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ABSTRACT

Diffusion models, which can be viewed as a special case of hierarchical varia-
tional autoencoders (HVAEs), have shown profound success in generating photo-
realistic images. In contrast, standard HVAEs often produce images of inferior
quality compared to diffusion models. In this paper, we hypothesize that the suc-
cess of diffusion models can be partly attributed to the additional self-supervision
information for their intermediate latent states provided by corrupted images,
which along with the original image form a pseudo video. Based on this hypothe-
sis, we explore the possibility of improving other types of generative models with
such pseudo videos. Specifically, we first extend a given image generative model
to their video generative model counterpart, and then train the video generative
model on pseudo videos constructed by applying data augmentation to the orig-
inal images. Furthermore, we analyze the potential issues of first-order Markov
data augmentation methods, which are typically used in diffusion models, and
propose to use more expressive data augmentation to construct more useful in-
formation in pseudo videos. Our empirical results on the CIFAR10 and CelebA
datasets demonstrate that improved image generation quality can be achieved with
additional self-supervised information from pseudo videos.

1 INTRODUCTION

Sequential models form a popular framework for generating images (Gulrajani et al., 2017;
Sønderby et al., 2016a; Ho et al., 2020; Liu et al., 2022; Albergo et al., 2023; Lipman et al., 2023; Shi
et al., 2023; Wang et al., 2024). Instead of generating images from noise in one shot, which can be
challenging, these models gradually transform noise into images using multiple intermediate steps.
Among them, diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b) and
their variants (Kingma et al., 2021; Nichol & Dhariwal, 2021; Song et al., 2021a; Rissanen et al.,
2022; Bansal et al., 2023; Hoogeboom & Salimans, 2023) have shown impressive ability to generate
high quality images in recent years.

While diffusion models can be viewed as a special case of a traditional sequential generative model,
i.e., hierarchical variational autoencoders (HVAEs) (Sønderby et al., 2016a; Maaløe et al., 2019;
Vahdat & Kautz, 2020), they tend to outperform standard HVAEs significantly in practice. The
major differences between diffusion models and standard HVAEs are two-fold. First, diffusion
models tend to have much more intermediate states, which may help improve the generation quality
(Huang et al., 2021). Second, diffusion models incorporate exact self-supervised information for
their intermediate states: they are supposed to match the corrupted (e.g., noisy or blurred) versions of
the original target image at different corruption levels. These additional information helps regularize
training and guide generation in diffusion models. On the other hand, the intermediate states in
standard HVAEs are unobserved and one does not have explicit control of them. Consequently,
there may be many different distributions over the intermediate states that are capable of generating
images (i.e., the issue of unidentifiability (Locatello et al., 2019; Khemakhem et al., 2020)). The lack
of identifiability of the intermediate states may pose challenges to the optimization during training
since it suggests a huge hypothesis space with many sub-optimal solutions.

*Equal contribution.
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In this paper, we hypothesize that incorporating such self-supervised information into flexible gen-
erative models, as in diffusion models, may be one of the key reasons that they achieve good gen-
eration performance. Based on this assumption, we explore the possibility of improving other types
of image generative models by extending them to video generative models and artificially inject-
ing self-supervised information in the form of pseudo videos whose frames are created by applying
data augmentation to the original images. These pseudo videos are then used to train our video
generative models. After that, we compare the generation quality of the last frame of the pseudo
video (corresponding to the original image) generated by the video generative model with that of
the images generated by the original image generative model. Empirically, we observe improved
image generation quality via pseudo video generation compared to the images directly generated by
the original image generative model. Theoretically, we provide intuitions on why designing better
pseudo videos with data augmentation beyond first-order Markov chains can be helpful.

The contributions of our paper are summarized as follows. (1) Section 2: Our key insight is that
pseudo videos created by corrupting the original target image may provide useful self-supervised
information for training generative models. This is demonstrated by a comparison between diffusion
models and standard HVAEs as a motivating example. (2) Sections 3 and 4: We attempt to improve
two popular generative model frameworks, VQVAE (Van Den Oord et al., 2017) and Improved
DDPM (Nichol & Dhariwal, 2021), by extending them to their video generative model counterparts
and training them on pseudo videos. Empirically, we show that this procedure improves the image
generation quality with pseudo videos of just a few frames. In general, our proposed framework
provides a new way of scaling up any image generative model with its video generative model
counterpart for improved performance. (3) In Section 4: We analyze the potential theoretical issue
of certain pseudo videos, including those in the form of first-order Markov chains, in autoregressive
video generation frameworks. Based on our theoretical results, we propose a simple and effective
approach which avoids the potential issues by constructing higher-order Markov pseudo videos.

2 MOTIVATION

2.1 SEQUENTIAL GENERATIVE MODELS

Let x ∈ Rn be an observed variable of interest. The task of generative modeling aims to fit a
parametric model pθ(x) to estimate the data distribution p(x) using samples from p(x).

Hierarchical variational autoencoders (HVAEs) (Sønderby et al., 2016a; Maaløe et al., 2019; Vahdat
& Kautz, 2020) employ a sequence of latent variables x1, · · · , xT ∈ Rd (d ≤ n) to capture low di-
mensional representations of the data x0 := x at different fidelity (Salimans, 2016), where the prior
distribution over the last latent variable xT is often set to standard Gaussian p(xT ) = N (xT |0, I),
and the means of the likelihoods (or generation models) are parameterized by neural networks
pθ(xt−1|xt) = N (xt−1|µθ(xt, t), σ

2
t I). HVAEs approximate the intractable posterior pθ(x1:T |x0)

with a variational distribution (or inference model) qϕ(x1:T |x0). Different design choices for
the factorization of the inference model have been proposed, including “bottom-up” factorization
(Burda et al., 2015): qϕ(x1:T |x0) =

∏T
t=1 qϕ(xt|xt−1), and “top-down” factorization (Sønderby

et al., 2016a): qϕ(x1:T |x0) = qϕ(xT |x0)
∏T

t=1 qϕ(xt−1|xt, x0), where the factors qϕ(xt|xt−1) and
qϕ(xt−1|xt, x0) are mean-field Gaussian distributions with mean and diagnoal variance parameter-
ized by neural networks. Notably, HVAEs only require the prior over the last latent variable be a
fixed distribution (e.g., standard Gaussian) as shown in Figure 1 and let the model figure out all
the intermediate latent variables by maximizing the tractable evidence lower bound (ELBO) with
respect to the parameters of both generation and inference models:

max
θ,ϕ
F(θ, ϕ) = Eqϕ(x1:T |x0)

[
log

p(xT )
∏T

t=1 pθ(xt−1|xt)

qϕ(x1:T |x0)

]
≤ log pθ(x0). (1)

Such flexibility makes HVAEs very expressive but also very difficult to train in practice (Kingma
et al., 2016; Sønderby et al., 2016b), despite the efforts of restricting the flexibility of the net-
work architectures such as sharing the parameters of the inference and generation models as in the
top-down inference model (Sønderby et al., 2016a; Vahdat & Kautz, 2020; Child, 2021). Diffu-
sion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b), on the other hand,
have achieved state-of-the-art generation performance for images. Similar to HVAEs, diffusion
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models also employ a sequence of latent variables in the generation process (or denoising pro-
cess). However, unlike HVAEs, diffusion models define a fixed “bottom up” inference model (or
diffusion process): q(x1:T |x0) =

∏T
t=1N (xt|

√
αtxt−1, (1 − αt)I), where q(xt|xt−1) are pre-

defined Gaussian convolution kernels, and no dimensionality reduction is performed (i.e., d = n).
Diffusion models are also trained by maximizing the ELBO but only with respect to the parame-
ters θ of the generation model. Due to the simple form of the inference model, Ho et al. (2020)
shows that the “top-down” form of the inference model is analytically tractable with the form:
q(xt−1|xt, x0) = N (xt−1|µ̃(xt, x0), β̃

2
t ), where µ̃ and β̃t have analytical solutions with closed-

form expressions. As a result, the ELBO of diffusion models can be further simplified using variance
reduction tricks:

max
θ
F(θ) = Eq(xt−1|xt,x0)

[
log pθ(x0|x1)−

T∑
t=1

∥µθ(xt, t)− µ̃(xt, x0)∥2

2σ2
t

]
. (2)

2.2 DIFFUSION MODEL VS HIERARCHICAL VAE

Compared to the objective for training standard HVAEs (Eq. 1), one can see that the objective for
training diffusion models (Eq. 2) incorporates direct control for the intermediate states. Due to
the fixed pre-defined inference model, the objective in Eq. 2 is simplified. In particular, its second
term suggests that at each intermediate step t, the mean function µθ(xt, t) in the generation model
is trained by matching a noisy version µ̃(xt, x0) of the original target image x0. In contrast, the
objective for standard HVAEs has no such information to impose any control over their intermediate
states since their inference models are parameterized by flexible neural networks and keep being
updated along with the generation model by end-to-end training. Figure 1 illustrates this difference
between diffusion models and standard HVAEs. Without the aid of the self-supervised information,
the intermediate states in standard HVAEs are very flexible, which implies that they are unidentifi-
able in the sense that there could be many plausible distributions over them that can generate images
(i.e., many sub-optimal solutions), which makes the optimization harder as T becomes larger. In
contrast, diffusion models may benefit from the self-supervised information (i.e., noisy images) for
their intermediate states, for which optimization can be less challenging even with large T , since
this inductive bias pins down one specific route of generation, which eliminates other solutions that
are inconsistent with this inductive bias.

...Diffusion
Model

...HVAE

Figure 1: Diffusion model vs HVAE: compared to
standard HVAEs, diffusion models incorporate self-
supervised signals for its intermediate latent states.

To show the critical role of self-supervised
information, we train an HVAE with a
similar architecture as in Rissanen et al.
(2022) on the binarized MNIST dataset
(Salimans et al., 2015) as a proof of con-
cept, where the encoder is fixed accord-
ing to the heat equation (Rissanen et al.,
2022). This can be seen as an HVAE
trained with explicit supervision signals
from pseudo videos created by the heat
equation. We create T = 18 frames
of pseudo videos for each training image.
Figure 2 (in Appendix B) demonstrates
that the HVAE trained with pseudo videos
created by the heat equation can gener-
ate much sharper and diverse digits than
a standard HVAE which uses the same ar-
chitecture but with a learnable encoder.
We evaluate the generated images with the
Inception Score (IS). We found that HVAE trained with pseudo videos created by the heat equation
achieves noticeably higher IS (9.32) than standard HVAE (7.27). Here, we deliberately use heat
equation instead of Gaussian noise to create pseudo frames to show that there are plenty of choices
to create pseudo videos that contain useful self-supervised information besides adding Gaussian
noise as in standard diffusion models.
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2.3 IMPROVING IMAGE GENERATION VIA PSEUDO VIDEO GENERATION

With the concept of pseudo videos and their effectiveness in diffusion models, we are interested in
the following open generic question in this paper:

Is it possible to improve other types of image generative models by jointly modelling the
distribution of the original image and its corresponding pseudo video which contains self-
supervised information?

The answer is affirmative. In this paper, we show empirical evidence of the advantages of pseudo
videos on two types of generation models, namely improving VQVAE (Van Den Oord et al., 2017)
(Section 3) and DDPM (Nichol & Dhariwal, 2021) (Section 4.2) with Phenaki (Villegas et al., 2022)
and Video Diffusion (Harvey et al., 2022) trained on pseudo videos, respectively. Moreover, we pro-
vide theoretical arguments favouring the use of more expressive ways of creating pseudo videos in
the autoregressive video generation framework (Section 4.1), beyond the first-order Markov strategy
as typically used in the forward process of standard diffusion models.

3 IMPROVED RECONSTRUCTION AND GENERATION IN VQ-VAE WITH
PSEUDO VIDEOS

In this section, we utilize pseudo videos to improve image generation quality of Vector Quantized
Variational Autoencoder (VQVAE) (Van Den Oord et al., 2017), where the latent variables z are
discrete tokens. Specifically, we employ its video generative model counterpart C-ViViT (Ville-
gas et al., 2022) to compress the pseudo videos into latent discrete tokens. C-ViViT is trained by
reconstructing the pseudo videos with L2 reconstruction loss (Kingma & Welling, 2013), Vector
Quantization (VQ) loss (Van Den Oord et al., 2017), GAN style adversarial loss (Karras et al.,
2020), and image perceptual loss (Johnson et al., 2016; Zhang et al., 2018).

For the latent space created by a C-ViViT, we consider two generative models to fit a prior p(z)
for the latent tokens: (1) VideoGPT (Yan et al., 2021) uses an autoregressive (AR) Transformer
(Brown et al., 2020) to factorize p(z) =

∏d
i=1 p(zi|z<i) in an autoregressive manner with masked

self-attention, where d is the total number of the tokens, and is trained with maximum likelihood.
VideoGPT is the video generative model counterpart extended from ImageGPT (Chen et al., 2020a).
(2) Phenaki (Villegas et al., 2022) uses a bidirectional Transformer (Vaswani et al., 2017) to predict
all tokens in one shot rather than in an autoregressive manner. At each training step, one samples
a masking ratio γ ∈ (0, 1), and the model is trained by predicting the masked tokens given the
unmasked ones. During generation, all tokens are masked initially, and the model predicts all tokens
simultaneously. The generation will then be refined following a few steps of re-masking and re-
prediction, with a decreasing masking ratio as we proceed. Phenaki is the video generative model
counterpart extended from MaskGit (Chang et al., 2022).

We compare the generation quality of the last frames (corresponding to the original images) in the
generated videos from the video generative model trained on pseudo videos to the images generated
by the original image generative model trained on the original target images.

Datasets. We create 8 and 18-frame pseudo videos using images from two datasets, CIFAR10 (32
× 32) (Krizhevsky et al., 2009) and CelebA (64× 64) (Liu et al., 2015), with the blurring technique
from Bansal et al. (2023). To create 8-frame pseudo videos, we blur the images recursively 7 times
with a Gaussian kernel of size 11×11 and standard deviation growing exponentially at the rate of
0.05. For 18-frame pseudo videos, we blur the images 17 times with same Gaussian kernel but with
a standard deviation growing exponentially at the rate of 0.01. The pseudo videos are organized
such that the last frames are the original target images and the first frames are the blurriest images.
Figure 3 (in Appendix B) shows an example of such a pseudo video. We use 1-frame to denote
images generated by the original image model trained on the original target images.

Network Architectures. We train VQVAE based generative models with a codebook size of 1024
for the discrete latent tokens. We use C-ViViT as compression model (autoencoder) for pseudo

For 1-frame models, we have tried using deeper architectures but observed no improvement in perfor-
mance, which suggests that our pseudo video framework can help further improve the performance of genera-
tive models while simply increasing the model size becomes ineffective.
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Table 1: Last-frame FID/PSNR of images produced by C-ViViT (reconstruction), VideoGPT (AR
generation) and Phenaki (latent masked generation) trained on pseudo videos constructed from CI-
FAR10 and CelebA images. 1-frame results are obtained from their image counterparts VQVAE
(reconstruction), ImageGPT (AR generation) and MaskGit (latent masked generation) trained on
original CIFAR10 and CelebA images.

CIFAR10 CelebA

1-frame 8-frame 18-frame 1-frame 8-frame 18-frame

Reconstruction (FID) 84.25 13.81 11.26 24.62 5.72 2.27
Reconstruction (PSNR) 17.20 21.86 25.89 20.52 24.66 29.68

AR Generation (FID) 91.65 54.60 69.23 32.98 30.19 28.08
Latent Masked Generation (FID) 89.78 35.50 47.65 27.34 16.87 16.66

videos. For a pseudo video with shape (T,H,W,C), we compress it to discrete latent tokens
with shape (T2 ,

H
4 ,

W
4 , C). For images with shape (1, H,W,C), we use VQVAE to compress

them to tokens with shape (1, H
4 ,

W
4 , C). We consider two video generative models, VideoGPT

and Phenaki (and their image generative model counterparts, ImageGPT and MaskGit), to fit the
prior over the latent tokens. (1) VQVAE/C-ViViT (reconstruction). We use a similar architec-
ture as in Villegas et al. (2022) with a 4-layer spatial Transformer, a 4-layer temporal Transformer,
and a hidden dimension of 512. For 1-frame VQVAE model, we consider a 8-layer spatial Trans-
former. (2) ImageGPT/VideoGPT (AR generation). We use a similar architecture as in Yan et al.
(2021) with a 8-layer 4-head autoregressive (AR) Transformer and a hidden dimension of 144. (3)
MaskGit/Phenaki (latent masked generation). We use a similar architecture as in Villegas et al.
(2022) with a 6-layer bidirectional Transformer, and a hidden dimension of 512.

Evaluation Metric. We compute Frechet Inception Distance (FID) (Heusel et al., 2017) with 50k
samples for evaluation, either from the last-frames of videos generated by video models trained on
pseudo videos, or images generated by image models trained on the original target images.

Results. Table 1 shows the last-frame FID and PSNR of C-ViViT for reconstruction and that of
VideoGPT and Phenaki for AR and masked generation on CIFAR10 and CelebA, respectively. The
1-frame results correspond to the performance of their image model counterparts (i.e., VQVAE for
image reconstruction, and ImageGPT and MaskGit for AR and masked image generation, respec-
tively). We observe that pseudo videos indeed help improve the training of the C-ViViT as the
reconstruction quality of the last frame is significantly improved with a few more frames. We show
reconstructed CIFAR10 and CelebA images from different C-ViViT models in Figures 4 and 5 (in
Appendix B), respectively. It can be seen that for both datasets, the reconstructed images trained
with 1-frame models are over-smoothed and this issue is resolved by using pseudo videos which
produce much sharper images. Quantitatively, reconstruction FID improves as more frames are
used. Pseudo videos also improve the image generation performance compared to the 1-frame re-
sults. Interestingly, we see a diminishing return as we include more frames. For CelebA images,
18-frame pseudo videos help achieve the best image generation performance for both AR and latent
masked generation, but 8-frame models achieve a comparable performance. For CIFAR10 images,
8-frame pseudo videos result in better image generation performance than 18-frame pseudo videos,
which suggests the latent codes have a more complex prior distribution in order to reconstruct model
pseudo videos with 18 frames well and therefore this prior is more difficult for VideoGPT or Phenaki
to capture. In summary. while pseudo videos help improve the performance, the optimal number
of frames may depend on the dataset and the augmentation strategy. This diminishing return is not
a severe issue in practice since practitioners may prefer to improve the generation with just a few
more pseudo frames to avoid introducing a high computational cost.

4 IMPROVED GENERATION VIA HIGHER-ORDER MARKOV PSEUDO VIDEOS

Since pseudo video contains extra information on the target image, we would like to better un-
derstand what type of additional information can be leveraged to achieve better image generation
quality. In practice, since there are infinitely many data augmentation strategies to create pseudo
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videos, we would like to study which types of data augmentation are more favourable to shed light
on the practical design of pseudo videos.

4.1 IS FIRST-ORDER MARKOV CHAIN THE OPTIMAL CHOICE FOR CREATING PSEUDO
VIDEOS?

Consider pseudo video x1:T , where xT is the target image, and xt’s (t < T ) are some noisy mea-
surements of xT created with some data augmentation. We show that generative models that utilize
more pseudo frames to generate xT are more likely to achieve better performance, and passing in-
formation of the target image to the pseudo frames with a first-order Markov chain as in standard
diffusion models may not be the optimal choice. We demonstrate it with the following autoregressive
video generation example.

Consider building a generative model g that predicts xT by taking advantage of the information in
xT−1 alone. We train the model by minimizing the reconstruction error. The minimum of this loss
is

L∗
1 = min

g
Ep(xT ,xT−1)[||xT − g(xT−1)||22] = Ep(xT−1)[Varp(xT |xT−1)(xT )], (3)

which is achieved at the non-parametric optimum g∗(xT−1) = Ep(xT |xT−1)[xT ], where
Varp(xT |xT−1)(xT ) = Ep(xT |xT−1){(xT −Ep(xT |xT−1)[xT ])

⊤(xT −Ep(xT |xT−1)[xT ])}. Now con-
sider another model h that predicts xT using both xT−1 and xT−2 by minimizing the reconstruction
error again. The minimum reconstruction error this time is

L∗
2 = min

h
Ep(xT ,xT−1,xT−2)[||xT −h(xT−1, xT−2)||22] = Ep(xT−1,xT−2)[Varp(xT |xT−1,xT−2)(xT )],

(4)
which is achieved at the non-parametric optimum h∗(xT−1, xT−2) = Ep(xT |xT−1,xT−2)[xT ]. The
benefit of using more pseudo frames to generate the target image can be seen from the fact that the
minimum reconstruction error will never increase by using more pseudo frames since by the law of
total variance,

L∗
2 − L∗

1 = −Ep(xT−1){Varp(xT−2|xT−1)(Ep(xT |xT−1,xT−2)[xT ])} ≤ 0. (5)

Moreover, the non-optimality of creating pseudo video via first-order Markov chain becomes
clear: the first-order Markov data augmentation implies that p(xT |xT−1) = p(xT |xT−1, xT−2)
and consequently L∗

2 = L∗
1. More specifically, for strict inequality in Eq 5, we need to avoid

p(xT |xT−1) = p(xT |xT−1, xT−2), which is equivalent to avoiding the use of either first-order
Markov chain xT → xT−1 → xT−2 or xT ← xT−1 → xT−2. This analysis is informative for us
to design better pseudo videos, for example through data augmentation with higher-order Markov
chains. We formalize this reasoning into Theorem 4.1 and provide the formal proof in Appendix A.
Theorem 4.1. Consider two video generative models that predict the last-frame xT some previous
frames. Suppose that they take the form of x̂(g)

T = g(xs1 , xs2 , · · ·, xsk) and x̂
(h)
T = h(xs1 , xs2 , · ·

·, xsl), respectively, where T > s1 > · · · > sk > · · · > sl. Then, we have

min
x̂
(h)
T

Ep(xT ,xs1 ,···,xsl
)[||xT − x̂

(h)
T ||

2
2] ≤ min

x̂
(g)
T

Ep(xT ,xs1
,···,xsk

)[||xT − x̂
(g)
T ||

2
2], (6)

where the equality attains if xT |xs1 , · · ·, xsk
d
=xT |xs1 , · · ·, xsl .

Remark 4.2. The minimum reconstruction errors above are obtained with non-parametric optima.
In practice, this corresponds to the assumption that our neural networks gθ and hϕ are flexible
enough to accurately approximate the non-parametric optima for the theorem to hold. Besides, the
analysis is based on the assumption that {xsi}li=1 are drawn from the ground-truth distribution,
while in practice they also need to be generated with their associated previous frames, which means
when the generated {x̂si}li=1 are far away from their ground-truth distribution, the theorem would
not hold. Nevertheless, the analysis provides intuitions of the benefit of conditional generation with
longer past contexts and the potential improvement in performance by using more expressive pseudo
videos rather than the ones created with first-order Markov transition as in standard diffusion models,
which we empirically verify with experiments in the following section.

Unlike diffusion models where x0 denotes the original image, from here onwards we will denote the
original image by xT since it is the last frame of the pseudo video.
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Table 2: Last-frame FID of images generated by video diffusion models trained on pseudo videos
constructed from CIFAR10 and CelebA images (with both first-order Markov or high-order Markov
Gaussian noise data augmentation). 1-frame results are obtained from an image diffusion model
trained on the original CIFAR10 and CelebA images with equivalent UNet architecture.

CIFAR10 CelebA

1-frame 4-frame 8-frame 1-frame 4-frame 8-frame

First-order Markov 12.90 17.30 15.90 7.76 13.61 12.64
High-order Markov 12.90 12.58 12.80 7.76 6.88 7.55

4.2 EXPERIMENTS

We consider generating each frame of the pseudo videos using the information provided in the
previously generated frames. In particular, we use a video diffusion model (Harvey et al., 2022)
trained by predicting frames autoregressively conditioning on the most recent previous frames in a
context window. We compare the performance of video diffusion models trained on pseudo videos
created by both standard first-order Markov transformation and higher-order Markov transformation
to empirically verify our argument in Section 4.1.

Datasets. We create 4-frame and 8-frame pseudo videos using images from CIFAR10 (32× 32) and
CelebA (64 × 64). We use Gaussian noise as data augmentation and we consider two strategies: (1)
First-order Markov. We add Gaussian noise recursively 3 or 7 times to create first-order Markov
pseudo videos with a linear schedule (Ho et al., 2020) with β ranging from 0.0001 to 0.05: xT−t =√
1− βtxT−t+1 +

√
βtϵ, ϵ ∼ N (0, I). (2) High-order Markov. While using the same noise

schedule to create xT−t, instead of adding Gaussian noise to xT−t+1, we use a simple strategy to
create high-order Markov pseudo videos by adding Gaussian noise to the mean of {xT−t+s}ts=1:
xT−t =

√
1− βt[

1
t

∑t
s=1 xT−t+s] +

√
βtϵ, ϵ ∼ N (0, I). We plot examples of pseudo videos

created with the above two strategies in Figure 6 (in Appendix B). We again use 1-frame to denote
the results of the image generative model counterparts, improved DDPM (Nichol & Dhariwal, 2021),
trained on the original target images. We also consider blurring as the data augmentation, however,
its performance is worse than the performance of using Gaussian noise (see the Results paragraph).

Network Architectures. We use a similar UNet architecture as in Harvey et al. (2022), with 2
residual blocks in each downsampling and upsampling layer and a base channel size of 128 across
all models. Notice that Harvey et al. (2022) is built based on the same architecture as the 1-frame
image diffusion model (Nichol & Dhariwal, 2021), and these hyperparameters are kept the same
for the 1-frame image diffusion model. During generation, we use the “Autoreg” sampling scheme
from Harvey et al. (2022) so that each frame xt is generated by conditioning on the most recently
generated frames in a context window, {xt−c}Cc=1. The sizes of the context window C (i.e., the
time lag) are 2 and 4 for 4-frame and 8-frame models, respectively. We consider 1,000 diffusion
steps every time we generate a new frame. Since 4-frame and 8-frame models jointly generate the
first 2 and the first 4 frames (the initial context window) at the beginning, respectively, they use
overall 3,000 and 5,000 diffusion steps to generate the whole pseudo videos, respectively. We also
consider increasing the number of diffusion steps from 1,000 to 4,000 when training the 1-frame
image diffusion model and compare it with the 4-frame video diffusion models with 3,000 diffusion
steps in total to ensure the performance gain in video diffusion models is not simply because we
have more diffusion steps overall.

Results. We again compute FID (based on 10k samples) to evaluate the models. Table 2 shows
the last-frame FID of pseudo videos generated by video diffusion models for CIFAR10 and CelebA
images, respectively. The 1-frame results correspond to the performance of their image counterparts
(i.e., improved DDPM). While video diffusion models trained on first-order Markov pseudo videos
do not outperform the 1-frame image diffusion model, both 4-frame and 8-frame video diffusion
models trained on high-order Markov pseudo videos can achieve better results on both datasets,
which empirically justify the non-optimality of first-order Markov chains in terms of passing infor-
mation from the target images to the pseudo frames as shown in Section 4.1, and our proposal of
using more expressive pseudo videos rather than the ones created with first-order Markov chains.
Notice that the 4-frame models outperform the 8-frame models, which may be due to the complex
nature of the ground-truth distribution of longer pseudo videos, and thus more expressive architec-
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Table 3: Last-frame FID of images generated by video diffusion models trained on pseudo videos
constructed from CIFAR10 and CelebA images with high order Markov Gaussian noise data aug-
mentation. 1-frame results are obtained from an image diffusion model trained on the original CI-
FAR10 and CelebA images. Here, the 1-frame models use 4,000 diffusion steps, while the 4-frame
models use 3,000 diffusion steps overall.

1-frame (1k steps) 1-frame (4k steps) 4-frame (3k steps overall)

CIFAR10 12.90 11.95 12.58
CelebA 7.76 7.87 6.88

ture may be required to achieve optimal results (see Remark 4.2), while here we use the same UNet
architecture across all models for fair practical comparison. Again, this U-turn should not be a se-
vere issue in practice since practitioners may prefer to improve the generation with as few pseudo
frames as possible to reduce additional computational cost. We visualize some generated images
from the 4-frame models trained on CIFAR10 and CelebA in Figure 7 (in Appendix B).

Table 3 compares the 4-frame model with an 1-frame model but with 4,000 diffusion steps. While
the performance of the 1-frame model with more overall diffusion steps improves for CIFAR10
and outperforms the 4-frame model, its performance on CelebA is worse than the 4-frame model.

Table 4: Last-frame FID of images
generated by video diffusion mod-
els trained on pseudo videos con-
structed from CIFAR10 images with
high-order Markov data augmenta-
tion (either Gaussian noise or Gaus-
sian blur).

4-frame 8-frame

Gaussian noise 12.58 12.80
Gaussian blur 15.33 22.63

Moreover, on CelebA, it even becomes worse than the base-
line 1-frame model with only 1,000 diffusion steps while the
4-frame video diffusion model consistently improves the per-
formance on both datasets, which suggests simply increasing
the number of diffusion steps in an image diffusion model
may not always be effective.

Instead of Gaussian noise, we also tried using Gaussian blur
to create pseudo videos as in Section 3. However, our exper-
iments on CIFAT10 with Gaussian blur suggest worse results
than adding Gaussian noise (see Table 4), and we decided
not to consider it for further experiments. This suggests that
in practice the well-performed data augmentation strategies
may vary across different classes of video generative models.

5 CONCLUSION AND DISCUSSIONS

Summary. We drew our key insight from comparing standard HVAEs and diffusion models: the
additional self-supervised information on the intermediate states provided by the noise corrupted
pseudo frames in diffusion models may contribute to their success. Based on this insight, we pro-
posed to leverage the self-supervised information from the pseudo videos constructed by applying
data augmentation to the target images to improve the performance of image generative models. This
was done by extending image generative models to their video generative models counterparts and
training video generative models on pseudo videos. We show in our experiments that for two popular
image generative models, VQVAE and Improved DDPM, their video generative model counterparts
trained on pseudo videos of just a few frames can improve image generation performance, which
empirically verified the benefit of the additional self-supervised information in the pseudo videos.
Disucussion on related works can be found in Appendix D

Discussions and Future Work. Our proposed framework provides an alternative approach of scal-
ing up any given generative models: instead of making generative models larger by stacking more
layers, we demonstrated that it was possible to improve the generation quality by turning an image
generative model trained on images into its video generative model counterpart trained on pseudo
videos, which is usually straightforward since many video generative models are built upon image
generative models. On the other hand, this raises challenges on how to design informative pseudo
videos. In autoregressive video generation frameworks, we show the potential issue of first-order
Markov pseudo videos theoretically and propose to use higher-order Markov pseudo videos instead
to address this issue. However, it is in general unclear what the optimal pseudo videos are within
such a large design space, which we leave as a future research question.
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A PROOF OF THEOREM 4.1

Proof. To derive x̂
(g)∗
T (xs1 , · · ·, xsk) = argmin
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,···,xsk
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T ||22], we first com-

pute the gradient,
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(7)

Setting the above gradient to 0 gives us

Ep(xT |xs1
,···,xsk

)[xT − x̂
(g)
T ] = 0 =⇒ x̂

(g)∗
T (xs1 , · · ·, xsk) = Ep(xT |xs1

,···,xsk
)[xT ]. (8)

The minimum reconstruction error is obtained by plugging x̂
(g)∗
T (xs1 , · · ·, xsk) in

Ep(xT ,xs1
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(g)
T ||22],
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(9)

Similarly,
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(10)

We now show that the reconstruction error can never increase with more previous frames as inputs
by observing that with T > s1 > · · · > sk > · · · > sl,
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Indeed, we have
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)[xT ])} (Law of total variance)

≤ 0.
(12)

Notice that if xT |xs1 , · · ·, xsk
d
=xT |xs1 , · · ·, xsl , then the above difference will become 0:

Varp(xsk+1
···,xsl
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)(Ep(xT |xs1
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)[xT ])

= Varp(xsk+1
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,···,xsk
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= 0,

(13)

since Ep(xT |xs1
,···,xsk

)[xT ] is a function of xs1 , · · ·, xsk only.

Therefore, for strict inequality, it is necessary to avoid xT ⊥⊥ xsk+1
, · · ·, xsl | xs1 , · · ·, xsk , which

includes first-order Markov chain (xT → · · ·xsk → xsl ) as a special case.
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B ADDITIONAL FIGURES

(a) HVAE with heat equation encoder. (b) Standard HVAE with learnable encoder.

Figure 2: Generated digits from HVAE with encoder fixed according to the heat equation and stan-
dard HVAE with learnable encoder. Both HVAEs use the same decoder architecture as in Rissanen
et al. (2022)

Figure 3: An example of pseudo video constructed by transforming an image of a dog using blurring.

(a) Ground-truth (b) 1-frame reconstruction (c) 8-frame reconstruction (d) 18-frame reconstruc-
tion

Figure 4: Ground-truth images and reconstructed images from VQVAE/CViViT trained on CI-
FAR10.
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(a) Ground-truth (b) 1-frame reconstruction (c) 8-frame reconstruction (d) 18-frame reconstruc-
tion

Figure 5: Ground-truth images and reconstructed images from VQVAE/CViViT trained on CelebA.

(a) First-order (b) High-order

Figure 6: Examples of a pseudo video constructed by adding Gaussian noise to a CIFAR10 image
using first-order Markov chain (top) and high-order Markov chain (bottom).

(a) CIFAR10 (b) CelebA

Figure 7: Generated images from the video diffusion models trained on 4-frame high-order Markov
pseudo videos of CIFAR10 and CelebA, respectively.
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C HYPERPARAMETERS

Tables 5-8 detail the hyperparameters used for all experiments.

Table 5: Hyperparamters used for C-ViViT architecture and optimizer.
1-frame 8-frame 18-frame

Number of spatial layers 8 4 4
Number of temporal layers - 4 4

Embedding dimension 512 512 512
Hidden dimension 512 512 512
Number of heads 8 8 8

Learning rate 1e-4 1e-4 1e-4
Learning rate scheduler Cosine decay Cosine decay Cosine decay

Number of training steps 100k 100k 100k
Batch size 64 64 64

Table 6: Hyperparamters used for VideoGPT architecture and optimizer.
1-frame 8-frame 18-frame

Number of layers 8 8 8
Embedding dimension 144 144 144

Hidden dimension 144 144 144
Number of heads 4 4 4

Learning rate 1e-4 1e-4 1e-4
Learning rate scheduler Cosine decay Cosine decay Cosine decay

Number of training steps 100k 100k 100k
Batch size 64 64 64

Table 7: Hyperparamters used for Phenaki architecture and optimizer.
1-frame 8-frame 18-frame

Number of layers 6 6 6
Embedding dimension 512 512 512

Hidden dimension 512 512 512
Number of heads 8 8 8

Learning rate 1e-4 1e-4 1e-4
Learning rate scheduler Cosine decay Cosine decay Cosine decay

Number of training steps 200k 200k 200k
Batch size 64 64 64
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Table 8: Hyperparamters used for UNet architecture and optimizer for Video diffusion.
1-frame 4-frame 8-frame

Number of downsampling/upsampling layers 4 4 4
Number of residual blocks 2 2 2

Base channel size 128 128 128
Number of diffusion steps per generating a frame 1000 1000 1000

Learning rate 1e-4 1e-4 1e-4
Number of training steps 500k 500k 500k

Batch size 32 32 32

D RELATED WORK

D.1 SEQUENTIAL GENERATIVE MODELS

Hierarchical variational autoencoders (HVAEs) (Sønderby et al., 2016a; Maaløe et al., 2019; Vahdat
& Kautz, 2020; Child, 2021; Xiao & Bamler, 2023) are a class of sequential generative models
constructed by stacking standard VAEs (Kingma & Welling, 2013). Although HVAEs represent a
rich class of expressive generative models, they are hard to train in practice due to optimization
difficulty, as discussed in Section 2. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020;
Song et al., 2021b; Kingma et al., 2021; Nichol & Dhariwal, 2021; Song et al., 2021a; Rissanen
et al., 2022; Bansal et al., 2023; Hoogeboom & Salimans, 2023) can be seen as a special case of
HVAEs where the encoders are fixed, pre-defined Gaussian convolution kernels. Specifically, they
essentially regress a sequence of noisy images created from the target image with self-supervision,
as described in Section 2. Despite its similarity to HVAEs, diffusion models, and latent diffusion
models (Rombach et al., 2022) which apply diffusion models in the lower dimensional latent space
of another latent variable model (e.g., VQVAE (Van Den Oord et al., 2017)), have achieved state-
of-the-art performance partially due to the additional self-supervision signal provided by the noise-
corrupted images. Flow matching (Lipman et al., 2023; Liu et al., 2022; Albergo et al., 2023; Gat
et al., 2024; Wang et al., 2024) is another state-of-the-art sequential generative modelling technique
that trains continuous normalizing flows (Chen et al., 2018) by regressing a sequence of vector fields
inducing a probability path that connects the data distribution and prior distribution with direct self-
supervision. It has been show that flow matching can learn more straight trajectories than diffusion
models, which requires less number of discretization steps at generation time. Furthermore, flow
matching allows us to relax the Gaussian assumption for the prior distribution and thus enables
coupling between arbitrary distributions (Albergo et al., 2023). In contrast, our proposed framework
introduces a new family of approaches that leverage video generative models and pseudo videos
with self-supervised frames to improve any given image generative models.

D.2 SELF-SUPERVISED LEARNING

Self-supervised learning (Liu et al., 2021; Shwartz Ziv & LeCun, 2024) turns an unsupervised learn-
ing problem into a supervised learning problem by handcrafting pseudo labels for unlabeled data.
There are two common approaches to self-supervised learning. 1) Contrastive learning (Chen et al.,
2020b; Tian et al., 2020; Wu et al., 2020), predicts whether two inputs are different augmentations
of the same original data. 2) Masked learning (Devlin et al., 2019; He et al., 2022; Fang et al., 2023)
predicts randomly masked parts of an input given the unmasked parts. While our approach of fitting
a video model to pseudo video sequences created by augmenting the original images does not belong
to either of these families, it is essentially a new form of self-supervised learning since the pseudo
video sequences can be seen as handcrafted pseudo labels for our model to predict, which provides
the model with extra information (e.g., different fidelity of the original image).

E REPRODUCIBILITY STATEMENT

To our knowledge, the official implementation of Phenaki (Villegas et al., 2022) has not been re-
leased upon submission of this paper. As a result, the experiments in Section 3 are based on
the implementation from https://github.com/lucidrains/phenaki-pytorch. The
experiments in Section 4.2 are based on the official implementation of Flexible Video Diffu-
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sion Model (FDM) (Harvey et al., 2022) and Improved DDPM (Nichol & Dhariwal, 2021), from
https://github.com/plai-group/flexible-video-diffusion-modeling and
https://github.com/openai/improved-diffusion.
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