© o N O g A~ W N =

- o

24
25
26

27
28

29

30

31
32

How does Mamba Perform Associative Recall?
A Mechanistic Study

Anonymous Author(s)
Affiliation
Address

email

Abstract

Mamba has recently emerged as a promising alternative to Transformers, demon-
strating competitive performance in many language modeling tasks with linear-time
computational complexity. Theoretical characterization of Mamba has largely
focused on its approximation power for solving certain tasks with appropriate
constructions. However, it remains unclear whether Mamba trained with gradient
descent can learn such constructions. As a first step to address this gap, we perform
a mechanistic study of Mamba on associative recall tasks. By analyzing the learned
model weights and the hidden state evolution, we uncover the mechanisms used by
trained Mamba models to perform associative recall. We complement our study
with theoretical analysis on the optimization dynamics of Mamba that give rise to
such mechanisms.

1 Introduction

Recently, structured state space models (SSMs) have arisen as competitive sequence modeling
architectures [7, 9, [8]. In particular, Mamba [6] has emerged as a promising general-purpose
sequence model, demonstrating competitive performance on various language modeling tasks while
reducing the quadratic complexity in Transformers [12]] to linear time. Theoretical understanding of
Mamba begins to emerge, centering on its expressivity using approaches such as formal language
theory [[L1LI5] and approximation theory [3} [10].

Focusing on Mamba’s associative recall capabilities, [L0] showed that there exists a Mamba model
with well-chosen weights that can solve certain associative recall tasks. However, it remains unclear
whether training Mamba with gradient descent will find such a solution, or whether a different
mechanism is found in practice. To fill this gap, we conduct a mechanistic study to probe how Mamba
can learn to perform associative recall. Our main contributions can be summarized as follows:

* We confirm that in a simplified setup, Mamba can learn the theorized solution for solving
associative recall tasks proposed in [10], by providing evidences from the learned model weights
as well as the evolution of hidden state and outputs (Sec. [3).

* We support our empirical findings with a theoretical analysis on the optimization dynamics of
(simplified) Mamba (Sec.).

2 Problem Setup

2.1 The MQAR task

To evaluate the associative recall capabilities of Mamba, we adapt the Multiple-Query Associative
Recall MQAR [} [10]]) task and consider a more difficult variant, illustrated in Fig. @] with full

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

33
34
35
36
37
38

39
40
41
42

43

44
45

46

47
48

49

50

51
52

53

Input: Alice used to live in Paris, then she
moved to , and nowadays Alice lives
in Barcelona. X ki v1i zx ko vo xzx k1 wv3s... ko...

Query: Where does Alice live? Y U1 Ui

Answer: Barcelona

Figure 2: MQAR example, interleaving k;v; key-value
Figure 1: Associative recall example to re- pairs with noise token x; upon query (seen keys) return
trive the latest association. the latest associated value.

Qutput linear layer

Output weight
[-L1]

Pairwise Concat.*

]
: l

Mamba block
Simplified Mamba

One-hot Embed. %

Figure 3: The original Mamba architecture (left), and our simplification (right) which disables the
gating branches, and fixes the embedding, convolution, and output layers.

details described in App. [A] In particular, a key k; € K can be associated with many different
values v;,, ..., v; , in the context. Upon querying the key k;, the latest associated value v; , must be
returned. This probes the ability of Mamba to store the key-value associations and recall the most
recent associated value. This recency bias is particularly well-suited to the recurrent, state-based
nature of Mamba, as opposed to attention, which would need additional positional information to
distinguish the latest occurrence of the key from previous ones.

Our design of MQAR is motivated from sturctures in natural language (e.g.,Fig.[I), where language
understanding requies recalling the appropriate reference of a pronoun or entity among many distrac-
tors. Such pattern is also common in algorithmic tasks where selective recall is a core primitive, as
well as time-series analysis where relevant events must be retrieved despite background fluctuations.

2.2 Model Architectures

The main architecture of Mamba is illustrated in Fig. [3] (left). To probe the inner-workings of Mamba
inspired by [10], we simplify Mamba as follows (see Fig. 3] right for an overview):
* Embedding: One-hot embedding v — e, for token v drawn from the vocabulary V.

* Convolution: Replace the depthwise learnable convolution with a concatenation of two consec-
utive tokens (i.e. a fixed convolution of kernel size 2 and left padding), i.e.

% = conv([kvrz ..]) = He‘” {2’“] [‘;}]

The convolved token at ¢ groups the original tokens at positions (¢ — 1,t), as x; =
[€s, , emt}T € R2IVI. This also fixes the hidden model dimension as d = 2|V|.

¢ Output linear layer: Replace the learnable linear map with a fixed weight matrix W =
[—I I] € RIVIX2VI motivated from our observations on trained models (App. El)

* Gate: Disable the gating branch.
We preserve the key SSM layer in Mamba, defined as
h; =exp(A© (A ®1n)) O b1 + (A O %) ® B(wy), yi = hC(ay). (1)

where A € RN A, € R? and B(z;),C(z¢) € RN (N is the state size). We set A; =
Softplus(Wa#;), where Wa € R4*4 is a learnable weight matrix.

57
58
59

60

61
62
63
64

65
66
67

68
69
70
71
72
73
74
75

76
77
78

79
80

81
82

83
84

85
86
87

88
89
90

(a) Evolution of output y; (token O is the key) (b) Evolution of the hidden state h;

(c) Evolution of x; ® Ay (d) Evolution of e*®2¢ (i.e. the forgetting factor)

Figure 4: Probing Mamba on MQAR with K = 1: Each line represents the correponding dimension
withd = 0,...,|V| — 1 for the output y; € RIVl, and d = 0,...,2[V| — 1 for the rest (dashed lines
denote the first half d = 0, ... |V| — 1 while solid lines denote second half d = |V|,...,2|V| — 1).

We also remark that the assumed structure of embedding and convolution layers corresponds (up
to rotation) to using embedding and convolution weights fixed at random initialization with infinite
width, leading to the desired orthogonality (see [2] for an explanation in the context of Transformers).

3 Probing the Learned Mechanism

Case |K| = 1. 'We begin with the simple case |K| = 1 (i.e., one key only) in order to highlight
Mamba’s mechanism of learning and forgetting. To solve MQAR with | K| = 1 (we set K = {0}
in our experiments), it is sufficient to use a state size N = 1 [[10], reducing B(x:), C(z;) in (1) to
scalars. Thus, we fix B = C' = 1 which simplifies the SSM as

ht = BAQAt ® ht—l + At ®)A(t. (2)

We train the model on our MQAR variant with vocabulary size V' = 8, a maximum noise length of
n. = 3 tokens, and sequence length 7" = 256, until it reaches 100% accuracy on the training set. We
then evaluate the model after training to identify how Mamba can perfectly solve such task.

We probe the trained Mamba model behavior by plotting the evoluion (per each dimension) of its
output y, hidden state hy, the input term A, ® X, and the forgetting factor eA®?¢ (acting on the
previous hidden state). From the output evolution Fig.[a], we see a large spike when a new value is
being written. From the hidden state evolution Fig. [4bl we see similar large spikes upon encountering
new value tokens (solid lines representing the first d = |V| dimensions, and dashed lines representing
the last d = |V/| dimensions). Fig. [4c|corresponds to the input term, that is, what’s being newly
written. We clearly see a spike when a new value is written in last d = |V/| dimensions. Fig. |[4d|shows
the forgetting factor, which seems to fully erase everything right before writing a new value.

Concretely, we observe a clear block structure in the W matrix, shown in Fig. [7] (see App. [C),
leading to the following key mechanisms in the hidden state based on the input pair at the current
position ¢ (here we let the key token be k = 0 and value (noise) tokens be v, v1, vy, 2 € V' \ {0}):

* (write) When (z;_1,x¢) = (k,v), erase (small forgetting factor) and write the new value (input
term has large value on the |V| + v coordinate);

* (read) When (x;_1,2;) = (x, k), retrieve stored value from memory based on the largest
difference between the |V'| + v and v coordinates, with almost no forgetting.

* (forget) When (x;_1, z;) = (v1, v2), forget all the memories slowly (less forgetting than ‘write’,
but more than ‘read’, especially on the second half of the coordinates).

We give a more detailed analysis of this mechanism in App.[C] We remark that the slowly forgetting
mechanism is crucial for Mamba to differentiate correctly the latest associated value by discounting
the values seen in distant past.

Case |K| = 2. In this setting, we use the original B(x;), C(x;) € RY vectors without simplifica-
tion. The N = | K| solution proposed in [10] for MQAR with | K| = 2 treats B(x;) as a routing vec-
tor, sending the first key-value pair to the first hidden state dimension by B([ex,,e,,|') = By = ey,

91
92
93
94
95

96

97
98
99
100
101

102
103
104
105

106
107
108

109
110

111

112
113
114
115
116

17
118
119
120

and the second key-value pair to the second dimension by B([ex,, €,,]) = Bs = ey; Retrieval is
done similarly by C(x;) where C([e,, ey,]T) = C; = e1,C([e,, er,]) = Ca = e,. The task can
in general be solved using N = O(log | K|) state size, via almost orthogonal routing and retrieval
vectors [[10]. We empirically observe this behavior: Fig.shows By ~[-1,04]T, By = [-3,-7]T
and thus (By, Bs) =~ 0; Fig.[5b|shows C; ~ [0, —7.5], C2 ~ [12.5,0] and thus (C1, Cs) ~ 0.

(a) Evolution of B(x:) (b) Evolution of C'(x¢)

(c) Evolution of ourput y: the tokens 0, 1 represent the two keys, highlighted by vertical dashed lines.

Figure 5: Probing Mamba on MQAR with K = 2.

4 Theoretical Analysis

To support our empirical observation, we analyze the optimization dynamics of a simplified Mamba
model (see Sec. on MQAR with |K| = 1. We focus on the parameter Wa (used to compute
A; = Wax,, where we dropped the softplus in this simplified theory setup) and fix the state matrix
A =1 (i.e., no forgetting). Similar to [2l], we consider the model after one gradient step over the
population loss L with respect to Wa, starting from Wa = 0:

WA = 7VWAL = 7E(x0,4..,xT)~P [VWAé | Xg = X7 = O,Xl, e, X1 7& O] , (3)
where the expectation is taken over all input sequences having the key token 0 appearing at the first
and last positions, and / is the cross-entropy loss for one such sequence. The following lemma (proved
in Appendix [D)) shows that gradient descent can update W to perform the writing mechanism and
solve the task, as W aligns with the key vector while remains almost orthogonal to non-key vectors.
Lemma 1. Consider the simplified Mamba model with only trainable weights W A (i.e., with one-hot
embedding, fixed depthwise convolution akin to pairwise concatenation, fixed output layer [—1I; 1)),
and no gating). The gradient of the loss with respect to Wa € R2VI*2IV1 in (3) takes the form:

= ifi=0

oL 2 ifi=1V|
Wa,, =g -t FO<i<|V|]’ @)

N et >V

For |V| > T, wee see that one gradient step mostly updates the weights on the 0, |V|-th rows in W,
and thus correctly succeeds at performing the read and write operations for associative recall.

5 Conclusion and Future Directions

Towards understanding how Mamba perform associative recall, we perform a mechanistic study
to probe trained Mamba models (with suitable simplifications) for solving the MQAR tasks. We
identify key associative-recall mechanisms in Mamba’s hidden state, including writing, retriveing,
and forgetting behaviors based on the input. Our insights are supported via empirical results on
probing the trained models and theoretical analysis of Mamba’s population gradient dynamics.

As a first step, our mechanistic study focuses on a simplified Mamba model; extending the analysis to
the original Mamba and Mamba-2 [4]] and considering more complicated tasks is a natural next step.
Another interesting direction lies in comparing the associative-recall mechanisms in Mamba with
other sequence model architectures, such as Transformers and other subquadratic variants.

121

122
123
124

125
126

127
128
129

131
132

133
134
135

137

138
139
140

141
142

143
144

145
146
147
148

149
150

151
152

References

[1] Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri
Rudra, and Christopher Re. Zoology: Measuring and improving recall in efficient language
models. In The Twelfth International Conference on Learning Representations, 2024.

[2] Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Hervé Jégou, and Léon Bottou. Birth of a
transformer: A memory viewpoint. arXiv:2306.00802, 2023.

[3] Nicola Muca Cirone, Antonio Orvieto, Benjamin Walker, Cristopher Salvi, and Terry Lyons.
Theoretical Foundations of Deep Selective State-Space Models. In Advances in Neural Infor-
mation Processing Systems, volume 37, 2024.

[4] Tri Dao and Albert Gu. Transformers are SSMs: Generalized Models and Efficient Algorithms
Through Structured State Space Duality. In International Conference on Machine Learning,
volume 235, pages 10041-10071, 2024.

[5] Riccardo Grazzi, Julien Siems, Arber Zela, Jorg KH Franke, Frank Hutter, and Massimiliano
Pontil. Unlocking state-tracking in linear rnns through negative eigenvalues. In The Thirteenth
International Conference on Learning Representations, 2025.

[6] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv:2312.00752, 2024.

[7]1 Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. HiPPO: Recurrent Memory
with Optimal Polynomial Projections. Advances in Neural Information Processing Systems,
33:1474-1487, 2020.

[8] Albert Gu, Karan Goel, and Christopher Ré. Efficiently Modeling Long Sequences with
Structured State Spaces. In International Conference on Learning Representations, 2022.

[9] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv:2111.00396, 2022.

[10] Ningyuan Teresa Huang, Miguel Sarabia, Abhinav Moudgil, Pau Rodriguez, Luca Zappella,
and Federico Danieli. Understanding input selectivity in mamba: Impact on approximation
power, memorization, and associative recall capacity. In Forty-second International Conference
on Machine Learning, 2025.

[11] William Merrill, Jackson Petty, and Ashish Sabharwal. The Illusion of State in State-Space
Models. In International Conference on Machine Learning, 2024.

[12] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

153

154
155
156

157
158
159

160
161

162
163
164
165
166
167
168

169

A MQAR Task Details

Dataset Construction. We denote by V' the vocabulary size, K the set of key tokens and L the set
of value tokens, such that K | JL = V and K ()L = 0. We let k1, ..., k; be the key tokens. Then the
sequence are constructed with the following algorithm Alg. [T}

Algorithm 1 Synthetic MQAR dataset generation

Input: [p1, ..., pi] the distribution of the keys, maximum noise length n., sequence length T
1: Initialize an empty sequence x < [].
2: while The sequence is shorter than T — | K| do
3: Sample the noise size s uniformly between 0 and 7.
Sample s noise token 1, ..., x5 in L
Append z1, ..., x, to the sequence
Sample a token k according to the distribution [py, ..., pg] in K
Sample v uniformly in L
8: Append k, v to the sequence x
9: end while
10: Append a random permutation of keys to x
11: return The sequence x

AR A

For example, with the maximum noise length n, = 3, and vocabulary V' = {A, B, X, Y, Z} with
the key set K = {A, B} and the value set L = {X,Y, Z}, an example input sequence x and its
correponding target output y are given as follows

x =[X AY Z X B Z X X B X A B
y = [. Z .Y X

where dots in y meaning that the model output is not evaluated on this position. In practice, we
enforce the model to output identity on this position as it provides more interpretable results.

Empirical Performance. We compare Mamba with Transformers (TF) variants with similar model
sizes for solving MQAR, summarized in Tab. |l We observe that Mamba (top row) and 2-layer
Transformer with convolution layer and RoPE (bottom row) perform similarly, whereas Transformers
without RoPE (second, third row) struggle to solve the task. From our analysis of the Mamba solution
(see details in Sec.[3), we see that Mamba can distinguish the latest key-value association by slowly
forgetting using the state matrix. It seems that Transformers can also achieve this via RoPE to
differentiate the earlier versus later positions, and fail to solve the task without positional encoding.

Table 1: Summary of Performance in MQAR Task, varying across sequence length 7', the number of
keys x, and architectures.

Model T =128 T = 256 T =512
Backbone Conv. k=1 k=4 k=1 k=4 k=1 kK=4
1-layer Mamba v 100 100 100 99 100 99
2-layer TF X 30 42 22 21 15 18

Acc)T | Jayer TF v 34 56 26 42 21 36
2-layer TF w/ RoPE v/ 100 100 100 96 77 90

B Model Simplification Details

Convolution simplification. The Mamba block includes a depthwise convolution Fig. 3] We
simplify this learnable convolution to a pairwise concatenation (with padding at the beginning). The
convolved embedding at time ¢ is given by

N €,

Xt = |: emt1:|

170 Therefore, the hidden dimension is equals to 2 - vocab_size. Due to our use of one-hot embedding
171 vectors, we note that the input term in the Mamba SSM (1)) can only write on the lines 2;_; and
172 |V| + x4, namely

0
0
At-,Ut—1
aoxi=| 0
0
At , V¢ +vocab_size
0
and then
0 . 0
At,vt71 : Bl E At,'ut,1 : BN
. 0
(At @ Xt) ® Bt
Atv”tﬁ—vocz\b,sim - By At,?)t+»vocub,<aze By

0 . 0

173 Simplification of the output matrix. After y; is computed, an output matrix is applied in order to
174 retrieve the token. This matrix is supposed to be a learned parameter. However, when training the
175 original Mamba model to solve MQAR , we find that the output matrix often admits very simple
176 form, i.e. something close to (—1I,I) as shown in Fig.[6]

] 20

] 15

151413121110 9 8 7 6 5 4 3 2 1 0

02 4 6 8 101214 16 18 20 22 24 26 28 30

Figure 6: Unembedding matrix after training

177 C Empirical results details

178 Structure of the matrix W Recall that A; = Softplus(Waz;). After training, the matrix Wa
179 exhibits a clear block structure (see Fig.[7). In fact, its weights are close to zero almost everywhere,
180 except in the second part of rows 0 and V. This enables the emergence of specific write/retrieval
181 mechanisms whenever token 0 (i.e., the key in this example) appears.

182

183 Mechanisms details The three different mechanisms appearing during the sequence processing are
184 the following:

3 -05
-04
0.3
0.2
0.1
0.0
-0.1
-0.2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

3028262422201816141210 8 6 4 2 0

Figure 7: Plot of the matrix W after training

185 * (write) When (z;_1, z:) = (k, v), erase and write the new value. In this case the forgetting
186 term is equal to
0.5
0.05
0.05
|V]—1 2|V|—1 :
exp(A ® Ay) & 0.5¢0 + lepy +0.05 Y 403 Y = e
=t =IVi+1 0.3
0.3
187 so basically all the rows drop close to 0 in the hidden state. Then
15
0
0
At ®)A(t ~ 1560 + 306|V\+v =
30
0
0
188 It means that the row corresponding to the new value becomes much more important than
189 all the other values — this new value is written in the hidden state.
190 * (read) When (z;_1, z¢) = (v, k), retrieve stored value from memory. In this case the model
191 forget as little as possible, especially the second part of the hidden (i.e. the part that will be
192 positive when the output is applied):
0.9
0.4
|V|—-1 2|V|—1 054
193 exp(A © %) = 0.9(eo +epy) + 0.4 Z e; +0.8 Z = o9 and
i=1 i=|V|+1 0.8
0.8

At ®)A(t ~ 1061) + 10€k+|vl.

194

195

196

197
198
199
200
201
202
203

204

205
206

207

208

210

211

212
213
214

* When (241,) = (v1,v2), forget all the memories slowly:

0.6
[V]-1 2|V|—1 0:6
exp(AOX)~06 Y e +04 Y e= gy
i=0 i=|V| '

0.4

and

At O])A(t ~ 1061;1 + 1O€v2+lv‘.

D Theoretical Analysis Details

We consider the task MQAR with | K| = 1 (without loss of generality let & = 0 be the only key). To
simplify the analysis, we consider the input sequence having the key appearing at the first and last
positions, interleaving with other non-key tokens, i.e. xg = xp = 0,x; # O forallt =1,...,7 — 1.
To solve the task, the model needs to correctly output x5 at the query position x7 = 0. One solution
istoset Ag > 0,A; = 0 for all ¢ > 1, such that the hidden state only writes and stores the first
key-value pair. In what follows, we will show that one gradient step indeed updates the parameter
W A to achieve such condition.

Recall from our simplified Mamba SSM for MQAR |K | = 1 that sets B = C' = 1 (2), namely
h; =exp(A®A;) Ohy 1 + A O X, hy =0, o)

where Ay = Wax, [ﬂ As a first step, we focus on the optimization dynamics of W, and thus fixing
the state matrix A = 1 (i.e., no forgetting). In this case, the equation simplifies to

hy =h; 1 +A; ©%. (6)
Unrolling the recurrence we obtain
t
hy =) A 0%)
i=0

Recall by construction, we have one-hot embedding vectors and a pairwise concatenation layer (i.e. a
fixed depthwise convolution) to produce the input X for the SSM. Therefore, the k-th component of
the hidden state h, € RV is given by

t

htJC = Z(WAk,xi_l + WAk,xi+|V\)]]‘xi—lzkvxi"!‘lv‘:k (3)
1=0

The training population loss is given by

LWA) =Ex,,...xp)op(U(x2, Wohr) | X1 = X1 = 1, X2, ..., X701 # 0), 9)
where / is the cross-entropy loss, and W, is the output matrix. Since the output matrix is chosen to
be W, = [, I], we are interested in the quantity hy ;|| — hy . for all k < |V| (which produces

the output y¢ 1),
t
hy oy —her = Z(WAHMXH + Was vt ivi) Lxi =kt VIV +V[=k+ V]
=0 . (10)

n
- E (WAk,xi,l + WAk,,xiHV\)]lx1'71:kai+|V|:k
1=0

'The original Mamba proposes to compute A, = softplus(WWaz:) ; we omit the softplus nonlinearity for
simplicity

215

2

=

6

217

218

2

=

9

220

221

222

223

224

225

226

This can be simplified to the following:

hy v

To simplify notation, we write z,, ;, = hy 4|y

t

=0

o Z(WAk~xi—1
1=0

—hy .

- hth = Z(WA’CJr\V\in—l

+ WAk+|V\,xi+\V|)]lxz:k

+ WAk,xqﬁ»\V\)]lxi,—1:k

The gradient of the loss with respect to W is given by

From [T} we have

because all derivative are equals to 0 when k # i. We can then distinguish 4 cases:

or

V]

86 aZT,k

OWa

ot
Wa,

(2%

=3
k=1

oL
dzr,; 3WA

8ZTL V] ep -
Ty WA ifi > |V]

* Either ¢ < |V]and j < |V/|. Then

Wa,

8zT7¢

* Either ¢ < |V]and j > |V|. Then

8ZT %

* Either ¢ > |V] and j < |V|. Then

az:m OZ1i-|V|

* Either ¢ > |V| and j > |V|. Then

Furthermore,

At initialization, zr = 0 so

So we end up with

ol

’L

321w Dzrijv|

o
BzTﬂ-

or

8zT7i

7,

1+

>

273

8ZT 7

2T,k 8WAM

ifi <[V

T

D L M

=0

E :]lxz 1=J XL_Z

Z]lxl+|V| =jdx;=i

e*T,i

V]

m=1

Z‘nz e Tm

10

ifi =x;

2T, m

otherwise

if7 = X1
otherwise

Y

12)

(13)

(14)

15)

(16)

a7

(18)

(19)

ov
OWa,

%37

227 Then

— V 1

() (Zloxllj]]'xll'l)
|V| (Zl:o xlflzj]lxzf1:l)
—(V—-1 T

(v) Zl 0 Xz 1_]]1Xl:i

1
7210"11]]13(11

ifi=x1,j <|V]|

ifi <|V|,i#x1,5 <|V|

ifi = x,+[V],j < V]

iti > |V],i#xi+[V],j<|V]

— ip . (20)
(V 1] (TZl 0tj= Xz-‘rIV\]lxl 1= 1) ifi=xq,j > |V|
ﬁ (— Zz:o J:xl+|vﬂlxl,1:z) ifi <|V|,i#x1,j> V|
—(V-1 T L .
(V L Zl:O]1x1+\V|:j]1xl:i ifi =x; + |V|,j > |V|
1 ep o . i
W7+ 2tm L1y it > [V],i %3 = V.3 > |V]
ov or
= B ier) P (G — X0 = %7 = 0,31, ..., %71 # 0 21
aWAM (X0,...,XT) P(3WA”|XO X7 X1 x7_1 #0) Q1)
=t ifi=0
)2 ifi = |V]| o
T\ EwE oy ifi<VEi#0
Nty ifi> V]

228 Sointhe case |V| > T, the first gradient step will mostly modify the rows 0 and |V'| in W, aligning
229 it with the key embedding vector while being orthogonal to the other non-key vectors. This explains
23 our observation in Sec. [3]on how Mamba learns to solve the task via using the writing mechanism.

11

	Introduction
	Problem Setup
	The MQAR task
	Model Architectures

	Probing the Learned Mechanism
	Theoretical Analysis
	Conclusion and Future Directions
	MQAR Task Details
	Model Simplification Details
	Empirical results details
	Theoretical Analysis Details

