statuses based on success rate
(pi): extremely-hard (pi = 0, all failures), hard (0 < pi ≤ 0.2), medium (0.2 < pi < 0.8),
easy (0.8 ≤ pi < 1.0), and extremely-easy (pi = 1.0, all successes). Our analysis covers two
aspects: 1) prompt status transitions after training, and 2) final prompt status distribution.

ext
rem

ely
-ha

rd
ha

rd

med
ium ea

sy

ext
rem

ely
-ea

sy

Status

0

2000

4000

6000

8000

Co
un

t

3793

549

2902

1997

8676

3596

306

2591
2150

9274
GRPO
Knapsack-GRPO

Figure 7: Distribution of sample statuses
after training.

Figure 6 visualizes the 5×5 transition matrix for Qwen2.5-
Math-7B training, illustrating prompt category transi-
tions. Knapsack-GRPO demonstrates superior efficiency
in learning challenging tasks. Specifically, the self-
absorption frequency for extremely-hard samples
(prompts remaining in that status) is 43.4% for Knapsack-
GRPO, notably lower than GRPO’s 47.1%. Further-
more, Knapsack-GRPO shows a higher transition rate to
extremely-easy tasks (last column in heatmap) than
GRPO, indicating more effectively mastered samples.

We also examine the final distribution of prompt statuses
after training, specifically by counting the training samples
in each status, as depicted in Figure 7. Knapsack-GRPO
has 3,596 extremely-hard tasks, less than GRPO’s
3,793. This 197-task reduction suggests Knapsack-
GRPO’s dynamic budget allocation makes them more
tractable. Consistent with observed transitions, Knapsack-GRPO yields 9,274 extremely-easy
tasks, surpassing GRPO’s 8,676. Despite these promising results, approximately 20% of prompts
remain in the extremely-hard category even after 1,000 training iterations. We investigate if
these are truly unsolvable: for Knapsack-GRPO, 577 of these challenging prompts recorded at least
one positive trajectory during optimization, implying they are not inherently unsolvable. Future
research could explore experience replay techniques to address these samples more effectively.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

For a more detailed understanding of the Knapsack-GRPO exploration process, additional visualiza-
tions are included in Appendix G. These reveal that our knapsack-based method can assign up to 93
exploration budgets to particular tasks, a dynamic allocation that is not computationally intractable
with a uniform budget allocation approach.

5.3 SCALABILITY

Finally, we experiment with varying rollout sizes to investigate performance under different com-
putational resource constraints. While our previous experiments focused on a total budget of
Ntotal = 256× 8 = 2048, here we examine cases with N = 4 and N = 16, respectively. Note that
the parameter N is agnostic to Knapsack-GRPO due to its different allocation strategy.

1024 2048 4096
Total Exploration Budget

36

38

40

42

44

46

48

50

Av
gG

@
16

39.8

45.2

47.8

45.5

47.5

49.5
GRPO
Knapsack-GRPO

Figure 8: Performance comparison under
different exploration budgets.

The results for the Qwen2.5-Math-7B model are shown
in Figure 8. KnapSack-GRPO demonstrates clear ad-
vantages when computational resources are limited, im-
proving performance from 39.8 to 45.5 in the low-
budget setting, while maintaining its superiority even
with larger rollouts. Notably, these results indicate
that through more efficient exploration budget alloca-
tion, KnapSack-GRPO achieves performance levels that
would require about 2x the computational resources for
standard GRPO to match.

6 RELATED WORK

Due to space constraints, we discuss works most closely
related to ours in the main text and refer to an additional
review in Appendix B. Our work is motivated by the
intuition that aligning task difficulty with computational resource allocation can improve system
efficiency. This concept has been explored in various contexts (Lin et al., 2024; Zhang et al., 2024;
Chen et al., 2025b; Zhang et al., 2025b; Wang et al., 2025b; Sun et al., 2025). To name a few, Chen
et al. (2025b) proposed leveraging advantage as an estimate of data difficulty to design a curriculum,
while Sun et al. (2025) introduced perplexity as a metric for curriculum design. Additionally, Yu et al.
(2025) presented the concept of “dynamic sampling” to address the issue of low effective gradients;
however, it is crucial to clarify that their “sampling” refers to selecting prompts that yield effective
gradients, rather than dynamically allocating exploration budgets.

We remark that these prior works primarily focus on prompt selection within frameworks that largely
maintain a homogeneous exploration budget. In contrast, our approach operates along a different
axis: the dynamic allocation of exploration resources during response rollouting. It aims to addresses
the need for more extensive exploration on challenging tasks directly. To underscore this fundamental
difference, consider that prompt selection methods might prioritize a subset of simple prompts
to achieve a high effective gradient ratio. Our work, however, aims to dynamically design the
exploration budget for all prompts to ensure that each receives sufficient exploration to generate
effective gradients, especially those that are inherently harder.

7 CONCLUSION

Motivated by the observation that RL agents require extensive exploration on challenging tasks to
gather informative feedback and drive self-improvement, we investigate the problem of optimally
allocating computational resources for exploration. We formulate this problem as a knapsack
optimization, where each task-budget pair is treated as an item with an associated cost and value.
This framework enables us to prioritize harder tasks, thereby yielding more effective gradients and
leading to superior policy improvements. This comes at no additional computational cost, effectively
offering a “free lunch”. We view this work as an initial step toward unlocking RL’s potential in LLM
post-training through scaling exploration. Looking forward, moving beyond the straightforward
stochastic rollout strategy considered here toward richer exploration methods and more structured
allocation frameworks presents a promising avenue for future research.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS AND REPRODUCIBILITY STATEMENT

This work primarily focuses on the algorithmic design for allocating exploration budgets within
the context of RL training for language models. Our study is purely computational and does not
involve human subjects, sensitive data, or any ethically contentious datasets. By enhancing training
efficacy, our method aims to reduce overall computational costs and, consequently, mitigate the
carbon footprint associated with large-scale model development.

To ensure full reproducibility of our findings, we provide comprehensive details regarding the training
frameworks, hyper-parameters, and experimental settings in Appendix C and F. Furthermore, we are
committed to publicly releasing our code, relevant datasets, and trained models for research purposes.

REFERENCES

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning
from human feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Anthropic. System card: Claude opus 4 & claude sonnet 4. https://www-
cdn.anthropic.com/4263b940cabb546aa0e3283f35b686f4f3b2ff47.pdf, 2025.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Peter Chen, Xiaopeng Li, Ziniu Li, Xi Chen, and Tianyi Lin. Spectral policy optimization: Coloring
your incorrect reasoning in grpo. arXiv preprint arXiv:2505.11595, 2025a.

Xiaoyin Chen, Jiarui Lu, Minsu Kim, Dinghuai Zhang, Jian Tang, Alexandre Piché, Nicolas Gontier,
Yoshua Bengio, and Ehsan Kamalloo. Self-evolving curriculum for llm reasoning. arXiv preprint
arXiv:2505.14970, 2025b.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
arXiv preprint arXiv:2507.06261, 2025.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
foundation model alignment. arXiv preprint arXiv:2304.06767, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Zhenyu Hou, Ziniu Hu, Yujiang Li, Rui Lu, Jie Tang, and Yuxiao Dong. Treerl: Llm reinforcement
learning with on-policy tree search. arXiv preprint arXiv:2506.11902, 2025.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Narendra Karmarkar and Richard M Karp. An efficient approximation scheme for the one-dimensional
bin-packing problem. In 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982),
pp. 312–320. IEEE, 1982.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems principles,
pp. 611–626, 2023.

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A llvm-based python jit compiler. In
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, pp. 1–6, 2015.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers in
open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

Yizhi Li, Qingshui Gu, Zhoufutu Wen, Ziniu Li, Tianshun Xing, Shuyue Guo, Tianyu Zheng, Xin
Zhou, Xingwei Qu, Wangchunshu Zhou, et al. Treepo: Bridging the gap of policy optimiza-
tion and efficacy and inference efficiency with heuristic tree-based modeling. arXiv preprint
arXiv:2508.17445, 2025.

Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo. Remax: a
simple, effective, and efficient reinforcement learning method for aligning large language models.
In Proceedings of the 41st International Conference on Machine Learning, pp. 29128–29163,
2024.

Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Yelong Shen, Ruochen Xu, Chen Lin, Yujiu
Yang, Jian Jiao, Nan Duan, et al. Rho-1: Not all tokens are what you need. arXiv preprint
arXiv:2404.07965, 2024.

Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models.
arXiv preprint arXiv:2505.24864, 2025.

Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang Wu, Xiaox-
iang Shi, Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Erran Li, Raluca Ada
Popa, and Ion Stoica. Deepcoder: A fully open-source 14b coder at o3-mini
level. https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-
mini-Level-1cf81902c14680b3bee5eb349a512a51, 2025a. Notion Blog.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview
with a 1.5b model by scaling rl. https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-
O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2, 2025b.
Notion Blog.

George B Mathews. On the partition of numbers. Proceedings of the London Mathematical Society,
1(1):486–490, 1896.

AI Meta. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation.
https://ai. meta. com/blog/llama-4-multimodal-intelligence/, checked on, 4(7):2025, 2025.

OpenAI. Gpt-5 system card. https://openai.com/index/gpt-5-system-card/, 2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

David Pisinger and Paolo Toth. Knapsack problems. In Handbook of Combinatorial Optimization:
Volume1–3, pp. 299–428. Springer, 1998.

D Rein, B Hou, A Stickland, J Petty, R Pang, J Dirani, J Michael, and S Bowman. Gpqa: A
graduatelevel google-proof q&a benchmark, nov. arXiv preprint arXiv:2311.12022, 2023.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279–1297, 2025.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Yan Sun, Guo Jia, Stanley Kok, ZihWanao Wang, Zujie Wen, and Zhiqiang Zhang. Stretching
the comfort zone: Boost data efficiency for rl training with prepo!, August 2025. URL https:
//yansun-x.notion.site/data-efficiency-prepo.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. Advances in neural information processing
systems, 12, 1999.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Peng-Yuan Wang, Tian-Shuo Liu, Chenyang Wang, Yi-Di Wang, Shu Yan, Cheng-Xing Jia, Xu-
Hui Liu, Xin-Wei Chen, Jia-Cheng Xu, Ziniu Li, et al. A survey on large language models for
mathematical reasoning. arXiv preprint arXiv:2506.08446, 2025a.

Xinglin Wang, Yiwei Li, Shaoxiong Feng, Peiwen Yuan, Yueqi Zhang, Jiayi Shi, Chuyi Tan, Boyuan
Pan, Yao Hu, and Kan Li. Every rollout counts: Optimal resource allocation for efficient test-time
scaling. arXiv preprint arXiv:2506.15707, 2025b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Xumeng Wen, Zihan Liu, Shun Zheng, Zhijian Xu, Shengyu Ye, Zhirong Wu, Xiao Liang, Yang
Wang, Junjie Li, Ziming Miao, et al. Reinforcement learning with verifiable rewards implicitly
incentivizes correct reasoning in base llms. arXiv preprint arXiv:2506.14245, 2025.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

Jiarui Yao, Yifan Hao, Hanning Zhang, Hanze Dong, Wei Xiong, Nan Jiang, and Tong Zhang.
Optimizing chain-of-thought reasoners via gradient variance minimization in rejection sampling
and rl. arXiv preprint arXiv:2505.02391, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025.

Chuheng Zhang, Wei Shen, Li Zhao, Xuyun Zhang, Xiaolong Xu, Wanchun Dou, and Jiang Bian.
Policy filtration for rlhf to mitigate noise in reward models. arXiv preprint arXiv:2409.06957,
2024.

Kaiyan Zhang, Yuxin Zuo, Bingxiang He, Youbang Sun, Runze Liu, Che Jiang, Yuchen Fan, Kai
Tian, Guoli Jia, Pengfei Li, et al. A survey of reinforcement learning for large reasoning models.
arXiv preprint arXiv:2509.08827, 2025a.

12

https://yansun-x.notion.site/data-efficiency-prepo
https://yansun-x.notion.site/data-efficiency-prepo

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Kexun Zhang, Shang Zhou, Danqing Wang, William Yang Wang, and Lei Li. Scaling llm inference
efficiently with optimized sample compute allocation. In Proceedings of the 2025 Conference of
the Nations of the Americas Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pp. 7959–7973, 2025b.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp: experiences on scaling fully sharded data
parallel. arXiv preprint arXiv:2304.11277, 2023.

A USE OF LLMS

The drafting of this manuscript was enhanced through the use of a large language model, which
assisted in grammatical refinement and the optimization of content organization.

B ADDITIONAL RELATED WORK

Our work is motivated by a fundamental challenge in LLMs: models are trained with multiple,
heterogeneous data sources. Specifically, we study in the axis of data difficulty and note that the
difficulty of prompts varies significantly and, more critically, this difficulty evolves and changes
across training iterations. This type of data heterogeneity in RL for LLMs has been previously
recognized. Notably, Li et al. (2024) observed substantial variations in reward distributions across
different prompts, which posed significant challenges for stable gradient estimation (specifically, in
terms of variance). Their approach primarily focused on mitigating these issues through new baseline
designs, largely operating within the exploitation stage of RL by refining how models learn from
collected data. Following this, many advanced policy optimization approaches have been proposed
(e.g., (Shao et al., 2024; Ahmadian et al., 2024; Yu et al., 2025)). We refer readers to the recent
surveys (Zhang et al., 2025a; Wang et al., 2025a) and references therein for an overview. In contrast,
our work directly addresses the exploration challenge introduced by this data heterogeneity, focusing
on how to efficiently gather the most informative data from the outset.

During the preparation of our paper, we noticed a concurrent work by Yao et al. (2025) that also
investigates dynamic resource allocation. However, their approach primarily operates within the
framework of rejection sampling and RAFT (Dong et al., 2023), focusing on minimizing stochastic
gradient variances. In contrast, our study directly addresses online RL settings, employing a knapsack-
based design to explicitly balance exploration costs with the potential value derived from each task.

Our method aligns with the principle of test-time scaling (Snell et al., 2024; Brown et al., 2024),
which allocates more computational resources (e.g., via best-of-N sampling or majority voting) to
identify superior responses. Thus, our approach shares the objective of scaling response generation to
enhance the quality of identified solutions. Additionally, our work aligns with the broader strategy of
scaling computational resources in post-training to unlock performance in downstream tasks (Jaech
et al., 2024; Liu et al., 2025).

Finally, we focus on the straightforward strategy of on-policy exploration with independently sampled
rollouts, chosen for its simplicity and tractability. While our method successfully emphasizes
allocating additional resources to difficult tasks, some tasks remain unsolved. For these, more
advanced exploration strategies may be required beyond simple independent rollouts from the initial
prompt. In particular, we see strong potential in tree-based exploration methods, inspired by the
efficiency of Monte Carlo Tree Search in the challenging task AlphaGo (Silver et al., 2016). Within
the context of LLMs, techniques such as rollbacks to advantageous intermediate states—as recently
explored in Tree-RL (Hou et al., 2025) and TreePO (Li et al., 2025)—are especially promising. We
believe that integrating such intelligent state-restarting mechanisms with our framework for optimal
computational resource allocation represents a natural and impactful direction for future research.

C IMPLEMENTATION

In this section, we provide more details in implementing Knapsack-based exploration.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Handling Extreme Cases. Our value function defined in Section 4.1 assigns a zero value to prompts
with empirical success rates of 0 or 1, which would otherwise lead to zero budget allocation for these
prompts. To prevent their complete exclusion and maintain coverage:

• For p̂i = 1.0 (prompts always solved correctly), the estimate may be not accurate from history
samples, so we allocate a small minimum budget (e.g., 2) to ensure they are still considered. This
can be achieved by set Nlow in Equation (5).

• For p̂i = 0.0 (prompts never solved correctly), we employ a fallback allocation strategy. We first
estimate the total budget required for prompts with pi ∈ (0, 1] according to Theorem 1 and the
above rule. Any remaining budget is subsequently distributed among extremely hard tasks. This
strategy is particularly beneficial in later training stages where many prompts become easy, thus
freeing up capacity to focus on hard tasks.

Rollout Balancing. In practice, the total number of trajectories (M × N) is typically generated
by W parallel workers (where W < M), often leveraging efficient inference engines like vLLMs
(Kwon et al., 2023). While a homogeneous allocation rule allows for a simple division of M prompts
among W workers (each performing N rollouts per prompt), our knapsack-based approach can lead
to significant imbalance in allocated rollouts per prompt. This occurs because certain prompts may be
allocated disproportionately large exploration budgets, creating an uneven workload and potentially
leading to GPU idles and inefficient resource utilization.

To address this issue, we employ a simple rollout balancing strategy: we treat each allocated rollout
for a prompt as an individual execution job. These execution jobs are then randomly dispatched
to the available workers, with the inference engine generating one response per prompt. This
approach is suitable for settings where prompts are not excessively long, thus not strictly requiring
advanced techniques like prefix caching. For scenarios involving longer prompts, we would consider
using the Karmarkar–Karp bin-packing algorithm (Karmarkar & Karp, 1982) to group prompts into
approximately balanced batches based on their allocated budgets. Workers would then process these
balanced groups of prompts, potentially utilizing prefix caching.

Listing 1: Python pseudo code implementation of knapsack RL. Two components are modified: (1)
budget allocation is replaced with knapsack optimization for better resource distribution, and (2) task
status is updated based on external feedback.

1 def budget_allocation(batch, total_budget, **kwargs):
2 - budget = np.full(len(batch), total_budget // len(batch[’prompt’]))
3 + budget = knapsack(batch[’status’], total_budget, **kwargs)
4 indices = []
5 for task_id, task_budget in enumerate(budget):
6 if task_budget > 0:
7 indices.extend([task_id] * task_budget)
8 return batch.select_idxs(indices)
9

10 gen batch = budget allocation(batch, total budget, **kwargs)
11 if rollout_balancing:
12 indicies = np.random.shuffle(np.arange(len(batch[’prompt’])))
13 batch = batch.select_idxs(indicies)
14 batch = actor.generate_sequences(gen_batch)
15 batch = compute_rewards_and_advantages(batch)
16 train dataset.update status(batch)
17 actor.update(batch)

D PROOF

Proof of Theorem 1. We prove both parts of the lemma.

Part 1: High probability bound. We want to find the minimum N such that P(gi ̸= 0) ≥ α for a
given α ∈ (0, 1). From the problem setup, we have:

P(gi ̸= 0) = 1− pNi − (1− pi)
N ,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

For the condition P(gi ̸= 0) ≥ α to hold, we require:

1− pNi − (1− pi)
N ≥ α

pNi + (1− pi)
N ≤ 1− α.

Let q = max{pi, 1 − pi}. Since pi ∈ (0, 1), we have q ≥ 1
2 . Without loss of generality, assume

pi ≥ 1
2 , so q = pi and 1− pi ≤ pi. The case pi <

1
2 follows by symmetry.

Since (1− pi) ≤ pi, we have (1− pi)
N ≤ pNi for N ≥ 1. Therefore:

pNi + (1− pi)
N ≤ 2pNi = 2qN .

For large N , the term qN dominates (1− q)N since q > 1
2 . More precisely, we have:

lim
N→∞

(1− q)N

qN
= lim

N→∞

(
1− q

q

)N

= 0, (6)

since (1− q)/q < 1.

Therefore, for sufficiently large N , the constraint (6) is dominated by the term qN :

qN ≲ 1− α ⇐⇒ N ln q ≲ ln(1− α). (7)
Since q < 1, we have ln q < 0, which gives:

N ≳
ln(1− α)

ln q
=

ln(1− α)

ln(max{pi, 1− pi})
.

Part 2: Expected number of rollouts (rigorous proof). Let X1, X2, . . . be i.i.d. Bernoulli random
variables with Pr(Xi = 1) = p ∈ (0, 1), where 1 denotes “success” and 0 denotes “failure”. Define

Nfirst ≡ N = min{n ≥ 1 : both 0 and 1 have appeared among X1, . . . , Xn}.

We compute E[N] by conditioning on the first trial X1.

Case 1: X1 = 1 (probability p). After the first success, we still need to wait until the first failure
occurs. The waiting time for the first failure follows a geometric distribution with success probability
1− p, whose expectation is 1/(1− p). Thus

E[N | X1 = 1] = 1 +
1

1− p
.

Case 2: X1 = 0 (probability 1− p). By symmetry, we wait for the first success; its waiting time has
expectation 1/p, so

E[N | X1 = 0] = 1 +
1

p
.

Applying the law of total expectation:

E[N] = p
(
1 +

1

1− p

)
+ (1− p)

(
1 +

1

p

)
= 1 +

p

1− p
+

1− p

p

=
1

p
+

1

1− p
− 1.

Hence, the expected number of rollouts until we first observe both a success and a failure is

E[Nfirst] =
1

p
+

1

1− p
− 1 .

This completes the proof of the second part of Lemma 1.

Proof of Proposition 1. We provide a rigorous derivation under the following assumptions:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• The policy follows a softmax distribution: pk = exp(zk)∑K
j=1 exp(zj)

for action k.

• The gradient update follows the policy gradient rule with advantage A:
zk ← zk + η ·A · I[k = y] · ∇zk log py (8)

where η is the learning rate and y is the chosen action.
• We assume unit learning rate (η = 1) and unit advantage (A = 1) for simplicity.

Step 1: Taylor expansion. For small parameter changes, the change in success probability can be
approximated by:

∆py ≈
K∑

k=1

∂py
∂zk

.∆zk

Step 2: Computing partial derivatives. For the softmax probability py =
exp(zy)∑K
j=1 exp(zj)

, we have:

∂py
∂zy

= py(1− py), and
∂py
∂zk

= −pypk, for k ̸= y.

Step 3: Determining parameter updates. Under the policy gradient update rule, we have:
∇zk log py = I[k = y]− pk.

Therefore, the parameter updates are:
∆zy = I[y = y]− py = 1− py,

∆zk = I[k = y]− pk = 0− pk = −pk, for k ̸= y

Step 4: Computing InfoGain. Substituting the partial derivatives and parameter updates:

∆py =
∂py
∂zy

∆zy +
∑
k ̸=y

∂py
∂zk

∆zk

= py(1− py) · (1− py) +
∑
k ̸=y

(−pypk) · (−pk)

= py(1− py)
2 + py

∑
k ̸=y

p2k

Step 5: Simplification under first-order approximation. For the first-order Taylor approximation to
be accurate, we require small parameter updates. Under this condition, the cross-terms

∑
k ̸=y p

2
k are

second-order in the update magnitude and can be neglected compared to the main term py(1− py)
2.

Therefore, we obtain:

InfoGain ≈ py(1− py)
2 .

This completes the proof.

0.0 0.2 0.4 0.6 0.8 1.0
Success Rate p

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

In
fo

Ga
in

Exact InfoGain
Approximate InfoGain

Figure 9: Comparison of exact
InfoGain and approximate for-
mula.

To validate this approximation, we conduct an empirical study
with 100 actions, comparing the InfoGain computed through
exact gradient updates against our theoretical approximation from
Proposition 1. As shown in Figure 9, the two curves align closely
across different success rates, demonstrating that our formula
p(1− p)2 provides a reliable approximation for practical use.

E EXTENSIONS

In this work, we mainly focus on the widely used GRPO (Shao
et al., 2024) algorithm to design the optimal allocation strategy.
Here we discuss possible extensions for other RL algorithms by
adapting the core framework while maintaining the same task

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

value function structure:
Value(Ni, pi) = ProbNonZeroGradient(Ni, pi)× InfoGain(pi).

The key difference lies in how we compute ProbNonZeroGradient(Ni, pi) for different algorithms:

• RLOO (Ahmadian et al., 2024). RLOO’s policy gradient estimator is equivalent to GRPO up to
constants, thus we may not need fundamental changes. The probability of obtaining a non-zero
gradient remains:

ProbNonZeroGradient(Ni, pi) = 1− pNi
i − (1− pi)

Ni .

• ReMax (Li et al., 2024). ReMax leverages the reward of greedy response as baseline, rather than
the averaged reward used in GRPO. In this setting, a gradient update occurs only when the sampled
trajectory differs from the greedy response. If we denote the probability of the greedy response as
α, then the probability of sampling a trajectory different from the greedy response is 1− α. The
probability of obtaining a non-zero gradient with Ni samples becomes:

ProbNonZeroGradient(Ni, α) = 1− αNi .

This represents the probability that at least one of the Ni sampled trajectories differs from the
greedy response, thereby producing a gradient signal.

• REINFORCE (Williams, 1992). There is no baseline design in vanilla REINFORCE. We can
directly calculate the ProbNonZeroGradient to account for the case where at least one trajectory
receives a positive reward:

ProbNonZeroGradient(Ni, pi) = 1− (1− pi)
Ni .

This formulation is simpler than GRPO since we only need to ensure at least one successful
trajectory occurs, rather than balancing positive and negative samples.

The proposed framework’s modularity allows for straightforward adaptation to other RL algorithms
by: (1) identifying the algorithm’s gradient computation mechanism, (2) determining conditions
for non-zero gradients, (3) calculating the corresponding ProbNonZeroGradient function, and (4)
maintaining the same InfoGain(pi) = pi(1− pi)

2 formulation across algorithms. This demonstrates
the general applicability of our value-based budget allocation approach beyond the specific GRPO
implementation.

F EXPERIMENT DETAILS

Our experiments utilized the large-scale RL training framework Verl, specifically version 0.5.0. No
modifications were made to the core training and inference code, with the exception of the advantage
calculation, where values were clipped between -5 and 5. This was implemented because, as rollout
responses were scaled, we observed their values could become significantly large in extreme cases,
thus requiring this additional clipping for numerical stability. Additional implementation details on
handling extreme cases and ensuring rollout efficiency are provided in Appendix C.

Following recommendations from (Yu et al., 2025), the learning rate was set to 10−6, with impor-
tance sampling clipping ratios (high/low) of 0.28 and 0.2, respectively. Neither KL nor entropy
regularization was employed. Models were trained with a maximum sequence length of 4K tokens,
with the exception of DPSK-R1-Distill-1.5B, which utilized 8K tokens to accommodate its typically
longer Chain-of-Thought (CoT) behaviors requiring more context.

For evaluation results reported during training, models were assessed every 10 training iterations
using 16 generated responses. To manage evaluation time, 100 evaluation samples were randomly
selected from benchmarks when the total number of samples exceeded this number.

For the final evaluation performance presented in Table 1, different maximum sequence lengths were
used to prevent response truncation: 4K tokens for Qwen2.5-Math-7B, 8K tokens for Qwen3-4B and
Qwen3-4B-Instruct, and 16K tokens for DPSK-R1-Distill-1.5B. Consequently, these results may not
perfectly align with those reported in the training curves.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

G ADDITIONAL RESULTS

G.1 VISUALIZATION OF EXPLORATION PROCESS

Exploration Budgets. To illustrate the impact of knapsack-based exploration, we visualize the
assigned exploration budgets. Specifically, we quantify the frequency with which different exploration
budgets are allocated to individual prompts during the training of Qwen2.5-Math-7B. These results
are presented in Figure 10. We observe that, even without introducing additional computational
resources, our approach can dynamically assign up to 93 exploration budgets to certain tasks. This
level of dynamic, high-budget allocation is impractical to achieve under a conventional homogeneous
budget allocation framework.

0 20 40 60 80
Exploration Budget (Single Iteration)

101

102

103

104

105

Fr
eq

ue
nc

y

Max: 93.0

Figure 10: Distribution of exploration budgets allocated by knapsack-based exploration for Qwen2.5-
Math-7B during training.

Evolution of Prompts. To illustrate the impact of exploration budgets on individual prompt learning
dynamics, we track and visualize the learning trajectories of several randomly selected prompts
from the training data in Figure 11. Each subplot corresponds to a unique prompt, identified by its
index in the title. We observe that for several examples, our framework effectively allocates more
exploration budget, leading to complete learning of the prompt (e.g., prompts in the first row, first
column, and second row, first column). Conversely, some tasks remain highly challenging, where
neither Knapsack-GRPO nor GRPO achieves satisfactory performance (e.g., the prompt in the third
row, second column).

G.2 TRAINING CURVES.

As references, the training curves for all models are displayed in Figures 12, 13, 14, and 15. Compared
with the final results in Table 1, these plots further show that Knapsack-GRPO delivers a rapid
performance improvement early in the training process. We also observe a few cases of performance
degeneration, which points to the need for exploring more stable policy optimization techniques in
future research.

G.3 ABLATION STUDIES

Without Fallback Strategy. In Appendix C, we introduced the fallback strategy, which reallocates
excess exploration budgets from already-solved prompts to those that remain unsolved. This prevents
a common failure mode: difficult prompts may otherwise receive too few resources, while easy
prompts are oversampled.

A concrete example is shown in Table 2 with 8 prompts. Without the fallback strategy, the allocation
assigns over 50 exploration units to a task with a success rate of 0.9, while the unsolved task (success

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250
Exploration Count

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

a90ea014-2b77-484b-a413-98a82161aca0

20 40 60 80 100
Exploration Count

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

88919916-8e9f-4d8b-b106-0c9671f7055a

Knapsack-GRPO GRPO

20 40 60 80 100 120
Exploration Count

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s R

at
e

d5f5000f-7b08-44c7-887c-c2907626e807

20 40 60 80 100
Exploration Count

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s R

at
e

781f2be4-fa05-4d0f-b118-cc4ea5459371

0 20 40 60 80 100 120 140 160
Exploration Count

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s R

at
e

0caae246-8888-43ab-9a0e-388a6b9e1acd

20 40 60 80 100 120
Exploration Count

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

5bd441c6-07f6-403f-ad9f-f6b310bf9b3f

20 40 60 80 100
Exploration Count

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

23ca632c-99bf-4724-a819-be40b4710aa9

20 40 60 80 100 120 140 160
Exploration Count

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

c64599b1-6466-4bb5-a2ab-d1bc6c8b4b03

20 40 60 80 100 120 140
Exploration Count

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

370bc912-0588-403d-b9bc-788f060424eb

20 40 60 80 100
Exploration Count

0.04

0.02

0.00

0.02

0.04

Su
cc

es
s R

at
e

54e7a5bc-eeb7-4907-a5fc-0420e657d7db

20 40 60 80 100 120 140 160
Exploration Count

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s R

at
e

9cc933a6-aaba-4bbf-86b8-2b5518a6ba12

20 40 60 80 100
Exploration Count

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s R

at
e

80f3f367-6f81-481f-9c18-8296099ef622

Figure 11: Learning dynamics of randomly selected prompts throughout training, comparing GRPO
and Knapsack-GRPO. Each subplot shows the success rate evolution for a specific prompt.

0 200 400 600 800 1000
Iterations

20.0
22.5
25.0
27.5
30.0
32.5
35.0

Ac
cu

ra
cy

 (%
)

AIME

0 200 400 600 800 1000
Iterations

50

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

AMC

GRPO Knapsack-GRPO

0 200 400 600 800 1000
Iterations

75.0

77.5

80.0

82.5

85.0

87.5

Ac
cu

ra
cy

 (%
)

MATH

0 200 400 600 800 1000
Iterations

24

26

28

30

Ac
cu

ra
cy

 (%
)

MINERVA

0 200 400 600 800 1000
Iterations

37.5

40.0

42.5

45.0

47.5

50.0

Ac
cu

ra
cy

 (%
)

OLYMPIAD BENCH

0 200 400 600 800 1000
Iterations

25

30

35

40

Ac
cu

ra
cy

 (%
)

GPQA

Figure 12: Evaluation performance of DPSK-R1-Distill-1.5B across training iterations.

rate 0.0) receives only 2 units. In contrast, with the fallback strategy, the unsolved task is assigned 29
units—substantially increasing its chance of making progress.

Empirically, this design proves crucial (Figure 16). In our experiments with the Qwen2.5-Math-7B
model, removing the fallback strategy led to unstable training, large performance fluctuations on
benchmarks such as AMC and OlympiadBench, and overall degraded results. This result suggests
that neglecting challenging examples during training weakens the reinforcement signal, ultimately
harming the model’s ability to generalize.

Low and Up Bounds. Our framework incorporates safeguards in the form of hyper-parameters
Nlow and Nup, as defined in Equation (5). Nup is set to 128 primarily to facilitate faster computation
of the knapsack optimization using dynamic programming; its specific value does not critically impact
performance. Conversely, Nlow is set to 2 to prevent degenerate allocation scenarios, particularly

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000
Iterations

10

15

20

Ac
cu

ra
cy

 (%
)

AIME

0 200 400 600 800 1000
Iterations

30

40

50

60

Ac
cu

ra
cy

 (%
)

AMC

GRPO Knapsack-GRPO

0 200 400 600 800 1000
Iterations

50

60

70

80

Ac
cu

ra
cy

 (%
)

MATH

0 200 400 600 800 1000
Iterations

20

25

30

35

Ac
cu

ra
cy

 (%
)

MINERVA

0 200 400 600 800 1000
Iterations

25

30

35

40

45

50

Ac
cu

ra
cy

 (%
)

OLYMPIAD BENCH

0 200 400 600 800 1000
Iterations

30

35

40

45

Ac
cu

ra
cy

 (%
)

GPQA

Figure 13: Evaluation performance of Qwen3-4B-Base across training iterations.

0 200 400 600 800 1000
Iterations

35

40

45

Ac
cu

ra
cy

 (%
)

AIME

0 200 400 600 800 1000
Iterations

65

70

75

80

Ac
cu

ra
cy

 (%
)

AMC

GRPO Knapsack-GRPO

0 200 400 600 800 1000
Iterations

86

88

90

92

94

96

Ac
cu

ra
cy

 (%
)

MATH

0 200 400 600 800 1000
Iterations

36

38

40

42

44

46

Ac
cu

ra
cy

 (%
)

MINERVA

0 200 400 600 800 1000
Iterations

52

54

56

58

60

62

Ac
cu

ra
cy

 (%
)

OLYMPIAD BENCH

0 200 400 600 800 1000
Iterations

45

50

55

60

Ac
cu

ra
cy

 (%
)

GPQA

Figure 14: Evaluation performance of Qwen3-4B-Instruct across training iterations.

0 200 400 600 800 1000
Iterations

15

20

25

30

Ac
cu

ra
cy

 (%
)

AIME

0 200 400 600 800 1000
Iterations

50

60

70

80

Ac
cu

ra
cy

 (%
)

AMC

GRPO Knapsack-GRPO

0 200 400 600 800 1000
Iterations

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

MATH

0 200 400 600 800 1000
Iterations

10

15

20

25

30

35

Ac
cu

ra
cy

 (%
)

MINERVA

0 200 400 600 800 1000
Iterations

30

35

40

45

Ac
cu

ra
cy

 (%
)

OLYMPIAD BENCH

0 200 400 600 800 1000
Iterations

25

30

35

40

45

Ac
cu

ra
cy

 (%
)

GPQA

Figure 15: Evaluation performance of Qwen2.5-Math-7B across training iterations.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 2: Comparison of budget allocation with and without fallback strategy.

With Fallback Strategy Without Fallback Strategy
Index Success Rate Cost Assignment Success Rate Cost Assignment

1 0.0 ∞ 29 0.0 ∞ 2
2 0.9 22 23 0.9 22 50
3 1.0 0 2 1.0 0.0 2
4 1.0 0 2 1.0 0.0 2
5 1.0 0 2 1.0 0.0 2
6 1.0 0 2 1.0 0.0 2
7 1.0 0 2 1.0 0.0 2
8 1.0 0 2 1.0 0.0 2

0 200 400 600 800 1000
Iterations

15

20

25

30

Ac
cu

ra
cy

 (%
)

AIME

0 200 400 600 800 1000
Iterations

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

AMC

Knapsack-GRPO Knapsack-GRPO (Without Fallback)

0 200 400 600 800 1000
Iterations

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

MATH

0 200 400 600 800 1000
Iterations

10

15

20

25

30

35

Ac
cu

ra
cy

 (%
)

MINERVA

0 200 400 600 800 1000
Iterations

30

35

40

45

Ac
cu

ra
cy

 (%
)

OLYMPIAD BENCH

0 200 400 600 800 1000
Iterations

20

25

30

35

40

45

Ac
cu

ra
cy

 (%
)

GPQA

Figure 16: Effect of the fallback strategy. Without it, exploration budgets are disproportionately
allocated to prompts with at least one successful trial, while unsolved tasks are largely ignored.

when success rates might be inaccurate, as elaborated in Appendix C. We present ablation results for
these bounds in Figure 17, which empirically support these design choices.

0 200 400 600 800 1000
Iterations

15

20

25

30

Ac
cu

ra
cy

 (%
)

AIME

0 200 400 600 800 1000
Iterations

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

AMC

Knapsack-GRPO Knapsack-GRPO(Nlow = 0) Knapsack-GRPO(Nupper = 32)

0 200 400 600 800 1000
Iterations

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

MATH

0 200 400 600 800 1000
Iterations

10

15

20

25

30

35

40

Ac
cu

ra
cy

 (%
)

MINERVA

0 200 400 600 800 1000
Iterations

25

30

35

40

45

Ac
cu

ra
cy

 (%
)

OLYMPIAD BENCH

0 200 400 600 800 1000
Iterations

20

25

30

35

40

45

Ac
cu

ra
cy

 (%
)

GPQA

Figure 17: Ablation study on the impact of Nlow and Nup constraints within the knapsack optimization
framework.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

G.4 COMPARING WITH DYNAMIC SAMPLING IN DAPO

Dynamic sampling, a technique introduced in the DAPO paper (Yu et al., 2025), selects prompts
with a mix of positive and negative rewards, filtering out those with exclusively positive or negative
outcomes. This process is repeated until a target number of prompts is accumulated, a strategy that
has been shown to be effective.

While effective, dynamic sampling operates on a different principle than our knapsack-based approach.
Dynamic sampling aims to scale up effective prompts, while our method focuses on scaling up
effective responses. Since these two approaches are parallel and can be combined, we conducted
empirical studies to explore their synergy.

We evaluated the performance of these methods using two different metrics, as shown in the training
curves in Figure 18 and Figure 19. Because dynamic sampling requires multiple exploration steps to
accumulate enough effective prompts for a single gradient update, we can analyze performance in
two ways:

• By exploration budget: Figure 18 shows performance relative to the total number of exploration
iterations. This measures how effectively total computation budget is converted into performance
gains. We found that dynamic sampling boosts GRPO’s performance on benchmarks like AIME
and OLYMPIAD, improving the score from 45.2 to 46.2. When we combined dynamic sampling
with our knapsack-based exploration, performance on the AMC benchmark improved significantly
(from 69.8 to 73.0), resulting in a total performance of 46.5. This is slightly better than dynamic
sampling alone but worse than our pure knapsack approach. We attribute this partially to the fact
that knapsack-GRPO utilizes more gradient iterations, and therefore do not consider this a negative
result.

• By gradient update iterations: Figure 19 displays performance against the number of gradient
updates. This metric assesses the value of each gradient update. The results clearly show that
effective gradients, whether from dynamic sampling or our knapsack-based exploration, lead to
greater performance gains for the same number of update iterations, which validates the core
motivation behind both techniques.

0 200 400 600 800 1000
Exploration Iterations

15

20

25

30

Ac
cu

ra
cy

 (%
)

AIME

0 200 400 600 800 1000
Exploration Iterations

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

AMC

GRPO Knapsack-GRPO GRPO + Dynamic Sampling Knapsack-GRPO + Dynamic Sampling

0 200 400 600 800 1000
Exploration Iterations

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

MATH

0 200 400 600 800 1000
Exploration Iterations

10

15

20

25

30

35

Ac
cu

ra
cy

 (%
)

MINERVA

0 200 400 600 800 1000
Exploration Iterations

30

35

40

45

Ac
cu

ra
cy

 (%
)

OLYMPIAD BENCH

0 200 400 600 800 1000
Exploration Iterations

20

25

30

35

40

45

Ac
cu

ra
cy

 (%
)

GPQA

Figure 18: Performance of Qwen2.5-Math-7B relative to the number of exploration iterations,
demonstrating how effectively the total computation budget is converted into performance gains.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000
Gradient Iterations

15

20

25

30

Ac
cu

ra
cy

 (%
)

AIME

0 200 400 600 800 1000
Gradient Iterations

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

AMC

GRPO Knapsack-GRPO GRPO + Dynamic Sampling Knapsack-GRPO + Dynamic Sampling

0 200 400 600 800 1000
Gradient Iterations

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

MATH

0 200 400 600 800 1000
Gradient Iterations

10

15

20

25

30

35

Ac
cu

ra
cy

 (%
)

MINERVA

0 200 400 600 800 1000
Gradient Iterations

30

35

40

45

Ac
cu

ra
cy

 (%
)

OLYMPIAD BENCH

0 200 400 600 800 1000
Gradient Iterations

20

25

30

35

40

45

Ac
cu

ra
cy

 (%
)

GPQA

Figure 19: Performance of Qwen2.5-Math-7B as a function of the number of LLM gradient updates.
This figure validates that effective gradients, derived from either dynamic sampling or the knapsack-
based approach, lead to greater performance gains for the same number of updates.

23

	Introduction
	Preliminary
	Diagnosing Exploration in Homogeneous Budget Allocation
	Motivation
	Theoretical Analysis

	Proposed Approach: Knapsack-based RL
	Formulation of Task Value
	Algorithm Implementation

	Experiments
	Main Results
	Understanding Knapsack-based Exploration
	Scalability

	Related Work
	Conclusion
	Use of LLMs
	Additional Related Work
	Implementation
	Proof
	Extensions
	Experiment Details
	Additional Results
	Visualization of Exploration Process
	Training curves.
	Ablation Studies
	Comparing with Dynamic Sampling in DAPO

