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Abstract
Together with the improvements in state-of-the-art accuracies of
various tasks, deep learning models are getting significantly larger.
However, it is extremely difficult to implement these large models
because limitedGPUmemorymakes it impossible to fit largemodels
into a single GPU or even a GPU server. Besides, it is highly neces-
sary to reduce the training time for large models. Previous meth-
ods like Megatron-LM implemented a 1-Dimensional distributed
method to use GPUs to speed up the training. However, these meth-
ods have a high communication overhead and a low scaling effi-
ciency on large-scale clusters. To solve these problems, we propose
Tesseract, highly scalable tensor parallelism with a novel design.
It increases efficiency by reducing communication overhead and
lowers the memory required for each GPU. By introducing the
novel dimension into tensor parallelism, Tesseract greatly increases
the memory capacity of tensor parallelism. Concretely, this new
dimension furthermore increases the degree of tensor parallelism.
Compared to previous 1-D and 2-D methods, Tesseract manages to
reduce the communication cost on each layer, resulting in speedups
of 1.38x and 1.53x respectively with strong scaling. In weak scaling
experiments, Tesseract achieves a maximum of 4.0/1.7 times infer-
ence speedup and 3.4/1.7 times throughput improvement compared
to 1-D/2-D methods, respectively. By introducing Tesseract, we
offer a more efficient and scalable way to implement large deep
learning models with limited GPU resources.
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1 Introduction
The size of Neural Network models [2, 5, 14, 15, 21] is growing at a
very high speed. However, the processor’s performance does not
have a similar improvement. Thus, we need to scale the training to
multiple processors or even multiple servers.

To alleviate the poor generalization performance resulting from
large batches, researchers proposed efficient optimizers like LAMB
[26] and LARS [25].

Data parallelism does a good job of speeding up the training
[1, 7, 10, 11, 23, 24, 27]. However, in a situation where the memory
of a single device can not host the whole model, only using data
parallelism would lead to a failure. Activation checkpointing [4]
alleviated the memory constraints by recomputing. Mixed precision
training [12] reduced both the memory overhead and computation
cost. ZeRO-infinity [16] used CPU memory and NVMe to extend
the GPU memory while achieving decent throughput by largely
overlapping computation and communication. Yet another direction
is model parallelism. GPipe [9] and PipeDream [13] split the model
vertically. Each node hosts a partition of the whole model, takes
input from the previous node, and sends the output to the next
node.

These techniques are orthogonal to our method in this paper.
Another option is to partition the model by the operator, or hori-
zontally. Megatron-LM [18] introduced a 1-Dimensional distributed
method to speed up the training process of huge models. Optimus
[22] leveraged SUMMA [20] and took a step further to improve
both the memory and communication efficiency. By using these
methods, language models with a growing amount of parameters
could be trained on separated processors whose memory could
not afford the training procedure independently. However, due to
the property of SUMMA, the communication within a [𝑞, 𝑞] shape
processor array takes up to 2𝑞3 times of the communication among
its column and row. Together with the increment of 𝑞, the incre-
ment of communication between GPUs will also lead to a reduction
of SUMMA’s efficiency. Due to this consideration, we design and
implement a novel method that could significantly reduce the com-
munication overhead. From our experiments, we find that with the
same number of processors and input tensors, our method would
have less communication between GPUs on each layer and thus
increase overall efficiency.

2.5DMatrixMultiplicationmethod [19] was proposed to improve
the efficiency of Cannon’s algorithm [3]. Yet with many restrictions
of Cannon’s Algorithm and a huge amount of shift operations, both
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the 2.5D Matrix Multiplication method and Cannon’s Algorithm
are not suitable, thus we need to invent a novel method to enhance
the performance. According to our calculation, with a total amount
of 64 processors, the communication needed for Cannon’s Algo-
rithm is 31.5 times the communication needed for Tesseract, and
the communication needed for the 2.5D algorithm is 3.75 times the
communication needed for Tesseract. Inspired by both SUMMA and
2.5-Dimensional Matrix Multiplication, we introduce Tesseract for
language models to overcome the abundance of unnecessary com-
munication resulting from the increasing size of language models
and increase the efficiency of tensor parallelism.

In this paper, we implement Transformer with Tesseract to exam-
ine its performance. In order to make Tesseract satisfy the demands
of huge models, we develop the parallelization scheme for matrix-
multiplication sections and non-matrix-multiplication sections sep-
arately. The transformer contains two main matrix-multiplication
sections, a feed forward section, and a multi-head attention section.
For feed forward layers, we apply Tesseract algorithms to get the
output and then store the parameter matrices inside each processor
for the next computation to avoid waste of communication. To
implement the distributed method for multi-head attention layers,
we compute corresponding 𝑄,𝐾,𝑉 matrices and then attention
output respectively. The attention would be computed separately
on each processor, and to obtain 𝑄,𝐾,𝑉 matrices the algorithm
will perform matrix multiplication among the whole layer. For
non-matrix-multiplication sections like layer normalization, the
algorithm will broadcast the matrix along the column, allowing the
distributed processors to work concurrently. Tesseract manages to
reduce the communication cost on each layer, which could get a 2.1
times speedup according to our weak scaling result between 3-D
[4, 4, 4] arrangement and 2-D [8, 8, 1] arrangement. Compared to
other parallelization structures, Tesseract reached a 1.4x speedup
and a 1.5 times speedup accordingly compared to Megatron-LM
[18] and Optimus [22] in a strong scaling setting, which proves the
efficiency of our parallelization strategy. Meanwhile, with a weak
scaling setting, Tesseract achieves a maximum of 4.0/1.7 times infer-
ence speedup and 3.4/1.7 times throughput improvement compared
to 1-D/2-D methods, respectively. Also, due to the price and build
issues, GPUs are not always in the arrangement people wanted,
Tesseract offers a flexible depth and dimension which could help
users use their GPUs in the most efficient way.

2 Preliminary and related work
2.1 Cannon’s Algorithm
Cannon’s Algorithm [3] introduced by Cannon in 1969 is widely
used for matrix multiplication on distributed systems. It could be
described as Figure 1. Cannon’s algorithm applied the primary-
and-secondary model and the divide-and-conquer model. Its zeroth
processor will arrange the I/O for all other processors. It controls
broadcast and reduce procedures. In another perspective, it divides
the multiplication of two input matrices into small pieces, after the
calculation on each processor, the final result will be the combina-
tion of results from all processors. Cannon’s algorithm not only
parallelizes the matrix multiplication but also reduces the storage
needed for each processor. With number of arithmetic operations
per process equals to 𝑛3

𝑝 , memory size per process scales with

Ω( 𝑛2

𝑝 ), where the matrix size is [𝑛, 𝑛] and the processor amount is
𝑝 . The lower bound on communication time and estimated lower
bound of latency are:

𝑊 = Ω( number of arithmetic operations√︁
memory size

) = Ω( 𝑛
2

√
𝑝
). (1)

𝑆 = Ω( number of arithmetic operations
(memory size)3/2

) = Ω(√𝑝) . (2)

The idea of Cannon’s algorithm is described in Algorithm 1. Assume
there are 𝑝 = 𝑞2 processors in a [𝑞, 𝑞] shape: Firstly, shift matrix𝐴’s
[𝑞, 𝑞] partitioned matrices left by their corresponding row number.
Secondly, shift matrix 𝐵’s [𝑞, 𝑞] partitioned matrices up by their
corresponding column number. After these two steps, the algorithm
will start to compute the matrices and get the corresponding 𝐶𝑖 𝑗 .
Then all partitioned matrices 𝐴𝑖 𝑗 will be shifted left by one, all
partitioned matrices 𝐴𝑖 𝑗 will be shifted up by one, and add the
calculated 𝐶𝑖 𝑗 to the previous result, repeat this procedure by 𝑛
times. Output 𝐶 by combining all 𝐶𝑖 𝑗 accordingly.

Algorithm 1: 2-D matrix multiplication Cannon’s Algo-
rithm (𝑝 processors in a [𝑞, 𝑞] shape)

Input:Matrix 𝐴 with size [𝑎, 𝑏]; Matrix 𝐵 with size [𝑏, 𝑐]
Output: Matrix 𝐶 = 𝐴 ∗ 𝐵 with size [𝑎, 𝑐]
split 𝐴, 𝐵 in to 𝑝 parts to match the processor shape;
store 𝐴𝑖 𝑗 , 𝐵𝑖 𝑗 into 𝑝𝑖 𝑗 accordingly;
store 𝐶𝑖 𝑗 = 0 into 𝑝𝑖 𝑗 accordingly;
for 𝑖, 𝑗 in {0, ..., 𝑞 − 1} do

shift 𝐴𝑖 𝑗 to 𝑝𝑖 ( 𝑗−𝑖 ) ;
shift 𝐵𝑖 𝑗 to 𝑝 (𝑖− 𝑗 ) 𝑗 ;
for 𝑡 = 0 to 𝑞 − 1 do
𝐶𝑖 𝑗 = 𝐶𝑖 𝑗 +𝐴𝑖 𝑗 ∗ 𝐵𝑖 𝑗 ;
shift the submatrix 𝐴 owned by 𝑝𝑖 𝑗 to 𝑝𝑖 ( 𝑗−1) ;
shift the submatrix 𝐵 owned by 𝑝𝑖 𝑗 to 𝑝 (𝑖−1) 𝑗 ;

end for
end for
combine all 𝐶𝑖 𝑗 accordingly to 𝐶;
return 𝐶

2.2 SUMMA
The Scalable Universal Matrix Multiplication Algorithm (SUMMA)
[20] provides a more effective and efficient algorithm for 2-D matrix
multiplication. For SUMMA, Algorithm 2 is the pseudo-code for
𝐶 = 𝐴 ∗ 𝐵. The corresponding differentiation for 𝐴′, 𝐵′ can be
calculated as:

𝐴′ = 𝐶′𝐵𝑇 , 𝐵′ = 𝐴𝑇𝐶′ (3)

By arranging the 𝑝 processors into a 𝑞 ∗ 𝑞 mesh, the matrices 𝐴
and 𝐵 are also partitioned to 𝑝 parts accordingly. After the partitions
of 𝐴 and 𝐵 are sent to the corresponding processors, the SUMMA
algorithm allows each processor to calculate in parallel. At the end
of the computation, the algorithm returns the resulting matrix 𝐶 ,
distributed among the processors, in the same manner as 𝐴 and 𝐵
are partitioned.
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(a) Initialization for matrix 𝐴 and matrix 𝐵 (b) Shift of matrix 𝐴 and matrix 𝐵 after initialization

Figure 1: For Cannon’s Algorithm, it requires a initialization where partition 𝐴𝑖, 𝑗 needs to shift left by 𝑖, partition 𝐵𝑖, 𝑗 needs to
shift up by 𝑗 , as shown in (a). After initialization, Cannon’s Algorithm will compute locally, and shift all 𝐴𝑖, 𝑗 left by 1, all 𝐵𝑖, 𝑗 up
by 1, as shown in (b). In this figure, we have 𝐶𝑖, 𝑗 = 𝐴𝑖,0𝐵0, 𝑗 +𝐴𝑖,1𝐵1, 𝑗 +𝐴𝑖,2𝐵2, 𝑗

Algorithm 2: 2-D matrix multiplication SUMMA (𝑝 pro-
cessors in a [𝑞, 𝑞] shape)

Input:Matrix 𝐴 with size [𝑎, 𝑏]; Matrix 𝐵 with size [𝑏, 𝑐]
Output: Matrix 𝐶 = 𝐴 ∗ 𝐵 with size [𝑎, 𝑐]
split 𝐴, 𝐵 in to 𝑝 parts to match the processor shape;
store 𝐴𝑖 𝑗 , 𝐵𝑖 𝑗 into 𝑝𝑖 𝑗 accordingly;
store 𝐶𝑖 𝑗 = 0 into 𝑝𝑖 𝑗 accordingly;
for 𝑖, 𝑗 in {0, ..., 𝑞 − 1} do

for 𝑡 = 0 to 𝑞 − 1 do
broadcast 𝐴𝑖𝑡 in 𝑝𝑖𝑡 to 𝑝𝑖 𝑗 ;
broadcast 𝐵𝑡 𝑗 in 𝑝𝑡 𝑗 to 𝑝𝑖 𝑗 ;
𝐶𝑖 𝑗 = 𝐶𝑖 𝑗 +𝐴𝑖𝑡 ∗ 𝐵𝑡 𝑗 ;

end for
end for
combine all 𝐶𝑖 𝑗 accordingly to 𝐶;
return 𝐶

2.3 2.5-Dimensional Matrix Multiplication
In 2011, E Solomonik et al. introduced a 2.5-D matrix multiplication
method [19] to reduce communication for Cannon’s Algorithm.
This method is named 2.5-D because it has special cases of both
2-D and 3-D matrix multiplication. It uses multiple processors with
a shape of 𝑞 ∗ 𝑞 ∗ 𝑑 where 𝑝 represents the number of processors,
𝑑 represents the depth of the processor group, and 𝑝 represents
width and length. Compared with 2-D Cannon’s Algorithm [3]
and PDGEMM by ScaLAPACK, the 2.5-D algorithm could speed up
the calculation with less communication cost. The lower bound on
communication time is

𝑊 = Ω( number of arithmetic operations√︁
memory size

) = Ω( 𝑛
2√︁
𝑑𝑝

) (4)

The estimated lower bound of latency is

𝑆 = Ω( number of arithmetic operations
(memory size)3/2

) = Ω( 𝑝
1/2

𝑑3/2
) (5)

Where number of arithmetic operations per process equals to 𝑛3

𝑝 ,

memory size per process scales with Ω( 𝑑𝑛2

𝑝 ), where the matrix size
is [𝑛, 𝑛]. In special cases like 𝑑 = 1, the 2.5-D algorithm degenerates
to Cannon’s algorithm; when 𝑑 = 𝑝1/3, it becomes a 3-D algorithm.

2.4 Transformer
Transformer [21] was published by Google in 2017. Before that, nat-
ural language processing (NLP) was dominated by recurrent neural
networks like LSTM. Due to the sequential nature of these models,
it was difficult to train with large batch sizes. Transformer broke
the serial dependency and allowed each hidden vector to attend to
any preceding ones. In this manner, the training of Transformer
models could be elegantly formulated into basic matrix-matrix mul-
tiplications, thus becoming scalable.

The original Transformer consists of an encoder and a decoder.
Encoder and decoder are again composed of multi-head atten-
tion and feed forward layers. In Megatron-LM, the architecture
is adapted in a manner that the whole model consists of multiple
identical Transformer layers. Each Transformer layer consists of a
self-attention module and a multi-layer perceptron (MLP) module.
MLP is simply two linear layers with an activation function in the
middle, the first projecting the hidden vector to a higher dimension
while the second projecting it back to the original hidden size. The
self-attention module first uses a linear layer to project the original
hidden vector into queries (𝑄), keys (𝐾 ), and values (𝑉 ). Multi-head
self-attention is calculated as:

𝐴 = softmax(𝑄𝐾
𝑇

√
𝑑

)𝑉 . (6)

The 𝐴’s are then rearranged back to the hidden size and undergo
another linear layer to produce the output of the self-attention
module. This design makes the self-attention module and MLP each
have 2 linear layers, facilitating the row-column partitioning.

2.5 Megatron-LM
Introduced by Nvidia in 2019, Megatron-LM [18] proposed a tensor
parallel structure for Transformer-like deep learning models we
refer to as 1-D solution on tensor parallelism. In this particular
setting, matrices involved in matrix multiplication will be split in
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Figure 2: The tensor split method used in Megatron-LM, two different parameter matrices are split using different methods
according to their columns and rows.

one dimension and then conduct multiplication processes as shown
in Figure 2. As shown in the Figure, the input matrix with a shape of
[𝑎, 𝑏] will conduct two different matrix multiplication in two differ-
ent processes. During the matrix multiplication process, there are
two parameter matrices with shapes [𝑏, 2𝑐] and [2𝑐, 𝑏] respectively.
If no tensor parallelism is involved in the process, the input matrix
[𝑎, 𝑏] will conduct matrix multiplication with these two matrices
accordingly and result in an output matrix with a shape of [𝑎, 𝑏].
In the setting of Megatron, the two parameter matrices will be split
according to their column and row accordingly, producing matrices
with shapes of [𝑏, 𝑐] and [𝑐, 𝑏]. The input matrix in two processes
will conduct multiplication with the split parameter matrices and
result in two different matrices with the shape of [𝑎, 𝑏]. Finally,
these two matrices will add together to get the final output matrix
with the same shape as the input matrix [𝑎, 𝑏]. As the first to intro-
duce tensor parallelism, Megatron-LM could further speed up the
process of model training for Transformer-like huge deep learning
models.

3 Tesseract
3.1 Tesseract
With the high growth rate of parameter size in state-of-the-art neu-
ral network models and a much lower growth rate of fast memory,
it is necessary to develop a tensor parallelism scheme to allocate
the memory needed for neural network models into each processor.
Under this circumstance, we introduce Tesseract, a novel tensor
parallelism method, to reduce the communication overhead and
memory cost. Specifically, we design a novel tensor partitioning
strategy with a unique arrangement of processors, it could be de-
scribed as a highly scalable tensor parallelism method with a new
dimension. To avoid misunderstanding, we define the following
notations:

• Tesseract dimension: 𝑞

• Tesseract depth: 𝑑

• number of processors: 𝑝

• batch size: 𝑏

• hidden size: ℎ

• sequence length: 𝑠

• number of Transformer layers: 𝑁

• memory:𝑀

Where 𝑝 = 𝑑𝑞2 and 1 ⩽ 𝑑 ⩽ 𝑞, 𝑑 = 1 makes Tesseract a
2-D algorithm like SUMMA, and 𝑑 = 𝑞 makes Tesseract a 3-D
algorithm. The 𝑝 processors will be arranged in a shape of [𝑞, 𝑞, 𝑑]
as shown in Figure 3. Tesseract splits input matrix 𝐴 with a shape
of [𝑎, 𝑏] and matrix 𝐵 with a shape of [𝑏, 𝑐] into partitions to match
the arrangement of 𝑝 processors. After the calculation, Tesseract
outputs the matrix 𝐶 with a shape of [𝑎, 𝑐] combined from all 𝐶𝑖 𝑗𝑘
on different processors. The procedure of our matrix multiplication
is described in Algorithm 3. The method of how matrices will
be split and combined is shown in Figure 4. After calculation of
the partitioned matrix multiplication between size [𝑎/𝑞𝑑,𝑏/𝑞] and
[𝑏/𝑞, 𝑐/𝑞], the respective result matrices will be in shape [𝑎/𝑞𝑑, 𝑐/𝑞]
which are stored in respective processors just like input matrix 𝐴,
thus the algorithm could use broadcast and reduce in the same way
for matrices 𝐴 and 𝐶 .

For calculation of 𝐶 = 𝐴 ∗ 𝐵𝑇 , we use a algorithm which broad-
casts 𝐵𝑡 𝑗𝑘 within its column and computes𝐶𝑖 𝑗𝑘 = 𝐴𝑖 𝑗𝑘 ∗𝐵𝑇𝑡 𝑗𝑘 , then
the algorithm reduces the 𝐶𝑖 𝑗𝑘 within its column to 𝐶𝑖𝑡𝑘 . Similar
for function 𝐶 = 𝐴𝑇 ∗ 𝐵, the algorithm broadcasts 𝐵𝑖𝑡𝑘 within its
row, computes 𝐶𝑖 𝑗𝑘 = 𝐴𝑇

𝑖𝑡𝑘
∗ 𝐵𝑡 𝑗𝑘 , then reduces the 𝐶𝑖 𝑗𝑘 within its

column to 𝐶𝑡 𝑗𝑘 .
For computation of matrices’ gradients, the function 3 in section

2.2 is applied in Tesseract. For matrix 𝐴,𝐶 , the 𝑑𝑞2 partitioned ma-
trices will return 𝑑𝑞2 partitioned gradient matrices, but for matrix
𝐵, the 𝑞2 partitioned matrices will return 𝑑𝑞2 partitioned gradient
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matrices, in order to get a correct shape of gradients, our algo-
rithm applied 𝑎𝑙𝑙_𝑟𝑒𝑑𝑢𝑐𝑒 function after the computation of 𝐵′ on
processors with same row and column but different depth.

According to Figure 4, each processor stores a partition of ma-
trix 𝐴, 𝐵,𝐶 , and their respective sizes are [ 𝑎

𝑑∗𝑞 ,
𝑏
𝑞 ], [

𝑏
𝑞 ,

𝑐
𝑞 ], [

𝑎
𝑑∗𝑞 ,

𝑐
𝑞 ].

Thus we could compute the memory needed for each processor to
perform a single matrix multiplication operation:

𝑀𝑇𝑒𝑠𝑠𝑒𝑟𝑎𝑐𝑡 =
𝑎

𝑑 ∗ 𝑞 ∗ 𝑏
𝑞
+ 𝑏
𝑞
∗ 𝑐
𝑞
+ 𝑎

𝑑 ∗ 𝑞 ∗ 𝑐
𝑞

(7)

=
𝑎 ∗ 𝑏
𝑝

+ 𝑏 ∗ 𝑐 ∗ 𝑑
𝑝

+ 𝑎 ∗ 𝑐
𝑝

(8)

Compared to Megatron-LM, it operates matrix multiplication with
the size of matrices in [𝑎, 𝑏], [𝑏, 𝑐𝑝 ], [𝑎,

𝑐
𝑝 ], and thememory required

for each processor is:

𝑀𝑀𝑒𝑔𝑎𝑡𝑟𝑜𝑛−𝐿𝑀 = 𝑎 ∗ 𝑏 + 𝑏 ∗ 𝑐
𝑝
+ 𝑎 ∗ 𝑐

𝑝
(9)

= 𝑎 ∗ 𝑏 + 𝑏 ∗ 𝑐
𝑝

+ 𝑎 ∗ 𝑐
𝑝

(10)

The comparison between 𝑀𝑇𝑒𝑠𝑠𝑒𝑟𝑎𝑐𝑡 and 𝑀𝑀𝑒𝑔𝑎𝑡𝑟𝑜𝑛−𝐿𝑀 is clear
that same memory is needed for matrix 𝐶 , and Megatron-LM re-
quires 𝑝 times more memory to store matrix 𝐴. Although Tesseract
spends more memory on matrix 𝐵, it is negligible since 𝑝 = 𝑑 ∗𝑞2 in
Tesseract. Thus Tesseract allocates less memory to each processor
than its predecessor.

In Figure 3, the darkened part represents a single layer in Tesser-
act, each layer consists of 𝑞 ∗ 𝑞 processors, and 𝑑 numbers of layers
construct the Tesseract structure. For each layer, it performs matrix
multiplication individually, when comes to the need for synchroniz-
ing parameters, Tesseract will execute operations across the layers.
Tesseract could be described as a further parallelized tensor paral-
lelism with each layer’s ability to perform matrix-multiplication
operations and non-matrix-multiplication operations separately.

In this arrangement, processors could work on 𝑑 SUMMA-like
matrix multiplications independently, thus reaching the target to
reduce the computation time used. Compared to the 2.5-D matrix
multiplication mentioned in section 2.3, our algorithm uses less
memory on each processor and fewer transmissions between pro-
cessors. Compared to the 2-D SUMMA algorithm, our work could
make the matrices with different depths conduct matrix multiplica-
tion concurrently and relatively independently (except for neces-
sary communication for parameter matrices), which could reduce
the required time for matrix multiplication with a huge amount of
data. As the lower bound of communication time and latency men-
tioned in 2.5-D algorithm,𝑊 = Ω( 𝑛2√

𝑑𝑝
), 𝑆 = Ω( 𝑝

1/2

𝑑3/2 ), when 𝑑 > 1,

we have lower communication time and latency compared to 2-D
algorithm. We could get the conclusion that with the same amount
of processors, greater 𝑑 could lead to less communication and lower
latency. In a special case 𝑑 = 𝑝1/3, we have𝑊 = Ω( 𝑛2

𝑝2/3 ), 𝑆 = Ω(1),
where the Tesseract could yield best efficiency.

Among all the parallelization structures, it is clear that the ef-
ficiency is negatively correlated with the number of processors,
and positively correlated with the problem size assigned to each
processor. We use isoefficiency function [8] to scale the efficiency
of Tesseract. The parallel execution time of Tesseract is represented

as
𝑇𝑝𝑎𝑟𝑎 =𝑊 /𝑝 +𝑇𝑐𝑜𝑚𝑚, (11)

, where𝑊 represents the serial execution time, 𝑝 represents the
count of processes, 𝑇𝑐𝑜𝑚𝑚 represents the time needed for commu-
nication. So the efficiency could be represented as

Efficiency =
𝑊

𝑇𝑝𝑎𝑟𝑎𝑝
=

1

1 + 𝑇𝑐𝑜𝑚𝑚𝑝

𝑊

. (12)

ForMegatron-LM, its𝑇𝑐𝑜𝑚𝑚 consists all-reduce operations, which
makes its communication 2𝛽 (𝑝−1)𝑏𝑠ℎ

𝑝 , and its isoefficiency function
𝑊 ∼ 𝑝3, where 𝛽 denotes time to transfer a scalar. For Optimus,
its 𝑇𝑐𝑜𝑚𝑚 consists broadcast and reduce operations, which makes
its communication time 2𝛽𝑏𝑠ℎ2𝑞 log𝑝

𝑝 , and its isoefficiency function
𝑊 ∼ (√𝑝 log𝑝)3. For Tesseract, its 𝑇𝑐𝑜𝑚𝑚 consists broadcast and
reduce operations as well.

Tesseract reduces communication between GPU significantly as
well, which is a huge drawback for Cannon’s Algorithm and 2.5D
matrix multiplication. With GPU amount 𝑝 , Canon’s Algorithm
requires 2 ∗ 𝑝

3
2 − 2 ∗ 𝑝

1
2 times of information transfer between

GPU for a single matrix multiplication operation, 2.5D algorithm
requires 2∗𝑝−2∗𝑝

1
3 amount of transmission. For Tesseract, however,

when 𝑑 = 𝑞, requires only 2 ∗ 𝑝
2
3 times transmission between GPU.

In comparison, Tesseract requires less transmission with 𝑞 > 2
compared to Cannon’s Algorithm, 𝑞 > 4 compared to the 2.5D
algorithm. In the real situation, it usually requires more than four
GPUs to parallelize the huge parameter, thus Tesseract requires less
transmission between GPUs when training models.

Figure 3: 𝑝 = 𝑑𝑞2 processors in Tesseract arrangement of
shape [𝑞, 𝑞, 𝑑]

3.2 Transformer on Tesseract
In our work, we apply our Tesseract with Transformer as an ex-
ample. There are encoders and decoders in Transformer, where
the encoder consists of a multi-head attention layer and a feed
forward layer (fully connected layer) with residual connection, and
the decoder consists of two multi-head attention layers and a feed
forward layer with residual connection. The main task for our work
is to solve the multi-head attention layer and the feed forward layer
since the residual connection is just to add vectors together and
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(a) Partition of matrix 𝐴 (b) Partition of matrix 𝐵

(c) Combination of matrix𝐶

Figure 4: Method to split input matrices 𝐴, 𝐵, and method to combine output matrix 𝐶 assuming processors’ shape [𝑞 = 2, 𝑞 =

2, 𝑑 = 2]. The blue region representing a layer among the processors with a shape of [𝑞 = 2, 𝑞 = 2]. (a) Matrix 𝐴 with shape [𝑎, 𝑏]
will be split into 𝑑𝑞2 partitioned matrices with shape of [𝑎/𝑞𝑑,𝑏/𝑞], [𝑞, 𝑞] partitioned matrices will be stored in each layer. (b)
Matrix 𝐵 with shape [𝑏, 𝑐] will be split into 𝑞2 partitioned matrices with shape of [𝑏/𝑞, 𝑐/𝑞], [𝑞, 𝑞] partitioned matrices will be
stored in each layer. (c) 𝑑𝑞2 partitioned matrices with shape of [𝑎/𝑞𝑑,𝑏/𝑞] will be combined into matrix 𝐶 with shape [𝑎, 𝑏].

Algorithm 3: Tesseract matrix multiplication (𝑝 processors
in a [𝑞, 𝑞, 𝑑] shape)

Input:Matrix 𝐴 with size [𝑎, 𝑏]; Matrix 𝐵 with size [𝑏, 𝑐]
Output: Matrix 𝐶 = 𝐴 ∗ 𝐵 with size [𝑎, 𝑐]
split 𝐴, 𝐵 into partitioned matrices with shape of [ 𝑎

𝑞𝑑
, 𝑏𝑞 ] and

[𝑏𝑞 ,
𝑐
𝑞 ] accordingly;

store 𝐴𝑖 𝑗 , 𝐵𝑖 𝑗 into 𝑝𝑖 𝑗 accordingly;
store 𝐶𝑖 𝑗 = 0 into 𝑝𝑖 𝑗 accordingly;
for 𝑖, 𝑗 in {0, ..., 𝑞 − 1}, 𝑘 in {0, ..., 𝑑 − 1} do

store 𝐵𝑖 𝑗 into 𝑝𝑖 𝑗𝑘 ;
ℎ = 𝑖 + 𝑘 ∗ 𝑞;
store 𝐴ℎ𝑗 into 𝑝𝑖 𝑗𝑘 ;
𝐶ℎ𝑗 = 0;
store 𝐶ℎ𝑗 into 𝑝𝑖 𝑗𝑘 ;

end for
for 𝑖, 𝑗 in {0, ..., 𝑞 − 1}, 𝑘 in {0, ..., 𝑑 − 1} do

for 𝑡 in {0, ..., 𝑞 − 1} do
broadcast 𝐴𝑖𝑡𝑘 in 𝑝𝑖𝑡𝑘 to 𝑝𝑖 𝑗𝑘 ;
broadcast 𝐵𝑡 𝑗𝑘 in 𝑝𝑡 𝑗𝑘 to 𝑝𝑖 𝑗𝑘 ;
𝐶𝑖 𝑗𝑘 = 𝐶𝑖 𝑗𝑘 +𝐴𝑖𝑡𝑘 ∗ 𝐵𝑣𝑡𝑘 ;

end for
end for
combine all 𝐶𝑖 𝑗 accordingly to 𝐶;
return 𝐶

apply a normalization function. As shown in Figure 5 we present
both the multi-head attention layer and feed forward layer. In our

work, there are two different types of operations, defined as ma-
trix multiplication related and non-matrix-multiplication related,
and they are treated with separated strategies to get the highest
efficiency.

3.2.1 Matrix multiplication procedure

Feed forward layer Feed forward layer could be understood as
a simple multi-layer perceptron layer, and it will take an input
matrix with a shape of [𝑏, 𝑠, ℎ] by default, multiply two parts of
parameters in the shapes of [ℎ, 4ℎ] and [4ℎ,ℎ] accordingly, and
the output of feed forward layer would also be in the shape of
[𝑏, 𝑠, ℎ]. In the Transformer, the purpose of using feed forward
layer is to process the output matrix from one multi-head attention
section to fit the next attention section as an input matrix. With
the property of no communication with other input tokens nor
inference issues, feed forward layer could be parallelized and thus
improve the performance.

In our work, we split the input matrix into partitioned matrices
with a shape of [𝑏/𝑑𝑞, 𝑠, ℎ/𝑞], and split the parameters into a shape
of [ℎ/𝑞, 4ℎ/𝑞] and a shape of [4ℎ/𝑞, ℎ/𝑞] respectively. As shown
in Figure 5a, our work applied Tesseract to parallelize the matrix
multiplication. As the output, the parallelized feed forward layer
will return partitioned matrices with a shape of [𝑏/𝑑𝑞, 𝑠, ℎ/𝑞] just
as the input partitioned matrices.

Multi-head attention layer In this attention section, the input
matrix with a shape of [𝑏, 𝑠, ℎ] multiplies a [ℎ, 3ℎ] weight matrix
and get a𝑄𝐾𝑉 matrix consisting of queries (𝑄), keys (𝐾 ) and values
(𝑉 ) in the shape of 3 ∗ [𝑏, 𝑠, ℎ]. Then the 𝑄,𝐾,𝑉 matrices will be
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(a) Feed forward

(b) Multi-head attention

Figure 5: Tesseract’s procedure on both feed forward layer and multi-head attention layer, in this example, we used 𝑞 = 2, 𝑑 = 2
for presentation.

partitioned into 𝑛 attention heads, the result matrices of𝑄,𝐾,𝑉 will
be in shape [𝑠, ℎ/𝑛] for each sequence. Attention section gets an
attention score𝐴 in shape [𝑠, 𝑠] by performing𝑄 ∗𝐾𝑇 , then gets the
output of a single attention head by performing𝐴 ∗𝑉 . By gathering
all the output of attention heads, the output will be in the shape of
[𝑠, ℎ]. For all the sequences, the shape of the corresponding matrix
is [𝑏, 𝑠, ℎ], after the matrix multiplication with parameter matrix
in shape [ℎ,ℎ], the output shape will be [𝑏, 𝑠, ℎ], just like the input
shape. Similar to the feed forward section, with no communication
with other position’s tokens, the attention part is also parallelizable.

The procedure of our parallelized multi-head attention layer
is shown in Figure 5b. In our implementation of the parallelized
attention layer, we partitioned the input matrix into [𝑏/𝑑𝑞, 𝑠, ℎ/𝑞]
matrices, with the partitioned [ℎ/𝑞, 3ℎ/𝑞] parameter matrices, the
resulted𝑄,𝐾,𝑉 matrices will be in a shape of 3∗[𝑏/𝑑𝑞, 𝑠, ℎ/𝑞]. There
will be 𝑛/𝑞 attention heads on each processor, and the received
𝑄,𝐾,𝑉 matrix for each attention head has a shape of [𝑠, ℎ/𝑛]. After
the same procedure between 𝑄,𝐾,𝑉 matrices, the output matrices
will be combined together in the shape of [𝑏/𝑑𝑞, 𝑠, ℎ/𝑞]. After the
matrix multiplication with [ℎ/𝑞, ℎ/𝑞], the distributed processors
will combine all the [𝑏/𝑑𝑞, 𝑠, ℎ/𝑞] matrices into the output [𝑏, 𝑠, ℎ]
matrix.

3.2.2 Other procedure Besides feed forward and attention sections,
there are sections in Transformer that are not suitable to apply
parallelized operation, for example, the residual connection includes
add and normalization operations. These kinds of sections will
conduct operations locally on individual GPUs. For the bias-add
operation, the matrices will be broadcast to each column for the

forward process, and the backward process drives the gradients to
be reduced back to the processor on row 0. As mentioned above,
layer normalization is used in each residual connection, for better
presentation, the result of layernorm function could be described
as:

𝑋 =
𝑋 − 𝐸 [𝑋 ]√︁
𝑉𝑎𝑟 [𝑋 ] + 𝜖

. (13)

To compute the corresponding 𝐸 [𝑋 ] = Σ𝑋𝑖

𝑛 ,
𝑉𝑎𝑟 [𝑋 ] = 𝐸 [𝑋 2] − 𝐸 [𝑋 ]2, the processors will compute 𝑋,𝑋 2 re-
spectively and then run 𝑎𝑙𝑙_𝑟𝑒𝑑𝑢𝑐𝑒 function on each row. For the
computation of gradient of 𝑋 , the function could be described as:

𝑋 ′ =

𝛿 𝐽

𝛿�̂�
−

(Σ�̂� 𝑗 ( 𝛿 𝐽

𝛿�̂�
) 𝑗 )�̂�+Σ( 𝛿 𝐽

𝛿�̂�
) 𝑗

𝑛√︁
𝑉𝑎𝑟 [𝑋 ] + 𝜖

, (14)

for calculation, the processor will use stored 𝑋,𝑋 2 and
1√

𝑉𝑎𝑟 [𝑋 ]+𝜖
, the calculation of will 𝑋𝑖 ( 𝛿 𝐽

𝛿�̂�
), 𝛿 𝐽

𝛿�̂�
take place similar

to 𝑋,𝑋 2. Due to the size of parameters, the communication loss in
this process is negligible compare to the matrix multiplication part.

3.3 Other models on Tesseract
As mentioned in 3.2, it is viable to implement Tesseract for mod-
els that is suitable for parallelization, for Tesseract is capable of
both matrix-multiplication and non-matrix-multiplication proce-
dures. With its adaptive solution on matrix multiplication, it could
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be used as the parallelization structure for many deep neural net-
works, for example, BERT[5], GPT-2[15]. With the ability to per-
form parallelized matrix multiplication and locally performed non-
multiplication functions, Tesseract is able to perform different pop-
ular operations for neural networks, for example, residual modules,
attention modules, and normalization modules.

Figure 6: Structure of GPUswhen applying Tesseract together
with pipeline parallelism and data parallelism. Blocks in the
same color represent GPUs in the same Tesseract module.

3.4 Compatibility with other model
parallelisms

Tesseract as a novel structure of tensor parallelism is capable to
implement existing data parallelism and pipeline parallelism as
well, to further enhance its performance. As shown in Fig 6, it
demonstrates the distribution of GPUs with the data parallel size
equals two, pipeline parallel size equals two, tesseract dimension
equals two, and tesseract depth equals two. The number of total
GPU involved will be 32 equals to data parallel size times pipeline
parallel size times tesseract depth times square of tesseract dimen-
sion, where tesseract depth times square of tesseract dimension is
tesseract size.

4 Experiment
Our experiments are conducted on the Meluxina server. On this
supercomputer, there are 200 GPU nodes with 4 NVIDIA A-100
GPUs per node. Our experiments are conducted with 1, 2, 4, 8,
and 16 nodes accordingly, and the number of GPUs ranging from
1 to 64, with settings: different Tesseract depths, fixed Tesseract
dimension; different Tesseract dimensions and depths, fixed model
parallel size. Strong scaling and weak scaling settings were applied
to this experiment. Besides, all Tesseract experiment results are
the averages of 20 times of the same experiments in this section.
We use randomly generated input matrices to check the algorithm
and Xavier initialized parameter matrices. After the generation of
matrices, we compute the matrix multiplication result and the result
using our Tesseract method respectively, to guarantee outputs are
the same. In this setting we could compare our Tesseract’s time

usage with that of other parallelized language models. In order to
support Tesseract, we set different experiments compared with well-
established 1-D parallelization structure Megatron-LM [18] and 2-D
parallelization Optimus [22] in respective settings. 1-D and 2-D
results are two strong baselines for Tesseract in our experiments.
For the data listed below, we conducted our own experiments with
the original codes of 1-D and 2-D acquired from GitHub.

For the interconnection between GPUs in our experiments,
NVLink with a speed of 200 GB/s is used for communication within
each node, and Infiniband with a speed of 200 Gbps is used for
communication between nodes. Since communication cost between
nodes is higher than communication within nodes, we arrange
our experiments mainly by setting the size [𝑞, 𝑞, 𝑑] where 𝑞2 is a
multiple of 4. We set our experiments as above because Tesseract
requires less communication between its 𝑑 layers.

In this part, 𝑝 represent the number of processors in each tensor
parallel group, and we mark the shape of different parallelism with
different representations:

• Tesseract shape: [𝑞, 𝑞, 𝑑]

• Tesseract size: 𝑝 = 𝑞2 ∗ 𝑑

• Megatron-LM shape: [𝑝]

• Megatron-LM size: 𝑝 = 𝑝

• Optimus shape: [𝑞, 𝑞]

• Optimus size: 𝑝 = 𝑞2

4.1 Strong scaling
In the strong scaling setting experiments, as shown in Table 1, we
fix the problem size. The batch size is set as 12, whereas in the
experiment with a Tesseract shape [4,4,4], the batch size is 16 since
the batch size needed to be divisible by the product of Tesseract
dimension and Tesseract depth 𝑑 ∗𝑞, and this change does not affect
the result significantly, if any, only making the result worse than
the actual result. The hidden size of the transformer is 3072 and the
number of attention heads in strong scaling experiments is fixed at
64, due to the limitation of memory on each processor.

From the results of the experiments, it manifests that with the
same Tesseract dimension, greater Tesseract depths will reduce the
forward/backward time per batch size, but not in inverse proportion
since the communication loss will also increase. Besides, from the
example between [4,4,4] and [8,8,1] arrangements, with the same
number of processors, greater Tesseract depths could lead to less
forward/backward time.

In the first situation, due to the increment of communication cost,
double the depth could not result in a half forward/backward time
as expected. While the outcome of the experiment in strong scaling
between [4,4,4] arrangement and [8,8,1] arrangement could be
because of the high communication loss, as the latter arrangement
is supposed to have smaller matrices to compute. According to
Table 1, from the results of Tesseract with 𝑞 = 4, we could find out
that compared with Tesseract setting with a depth of 1, Tesseract
with a depth larger than 1 could outperform by a large margin.
Besides, when using the same amount of GPU, for example, 64, our
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Table 1: Comparison with different parallelization methods in strong scaling setting, the unit of measurement for forward
time/batch and backward time/batch is second, and the unit of measurement for throughput and inference is the number of
sequences per second.

parallelization #GPUs GPU
shape

batch
size

hidden
size

attention
heads

forward
time/batch

backward
time/batch

throughput inference

Megatron-LM
4 [4] 12 3072 64 0.1225 0.4749 1.6739 8.1633
16 [16] 12 3072 64 0.1143 0.4293 1.8396 8.7489
64 [64] 12 3072 64 0.1195 0.5306 1.5382 8.3682

Optimus
4 [2,2] 12 3072 64 0.1676 0.5019 1.4937 5.9666
16 [4,4] 12 3072 64 0.2099 0.6159 1.2109 4.7642
64 [8,8] 12 3072 64 0.1329 0.3986 1.8815 7.5245

Tesseract
4 [2,2,1] 12 3072 64 0.1666 0.5014 1.4970 6.0024
8 [2,2,2] 12 3072 64 0.0999 0.3002 2.4994 10.0100
16 [4,4,1] 12 3072 64 0.1444 0.4343 1.7280 6.9252
32 [4,4,2] 12 3072 64 0.1244 0.3727 2.0117 8.0386
64 [4,4,4] 16 3072 64 0.0869 0.2636 2.8531 11.5075
64 [8,8,1] 12 3072 64 0.1799 0.5178 1.4333 5.5586

Table 2: Comparison with different parallelization methods in weak scaling setting, the unit of measurement for forward
time/batch and backward time/batch is second, and the unit of measurement for throughput and inference is the number of
sequences per second.

parallelization #GPUs GPU
shape

batch
size

hidden
size

attention
heads

forward
time/batch

backward
time/batch

throughput inference

Megatron-LM
4 [4] 60 2048 32 0.0793 0.2613 2.9360 12.6103
16 [16] 60 4096 64 0.2081 0.5149 1.3831 4.8054
64 [64] 30 8192 128 0.4638 1.0963 0.6410 2.1561

Optimus
4 [2,2] 96 2048 32 0.0827 0.2445 3.0562 12.0919
16 [4,4] 192 4096 64 0.1829 0.5458 1.3723 5.4675
64 [8,8] 384 8192 128 0.1962 0.5964 1.2617 5.0968

Tesseract
1 [1,1,1] 48 1024 16 0.0603 0.1669 4.4014 16.5837
4 [2,2,1] 96 2048 32 0.0867 0.2557 2.9206 11.5340
8 [2,2,2] 192 2048 32 0.0864 0.2552 2.9274 11.5741
16 [4,4,1] 192 4096 64 0.1177 0.3553 2.1142 8.4962
32 [4,4,2] 384 4096 64 0.1173 0.3521 2.1304 8.5251
64 [4,4,4] 768 4096 64 0.1155 0.3468 2.1631 8.6580
64 [8,8,1] 384 8192 128 0.1799 0.5178 1.4333 5.5586

Tesseract in the shape of [4,4,4] has a huge speedup compared with
a 2-D solution with a shape of [8,8,1] calculated by 0.1799/0.0869 =
2.0702, this could help to prove that with bigger depth at same
amount processors, the distributed language model will have higher
efficiency.

Besides the comparison between the Tesseract with different
depth settings, we can also calculate the speedup of Tesseract
between Megatron-LM and Optimus. Here we focus on the ex-
periments with 64 GPUs in different parallelization structures,
compared to Megatron-LM, our Tesseract reached a speedup of
0.1195/0.0869 = 1.3751, compared to Optimus, Tesseract reached
a speedup of 0.1329/0.0869 = 1.5293. With this huge speedup and
the highly scalable feature of Tesseract, it will make the training of
deep neural network models faster and more efficient.

4.2 Weak scaling
In the weak scaling setting experiments, the parameter setting
depends on the individual arrangement of GPUs, in order to allocate
the same problem size on each GPU. As shown in Table 2, for all
three different structures, we set the corresponding hidden size and
number of attention heads to get a fixed size of input parameters,
and the setting conforms [𝑏/𝑑𝑞, 𝑛/𝑞, ℎ/𝑛] = [24, 16, 192](change
of 𝑛 does not affect the result) due to the memory of each GPU
used. From the comparison between settings of [4, 4, 4], [8, 8, 1] with
the same amount of total processors, we could come up with the
enhancement of efficiency by computing 0.1799/0.1155 = 1.5576,
this proves that with bigger depth at the same amount processors,
the distributed language model will have higher efficiency.

Throughput is calculated as the ratio of batch size to the sum of
forward and backward time per iteration, and inference is the ratio
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of batch size to the sum of forward time per iteration only. For this
weak scaling setting experiment, the memory used for each GPU
is the same, but the communications required between GPUs are
different, thus the throughput and inference speed are naturally
faster for experiments with fewer GPUs used. For this reason, we
compared the results using the same amount of GPUs instead. From
our experiments’ results, it shows that Tesseract reaches a maxi-
mum of 2.1631/0.6410 = 3.3746 times the throughput compared
to Megatron-LM and 2.1631/1.2617 = 1.7144 times the throughput
compared to Optimus in the setting of 64 total GPUs. For inference,
Tesseract reached a maximum of 8.6580/2.1561 = 4.0156 times the
inference compared to Megatron-LM and 8.6580/5.0968 = 1.6987
times the inference compared to Optimus. This result support that
our Tesseract provides better utilization of GPU server compared
to other tensor parallelisms 1-D and 2-D.

For the comparison between Tesseract’s [4, 4, 4] and [8, 8, 1]
settings which both use 64 GPUs in total, we find that by offer-
ing a bigger depth on Tesseract, the communication required for
Tesseract is reduced significantly, for throughput, [4, 4, 4] achieves
2.1631/1.4333 = 1.5092 times compared to [8, 8, 1], and
8.6580/5.5586 = 1.5576 times inference.

4.3 Performance on Neural Network Training
Tesseract does not introduce any approximations, thus it does not
affect the training accuracy for neural networks. We conducted
experiments using Tesseract on Vision Transformer[6] to discuss
our performance on accuracy and throughput. As shown in Figure
7, we compared the accuracy results of a Vision Transformer model
with the same parameters on different GPU settings. In this Vision
Transformer model, the number of epochs is 300, batch size is 512,
Adam is used as the optimizer, and the learning rate is 0.003 with a
weight decay of 0.3. To control the variables, we fixed random seeds
and initialization methods for the experiment. The training dataset
is ImageNet-100[17]. According to our accuracy results, Tesseract
does not affect the model’s accuracy.

Figure 7: Training accuracy for ImageNet-100 dataset using
Vision Transformer, in settings of (1) single GPU (2) Tesser-
act with shape [2,2,1] (3) Tesseract with shape [2,2,2]. This
experiment includes (1) as the baseline, (2), and (3) represents
different settings of tesseract depth.

5 Conclusion
In our work, we design a further parallelized tensor parallelism
structure - Tesseract, and we tested this work on the computer
vision model Vision Transformer[6] and language model
Transformer[21]. By using Tesseract, we split the input matrices
and parameter matrices according to the shape of the arrangement
of processors in the group, thus reducing the time used for cal-
culation. Besides, compared to previous tensor parallelisms, our
Tesseract requires less memory on each GPU and it requires less
transmission of data among GPUs, which in return could lead to
higher efficiency and less communication loss. In our evaluation,
Tesseract outperforms both 1-D and 2-D parallelization methods,
and we also evaluated the impact of the setting of the ’depth’ param-
eter in this structure, the conclusion is with the same total amount
of processors, greater depths could further increase the efficiency
of Tesseract. Moreover, we have tested the training accuracy of
frequently used deep neural network models. We study the effect of
Tesseract on the training accuracy of ImageNet with Vision Trans-
former and conclude Tesseract does not harm the convergence of
neural networks.
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