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Abstract

Mamba has recently emerged as a promising alternative to Transformers, demon-1

strating competitive performance in many language modeling tasks with linear-time2

computational complexity. Theoretical characterization of Mamba has largely3

focused on its approximation power for solving certain tasks with appropriate4

constructions. However, it remains unclear whether Mamba trained with gradient5

descent can learn such constructions. As a first step to address this gap, we perform6

a mechanistic study of Mamba on associative recall tasks. By analyzing the learned7

model weights and the hidden state evolution, we uncover the mechanisms used by8

trained Mamba models to perform associative recall. We complement our study9

with theoretical analysis on the optimization dynamics of Mamba that give rise to10

such mechanisms.11

1 Introduction12

Recently, structured state space models (SSMs) have arisen as competitive sequence modeling13

architectures [7, 9, 8]. In particular, Mamba [6] has emerged as a promising general-purpose14

sequence model, demonstrating competitive performance on various language modeling tasks while15

reducing the quadratic complexity in Transformers [12] to linear time. Theoretical understanding of16

Mamba begins to emerge, centering on its expressivity using approaches such as formal language17

theory [11, 5] and approximation theory [3, 10].18

Focusing on Mamba’s associative recall capabilities, [10] showed that there exists a Mamba model19

with well-chosen weights that can solve certain associative recall tasks. However, it remains unclear20

whether training Mamba with gradient descent will find such a solution, or whether a different21

mechanism is found in practice. To fill this gap, we conduct a mechanistic study to probe how Mamba22

can learn to perform associative recall. Our main contributions can be summarized as follows:23

• We confirm that in a simplified setup, Mamba can learn the theorized solution for solving24

associative recall tasks proposed in [10], by providing evidences from the learned model weights25

as well as the evolution of hidden state and outputs (Sec. 3).26

• We support our empirical findings with a theoretical analysis on the optimization dynamics of27

(simplified) Mamba (Sec. 4).28

2 Problem Setup29

2.1 The MQAR task30

To evaluate the associative recall capabilities of Mamba, we adapt the Multiple-Query Associative31

Recall (MQAR [1, 10]) task and consider a more difficult variant, illustrated in Fig. 2 with full32
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Input: Alice used to live in Paris, then she
moved to New York, and nowadays Alice lives
in Barcelona.

Query: Where does Alice live?

Answer: Barcelona

Figure 1: Associative recall example to re-
trive the latest association.

x
y

=
k1 v1 xx k2 v2 xx k1 v3 . . . k2 . . . k1

v1 v1 . . . v3

Figure 2: MQAR example, interleaving kivi key-value
pairs with noise token x; upon query (seen keys) return
the latest associated value.
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Figure 3: The original Mamba architecture (left), and our simplification (right) which disables the
gating branches, and fixes the embedding, convolution, and output layers.

details described in App. A. In particular, a key ki ∈ K can be associated with many different33

values vi1 , . . . , vim in the context. Upon querying the key ki, the latest associated value vim must be34

returned. This probes the ability of Mamba to store the key-value associations and recall the most35

recent associated value. This recency bias is particularly well-suited to the recurrent, state-based36

nature of Mamba, as opposed to attention, which would need additional positional information to37

distinguish the latest occurrence of the key from previous ones.38

Our design of MQAR is motivated from sturctures in natural language (e.g.,Fig. 1), where language39

understanding requies recalling the appropriate reference of a pronoun or entity among many distrac-40

tors. Such pattern is also common in algorithmic tasks where selective recall is a core primitive, as41

well as time-series analysis where relevant events must be retrieved despite background fluctuations.42

2.2 Model Architectures43

The main architecture of Mamba is illustrated in Fig. 3 (left). To probe the inner-workings of Mamba44

inspired by [10], we simplify Mamba as follows (see Fig. 3 right for an overview):45

• Embedding: One-hot embedding v 7→ ev for token v drawn from the vocabulary V .46

• Convolution: Replace the depthwise learnable convolution with a concatenation of two consec-47

utive tokens (i.e. a fixed convolution of kernel size 2 and left padding), i.e.48

x̂ := conv([k1v1x . . .]) =

[ [
0
ek1

] [
ek1

ev1

] [
ev1
ex

]
. . .

]
.

The convolved token at t groups the original tokens at positions (t − 1, t), as x̂t =49

[ext−1
ext ]

⊤ ∈ R2|V |. This also fixes the hidden model dimension as d = 2|V |.50

• Output linear layer: Replace the learnable linear map with a fixed weight matrix W =51

[−I I] ∈ R|V |×2|V |, motivated from our observations on trained models (App. B).52

• Gate: Disable the gating branch.53

We preserve the key SSM layer in Mamba, defined as54

ht = exp(Λ⊙ (∆t ⊗ 1N ))⊙ ht−1 + (∆t ⊙ x̂t)⊗B(xt), yt = htC(xt). (1)

where Λ ∈ Rd×N ,∆t ∈ Rd and B(xt), C(xt) ∈ RN (N is the state size). We set ∆t =55

Softplus(W∆x̂t), where W∆ ∈ Rd×d is a learnable weight matrix.56
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(a) Evolution of output yt (token 0 is the key) (b) Evolution of the hidden state ht

(c) Evolution of x̂t ⊙∆t (d) Evolution of eΛ⊙∆t (i.e. the forgetting factor)

Figure 4: Probing Mamba on MQAR with K = 1: Each line represents the correponding dimension
with d = 0, . . . , |V | − 1 for the output yt ∈ R|V |, and d = 0, . . . , 2|V | − 1 for the rest (dashed lines
denote the first half d = 0, . . . |V | − 1 while solid lines denote second half d = |V |, . . . , 2|V | − 1).

We also remark that the assumed structure of embedding and convolution layers corresponds (up57

to rotation) to using embedding and convolution weights fixed at random initialization with infinite58

width, leading to the desired orthogonality (see [2] for an explanation in the context of Transformers).59

3 Probing the Learned Mechanism60

Case |K| = 1. We begin with the simple case |K| = 1 (i.e., one key only) in order to highlight61

Mamba’s mechanism of learning and forgetting. To solve MQAR with |K| = 1 (we set K = {0}62

in our experiments), it is sufficient to use a state size N = 1 [10], reducing B(xt), C(xt) in (1) to63

scalars. Thus, we fix B = C = 1 which simplifies the SSM as64

ht = eΛ⊙∆t ⊙ ht−1 +∆t ⊙ x̂t. (2)

We train the model on our MQAR variant with vocabulary size V = 8, a maximum noise length of65

nϵ = 3 tokens, and sequence length T = 256, until it reaches 100% accuracy on the training set. We66

then evaluate the model after training to identify how Mamba can perfectly solve such task.67

We probe the trained Mamba model behavior by plotting the evoluion (per each dimension) of its68

output yt, hidden state ht, the input term ∆t ⊙ x̂t, and the forgetting factor eΛ⊙∆t (acting on the69

previous hidden state). From the output evolution Fig. 4a , we see a large spike when a new value is70

being written. From the hidden state evolution Fig. 4b, we see similar large spikes upon encountering71

new value tokens (solid lines representing the first d = |V | dimensions, and dashed lines representing72

the last d = |V | dimensions). Fig. 4c corresponds to the input term, that is, what’s being newly73

written. We clearly see a spike when a new value is written in last d = |V | dimensions. Fig. 4d shows74

the forgetting factor, which seems to fully erase everything right before writing a new value.75

Concretely, we observe a clear block structure in the W∆ matrix, shown in Fig. 7 (see App. C),76

leading to the following key mechanisms in the hidden state based on the input pair at the current77

position t (here we let the key token be k = 0 and value (noise) tokens be v, v1, v2, x ∈ V \ {0}):78

• (write) When (xt−1, xt) = (k, v), erase (small forgetting factor) and write the new value (input79

term has large value on the |V |+ v coordinate);80

• (read) When (xt−1, xt) = (x, k), retrieve stored value from memory based on the largest81

difference between the |V |+ v and v coordinates, with almost no forgetting.82

• (forget) When (xt−1, xt) = (v1, v2), forget all the memories slowly (less forgetting than ‘write’,83

but more than ‘read’, especially on the second half of the coordinates).84

We give a more detailed analysis of this mechanism in App. C. We remark that the slowly forgetting85

mechanism is crucial for Mamba to differentiate correctly the latest associated value by discounting86

the values seen in distant past.87

Case |K| = 2. In this setting, we use the original B(xt), C(xt) ∈ RN vectors without simplifica-88

tion. The N = |K| solution proposed in [10] for MQAR with |K| = 2 treats B(xt) as a routing vec-89

tor, sending the first key-value pair to the first hidden state dimension by B([ek1
, ev1

]⊤) ≡ B1 = e1,90
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and the second key-value pair to the second dimension by B([ek2 , ev2 ]
⊤) ≡ B2 = e2; Retrieval is91

done similarly by C(xt) where C([ex, ek1
]⊤) ≡ C1 = e1, C([ev, ek2

]⊤) ≡ C2 = e2. The task can92

in general be solved using N = O(log |K|) state size, via almost orthogonal routing and retrieval93

vectors [10]. We empirically observe this behavior: Fig. 5a shows B1 ≈ [−1, 0.4]⊤, B2 ≈ [−3,−7]⊤94

and thus ⟨B1, B2⟩ ≈ 0; Fig. 5b shows C1 ≈ [0,−7.5], C2 ≈ [12.5, 0] and thus ⟨C1, C2⟩ ≈ 0.95

(a) Evolution of B(xt) (b) Evolution of C(xt)

(c) Evolution of ourput yt: the tokens 0, 1 represent the two keys, highlighted by vertical dashed lines.

Figure 5: Probing Mamba on MQAR with K = 2.

4 Theoretical Analysis96

To support our empirical observation, we analyze the optimization dynamics of a simplified Mamba97

model (see Sec. 2.2) on MQAR with |K| = 1. We focus on the parameter W∆ (used to compute98

∆t = W∆x̂t, where we dropped the softplus in this simplified theory setup) and fix the state matrix99

Λ = 1 (i.e., no forgetting). Similar to [2], we consider the model after one gradient step over the100

population loss L with respect to W∆, starting from W∆ = 0:101

W∆ = −∇W∆
L = −E(x0,...,xT )∼P [∇W∆

ℓ | x0 = xT = 0,x1, . . . ,xT−1 ̸= 0] , (3)
where the expectation is taken over all input sequences having the key token 0 appearing at the first102

and last positions, and ℓ is the cross-entropy loss for one such sequence. The following lemma (proved103

in Appendix D) shows that gradient descent can update W∆ to perform the writing mechanism and104

solve the task, as W∆ aligns with the key vector while remains almost orthogonal to non-key vectors.105

Lemma 1. Consider the simplified Mamba model with only trainable weights W∆ (i.e., with one-hot106

embedding, fixed depthwise convolution akin to pairwise concatenation, fixed output layer [−I; I]),107

and no gating). The gradient of the loss with respect to W∆ ∈ R2|V |×2|V | in (3) takes the form:108

∂L

∂W∆i,j

=


−1
T if i = 0
2
T if i = |V |
≈ T

|V |2 −
1

|V | if 0 < i < |V |
≈ −T

|V |2 + 1
|V | if i > |V |

. (4)

For |V | ≫ T , wee see that one gradient step mostly updates the weights on the 0, |V |-th rows in W∆,109

and thus correctly succeeds at performing the read and write operations for associative recall.110

5 Conclusion and Future Directions111

Towards understanding how Mamba perform associative recall, we perform a mechanistic study112

to probe trained Mamba models (with suitable simplifications) for solving the MQAR tasks. We113

identify key associative-recall mechanisms in Mamba’s hidden state, including writing, retriveing,114

and forgetting behaviors based on the input. Our insights are supported via empirical results on115

probing the trained models and theoretical analysis of Mamba’s population gradient dynamics.116

As a first step, our mechanistic study focuses on a simplified Mamba model; extending the analysis to117

the original Mamba and Mamba-2 [4] and considering more complicated tasks is a natural next step.118

Another interesting direction lies in comparing the associative-recall mechanisms in Mamba with119

other sequence model architectures, such as Transformers and other subquadratic variants.120

4



References121

[1] Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri122

Rudra, and Christopher Re. Zoology: Measuring and improving recall in efficient language123

models. In The Twelfth International Conference on Learning Representations, 2024.124

[2] Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Hervé Jégou, and Léon Bottou. Birth of a125

transformer: A memory viewpoint. arXiv:2306.00802, 2023.126

[3] Nicola Muca Cirone, Antonio Orvieto, Benjamin Walker, Cristopher Salvi, and Terry Lyons.127

Theoretical Foundations of Deep Selective State-Space Models. In Advances in Neural Infor-128

mation Processing Systems, volume 37, 2024.129

[4] Tri Dao and Albert Gu. Transformers are SSMs: Generalized Models and Efficient Algorithms130

Through Structured State Space Duality. In International Conference on Machine Learning,131

volume 235, pages 10041–10071, 2024.132

[5] Riccardo Grazzi, Julien Siems, Arber Zela, Jörg KH Franke, Frank Hutter, and Massimiliano133

Pontil. Unlocking state-tracking in linear rnns through negative eigenvalues. In The Thirteenth134

International Conference on Learning Representations, 2025.135

[6] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.136

arXiv:2312.00752, 2024.137

[7] Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. HiPPO: Recurrent Memory138

with Optimal Polynomial Projections. Advances in Neural Information Processing Systems,139

33:1474–1487, 2020.140

[8] Albert Gu, Karan Goel, and Christopher Ré. Efficiently Modeling Long Sequences with141

Structured State Spaces. In International Conference on Learning Representations, 2022.142

[9] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured143

state spaces. arXiv:2111.00396, 2022.144

[10] Ningyuan Teresa Huang, Miguel Sarabia, Abhinav Moudgil, Pau Rodriguez, Luca Zappella,145

and Federico Danieli. Understanding input selectivity in mamba: Impact on approximation146

power, memorization, and associative recall capacity. In Forty-second International Conference147

on Machine Learning, 2025.148

[11] William Merrill, Jackson Petty, and Ashish Sabharwal. The Illusion of State in State-Space149

Models. In International Conference on Machine Learning, 2024.150

[12] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,151

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.152

5



A MQAR Task Details153

Dataset Construction. We denote by V the vocabulary size, K the set of key tokens and L the set154

of value tokens, such that K
⋃
L = V and K

⋂
L = ∅. We let k1, ..., ki be the key tokens. Then the155

sequence are constructed with the following algorithm Alg. 1.156

Algorithm 1 Synthetic MQAR dataset generation

Input: [p1, ..., pk] the distribution of the keys, maximum noise length nϵ, sequence length T
1: Initialize an empty sequence x← [].
2: while The sequence is shorter than T − |K| do
3: Sample the noise size s uniformly between 0 and nϵ

4: Sample s noise token x1, ..., xs in L
5: Append x1, ..., xs to the sequence
6: Sample a token k according to the distribution [p1, ..., pk] in K
7: Sample v uniformly in L
8: Append k, v to the sequence x
9: end while

10: Append a random permutation of keys to x
11: return The sequence x

For example, with the maximum noise length nϵ = 3, and vocabulary V = {A,B,X, Y, Z} with157

the key set K = {A,B} and the value set L = {X,Y, Z}, an example input sequence x and its158

correponding target output y are given as follows159

x = [X A Y Z X B Z X X B X A B]
y = [ . . . . . . . . . Z . Y X]

,

where dots in y meaning that the model output is not evaluated on this position. In practice, we160

enforce the model to output identity on this position as it provides more interpretable results.161

Empirical Performance. We compare Mamba with Transformers (TF) variants with similar model162

sizes for solving MQAR, summarized in Tab. 1. We observe that Mamba (top row) and 2-layer163

Transformer with convolution layer and RoPE (bottom row) perform similarly, whereas Transformers164

without RoPE (second, third row) struggle to solve the task. From our analysis of the Mamba solution165

(see details in Sec. 3), we see that Mamba can distinguish the latest key-value association by slowly166

forgetting using the state matrix. It seems that Transformers can also achieve this via RoPE to167

differentiate the earlier versus later positions, and fail to solve the task without positional encoding.168

Table 1: Summary of Performance in MQAR Task, varying across sequence length T , the number of
keys κ, and architectures.

Model T = 128 T = 256 T = 512

Backbone Conv. κ = 1 κ = 4 κ = 1 κ = 4 κ = 1 κ = 4

Acc.(%) ↑

1-layer Mamba ✓ 100 100 100 99 100 99
2-layer TF ✗ 30 42 22 21 15 18
1-layer TF ✓ 34 56 26 42 21 36
2-layer TF w/ RoPE ✓ 100 100 100 96 77 90

B Model Simplification Details169

Convolution simplification. The Mamba block includes a depthwise convolution Fig. 3. We
simplify this learnable convolution to a pairwise concatenation (with padding at the beginning). The
convolved embedding at time t is given by

x̂t =

[
ext−1

ext

]

6



Therefore, the hidden dimension is equals to 2 · vocab_size. Due to our use of one-hot embedding170

vectors, we note that the input term in the Mamba SSM (1) can only write on the lines xt−1 and171

|V |+ xt, namely172

∆t ⊙ xt =



0
· · ·
0

∆t,vt−1

0
· · ·
0

∆t,vt+vocab_size
· · ·
0


and then

(∆t ⊙ xt)⊗Bt



0 · 0
...

. . .
...

∆t,vt−1
·B1

... ∆t,vt−1
·BN

0 · 0
...

. . .
...

∆t,vt+vocab_size ·B1

... ∆t,vt+vocab_size ·BN

0 · 0
...

. . .
...

0 · 0


Simplification of the output matrix. After yt is computed, an output matrix is applied in order to173

retrieve the token. This matrix is supposed to be a learned parameter. However, when training the174

original Mamba model to solve MQAR , we find that the output matrix often admits very simple175

form, i.e. something close to (−I, I) as shown in Fig. 6.176

Figure 6: Unembedding matrix after training

C Empirical results details177

Structure of the matrix W∆ Recall that ∆t = Softplus(W∆xt). After training, the matrix W∆178

exhibits a clear block structure (see Fig. 7). In fact, its weights are close to zero almost everywhere,179

except in the second part of rows 0 and V . This enables the emergence of specific write/retrieval180

mechanisms whenever token 0 (i.e., the key in this example) appears.181

182

Mechanisms details The three different mechanisms appearing during the sequence processing are183

the following:184
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Figure 7: Plot of the matrix W∆ after training

• (write) When (xt−1, xt) = (k, v), erase and write the new value. In this case the forgetting185

term is equal to186

exp(Λ⊙∆t) ≈ 0.5e0 + 1e|V | + 0.05

|V |−1∑
i=1

+0.3

2|V |−1∑
i=|V |+1

=



0.5
0.05
0.05

...
1
0.3

...
0.3


,

so basically all the rows drop close to 0 in the hidden state. Then187

∆t ⊙ x̂t ≈ 15e0 + 30e|V |+v =



15
0
...
0
...
30
0
...
0


.

It means that the row corresponding to the new value becomes much more important than188

all the other values → this new value is written in the hidden state.189

• (read) When (xt−1, xt) = (v, k), retrieve stored value from memory. In this case the model190

forget as little as possible, especially the second part of the hidden (i.e. the part that will be191

positive when the output is applied):192

exp(Λ⊙ x̂t) ≈ 0.9(e0 + e|V |) + 0.4

|V |−1∑
i=1

ei + 0.8

2|V |−1∑
i=|V |+1

=



0.9
0.4

...
0.4
0.9
0.8

...
0.8


and193

∆t ⊙ x̂t ≈ 10ev + 10ek+|V |.
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• When (xt−1, xt) = (v1, v2), forget all the memories slowly:194

exp(Λ⊙ x̂t) ≈ 0.6

|V |−1∑
i=0

ei + 0.4

2|V |−1∑
i=|V |

ei =



0.6
...

0.6
0.4

...
0.4


and195

∆t ⊙ x̂t ≈ 10ev1 + 10ev2+|V |.

D Theoretical Analysis Details196

We consider the task MQAR with |K| = 1 (without loss of generality let k = 0 be the only key). To197

simplify the analysis, we consider the input sequence having the key appearing at the first and last198

positions, interleaving with other non-key tokens, i.e. x0 = xT = 0,xt ̸= 0 for all t = 1, . . . , T − 1.199

To solve the task, the model needs to correctly output x2 at the query position xT = 0. One solution200

is to set ∆0 > 0,∆t = 0 for all t ≥ 1, such that the hidden state only writes and stores the first201

key-value pair. In what follows, we will show that one gradient step indeed updates the parameter202

W∆ to achieve such condition.203

Recall from our simplified Mamba SSM for MQAR |K| = 1 that sets B = C = 1 (2), namely204

ht = exp(Λ⊙∆t)⊙ ht−1 +∆t ⊙ x̂t, h0 = 0, (5)

where ∆t = W∆xt
1. As a first step, we focus on the optimization dynamics of W∆, and thus fixing205

the state matrix Λ = 1 (i.e., no forgetting). In this case, the equation simplifies to206

ht = ht−1 +∆t ⊙ x̂t. (6)

Unrolling the recurrence we obtain207

ht =

t∑
i=0

∆i ⊙ x̂t. (7)

Recall by construction, we have one-hot embedding vectors and a pairwise concatenation layer (i.e. a208

fixed depthwise convolution) to produce the input x̂ for the SSM. Therefore, the k-th component of209

the hidden state ht ∈ R2|V | is given by210

ht,k =

t∑
i=0

(W∆k,xi−1
+W∆k,xi+|V |)1xi−1=k∨xi+|V |=k (8)

The training population loss is given by211

ℓ(W∆) = E(x1,...,xT )∼P (ℓ(x2,Wo hT ) | x1 = xT = 1,x2, ...,xT−1 ̸= 0), (9)

where ℓ is the cross-entropy loss, and Wo is the output matrix. Since the output matrix is chosen to212

be Wo = [−I, I], we are interested in the quantity ht,k+|V | − ht,k for all k < |V | (which produces213

the output yt,k),214

ht,k+|V | − ht,k =

t∑
i=0

(W∆k+|V |,xi−1
+W∆k+|V |,xi+|V |)1xi−1=k+|V |∨xi+|V |=k+|V |

−
n∑

i=0

(W∆k,xi−1
+W∆k,xi+|V |)1xi−1=k∨xi+|V |=k

. (10)

1The original Mamba proposes to compute ∆t = softplus(W∆xt) ; we omit the softplus nonlinearity for
simplicity

9



This can be simplified to the following:215

ht,k+|V | − ht,k =

t∑
i=0

(W∆k+|V |,xi−1
+W∆k+|V |,xi+|V |)1xi=k

−
n∑

i=0

(W∆k,xi−1
+W∆k,xi+|V |)1xi−1=k

(11)

To simplify notation, we write zn,k = ht,k+|V | − ht,k.216

The gradient of the loss with respect to W∆ is given by217

∂ℓ

∂W∆i,j

=

|V |∑
k=1

∂ℓ

∂zT,k

∂zT,k

∂W∆i,j

(12)

From 11, we have218

∂ℓ

∂W∆i,j

=


∂ℓ

∂zT,i

∂zT,i

∂W∆i,j
if i ≤ |V |

∂ℓ
∂zT,i−|V |

∂zT,i−|V |
∂W∆i,j

if i > |V |
(13)

because all derivative are equals to 0 when k ̸= i. We can then distinguish 4 cases:219

• Either i ≤ |V | and j ≤ |V |. Then220

∂zT,i

∂W∆i,j

= −
T∑
l=0

1xl−1=j1xl−1=i (14)

• Either i ≤ |V | and j > |V |. Then221

∂zT,i

∂W∆i,j

= −
T∑
l=0

1j=xl+|V |1xl−1=i (15)

• Either i > |V | and j ≤ |V |. Then222

∂zT,i−|V |

∂W∆i,j

=

T∑
l=0

1xl−1=j1xl=i (16)

• Either i > |V | and j > |V |. Then223

∂zT,i−|V |

∂W∆i,j

=

T∑
l=0

1xl+|V |=j1xl=i (17)

Furthermore,224

∂ℓ

∂zT,i
=

−1 +
ezT,i∑|V |

m=1 ezT,m
if i = x1

ezT,i∑|V |
m=1 ezT,m

otherwise
(18)

At initialization, zT = 0 so225

∂ℓ

∂zT,i
=

{
−1 + 1

|V | if i = x1

1
|V | otherwise

(19)

So we end up with226
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∂ℓ

∂W∆i,j

=



−(V−1)
V · (−

∑T
l=0 1xl−1=j1xl−1=i) if i = x1, j ≤ |V |

1
|V | · (−

∑T
l=0 1xl−1=j1xl−1=i) if i ≤ |V |, i ̸= x1, j ≤ |V |

−(V−1)
V ·

∑T
l=0 1xl−1=j1xl=i if i = x1 + |V |, j ≤ |V |

1
|V | ·

∑T
l=0 1xl−1=j1xl=i if i > |V |, i ̸= x1 + |V |, j ≤ |V |

−(V−1)
V · (−

∑T
l=0 1j=xl+|V |1xl−1=i) if i = x1, j > |V |

1
|V | · (−

∑T
l=0 1j=xl+|V |1xl−1=i) if i ≤ |V |, i ̸= x1, j > |V |

−(V−1)
V ·

∑T
l=0 1xl+|V |=j1xl=i if i = x1 + |V |, j > |V |

1
|V | ·

∑T
l=0 1xl+|V |=j1xl=i if i > |V |, i ̸= x1 = |V |, j > |V |

(20)

Then227

∂ℓ

∂W∆i,j

= E(x0,...,xT )∼P (
∂ℓ

∂W∆i,j

|x0 = xT = 0,x1, ...,xT−1 ̸= 0) (21)

=


−1
n if i = 0
2
n if i = |V |
≈ n

|V |2 −
1

|V | if i < |V |, i ̸= 0

≈ −n
|V |2 + 1

|V | if i > |V |

(22)

So in the case |V | ≫ T , the first gradient step will mostly modify the rows 0 and |V | in W∆, aligning228

it with the key embedding vector while being orthogonal to the other non-key vectors. This explains229

our observation in Sec. 3 on how Mamba learns to solve the task via using the writing mechanism.230
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