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Abstract

Mamba has recently emerged as a promising alternative to Transformers, demon-
strating competitive performance in many language modeling tasks with linear-time
computational complexity. Theoretical characterization of Mamba has largely
focused on its approximation power for solving certain tasks through specific
constructions. However, it remains unclear whether Mamba trained with gradient
descent can learn such constructions. As a first step to address this gap, we perform
a mechanistic study of simplified Mamba models on associative recall tasks. By
analyzing the learned model weights and the hidden state evolution, we uncover
the mechanisms used by simplified Mamba models to perform associative recall.
We complement our study with theoretical analysis on the optimization dynamics
of simplified Mamba models that give rise to such mechanisms.

1 Introduction

Recently, structured state space models (SSMs) have arisen as competitive sequence modeling
architectures [7, 9, 8]. In particular, Mamba [6] has emerged as a promising general-purpose
sequence model, demonstrating competitive performance on various language modeling tasks while
reducing the quadratic complexity in Transformers [13] to linear time. Theoretical understanding of
Mamba begins to emerge, centering on its expressivity using approaches such as formal language
theory [11, 5] and approximation theory [3, 10].

Focusing on Mamba’s associative recall capabilities, [10] showed that there exists a Mamba model
with well-chosen weights that can solve certain associative recall tasks. However, it remains unclear
whether training Mamba with gradient descent will find such a solution, or whether a different
mechanism is found in practice. To fill this gap, we conduct a mechanistic study to probe how a
simplified version of Mamba can learn to perform associative recall. Our main contributions can be
summarized as follows:

• We confirm that in a simplified setup, Mamba can learn the theorized solution for solving
associative recall tasks proposed in [10], by providing evidences from the learned model weights
as well as the evolution of hidden state and outputs (Sec. 3).

• We support our empirical findings with a theoretical analysis on the optimization dynamics of
(simplified) Mamba (Sec. 4).
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Input: Alice used to live in Paris, then she
moved to New York, and nowadays Alice lives
in Barcelona.

Query: Where does Alice live?

Answer: Barcelona

Figure 1: Associative recall example to re-
trive the latest association.
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k1 v1 xx k2 v2 xx k1 v3 . . . k2 . . . k1

v1 v1 . . . v3

Figure 2: MQAR example, interleaving kivi key-value
pairs with noise token x; upon query (seen keys) return
the latest associated value.
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Figure 3: The original Mamba architecture (left), and our simplification (right) which disables the
gating branches, and fixes the embedding, convolution, and output layers.

2 Problem Setup

2.1 The MQAR task

To evaluate the associative recall capabilities of Mamba, we adapt the Multiple-Query Associative
Recall (MQAR [1, 10]) task and consider a more difficult variant, illustrated in Fig. 2 with full
details described in App. A. In particular, a key ki ∈ K can be associated with many different
values vi1 , . . . , vim in the context. Upon querying the key ki, the latest associated value vim must be
returned. This probes the ability of Mamba to store the key-value associations and recall the most
recent associated value. This recency bias is particularly well-suited to the recurrent, state-based
nature of Mamba, as opposed to attention, which would need additional positional information to
distinguish the latest occurrence of the key from previous ones. This MQAR variant can be also seen
as a simple version of the Induction Heads task [12, 10], where the key tokens and value tokens are
drawn from disjoint vocabulary sets.

Our design of MQAR is motivated from sturctures in natural language (e.g.,Fig. 1), where language
understanding requies recalling the appropriate reference of a pronoun or entity among many distrac-
tors. Such pattern is also common in algorithmic tasks where selective recall is a core primitive, as
well as time-series analysis where relevant events must be retrieved despite background fluctuations.

2.2 Model Architectures

The main architecture of Mamba is illustrated in Fig. 3 (left). To probe the inner-workings of
Mamba—inspired by [10, Theorem 2, Lemma 3], which provides explicit constructions of 1-layer
Mamba solving MQAR and its variants—we simplify Mamba with justifications given as follows
(see Fig. 3 right for an overview):

• Embedding: Use one-hot embedding with a doubling trick following the construction of [10,
Lemma 3]. Concretely, v 7→ [ev ev]

⊤ ∈ R2|V | for token v drawn from the vocabulary V .

• Convolution: Use a fixed depthwise convolution with kernel size 2 and left padding, following
the construction of [10, Lemma 3]. Concretely, given a sequence of token embeddings, the
convolved token at time t is given by

x̂t ≡ conv(xt−1,xt) = c0 ⊙ xt−1 + c1 ⊙ xt, where c0 =

[
1
0

]
, c1 =

[
0
1

]
. (1)
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(b) Evolution of the hidden state ht
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(c) Evolution of the input term x̂t ⊙∆t
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(d) Evolution of the forgetting factor eΛ⊙∆t

Figure 4: Probing Mamba on MQAR with |K| = 1: (a) each line represents the correponding
dimension d = 0, . . . , |V | − 1 of the output ytWo ∈ R|V |; (b)-(d) each line represents the dimension
d = 0, . . . , 2|V | − 1 of the hidden state, the input term, and the forgetting factor, respectively (dashed
lines denote the first half d = 0, . . . |V |−1 while solid lines denote second half d = |V |, . . . , 2|V |−1).

Observe that such convolution on the 2|V |-dimensional token embeddings is equivalent to a
concatenation of two consecutive one-hot token embeddings, i.e.

x̂ := conv
(
embed([k1v1x . . .])

)
=

[ [
0
ek1

] [
ek1

ev1

] [
ev1
ex

]
. . .

]
.

This also fixes the hidden model dimension as d = 2|V |. In our implementation, we simply use
one-hot embedding followed by concatenating pairs of token embeddings.

• Output unembedding: Replace the learnable linear map with a fixed weight matrix Wo =
[−I I] ∈ R|V |×2|V |, motivated from our observations on trained models (App. B).

• Gate: Disable the gating branch, following the construction of [10, Lemma 3]

We preserve the key SSM layer in Mamba, defined as

ht = exp(Λ⊙ (∆t ⊗ 1N ))⊙ ht−1 + (∆t ⊙ x̂t)⊗B(x̂t), yt = htC(x̂t). (2)

where ht,Λ ∈ Rd×N ,∆t ∈ Rd and B(x̂t), C(x̂t) ∈ RN (N is the state size). We set ∆t =
Softplus(W∆x̂t), where W∆ ∈ Rd×d is a learnable weight matrix controlling the discretization step.

We also remark that the assumed structure of embedding and convolution layers corresponds (up
to rotation) to using embedding and convolution weights fixed at random initialization with infinite
width, leading to the desired orthogonality (see [2] for an explanation in the context of Transformers).

3 Probing the Learned Mechanism

Case |K| = 1. We begin with the simple case |K| = 1 (i.e., one key only) in order to highlight
Mamba’s mechanism of learning and forgetting. To solve MQAR with |K| = 1, it is sufficient to use
a state size N = 1 [10], reducing B(x̂t), C(x̂t) in (2) to scalars. Thus, we fix B = C = 1 which
simplifies the SSM as

ht = eΛ⊙∆t ⊙ ht−1 +∆t ⊙ x̂t. (3)

We train the simplified Mamba model on our MQAR variant with vocabulary size |V | = 8 (with the
key token set K = {0} and value token set L = {1, 2, . . . , 7}), a maximum noise length of nϵ = 3
tokens, and sequence length T = 256, until it reaches 100% accuracy on the training set. We then
evaluate the model after training to identify how Mamba can perfectly solve such task.

We probe the trained Mamba model behavior by plotting the evoluion (per each dimension d) of its
output after unembedding ytWo, hidden state ht, the input term ∆t ⊙ x̂t, and the forgetting factor
eΛ⊙∆t (acting on the previous hidden state). From the output evolution Fig. 4a, we see a large spike
when a new value is being written. From the hidden state evolution Fig. 4b, we see similar large
spikes upon encountering new value tokens (solid lines representing the first d = |V | dimensions,
and dashed lines representing the last d = |V | dimensions). Fig. 4c corresponds to the input term,
that is, what’s being newly written. We clearly see a spike when a new value is written in last d = |V |
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dimensions. Fig. 4d shows the forgetting factor, which seems to erase the hidden state as the new
value is written.

Additionally, we observe a clear block structure in the W∆ matrix, shown in Fig. 8 (see App. C),
leading to the discretization step ∆t = Softplus(W∆ conv(xt−1,xt)) being close to zero unless a key
token is present in the input embedding pair. Combining the evolution patterns with the W∆ structure
reveals the following mechanisms in the hidden state based on the input pair at the current position t
(here we denote the key token as k ∈ K and the value (noise) tokens be v, v1, v2, x ∈ V \K):

• (write) When (xt−1, xt) = (k, v), erase (small forgetting factor) and write the new value (input
term has large value on the |V |+ v coordinate);

• (read) When (xt−1, xt) = (x, k), retrieve stored value from memory based on the largest
difference between the |V |+ v and v coordinates, with almost no forgetting.

• (forget) When (xt−1, xt) = (v1, v2), forget all the memories slowly (less forgetting than ‘write’,
but more than ‘read’, especially on the second half of the coordinates).

We give a more detailed analysis of this mechanism in App. C. We remark that the slowly forgetting
mechanism is crucial for Mamba to differentiate correctly the latest associated value by discounting
the values seen in distant past.

Case |K| > 1. In this setting, we use the original B(x̂t), C(x̂t) ∈ RN vectors without sim-
plification, motivated from [10, Theorem 2] which proposes MQAR solution with a state size
N = |K|. Figure 5 shows the evolution patterns of B(x̂t), C(x̂t) and the output for the case |K| = 2.
We empirically observe the spikes in B(x̂t) upon encountering new key-value pairs (i.e. when
(xt−1, xt) = (k, v)) and C(x̂t) upon query (i.e., when (xt−1, xt) = (x, k)), corresponding to the
write and read mechanisms identified in the case |K| = 1. Figure 6 shows the evolution patterns of
B(x̂t), C(x̂t) and the output for the case |K| = 4, with similar spiking behavior.
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(c) Evolution of output ytWo: key tokens are highlighted by vertical dashed lines.

Figure 5: Probing Mamba on MQAR with |K| = 2: each line represents the component-wise
evolution of the B(x̂t), C(x̂t) ∈ RN ≡ R|K|, and the output ytWo ∈ R|V |.

4 Theoretical Analysis

To support our empirical observation, we analyze the optimization dynamics of a simplified Mamba
model (see Sec. 2.2) on our MQAR variant with |K| = 1. We focus on the parameter W∆ (used to
compute ∆t = W∆x̂t, where we dropped the softplus in this simplified theory setup) and fix the
state matrix Λ = 1 (i.e., no forgetting). Similar to [2], we consider the model after one gradient step
over the population loss L with respect to W∆, starting from W∆ = 0:

W∆ = −∇W∆
L = −E(x0,...,xT )∼P [∇W∆

ℓ | x0 = xT = 0,x1, . . . ,xT−1 ̸= 0] , (4)

where the expectation is taken over all input sequences having the key token 0 appearing at the first
and last positions, and ℓ is the cross-entropy loss for one such sequence. The following lemma (proved
in Appendix D) shows that gradient descent can update W∆ to perform the writing mechanism and
solve the task, as W∆ aligns with the key vector while remains almost orthogonal to non-key vectors.
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Figure 6: Probing Mamba on MQAR with |K| = 4: each line represents the component-wise
evolution of the B(x̂t), C(x̂t) ∈ RN ≡ R|K|, and the output ytWo ∈ R|V |.

Lemma 1. Consider the simplified Mamba model with only trainable weights W∆ (i.e., with one-hot
embedding, fixed depthwise convolution akin to pairwise concatenation, fixed output layer [−I; I]),
and no gating). The gradient of the loss with respect to W∆ ∈ R2|V |×2|V | in (4) takes the form:

∂L

∂W∆i,j

=


−1
T if i = 0
2
T if i = |V |
≈ T

|V |2 −
1

|V | if 0 < i < |V |
≈ −T

|V |2 + 1
|V | if i > |V |

. (5)

For |V | ≫ T , we see that one gradient step mostly updates the weights on the 0, |V |-th rows
in W∆, and thus correctly succeeds at performing the read and write operations for associative
recall. We remark that in practice the simplified Mamba model also succeeds for |V | ≤ T with
∆t = Softplus(W∆x̂t), suggesting that analyzing the role of the softplus nonlinearity could extend
the theory to more general settings.

5 Conclusion and Future Directions

Towards understanding how Mamba perform associative recall, we perform a mechanistic study to
probe trained Mamba models (with suitable simplifications) for solving the MQAR tasks. We identify
key associative-recall mechanisms in the hidden state of simplified Mamba models, including writing,
retriveing, and forgetting behaviors based on the input. Our insights are supported via empirical
results on probing the trained models and theoretical analysis of simplified Mamba’s population
gradient dynamics.

As a first step, our mechanistic study focuses on a simplified Mamba model; extending the analysis to
the original Mamba and Mamba-2 [4] and considering more complicated tasks is a natural next step.
Another interesting direction lies in comparing the associative-recall mechanisms in Mamba with
other sequence model architectures, such as Transformers and other subquadratic variants.

Acknowledgments and Disclosure of Funding

The authors thank Federico Danieli for motivating this work. The authors also thank the anony-
mous NeurIPS Mechanistic Intepretability Workshop reviewers and area chair for their constructive
feedback.

5



References
[1] Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri

Rudra, and Christopher Re. Zoology: Measuring and improving recall in efficient language
models. In The Twelfth International Conference on Learning Representations, 2024.

[2] Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth
of a transformer: A memory viewpoint. Advances in Neural Information Processing Systems,
36:1560–1588, 2023.

[3] Nicola Muca Cirone, Antonio Orvieto, Benjamin Walker, Cristopher Salvi, and Terry Lyons.
Theoretical Foundations of Deep Selective State-Space Models. In Advances in Neural Infor-
mation Processing Systems, volume 37, 2024.

[4] Tri Dao and Albert Gu. Transformers are SSMs: Generalized Models and Efficient Algorithms
Through Structured State Space Duality. In International Conference on Machine Learning,
volume 235, pages 10041–10071, 2024.

[5] Riccardo Grazzi, Julien Siems, Arber Zela, Jörg KH Franke, Frank Hutter, and Massimiliano
Pontil. Unlocking state-tracking in linear rnns through negative eigenvalues. In The Thirteenth
International Conference on Learning Representations, 2025.

[6] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv:2312.00752, 2024.

[7] Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. HiPPO: Recurrent Memory
with Optimal Polynomial Projections. Advances in Neural Information Processing Systems,
33:1474–1487, 2020.

[8] Albert Gu, Karan Goel, and Christopher Ré. Efficiently Modeling Long Sequences with
Structured State Spaces. In International Conference on Learning Representations, 2022.

[9] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv:2111.00396, 2022.

[10] Ningyuan Teresa Huang, Miguel Sarabia, Abhinav Moudgil, Pau Rodriguez, Luca Zappella,
and Federico Danieli. Understanding input selectivity in mamba: Impact on approximation
power, memorization, and associative recall capacity. In Forty-second International Conference
on Machine Learning, 2025.

[11] William Merrill, Jackson Petty, and Ashish Sabharwal. The Illusion of State in State-Space
Models. In International Conference on Machine Learning, 2024.

[12] Clayton Sanford, Daniel Hsu, and Matus Telgarsky. One-layer transformers fail to solve the
induction heads task. arXiv:2408.14332, 2024.

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

6



A MQAR Task Details

Dataset Construction. We denote by V the vocabulary size, K the set of key tokens and L the set
of value tokens, such that K

⋃
L = V and K

⋂
L = ∅. We let k1, ..., ki be the key tokens. Then the

sequence are constructed with the following algorithm Alg. 1.

Algorithm 1 Synthetic MQAR dataset generation

Input: [p1, ..., pk] the distribution of the keys, maximum noise length nϵ, sequence length T
1: Initialize an empty sequence x← [].
2: while The sequence is shorter than T − |K| do
3: Sample the noise size s uniformly between 0 and nϵ

4: Sample s noise token x1, ..., xs in L
5: Append x1, ..., xs to the sequence
6: Sample a token k according to the distribution [p1, ..., pk] in K
7: Sample v uniformly in L
8: Append k, v to the sequence x
9: end while

10: Append a random permutation of keys to x
11: return The sequence x

For example, with the maximum noise length nϵ = 3, and vocabulary V = {A,B,X, Y, Z} with
the key set K = {A,B} and the value set L = {X,Y, Z}, an example input sequence x and its
correponding target output y are given as follows

x = [X A Y Z X B Z X X B X A B]
y = [ . . . . . . . . . Z . Y X]

,

where dots in y meaning that the model output is not evaluated on this position. In practice, we
enforce the model to output identity on this position as it provides more interpretable results.

Empirical Performance. We compare Mamba with Transformers (TF) variants with similar model
sizes for solving MQAR, summarized in Tab. 1. We observe that Mamba (top row) and 2-layer
Transformer with convolution layer and RoPE (bottom row) perform similarly, whereas Transformers
without RoPE (second, third row) struggle to solve the task. From our analysis of the Mamba solution
(see details in Sec. 3), we see that Mamba can distinguish the latest key-value association by slowly
forgetting using the state matrix. It seems that Transformers can also achieve this via RoPE to
differentiate the earlier versus later positions, and fail to solve the task without positional encoding.

Table 1: Summary of Performance in MQAR Task, varying across sequence length T , the number of
keys κ, and architectures.

Model T = 128 T = 256 T = 512

Backbone Conv. κ = 1 κ = 4 κ = 1 κ = 4 κ = 1 κ = 4

Acc.(%) ↑

1-layer Mamba ✓ 100 100 100 99 100 99
2-layer TF ✗ 30 42 22 21 15 18
1-layer TF ✓ 34 56 26 42 21 36
2-layer TF w/ RoPE ✓ 100 100 100 96 77 90

B Model Simplification Details

Convolution simplification. The Mamba block includes a depthwise convolution Fig. 3. We
simplify this learnable convolution to a pairwise concatenation (with padding at the beginning). The
convolved embedding at time t is given by

x̂t =

[
ext−1

ext

]
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Therefore, the hidden dimension is equals to 2 · vocab_size. Due to our use of one-hot embedding
vectors, we note that the input term in the Mamba SSM (2) can only write on the lines xt−1 and
|V |+ xt, namely

∆t ⊙ xt =



0
· · ·
0

∆t,vt−1

0
· · ·
0

∆t,vt+vocab_size
· · ·
0


and then

(∆t ⊙ xt)⊗Bt



0 · 0
...

. . .
...

∆t,vt−1
·B1

... ∆t,vt−1
·BN

0 · 0
...

. . .
...

∆t,vt+vocab_size ·B1

... ∆t,vt+vocab_size ·BN

0 · 0
...

. . .
...

0 · 0


Simplification of the output matrix. After yt is computed, an output matrix is applied in order to
retrieve the token. This matrix is supposed to be a learned parameter. However, when training the
original Mamba model to solve MQAR , we find that the output matrix often admits very simple
form, i.e. something close to (−I, I) as shown in Fig. 7.

Figure 7: Unembedding matrix after training

C Empirical results details

Structure of the matrix W∆ Recall that ∆t = Softplus(W∆xt). After training, the matrix W∆

exhibits a clear block structure (see Fig. 8). In fact, its weights are close to zero almost everywhere,
except in the second part of rows 0 and V . This enables the emergence of specific write/retrieval
mechanisms whenever token 0 (i.e., the key in this example) appears.

Mechanisms details The three different mechanisms appearing during the sequence processing are
the following:
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Figure 8: Plot of the matrix W∆ after training

• (write) When (xt−1, xt) = (k, v), erase and write the new value. In this case the forgetting
term is equal to

exp(Λ⊙∆t) ≈ 0.5e0 + 1e|V | + 0.05

|V |−1∑
i=1

+0.3

2|V |−1∑
i=|V |+1

=



0.5
0.05
0.05

...
1
0.3

...
0.3


,

so basically all the rows drop close to 0 in the hidden state. Then

∆t ⊙ x̂t ≈ 15e0 + 30e|V |+v =



15
0
...
0
...
30
0
...
0


.

It means that the row corresponding to the new value becomes much more important than
all the other values → this new value is written in the hidden state.

• (read) When (xt−1, xt) = (v, k), retrieve stored value from memory. In this case the model
forget as little as possible, especially the second part of the hidden (i.e. the part that will be
positive when the output is applied):

exp(Λ⊙ x̂t) ≈ 0.9(e0 + e|V |) + 0.4

|V |−1∑
i=1

ei + 0.8

2|V |−1∑
i=|V |+1

=



0.9
0.4

...
0.4
0.9
0.8

...
0.8


and

∆t ⊙ x̂t ≈ 10ev + 10ek+|V |.
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• When (xt−1, xt) = (v1, v2), forget all the memories slowly:

exp(Λ⊙ x̂t) ≈ 0.6

|V |−1∑
i=0

ei + 0.4

2|V |−1∑
i=|V |

ei =



0.6
...

0.6
0.4

...
0.4


and

∆t ⊙ x̂t ≈ 10ev1 + 10ev2+|V |.

D Theoretical Analysis Details

We consider the task MQAR with |K| = 1 (without loss of generality let k = 0 be the only key). To
simplify the analysis, we consider the input sequence having the key appearing at the first and last
positions, interleaving with other non-key tokens, i.e. x0 = xT = 0,xt ̸= 0 for all t = 1, . . . , T − 1.
To solve the task, the model needs to correctly output x2 at the query position xT = 0. One solution
is to set ∆0 > 0,∆t = 0 for all t ≥ 1, such that the hidden state only writes and stores the first
key-value pair. In what follows, we will show that one gradient step indeed updates the parameter
W∆ to achieve such condition.

Recall from our simplified Mamba SSM for MQAR |K| = 1 that sets B = C = 1 (3), namely

ht = exp(Λ⊙∆t)⊙ ht−1 +∆t ⊙ x̂t, h0 = 0, (6)

where ∆t = W∆xt
1. As a first step, we focus on the optimization dynamics of W∆, and thus fixing

the state matrix Λ = 1 (i.e., no forgetting). In this case, the equation simplifies to

ht = ht−1 +∆t ⊙ x̂t. (7)

Unrolling the recurrence we obtain

ht =

t∑
i=0

∆i ⊙ x̂t. (8)

Recall by construction, we have one-hot embedding vectors and a pairwise concatenation layer (i.e. a
fixed depthwise convolution) to produce the input x̂ for the SSM. Therefore, the k-th component of
the hidden state ht ∈ R2|V | is given by

ht,k =

t∑
i=0

(W∆k,xi−1
+W∆k,xi+|V |)1xi−1=k∨xi+|V |=k (9)

The training population loss is given by

ℓ(W∆) = E(x1,...,xT )∼P (ℓ(x2,Wo hT ) | x1 = xT = 1,x2, ...,xT−1 ̸= 0), (10)

where ℓ is the cross-entropy loss, and Wo is the output matrix. Since the output matrix is chosen to
be Wo = [−I, I], we are interested in the quantity ht,k+|V | − ht,k for all k < |V | (which produces
the output yt,k),

ht,k+|V | − ht,k =

t∑
i=0

(W∆k+|V |,xi−1
+W∆k+|V |,xi+|V |)1xi−1=k+|V |∨xi+|V |=k+|V |

−
n∑

i=0

(W∆k,xi−1
+W∆k,xi+|V |)1xi−1=k∨xi+|V |=k

. (11)

1The original Mamba proposes to compute ∆t = softplus(W∆xt) ; we omit the softplus nonlinearity for
simplicity
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This can be simplified to the following:

ht,k+|V | − ht,k =

t∑
i=0

(W∆k+|V |,xi−1
+W∆k+|V |,xi+|V |)1xi=k

−
n∑

i=0

(W∆k,xi−1
+W∆k,xi+|V |)1xi−1=k

(12)

To simplify notation, we write zn,k = ht,k+|V | − ht,k.

The gradient of the loss with respect to W∆ is given by

∂ℓ

∂W∆i,j

=

|V |∑
k=1

∂ℓ

∂zT,k

∂zT,k

∂W∆i,j

(13)

From 12, we have

∂ℓ

∂W∆i,j

=


∂ℓ

∂zT,i

∂zT,i

∂W∆i,j
if i ≤ |V |

∂ℓ
∂zT,i−|V |

∂zT,i−|V |
∂W∆i,j

if i > |V |
(14)

because all derivative are equals to 0 when k ̸= i. We can then distinguish 4 cases:

• Either i ≤ |V | and j ≤ |V |. Then

∂zT,i

∂W∆i,j

= −
T∑
l=0

1xl−1=j1xl−1=i (15)

• Either i ≤ |V | and j > |V |. Then

∂zT,i

∂W∆i,j

= −
T∑
l=0

1j=xl+|V |1xl−1=i (16)

• Either i > |V | and j ≤ |V |. Then

∂zT,i−|V |

∂W∆i,j

=

T∑
l=0

1xl−1=j1xl=i (17)

• Either i > |V | and j > |V |. Then

∂zT,i−|V |

∂W∆i,j

=

T∑
l=0

1xl+|V |=j1xl=i (18)

Furthermore,

∂ℓ

∂zT,i
=

−1 +
ezT,i∑|V |

m=1 ezT,m
if i = x1

ezT,i∑|V |
m=1 ezT,m

otherwise
(19)

At initialization, zT = 0 so

∂ℓ

∂zT,i
=

{
−1 + 1

|V | if i = x1

1
|V | otherwise

(20)

So we end up with
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∂ℓ

∂W∆i,j

=



−(V−1)
V · (−

∑T
l=0 1xl−1=j1xl−1=i) if i = x1, j ≤ |V |

1
|V | · (−

∑T
l=0 1xl−1=j1xl−1=i) if i ≤ |V |, i ̸= x1, j ≤ |V |

−(V−1)
V ·

∑T
l=0 1xl−1=j1xl=i if i = x1 + |V |, j ≤ |V |

1
|V | ·

∑T
l=0 1xl−1=j1xl=i if i > |V |, i ̸= x1 + |V |, j ≤ |V |

−(V−1)
V · (−

∑T
l=0 1j=xl+|V |1xl−1=i) if i = x1, j > |V |

1
|V | · (−

∑T
l=0 1j=xl+|V |1xl−1=i) if i ≤ |V |, i ̸= x1, j > |V |

−(V−1)
V ·

∑T
l=0 1xl+|V |=j1xl=i if i = x1 + |V |, j > |V |

1
|V | ·

∑T
l=0 1xl+|V |=j1xl=i if i > |V |, i ̸= x1 = |V |, j > |V |

(21)

Then

∂ℓ

∂W∆i,j

= E(x0,...,xT )∼P (
∂ℓ

∂W∆i,j

|x0 = xT = 0,x1, ...,xT−1 ̸= 0) (22)

=


−1
n if i = 0
2
n if i = |V |
≈ n

|V |2 −
1

|V | if i < |V |, i ̸= 0

≈ −n
|V |2 + 1

|V | if i > |V |

(23)

So in the case |V | ≫ T , the first gradient step will mostly modify the rows 0 and |V | in W∆, aligning
it with the key embedding vector while being orthogonal to the other non-key vectors. This explains
our observation in Sec. 3 on how Mamba learns to solve the task via using the writing mechanism.
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