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Abstract

Understanding the generalization abilities of modern machine learning algorithms
has been a major research topic over the past decades. In recent years, the learning
dynamics of Stochastic Gradient Descent (SGD) have been related to heavy-tailed
dynamics. This has been successfully applied to generalization theory by exploiting
the fractal properties of those dynamics. However, the derived bounds depend on
mutual information (decoupling) terms that are beyond the reach of computability.
In this work, we prove generalization bounds over the trajectory of a class of heavy-
tailed dynamics, without those mutual information terms. Instead, we introduce a
geometric decoupling term by comparing the learning dynamics (depending on the
empirical risk) with an expected one (depending on the population risk). We further
upper-bound this geometric term, by using techniques from the heavy-tailed and
the fractal literature, making it fully computable. Moreover, as an attempt to tighten
the bounds, we propose a PAC-Bayesian setting based on perturbed dynamics, in
which the same geometric term plays a crucial role and can still be bounded using
the techniques described above.

1 Introduction

In machine learning, we aim to solve a learning task represented by an unknown probability distribu-
tion µz over a set of data probability space (Z,F), where F is the associated σ-algebra. In order
to solve it, we aim to learn a machine learning model parameterized by some weights w ∈ Rd. For
instance, the model can be obtained by solving the Population Risk Minimization problem defined by

min
w∈Rd

{
R(w) := Ez∼µℓ(w, z)

}
, (PRM)

where ℓ : Rd × Z → R is the loss function given the weights, z ∈ Z an example and R(w) the
population risk. However, since the probability distribution µz is unknown, we cannot directly solve
PRM to obtain a model. Instead, we have at our disposal n data points S = {zi}ni=1, sampled i.i.d.
from µz that serve to obtain a model. Thanks to the data, a model can be obtained by (approximately)
solving the Empirical Risk Minimization problem defined as

min
w∈Rd

{
R̂S(w) :=

1
n

∑n
i=1 ℓ(w, zi)

}
, (ERM)

where R̂S(·) is the empirical risk. Nowadays, one workhorse algorithm used to solve the ERM
problem is the Stochastic Gradient Descent (SGD) algorithm. Starting from weights W0 ∈ Rd, the
algorithm updates the weights iteratively by applying the following update at each time t

Wt+1 =Wt − η∇R̂B(Wt),
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where η > 0 is the learning rate and B ⊆ S is a random subset of indices. Given B and η, there is
theoretical and empirical evidence that the gradient noise ∇R̂B(Wt)−∇R̂S(Wt) can be heavy-tailed
[30, 10, 12, 36], i.e., there is a high probability that the gradient noise is large. One way of modeling
SGD with such a gradient noise can be done thanks to the following stochastic differential equation
(SDE) [22, 25, 31, 30]

dWt = −∇R̂S(Wt)dt+ dLαt , (1)

where Lαt is a d-dimensional α-stable Lévy process (defined more formally further), where α is
the “tail-index”. Under this modeling assumption, generalization bounds (see Mohri et al. [20]),
i.e., upper bounds on the generalization gap R(w) − R̂S(w) have been derived. More precisely,
most works focus on the worst-case generalization error over the trajectory. Şimşekli et al. [31,
Thms. 1 and 2], Hodgkinson et al. [13, Thm 1. with Cor. 1], and Birdal et al. [2, Prop. 1] propose
generalization bounds that have informally the following form, with probability at least 1−ζ

sup
w∈WS

(
R(w)− R̂S(w)

)
≲

√
dimB + log(1/ζ) + I∞(WS , S)

n
, (2)

where, WS := {Wt, 0 ≤ t ≤ T} is the trajectory of the dynamics up to a certain time horizon,
I∞(WS , S) is a total mutual information term, quantifying the statistical dependence between S and
WS , see [14, Section 2.2], and dimB is a notion of fractal dimension1, which can be seen as a measure
of the complexity of WS (defined formally in App. A.2). The fractal geometry of those stochastic
processes, like Eq. (2), has been extensively studied [37] and provided powerful tools to study
the generalization properties of such heavy-tailed dynamics. Şimşekli et al. [31] noted that, under
reasonable assumptions, the dimension dimB, appearing in Eq. (2), is equal to the corresponding
Hausdorff dimension and may be related to the tail-index α.

Even if the fractal dimension could be approximated by estimating α, or by using the method
developed by Birdal et al. [2], the total mutual information term appearing in the bound is not
computable, making the bound beyond the reach of any evaluation. Moreover, the total mutual
information can be large or even infinite, making the bound potentially vacuous. To avoid this
inconvenience, Raj et al. [25] proposed bounds for Eq. (1) without mutual information terms based
on a stability approach. Their method is based on comparing two dynamics, using a surrogate loss,
associated with two datasets differing by one point. However, their bounds are bounds in expectation
over the last point of the dynamics and have an important dependence on the number of parameters d,
while we bound the worst-case generalization gap, over the trajectory, with high probability.

In this work, we aim to close this gap by proposing in Sec. 3 a new upper bound on supw∈WS
R(w)−

R̂S(w) using purely geometric and computable quantity, instead of the total mutual information.
This is done by the comparison of the SDE in Eq. (1) with the corresponding expected dynamics,
where we consider the population risk in the dynamic instead of the empirical one. Most importantly,
we further bound the introduced geometric term using properties of the heavy-tailed dynamics. As
an attempt to obtain a tighter bound, in Sec. 4, we present a PAC-Bayesian setting in which the
aforementioned geometric terms naturally appear, and we prove new bounds on the generalization
gap R(w)−R̂S(w), based on this PAC-Bayesian framework. In this case, the big constants appearing
in the bounds of Sec. 3, which in particular are exponential in time, are compensated by a higher
rate in n (e.g., linear), therefore substantially improving the bounds. We also highlight in App. B
that, under additional assumptions, time independence may be obtained in this PAC-Bayesian setting.
Note that all proofs are deferred in the appendices.

2 Setting and Notations

2.1 Learning Dynamics

Let (Ω, T , µu) be a complete probability space, representing the external randomness added by the
algorithms. To match with notations in [31, 7], the randomness will generally be denoted U . We

1We refer the reader to [8] for an introduction to fractal geometry.
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consider, on Ω, the two dynamics, in Rd, that we call respectively empirical and expected dynamics:

dWS
t = −∇R̂S(W

S
t )dt+ dLαt , with W0 = Z0, (3)

and dYt = −∇R(Yt)dt+ dLαt , with Y0 = Z0, (4)

where Z0 is a random weight independent of all other random variables. Recall that Lαt is a strictly
α-stable Lévy process; see App. A.1, or the tutorial [28], for formal definitions. Note that Eq. (3) is
similar to models considered in other works [30, 22, 25] and is a particular case of [31, Eq. 4]. To
ensure that the SDEs in Eqs. (3) and (4) have strong solutions and are Feller processes (see Th. 7),
the following assumption imposes that the terms −∇R(·), −∇R̂S(·) are smooth enough.

Assumption 1 The loss is differentiable, L-Lipschitz continuous and M -smooth, i.e., for all w,w′ ∈
Rd and z ∈ Z , we have:

|ℓ(w, z)− ℓ(w′, z)| ≤ L∥w − w′∥, and ∥∇ℓ(w, z)−∇ℓ(w′, z)∥ ≤M∥w − w′∥.

This assumption plays a great role in the generalization bounds presented in Secs. 3 and 4. As it is
common to derive generalization bounds (see e.g., [38, 31]), we make a sub-Gaussian assumption on
the distribution of ℓ(w, z), to control its concentration around its expectation.

Assumption 2 The function ℓ : Rd ×Z −→ R is assumed to be σ-sub-Gaussian, i.e., for all λ > 0,
we have E

[
eλ(ℓ(w,z)−E[ℓ(w,z)])

]
≤ eσ

2λ2/2.

In this paper, we also fix the time horizon T > 0 of the processes that we denote by Yt(U) and
WS
t (U) by omitting the variable U when it is not ambiguous. Let us also introduce the trajectories

WS,U and YU associated with the processes Yt(U) and WS
t (U) and defined by

WS,U = {WS
t (U), 0 ≤ t ≤ T}, YU = {Yt(U), 0 ≤ t ≤ T},

which is the sets of weights WS
t (U) and Yt(U) encountered by the processes.

Remark 1 Eq. (3) is here understood as holding at all times, almost surely with respect to µ⊗n
z ⊗µu.

Moreover, we assume that the map (S,U, t) 7−→WS
t (U) is (jointly) measurable. In particular, this

assumption can be true if Z is countable. We also implicitely use a càdlàg version of Lαt , without
loss of generality [28, Section 2], [26, Theorem 2.9].

In addition to Asm. 1, we make the following topological assumption on the trajectory of Y , which
will help us control its fractal properties and relate them to the tail-index α, it is similar to assumptions
already made in the literature, see [31, Assumption H4].

Assumption 3 (Fractal characterization of the dynamics) We assume that, almost surely, the
Hausdorff and upper box-counting dimension of YU are the same, i.e., dimB(YU ) = dimH(YU ). In
all the following, this common dimension value will be denoted γ. Note that we provide technical
background, regarding fractal geometry, in App. A.2.

Roughly speaking, we implicitly assume that the process (Yt)t≥0 is “regular” enough (which happens
for smooth dynamics). More formally, this is particularly true if α = 2 or if we assume the so-called
Ahlfors regularity of YU ([31, Assumption H4] and [14, Corollary 1]), see App. A.2.

2.2 Heavy-tailed Properties

In our particular setting, we can conduct a precise analysis of the relation between the Hausdorff
dimension of Y and WS,U and the tail-index α. The following theorem describes some relationships
between this dimension and the tail-index α, for the dynamics considered in this paper. It is a direct
consequence of existing works on the fractal dimensions of Feller processes [27, 4, 16].

Theorem 1 (Fractal properties of heavy-tailed dynamics (informal)) Under Asms. 1 and 2, if
one of the following condition is true: (i) α ∈ [1, 2], or (ii) Lαt is strictly stable and ∇ℓ is smooth
enough in w (compact support is enough for instance) so that Y and WS satisfy the assumptions of
[27, Theorem 4], then dimH(YU ),dimH(WS,U ) ≤ α. Hence, under Asm. 3, we have γ ≤ α.

In the rest of the paper, to avoid overloading the statements with technical assumptions, we will keep
the notations γ to refer to the fractal dimension of the trajectories. However, γ may be replaced by α,
in our upper bounds, whenever Asm. 3 and Th. 1 hold.
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3 From Statistical to Geometric Information

In this section, we present a generalization bound, in Th. 2, on the worst-case generalization gap in
terms of the fractal dimension γ of the trajectory, but without mutual information term, compared
to [31, 2, 14, 7]. The following theorem introduces a Euclidean distance between the empirical
and expected trajectories and uses [31, Lemma 1] to bound the generalization error over the data-
dependent trajectory WS,U .

Theorem 2 Fix some ζ ∈ (0, 1). Under Asms. 1 to 3, there exists N ∈ N, depending only on ζ such
that, with probability at least 1− 2ζ over µu ⊗ µ⊗n, for all n ≥ N , we have:

sup
w∈WS,U

(
R(w)− R̂S(w)

)
≤ 2L sup

0≤t≤T
∥WS

t − Yt∥+
2√
n
+ 2σ

√
2 log(L

√
n)γ + log(1/ζ)

2n
.

Remark 2 Th. 2 would still be true if we replace the term sup0≤t≤T ∥WS
t − Yt∥ by the Hausdorff

distance dH(WS,U ,YU ) between WS,U and Y , see the proof for more details.

Introducing the geometric term sup0≤t≤T ∥WS
t − Yt∥ allows us to transfer the estimation of the

generalization error from WS,U to YU (which does not depend on the data). Note that it is not clear,
when looking at Th. 2, that the given bound is non-vacuous, as the distance between the trajectories is
not divided by

√
n. However, it is intuitive to think that sup0≤t≤T ∥WS

t −Yt∥ could decrease rapidly
as n→ ∞, because of the convergence of R̂S(·) to R(·). Therefore, in the rest of this section, we
will derive bounds on this term, hence making our generalization bound more pertinent. An important
property, of our strategy to achieve this goal, is that we consider Asm. 1 and then leverage the fractal
properties of the heavy-tailed trajectories by performing a covering argument and introducing the
fractal dimension, see App. C for more details. The aforementioned covering argument is used to
bound the worst-case concentration of the gradients ∇ℓ(w, z), whose norm is sub-Gaussian thanks to
the Lipschitz loss assumption. The drawback of this approach is to yield a big dependence of the
bound on the Lipschitz constant L. However, in the best-case scenario where the distribution of the
gradient norm is evenly shared among its components, we note that it would mean that each partial
derivative ∂ℓ(w,z)

∂wj
has a sub-Gaussian norm [34, Definition 2.5.6] of order O(1/

√
d). Thus, we argue

that a strong concentration of those derivatives can lead to a better bound, and, when specified, we
shall make the following assumption.

Assumption 4 (Partial derivatives concentration) For 1 ≤ j ≤ d, the random variable ∂jℓ(w, z)
is Σ/

√
d-sub-Gaussian, uniformly on j and w, where Σ > 0 is a constant.

The following theorem provides a bound on the geometric term, sup0≤t≤T ∥WS
t − Yt∥, using the

methods described above under different sets of assumptions.

Theorem 3 Let us fix some ζ ∈ (0, 1). Under Asms. 1 to 3, there exists N ∈ N, depending on ζ,
such that, with probability at least 1− 2ζ over µu ⊗ µ⊗n, for all n ≥ N , we have:

sup
0≤t≤T

∥WS
t − Yt∥ ≤ eMT − 1

M

(
2√
n
+ L

√
2

n
+ 2L

√
2γ log(M

√
n) + log(1/ζ)

2n

)
.

If we further make Asm. 4, we can improve the constants to:

sup
0≤t≤T

∥WS
t − Yt∥ ≤ eMT − 1

M

(
2√
n
+ 2Σ

√
2γ log(M

√
n) + log(2d/ζ)

2n

)
.

Therefore, the tail-index α (upper-bounding γ) also has an impact on sup0≤t≤T ∥WS
t − Yt∥. While

the bounds of Th. 3 may be made vacuous because of the dependence on T and the Lipschitz constant
L, we highlight that it has the advantage of being explicit, as opposed to all existing worst-case
heavy-tailed generalization bounds in high probability. In some sense, we replaced the statistical
decoupling (based on mutual information terms) with a new kind of geometric term, based on the
Euclidean distance between the empirical and the expected dynamics. Therefore, by combining
Ths. 2 and 3, we obtain the following corollary.
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Theorem 4 Let us fix some ζ ∈ (0, 1). Under Asms. 1 to 3, there exists N ∈ N, depending only on ζ
such that, with probability at least 1− 4ζ over µu ⊗ µ⊗n, for all n ≥ N , we have:

sup
w∈WS,U

(
R(w)− R̂S(w)

)
≤ 2√

n
+

2L√
n
C1
eMT − 1

M
+ C2

√
2 log(C0

√
n)γ + log(C3/ζ)

2n
,

with constants

C0 := max{M,L}, C1 := 2 +
√
2L, C2 := 4L2 1

M (eMT−1) + 2σ, and C3 = 1.

If we further make Asm. 4, we can improve the constants to (with a little loss on C3) to

C1 := 2, C2 := 4Σ L
M (eMT−1) + 2σ, C3 = 2d.

Th. 4 corresponds to a direct way of using expected dynamics, at the cost of introducing huge
constants in the derived bounds. In the next subsection, we propose a first step toward a better
understanding of the geometric term sup0≤t≤T ∥WS

t − Yt∥, based on the PAC-Bayesian theory.

4 Tightening the Bounds Through the PAC-Bayesian Theory

While the method described in the previous section allows us to prove bounds for heavy-tailed
dynamics without any mutual information term, it makes the bound rely too much on the Lipschitz
continuity assumption, and has an exponential dependence on the training time, which may render
the bound vacuous. In this section, we argue that the comparison between empirical and expected
dynamics is able to induce better bounds. Inspired by PAC-Bayesian theory2 [29, 19], we want to
prove bounds where the supremum over the trajectory supw∈WS,U

(R(w)−R̂S(w)) is replaced by a
uniform sampling over the trajectory. To do so, we define a distribution for the trajectory WS,U :

∀B ∈ B(Rd), ρ̃S,U (B) :=
1

T

∫ T

0

1
(
WS
t (U) ∈ B

)
dt, (5)

where B(Rd) is the Borel σ-algebra of Rd and 1(·) is the indicator function. This distribution can be
interpreted as the distribution of the weights that are sampled uniformly over time. It is related to the
notion of occupation measure in stochastic calculus (see [37, Section 6]).

Remark 3 Within our fractal framework, the distribution ρ̃S,U can be replaced with the exact
Hausdorff measure restricted on the trajectories, assuming those measures are finite. However, it
appears in several works, like [37, Theorem 5.1], that those measures are often, up to multiplicative
constants, equivalent to the occupation measures [37, Section 6] of the processes, making the
sampling in time and the sampling of the points similar.

PAC-Bayesian analysis requires the comparison between the data-dependent distribution ρ̃S,U with a
data-independent distribution, i.e., a prior distribution. In order to leverage the comparison between
the empirical dynamics (3) and the expected one (4), the natural choice is to define the prior
(denoted π̃U ) in the same way than ρ̃S,U , but with support on the expected trajectory, i.e., π̃U (B) =

(1/T )
∫ T
0
1 (Yt(U) ∈ B) dt. While this choice is appealing, it has a major drawback. Indeed, those

distributions do not satisfy the absolute continuity condition required by the PAC-Bayesian framework
(i.e., ρ̃S,U ≪̸ π̃U ). In order to overcome this issue, we chose to perturb the distribution ρ̃S,U by a
Gaussian one. This leads to the following definitions of the distribution on both trajectories WS,U :

ρS,U := N (0, s2) ∗ ρ̃S,U , πU := N (0, s2) ∗ π̃S,U (6)

where ∗ denotes the convolution. This kind of smoothed distribution has already been considered
by Lugosi and Neu [17], but not for trajectories, like in Eq. (6). We will call ρS,U the posterior
distributions and πU the prior distributions. Informally, sampling from ρS,U means sampling points
that are not too far from the true trajectory WS,U , as if we were studying a learning algorithm
approximating, in some sense, those continuous trajectories. The scale parameter s then controls the
quality of this approximation.

2See [1, 11] for an introduction to the PAC-Bayesian theory.
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We present two results (respectively in Th. 5 and Th. 6): (a) a bound in expectation over ρS,U , like
in the “classical” PAC-Bayesian theory (see e.g., [9]) and (b) a bound in high-probability over ρS,U
with the “disintegrated” PAC-Bayesian theory [35]. The power of our approach is that we are able to
bound the information-theoretic terms, i.e., the KL (resp. Rényi) divergence KL (ρS,U | |πU ) (resp.
Dβ (ρS,U | |πU )), appearing in those bounds by the same geometric term than in Sec. 3, see App. C.5
for details. Therefore, the analysis of Sec. 3 still applies. The next theorem presents our first bound,
which is an application of Th. 10 in our setting.

Theorem 5 Under Asms. 1 and 2, for any λ>0, with probability at least 1−ζ over (S,U) we have:

λEw∼ρS,U
[R(w)− R̂S(w)] ≤

1

Ts2

∫ T

0

∥WS
u − Yu∥2du+ log(1/ζ) +

Cλ2

n
.

Note that we can further bound the integral term in Th. 5 with the same term than in Th. 2, i.e.,

1

T

∫ T

0

∥WS
u − Yu∥2du ≤ sup

0≤t≤T
∥WS

t − Yt∥2.

We now state the corresponding disintegrated bound, using the framework developed by Viallard et al.
[35], in which we obtain the same geometric distances as in Ths. 2 and 5.

Theorem 6 Under Asms. 1 and 2, for any λ > 0 and β > 1, we have, with probability at least 1− ζ
over the joint distribution of (S,U) and w ∼ ρS,U :

λβ

β − 1

(
R(w)− R̂S(w)

)
≤ 2β − 1

β − 1
log

(
2

ζ

)
+

β

2s2
sup

0≤t≤T
∥WS

t − Yt∥2 +
(

β

β − 1

)2
λ2σ2

2n
.

Th. 5 provides a bound by integrating the generalization error over ρS,U , which can be seen as a
mean error near the empirical trajectory WS,U . Th. 6 provides more precise information, it gives
a high probability bound by sampling weights near the empirical trajectory, this comes at the cost
of replacing the integral distance, i.e., 1

T

∫ T
0
∥WS

u − Yu∥2du, by the supremum of the distances
sup0≤t≤T ∥WS

t − Yt∥2, and introducing the parameter β.

Note that the same geometric distance term sup0≤t≤T ∥WS
t − Yt∥ as in Sec. 3 appears in Ths. 5

and 6, but this time to the power 2. As mentioned in Sec. 3, the term sup0≤t≤T ∥WS
t − Yt∥2 can be

bounded by methods relying on the fractal properties of the heavy-tailed dynamics. As it is shown in
Th. 3, it is bounded by a term of magnitude C2

L,T/n, where CL,T depends, among other things, on
L and T . By optimizing the value parameter λ in the above bounds, we can obtain generalization
bounds of order O(

√
log(1/ζ)/n+ CL,T/n), while the bounds in Sec. 3 are in O (CL,T/

√
n). Therefore,

the potentially big introduced constants are compensated by a higher order in n, therefore improving
the bound. Our PAC-Bayesian framework has less dependence on the Lipschitz constant L, and even
no dependence under Asm. 4. Moreover, in App. B, we will present, that under different assumptions,
we tighten the results and obtain time-independent bounds.

5 Conclusion

In this paper, we derived generalization bounds for understanding the generalization ability of contin-
uous dynamics driven by a stable Lévy process, and depending on the empirical risk. This highlights
the generalization properties of models obtained with a stochastic gradient descent algorithm ex-
hibiting heavy-tailed gradient noises. The main advantage of our analysis is that it does not depend
on a mutual information term that is not fully understandable. Instead, we considered the expected
dynamic (depending on the unknown population risk) and introduced a new geometric term in the
results, that we bound using techniques from the heavy-tails and fractal literature. Several points are
still to be investigated. From the theoretical perspective, it would be interesting to elaborate on the
ideas presented in App. B to tighten the bounds. Moreover, we would like to extend our methods to
discrete dynamics with heavy-tailed noise, and also prove non-uniform bounds (i.e. on the last point).
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The appendix is organized as follows:

• In App. A, we introduce some mathematical tools necessary for a good understanding of
the paper. The main goal is to give the definition of Levy and Feller processes, as well as
their relation to fractal geometry. This allows us to define precisely the fractal dimensions
appearing in our proofs and prove rigorously Th. 1. We also provide a quick technical
background on PAC-Bayesian theory.

• App. B presents an additional bound on the distance between empirical and expected
trajectories, based on a dissipativity assumption.

• In App. C, we present all proofs of our results.

A Technical Background

In this section, we provide a little technical background in order to present the tools and theorems
that will be used in our proofs.

A.1 Lévy and Feller Processes

In this subsection, we describe some basic notions related to Lévy and Feller processes. We mention
only the tools that are necessary for our results and their proofs, for more technical details and proofs,
the reader may look at the tutorial of Schilling [28] or the following textbooks [4, 37].

Lévy processes: A Lévy process (Xt)t≥0 is a stochastic process, in Rd, with X0 = 0 almost surely,
satisfying the following properties:

• independent increments: for any t0 < t1 < · · · < tk, the random variables Xti −Xti+1 ,
for 1 ≤ i ≤ k, are independent.

• Stationary increments: For any s < t the random variables Xt −Xs and Xt−s have the
same distribution.

• X is stochastically continuous, meaning:

∀ϵ > 0, ∀s ≥ 0,P (∥Xt −Xs∥ > ϵ) −→
t→s

0.

One can show that such processes have modifications (i.e. a process (X̃t)t≥0 such that, for all t,
Xt = X̃t almost surely) with almost surely càdlàg3 paths, see [28, chapter 2], it is equivalent to the
property of being stochastically continuous. In this work, we always assume that the considered
Levy processes have almost surely càdlàg paths. Thus, Lévy processes are not continuous but admit
random jumps. It should be noted that càdlàg paths are almost surely bounded on compact intervals,
which we shall use without mentioning it.

Example 1 Brownian motion is a Lévy process.

Lévy processes are characterized by the following expression of their characteristic function:

E
[
eiξ·Xt

]
= e−tψ(ξ), (7)

where ψ is called the characteristic exponent, and is given by the Lévy-Khintchine formula:

ψ(ξ) = ib · ξ + 1

2
ξTΣξ +

∫
Rd

{
1− eiξ·x + i

ξ · x
1 + ∥x∥2

}
dL(x), (8)

where b ∈ Rd, Σ is a symmetric, non-negative definite, d× d matrix and L is the Lévy measure (on
Borel sets) satisfying4:

∫
x ̸=0

|x|2
1+|x|2 dL(x) < +∞. Intuitively, the first term ib · ξ is a drift term, the

second (1/2ξTΣξ) is a Gaussian term (i.e. the characteristic function of a multivariate Gaussian),
while the last term encodes information about the jump structure and the (potential) heavy-tailed
properties of the process.

3Càdlàg means that the paths are right continuous and admit left limits everywhere.
4Note that there exist several equivalent definitions of Levy measure.
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Example 2 If b = 0 and L = 0, the characteristic function reduces to a Gaussian, i.e., the process is
a Brownian motion.

The reason why we are interested in the characteristic exponent ψ is because it is deeply related to
the Hausdorff dimension of the process, which we use in the proofs of our main results. In particular,
we consider the class of stable Lévy processes. Those have been extensively studied for their fractal
and statistical properties [3, 15, 24, 32, 37]. Stable processes are characterized by their index or
tail-exponent, denoted α ∈ (0, 2], and the following expression of their Lévy measure:

dL(x) =
dr

r1+α
ν(dσ), (9)

with ν a finite measure on the sphere Sd−1. One can show [37], that, in that case, the characteristic
exponent may be expressed as, with a finite measure M on the sphere. It is defined by

ψ(ξ) = ib · ξ +
∫
Sd−1

wα(ξ, y)dM(y) (α = 1), (10)

where wα is given by Schilling [28, Equation 3.10]

wα(ξ, y) =


|ξ · y|α

(
1− isgn(ξ · y) tan

(πα
2

))
, if α ̸= 1,

|ξ · y|
(
1 +

2i

π
sgn(ξ · y) log(ξ · y)

)
, if α = 1.

A stable process is said to be strictly stable if b = 0 and, if α = 1, we also require that
∫
ydM(y) = 0.

We recognize in these equations the expressions of characteristic functions of stable distributions.

Remark 4 The notion of stability has several equivalent definitions and is related to stable distribu-
tion and the self-similarity of the processes, see [28, Section 3].

Example 3 If the distribution of the process is rotationally invariant and has no drift (b = 0), then ψ
reduces to a simpler form: ψ(ξ) = C∥ξ∥α, see [37, Section 2.1]. In the context of Eq. (3), it means
that the noise is rotationally invariant.

Feller processes: Feller processes are an extension of Lévy processes, they are Markov processes
characterized by the fact that their Markov-semigroup operators, Ptf(w) := Ew[f(Xt)], satisfy
regularity properties making them a “Feller semigroup”.5 For more technical details on Feller
processes, see [28], here we just summarize some important properties useful in this work. First, note
that we can assume that the considered Feller processes also have modifications with almost surely
càdlàg paths, see [28, Definition 11.1]. More importantly, a Feller process (Xt)t≥0 is characterized
by its symbol Ψ, which is related to the pseudo-differential operator representation of its generator.
For Lévy processes, the symbol is just the characteristic exponent. The next theorem shows that we
can see the dynamics given by Eq. (3) as Feller processes, see [4, Theorem 3.8].

Theorem 7 Let Lt be a k-dimensional Lévy process, with exponent ψ, and E : Rd −→ Rd×k be a
bounded and Lipschitz continuous function. Then the Itô SDE:

dXt = E(Xt−)dLt with X0 = x, (11)

has a unique strong solution which is a Feller process with the symbol Ψ(x, ξ) = ψ(E(x)T ξ).

This theorem first ensures that the equations (that are strong Markov processes) considered in this
paper have strong solutions. As noted by Schilling [28, Theorem 12.11], the Lipschitz continuity
assumption is only needed to prove that those solutions are Feller processes. Moreover, the expression
of the symbol Ψ, given in Th. 7, will be used in the proof of Th. 1, to bound the Hausdorff dimension
of the processes (that is more formally defined in the next subsection).

5The notation Ew[·] denotes that the process under the expectation was initialized with w.
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A.2 Fractal Geometry

Let us very quickly describe the notions of Minkowski and Hausdorff dimension, for more details
on fractal geometry, see [8, 18] for more details. One of the main goals of fractal geometry is to
define various notions of dimensions, associated with any set in Rd, extending the usual notion of
dimension (e.g., for vector spaces or Riemannian sub-manifolds). In this paper, those dimensions
serve as a complexity measure of the sample paths (i.e., trajectories) of Markov processes, which
has been extensively studied in the literature [37]. In our work, we focus on two of the most popular
notions of dimension: the box-counting dimension (a.k.a. Minkowski dimension) and the Hausdorff
dimension. Both are based on the notion of δ-cover.

Definition 1 (Covering of a set) Let X ⊆ Rd be a set. A δ-cover is a family (Ui) of sets of diameter
at most δ, such that X ⊆

⋃
i Ui. If X is bounded, a cover of minimal cardinality is called minimal,

and the corresponding cardinal is the covering number, denoted Nδ(X).

Based on the notion of δ-cover of a set, we are now able to define the (lower and upper) Minkowski
dimensions that are used to characterize the dynamics in our paper (see Asm. 3). Moreover, note that
the upper Minkowski dimension is the one that appears most naturally in our proofs.

Definition 2 (Minkowski dimensions) Given a bounded set X ⊂ Rd, we define the lower and
upper Minkowski dimensions as:

dimB(X) := lim sup
δ→0

logNδ(X)

log(1/δ)
, dimB(X) := lim inf

δ→0

logNδ(X)

log(1/δ)
.

If their value coincide, the corresponding limit is the Minkowski dimension and denoted dimB(X).

Informally, having a Minkowski dimension m means that, if we reduce δ by a factor of λ, then the
number of δ/λ-balls necessary to cover is multiplied by λm.

Remark 5 We use the fact that defining the Minkowski dimensions by using closed or open δ-balls
does not change the value of the dimension.

We end this series of definitions by defining Hausdorff measures and dimensions [8, Chapter 3].

Definition 3 (Hausdorff measures and dimensions) Let s ≥ 0 and X ⊂ Rd, its Hausdorff mea-
sure is defined as:

Hs(X) = lim
δ→0

inf

{∑
i

diam(Ui)
s, (Ui)i is a countable δ-cover of X

}
.

The Hausdorff measure s 7−→ Hs(X) is decreasing and only takes values ∞ and 0, except on one
“jump” point, which is the Hausdorff dimension, i.e.,

dimH(X) := inf{s ≥ 0, Hs(X) = 0}.

In general, one has the following inequality between the two notions of dimension that we are
interested in in this paper, for a bounded set X ⊂ Rd:

dimH(X) ≤ dimB(X). (12)

The following proposition gives a sufficient condition for Hausdorff and upper box-counting dimen-
sions to be equal, see [18, Theorem 5.7]:

Proposition 1 Let W ⊂ Rd be bounded and π a probability measure on W . If there exists,
a, b, r0, s > 0 such that, for all x∈A and 0 < r ≤ r0, we have ars ≤ π(B(x,r)) ≤ brs, then:

dimB(W) = dimH(W).

Therefore, Prop. 1 gives a necessary condition so that Asm. 3 could be satisfied.

It is known that the Hausdorff dimension of an α-strictly stable Lévy process is precisely the tail-index
α [32, 24, 37]. Let us now describe quickly the fractal properties of Feller processes, which we
will express in terms of their symbol Ψ. The following theorem gives a general upper bound of the
Hausdorff dimension, see [4, Theorem 5.15] and [16, Theorem 1.2].

11



Theorem 8 Let (Xt) be a Feller process with symbol Ψ(x, ξ) and infinitesimal generator A (see
[28, Chapter 5]). Assume that:

(i) C∞
c ⊆ D(A), where D(A) is the domain of the generator A, where C∞

c holds for smooth
functions with compact support (in Rd).

(ii) Ψ(·, 0) = 0 and |Ψ(x, ξ)| ≤ c(1 + |ξ|2), for some constant c,

then

dimH(X([0, T ])) ≤ β∞ := inf

{
λ > 0, lim

|ξ|→∞

sup|η|≤|ξ| supx∈Rd |Ψ(x, η)|
|ξ|λ

= 0

}
,

where β∞ is the generalized Blumenthal–Getoor index at infinity.

As we will see in the proof of Th. 1, this theorem is only able to show that dimH(Y) = α for
α ∈ [1, 2]. To handle the case α < 1, we can use the following theorem, which essentially, in our
case, will require a lot of regularity from w 7−→ ∇wℓ(w, z), see [27, Theorem 4]. Note that this
theorem is also the one used in [31] to relate the tail index to the Hausdorff dimension of the process,
however, it does not seem to be general enough in our particular case, because of the above-mentioned
regularity. The following theorem is a slightly weaker formulation of [27, Theorem 4].

Theorem 9 (Schilling’s theorem) Let (Xt)t≥0 be a Feller process with symbol Ψ(x, ξ) such that it
can be decomposed as Ψ(x, ξ) = q1(ξ) + q2(x, ξ), and the following conditions hold:

(i) Ψ(x, 0) = 0 and q2(·, ξ) ∈ Cd+1(Rd),

(ii) 1 + q1(ξ) ≤ C(1 + ∥ξ∥2), where C > 0 is some constant.

(iii) For i ∈ Nd, if |i| ≤ d+ 1, then |∂ixq2(x, ξ)| ≤ Φi(x)(1 + ∥ξ∥2), with Φ0 ∈ L∞(Rd) and
Φi ∈ L1(Rd) for i ̸= 0,

then

dimH(X([0, T ])) ≤ βtail := inf

{
λ ≥ 0, lim

∥ξ∥→∞

|q1(ξ)|
∥ξ∥λ

= 0

}
,

where βtail is called the Blumenthal–Getoor index.

A.3 PAC-Bayesian Bounds

In this section, we introduce two PAC-Bayesian bounds in the literature that are used in the proofs.
We first present a PAC-Bayesian bound originally proven by Germain et al. [9, Theorem 2.1]. We will
see further that the bound contains a function Φ that must be defined in order to obtain a bound with
the (usual) generalization gap. In the following, we consider a family (ρS)S∈Zn (for all n), called
the posteriors and satisfying the following assumption, making it a Markov kernel:

(i) For all S, ρS is a probability distribution on Rd

(ii) For all B ∈ B(Rd), the mapping S 7−→ ρS(B) is measurable, where B(Rd) denotes the
Borel σ-algebra of Rd.

Theorem 10 (General PAC-Bayesian bound) Given a function Φ : Rd ×Zn → R, with probabil-
ity at least 1−ζ over S ∼ µ⊗n

z we have

Ew∼ρS [Φ(w, S)] ≤ log(1/ζ) + KL (ρS | |π) + logESEw∼π

[
eΦ(w,S)

]
,

where

KL (ρS | |π) =
∫

ln

(
dρS
dπ

(w)

)
dρS(w)

is the KL divergence between the posterior distribution ρS and the prior distribution π, and dρS
dπ (w)

is the Radon-Nikodym derivative, defined when ρS ≪ π.
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Put into words, the bound is on the expectation of Φ over ρS and depends mainly on the KL
divergence and the term logESEπ

[
eΦ(w,S)

]
that is further upper-bounded when instantiating Φ.

Note that the theorem of Germain et al. [9] is originally presented with a function representing a gap
between the population risk and the empirical risk, however, their theorem holds with such a function
Φ : Rd ×Zn → R.

When we consider a bound holding with high probability over S ∼ µ⊗n
z and w ∼ ρS , we use the

bound of Viallard et al. [35] (that is called a disintegrated PAC-Bayesian bound).

Theorem 11 (Disintegrated PAC-Bayesian bound) Given a function Φ : Rd×Zn → R, we have,
with probability at least 1− ζ over S ∼ µ⊗n

z and w ∼ ρS:

β

β−1
Φ(w, S) ≤ 2β − 1

β − 1
log(2/ζ) + Dβ (ρS | |π) + logESEw∼π

[
e

β
β−1Φ(w,S)

]
,

where

Dβ (ρS | |π) =
1

β − 1
log

(∫ (
dρS
dπ

(w)

)β
dπ(w)

)
is the Rényi divergence between ρS and π.

Similarly as for Th. 10, the function Φ must be defined and the term logESEw∼π

[
e

β
β−1Φ(w,S)

]
must

be upper-bounded to obtain a bound with the generalization error; this is actually done in the proofs.

A.4 Egoroff’s theorem

In our proofs, we will use the following theorem, to get uniform convergence of the limits defining
the Minkowski dimensions. This has been used in other works [31, 5, 7].

Theorem 12 (Egoroff’s theorem) Let (Ω,F ,P) be a probability space and f, (fn)n∈N be measur-
able functions. Assume that, for almost all x ∈ Ω, we have fn(x) −→

n→∞
f(x). Then, for any ϵ > 0

there exists Ωϵ ∈ F such that P (Ωϵ) ≥ 1− ϵ and on which the convergence of fn to f is uniform.

B Additional Results

The goal of this section is to show that, under an additional reasonable assumption, we may render
our PAC-Bayesian bounds time-independent. The following assumption is similar to the so-called
“dissipativity” assumption, commonly used in the stochastic calculus literature. This special form
is more adapted to the simultaneous consideration of two dynamics and has recently been made by
Chen et al. [6] and Raj et al. [25].

Assumption 5 (Co-dissipativity) There exists m > 0 and K ≥ 0 such that:

⟨∇ℓ(w′, z)−∇ℓ(w, z), w − w′⟩ ≤ K −m∥w − w′∥2,

where all gradients are with respect to the w variable.

This assumption will be used to ensure that the difference between the empirical and expected
dynamics does not become too large. Under this assumption, we can tighten the bound on the distance
between the empirical and the expected dynamics.

Theorem 13 (Bound under co-dissipativity) We make Asms. 2 and 5 and with a loss ℓ that is M -
smooth in w (but not Lipschitz). We further assume that there exists w0 ∈ Rd such that ∇ℓ(w0, z) ∈
L1(µz). Then, for n large enough, with probability at least 1− ζ over µu ⊗ µ⊗n

z , we have, almost
surely with respect to (S,U):

sup
0≤t≤T

∥WS
t − Yt∥2 ≤ 2K

m
+

4

m2

{
2

n
+

Σ2

n

(
2γ log(M

√
n) + log(2d/ζ)

)}
.
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Remark 6 If, as it is the case in the above theorem, we do not make the Lipschitz assumption
on the loss ℓ, we cannot ensure anymore that WS and Y are Feller processes, see [28, Theorem
12.11]. However, we can still argue that the process has a càdlàg modification, as a consequence of
martingale regularization theorems [26, Section 2.2], and hence we can show that the process has
almost surely bounded paths. This makes that the upper box-counting dimensions, dimB(W

S([0, T ]))
and dimB(Y ([0, T ])) are well defined. However, we may not be able to formally relate it to α. In the
above theorem, the notation γ therefore refers to the upper box-counting dimension.

C Postponed Proofs

C.1 Technical Lemmas

In this subsection, we quickly prove a few technical results, especially measure theoretic ones. The
goal is to ensure solid theoretical foundations for our work. Some of the results of this section are
used without further notice throughout the proofs.

Lemma 1 (Almost surely càdlàg paths) Y and WS are almost surely càdlàg w.r.t. µ⊗n
z ⊗ µu.

Proof As mentioned in Rem. 1, we have almost surely, under µ⊗n
z ⊗ µu:

WS
t =W0 −

∫ t

0

∇R̂S(W
S
u )du+ Lαt .

By Asm. 1, the gradient ∇R̂S is bounded, so that the integral above is a continuous function of t,
as Lαt is an almost surely càdlàg version, it ensures that WS is almost surely càdlàg with respect to
µ⊗n
z ⊗ µu. We can do the same reasoning for Y .

Remark 7 As mentioned in [28, Section 11], we could have argued that WS and Y are Feller
processes, and therefore we may take càdlàg versions of them. However, for measure-theoretic
reasons, it may be safer to directly use the Lipschitz assumption as we did.

Remark 8 If we do not make the Lipschitz assumption, we could still prove that the processes WS

and Y have a càdlàg modification, by using the fact that they are (local) semi-martingales, see [28,
Theorem 12.11].

We define the difference process as (the dependence on U is omitted):

V St =WS
t − Yt (13)

One important result is the following:

Lemma 2 (Joint continuity of the difference process) The map t 7−→ V St is almost surely contin-
uous under µ⊗n

z ⊗ µu.

Proof We have, according to Rem. 1, almost surely under µ⊗n
z ⊗ µu that:

V St =

∫ t

0

(
−∇R̂S(W

S
u ) +∇R(Yu)

)
du

Therefore t 7−→ V St is almost surely continuous. It may be seen either using the boundedness of the
gradient, as in the previous proof, or by the fact that càdlàg paths are bounded on compact intervals.
Note that the fact that both SDEs have the same initialization is crucial here.

Lemma 3 Under assumptions 1, the processes WS and Y are Feller processes.

Proof This is a direct consequence of Asm. 1 and Th. 7.

Let’s continue with a remark regarding covering arguments made in this paper. We will use minimal
δ-covers of the trajectory YU of Y . By using arguments similar to Dupuis et al. [7], we show that we
can get measurable covering numbers that yield the correct Minkowski dimensions. This justifies the
validity of subsequent covering arguments.
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Lemma 4 Let us fix some δ > 0 and T > 0, then the mapping U 7−→ |Nδ(YU )| is measurable, if
open balls are used for the definition of minimal coverings6.

Proof The proof works by constructing a kind of “Castaing representation” [21, Definition 1.3.6].
For any q ∈ Q+, we set ξq(U) := Yq(U). By the almost surely càdlàg property of Y , it is clear that
{ξq} = Y , almost surely. Moreover, with QT := Q ∩ [0, T ]:

|Nδ(YU )| > N =
⋂

F∈QN
T

⋃
q∈QT

⋂
x∈F

{|Yq(U)− Yx(U)| ≥ δ},

which, together with the completeness of the space (Ω, T , µu), implies the desired measurability.

To end this technical section, we mention the measurability of the mapping (S,U) 7−→
supw∈WS,U

(
R(w)− R̂S(w)

)
, which is one of the main interests of our work. From the almost

surely càdlàg property of the process, we have, almost surely:

sup
w∈WS,U

(
R(w)− R̂S(w)

)
= sup
t∈Q∩[0,T ]

(
R(WS

t (U))− R̂S(W
S
t (U))

)
,

which, by measurability of (t, S, U) 7−→ WS
t (U)), implies the desired measurability, if the space

Zn × Ω is complete. We can assume it is the case, in the worst case, considering its completion.

C.2 Proof of Th. 1

In the rest of the paper, we will use the notation ∂j as a shortcut for the partial derivative ∂/∂wj , all
considered partial derivatives are implicit with respect to w, even if it is not mentioned. Moreover,
given a multi-index i ∈ Nd, the notation ∂iw is a shortcut for ∂

∂i1w1...∂
idwd

. We also denote
|i| = i1 + · · ·+ id.

Theorem 1 (Fractal properties of heavy-tailed dynamics (informal)) Under Asms. 1 and 2, if
one of the following condition is true: (i) α ∈ [1, 2], or (ii) Lαt is strictly stable and ∇ℓ is smooth
enough in w (compact support is enough for instance) so that Y and WS satisfy the assumptions of
[27, Theorem 4], then dimH(YU ),dimH(WS,U ) ≤ α. Hence, under Asm. 3, we have γ ≤ α.

Before proving this theorem, let us give its more formal version.

Theorem 14 (Fractal properties of heavy-tailed dynamics) Under Asms. 1 and 2, Eqs. (3) and (4),
if one of the following condition is true:

(i) α ∈ [1, 2], or

(ii) Lαt is strictly stable and, for every z ∈ Z and every multi-index i ∈ Nd, with 1 ≤ |i| ≤ d+1,
the function w 7−→

∥∥∂iw∇ℓ(w, z)∥∥ is in L1(Rd),

then dimH(YU ),dimH(WS,U ) ≤ α, hence, under Asm. 3, γ ≤ α.

Proof In this proof, F will denote a function that can be both R or R̂S , without changing any of the
results or computations. In the same way, the Feller process solution of the associated SDE (existence
ensured by Th. 7) will be denoted by (Xt), it is therefore either Yt or WS

t .

Let us denote by ψα the characteristic exponent7 of Lαt . The Itô SDEs Eqs. (3) and (4) may be written
in the form of Eq. (11), with Lt := (Lαt , t) and E(x) = (Id,−∇F (x)) ∈ Rd×(d+1). From Asm. 1,
∇F is Lipschitz and bounded, hence, by Th. 7, the symbol of the solution of the equation, Xt, is:

Ψ(x, ξ) = ψ(ξ)− i∇F (x) · ξ.

Case 1: when α ∈ [1, 2]. We look at the generalized Blumenthal–Getoor index of Th. 8. Let λ > α,
we have, by the Lipschitz assumption (Asm. 1):

sup
|η|≤|ξ|

sup
x∈Rd

|Ψ(x, η)| ≤ sup
|η|≤|ξ|

(|ψ(η)|+ L ∥η∥)

6According to Rem. 5, this does not change the value of the dimensions
7Like in [37], we implicitly assume that all stable distributions are non-degenerate
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From the explicit expressions of the characteristic exponent of stable processes, given in [37, Section
2.1] and [24], we have

|ψ(ξ)| ≤ Cα ∥ξ∥ (1 + log ∥ξ∥) + µ0 ∥ξ∥
(the log term handles the case of a Cauchy process), where C and µ0 are constants. From this we
deduce that β∞ ≤ α, hence, by Th. 8, we have:

dimH(X([0, T ])) ≤ α.

Case 2: In that case, even if the process is strictly stable, the drift term in the symbol Ψ, coming from
the SDE, makes that the previous reasoning proves that dimH(L

α
t ([0, T ])) ≤ 1, if α < 1. To relate

the Hausdorff dimension dimH(X([0, T ])) to α in that case, we make the assumptions of the second
part of the theorem. As it is now assumed that Lαt is now strictly stable, it is known that we have:

dimH(L
α
t ([0, T ])) ≤ βtail = α;

see [4, Theorem 5.12] or [23, 37]. Thanks to the smoothness assumptions on ∇wℓ, Th. 9, with
q1 = ψ, directly implies that:

dimH(X([0, T ])) ≤ α.

C.3 Proof of Th. 2

As mentioned earlier, we will prove a slightly stronger version of Th. 2, featuring the Hausdorff
distance between both trajectories. Let us recall the definition of Hausdorff distance.

Definition 4 (Hausdorff distance) Let A,B ⊂ Rd be two non-empty bounded sets, the Hausdorff
distance between A and B is defined by:

dH(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
,

where d(a,B) denotes the (Euclidean) distance between the point a and the set B i.e.

d(a,B) = inf
b∈B

∥a− b∥ .

We are now ready to prove Th. 2.

Theorem 2 Fix some ζ ∈ (0, 1). Under Asms. 1 to 3, there exists N ∈ N, depending only on ζ such
that, with probability at least 1− 2ζ over µu ⊗ µ⊗n, for all n ≥ N , we have:

sup
w∈WS,U

(
R(w)− R̂S(w)

)
≤ 2L sup

0≤t≤T
∥WS

t − Yt∥+
2√
n
+ 2σ

√
2 log(L

√
n)γ + log(1/ζ)

2n
.

Proof First note that we have:

sup
w∈WS,U

d(w,YU ) = sup
0≤t≤T

d(WS
t ,YU ) ≤ sup

0≤t≤T
∥WS

t − Yt∥ = sup
0≤t≤T

∥WS
t − Yt∥,

and idem for d(WS,U , y), thus we have

dH(WS,U ,YU ) ≤ sup
0≤t≤T

∥WS
t − Yt∥.

Therefore, it is enough to prove the bound for the Hausdorff distance, instead of sup0≤t≤T ∥WS
t −Yt∥.

Note that the Hausdorff distance dH(WS,U ,YU ) is almost surely finite because of the càdlàg property
of the paths (or their modification). Indeed, càdlàg paths are bounded [28, Section 9].

Let us fix some η > 0 and S ∈ Zn, by definition of the Hausdorff distance, for all w ∈ WS,U , there
exists y ∈ YU such that ∥w − y∥ ≤ dH(WS,U ,YU ) + η. We also have, by Lipschitz regularity:

R(w)− R̂S(w) = R(w)− R̂S(w) + R̂S(y)− R̂S(y) +R(y)−R(y)

≤ |R(w)−R(y)|+ |R̂S(y)− R̂S(w)|+R(y)− R̂S(y)

= 2L∥w − y∥+R(y)− R̂S(y).
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Therefore, we have

sup
w∈WS,U

(
R(w)− R̂S(w)

)
≤ 2LdH(WS ,Y) + 2Lη + sup

w∈YU

(
R(w)− R̂S(w)

)
.

From there, we bound the term supw∈YU

(
R(w)− R̂S(w)

)
using a reasoning similar to the proof

of [31, Theorem 1]. We fix some decreasing sequence (δn) such that δn > 0. Let w1, . . . , wNδn
be

the centers of a minimal cover of YU with balls of radius at most δn (note that the covering number is
random because of its dependence on U , when necessary we will denote it Nδn(U)). By the same
calculation as above, we have:

sup
w∈YU

(
R(w)− R̂S(w)

)
≤ 2Lδn + max

1≤i≤Nδn

(
R(wi)− R̂S(wi)

)
.

By Hoeffding’s inequality, along with a union bound, we get, for any ϵ > 0:

PS

(
max

1≤i≤Nδn

(
R(wi)− R̂S(wi)

)
≥ ϵ

)
≤ Nδn(U) exp

{
−nϵ2

2σ2

}
.

Let ζ ∈ (0, 1), we set:

ϵ(U) :=
√
2σ

√
log(Nδn(U)) + log(1/ζ)

n
,

and δn = 1/(L
√
n). By definition of the upper Minkowski dimension, we know that:

lim
k→∞

sup
n≥k

log(Nδn(U))

log(1/δn)
= dimB(YU )

By Egoroff’s theorem (see Th. 12), there exists Ωζ ∈ T , such that µu(Ωζ) ≥ 1− ζ and on which
the above convergence is uniform in U . Moreover, thanks to Asm. 3, we have dimB(YU ) = γ > 0.
From all this we deduce that there exists Nζ , depending only on ζ , such that, for all n ≥ Nζ , we have
that the limit is smaller than 2γ, and therefore:

log(Nδn(U)) ≤ 2 log(L
√
n)γ.

Which implies, for all n ≥ Nζ :

sup
w∈WS,U

(
R(w)− R̂S(w)

)
≤ 2LdH(WS ,Y) + 2Lη +

2√
n
+

√
2σ

√
2 log(L

√
n)γ + log(1/ζ)

n
.

(14)

As this is true for all η without changing any of the quantity appearing in Eq. (14), we can take η → 0
and rearrange the terms to get that, for all n ≥ Nζ :

sup
w∈WS,U

(
R(w)− R̂S(w)

)
≤ 2LdH(WS ,Y) +

2√
n
+ 2σ

√
2 log(L

√
n)γ + log(1/ζ)

2n
.

By a union bound, the above event occurs with probability 1 − 2ζ (it is the combination of the
probabilities coming from Hoeffding’s inequality and Egoroff’s theorem).

C.4 Proof of Th. 3

Before proving Th. 3, we present a lemma to bound the following quantity, which is the worst-case
deviation of the empirical gradient from its expectation over the trajectory YU . It is defined by

G∇ := sup
w∈YU

∥∇R̂S(w)−∇R(w)∥. (15)

Remark 9 Note that thanks to the assumptions, we have boundedness of the gradients ∇wℓ. There-
fore, by the dominated convergence theorem, we will be able to invert the expectation and the partial
derivative, which we will do repeatedly in our proofs.
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Lem. 5 will be used for the proof of Th. 3.

Lemma 5 For n big enough, with probability at least 1− ζ over µu ⊗ µ⊗n
z , we have:

sup
w∈YU

∥∇R̂S(w)−∇R(w)∥ ≤ 2√
n
+ L

√
2

n
+ 2L

√
2γ log(M

√
n) + log(1/ζ)

2n
.

If, in addition, we make Asm. 4, then the result becomes:

sup
w∈YU

∥∇R̂S(w)−∇R(w)∥ ≤ 2√
n
+ 2Σ

√
2γ log(M

√
n) + log(2d/ζ)

2n
.

In the proofs and the rest of the document, the notation ∂j will be used as a shortcut for ∂
∂wj

.

Proof We introduce the notation, for S = (z, . . . , zn):

∂j(w, zi) := ∂jℓ(w, zi)− Ez [∂j(w, z)] .
As in the proof of Th. 2, let us introduce a sequence (δn), positive, decreasing and converging to 0,
as well as w1, . . . , wNδn

the centers of a minimal cover of YU with balls of radius at most δn. As
before, this covering number still depends on U .We will denote

DS(w) := ∥∇R̂S(w)−∇R(w)∥.
We have, by Jensen’s inequality, independence, and the Lipschitz loss assumption:

ES [DS ] ≤
√
E[∥∇R̂S(w)−∇R(w)∥2]

=
1

n


d∑
j=1

E

 ∑
1≤i,k≤n

∂j(w, zi)∂j(w, zk)


1
2

=
1

n


d∑
j=1

E

[
n∑
i=1

∂j(w, zi)
2

]
1
2

=
1

n

{
E

[
n∑
i=1

∥∇ℓ(w, zi)−∇R(w)∥2
]} 1

2

≤ L

√
2

n
.

Moreover, if Si denotes S ∈ Zn, but with i-th element zi replaced by some z′i ∈ Z , we have, by the
inverted triangle inequality and the Lipschitz assumption on the loss:

|DS(w)−DSi(w)| ≤ ∥∇R̂S(w)−∇R̂Si(w)∥ ≤ 2L

n
.

Therefore, by McDiarmid inequality, for any w, we have:

PS (DS(w)− E [DS(w)] ≥ ϵ) ≤ exp

{
− nϵ2

2L2

}
The rest of this part of the proof is similar to what we did in the proof of Th. 2. We apply a
covering argument similar to the proof of Th. 2, but this time using the M -smoothness of ℓ. Let
w ∈ YU , and (w1, . . . , wNδn

) be the centers of a δn-cover of YU , we have that there exists i such
that ∥w − wi∥ ≤ δn, therefore, by smoothness:

∥∇R̂S(w)−∇R(w)∥ ≤ 2Mδn +DS(wi) ≤ 2Mδn + L

√
2

n
+ (DS(wi)− ES [DS(wi)]).

Thus:

sup
w∈YU

∥∇R̂S(w)−∇R(w)∥ ≤ max
1≤i≤Nδn

(DS(wi)− ES [DS(wi)]) + L

√
2

n
+ 2Mδn.
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Using the independence between YU and a union bound, we get:

PS

(
max

1≤i≤Nδn

(DS(wi)− ES [DS(wi)]) ≥ ϵ

)
≤ Nδn exp

{
− nϵ2

2L2

}
.

Now we set δn := 1/M
√
n. Using the same reasoning than in Th. 2, based on Egoroff’s theorem

applied on µu, we that, for n big enough (depending on ζ), with probability at least 1− 2ζ:

sup
w∈YU

∥∇R̂S(w)−∇R(w)∥ ≤ 2√
n
+ L

√
2

n
+ 2L

√
2γ log(M

√
n) + log(1/ζ)

2n
.

With additional Asm. 4: We use the same covering and notations, but this time we write:

sup
w∈YU

∥∇R̂S(w)−∇R(w)∥ ≤ 2Mδn + max
1≤i≤Nδn

√√√√d max
1≤j≤d

∣∣∣∣∣ 1n
n∑
i=1

∂j(w, zi)

∣∣∣∣∣
2

.

From our additional assumption, we know that ∥∂j(w, z)∥ψ2 = Σ/
√
d (where ∥ · ∥ψ2 is the sub-

Gaussian norm), therefore by a union bound and Hoeffding’s inequality:

PS

(
max

1≤i≤Nδn

max
1≤j≤d

∣∣∣∣∣ 1n
n∑
i=1

∂j(w, zi)

∣∣∣∣∣ ≥ ϵ

)
≤ 2dNδn exp

{
−ndϵ

2

2Σ2

}
.

Therefore, we set (remembering the U dependence here):

ϵ(U) :=
√
2Σ

√
log(Nδn(U)) + log(2d/ζ)

nd
.

We use again an argument based on Egoroff’s theorem on µu to write that, for N big enough
(depending on ζ), we have with probability 1− ζ that:

sup
w∈YU

∥∇R̂S(w)−∇R(w)∥ ≤ 2√
n
+ 2Σ

√
2γ log(M

√
n) + log(2d/ζ)

2n
.

We are now ready to prove Th. 3.

Theorem 3 Let us fix some ζ ∈ (0, 1). Under Asms. 1 to 3, there exists N ∈ N, depending on ζ,
such that, with probability at least 1− 2ζ over µu ⊗ µ⊗n, for all n ≥ N , we have:

sup
0≤t≤T

∥WS
t − Yt∥ ≤ eMT − 1

M

(
2√
n
+ L

√
2

n
+ 2L

√
2γ log(M

√
n) + log(1/ζ)

2n

)
.

If we further make Asm. 4, we can improve the constants to:

sup
0≤t≤T

∥WS
t − Yt∥ ≤ eMT − 1

M

(
2√
n
+ 2Σ

√
2γ log(M

√
n) + log(2d/ζ)

2n

)
.

Proof We know from Th. 1, that the Feller processes WS and Y have càdlàg paths (the variable U is
omitted). Thanks to App. C.1, we know that the Feller processes WS and Y have µ⊗n

z ⊗ µu-almost
surely càdlàg paths and that the difference V S :=WS − Y is continuous (almost surely). Therefore,
this continuity will be assumed in this proof without losing generality. As a consequence, the paths
are almost surely bounded, so it makes sense to introduce their upper box-counting dimension.

Let us take some S ∈ Zn, we have, almost surely, for t ≤ T :

∥V St ∥ =

∥∥∥∥∫ t

0

(
−∇R̂S(W

S
τ ) +∇R(Yτ )

)
dτ

∥∥∥∥
≤
∫ t

0

∥∇R̂S(W
S
τ )−∇R(Yτ )∥dτ

≤
∫ t

0

∥∇R̂S(W
S
τ )−∇R̂S(Yτ )∥dτ +

∫ t

0

∥∇R̂S(Yτ )−∇R(Yτ )∥dτ

≤M

∫ t

0

∥V Sτ ∥dτ + t sup
w∈YU

∥∇R̂S(w)−∇R(w)∥.
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From which we deduce:

∥V St ∥+ 1

M
sup
w∈YU

∥∇R̂S(w)−∇R(w)∥ ≤M

∫ t

0

(
∥V Sτ ∥+ 1

M
sup
w∈YU

∥∇R̂S(w)−∇R(w)∥
)
dτ

+
1

M
sup
w∈YU

∥∇R̂S(w)−∇R(w)∥.

By Grönwall’s lemma, thanks to the continuity of V St :

∥V St ∥ ≤ 1

M
sup
w∈YU

∥∇R̂S(w)−∇R(w)∥
(
eMt − 1

)
.

The results immediately follow by Lem. 5 and rearranging terms.

Remark 10 The correct way of writing Eqs. (3) and (4) would be:

dWS
t = −∇R(WS

t−)dt+ Lαt , dYt = −∇R(Yt−)dt+ Lαt .

It is clear, from the proof, that this detail does not create any issue, as the function t 7−→ V St is still
almost surely continuous.

C.5 Proof of our PAC-Bayesian Bounds

In all this section, the notations πU and ρS,U are the ones defined in Sec. 4, as well as the unperturbed
posteriors and priors ρ̃S,U and π̃U . Let us also recall what we mean by the convolution of a measure
with a function. Let µ be a finite Borel measure on Rd and f be a bounded measurable function, we
define their convolution as:

f ∗ µ(x) =
∫
Rd

f(x− y)dµ(y). (16)

When f is a probability density, we will also denote by f ∗ µ the associated probability measure. We
now quickly recall the definition of Wasserstein distance.

Definition 5 (Wassertein distance) Let µ and ν be two probability measures on Rd and p > 0. A
coupling between µ and ν is a probability measure on Rd × Rd whose marginals are µ and ν. If
Π(µ, ν) denote the set of all possible such couplings, then we define the p-Wassertein distance by:

Wp(µ, ν) := inf
γ∈Π(µ,ν)

{∫∫
∥x− y∥p dγ(x, y)

} 1
p

.

Remark 11 (The PAC-Bayes analysis works in this non-classical setting) Our framework may
seem slightly non-standard, as the prior πU is random, because of its dependence on U . However, we
argue that, due to the independence of πU on S, the theorems from classical PAC-Bayesian theory,
presented in App. A.3, are still valid. Moreover, one can see, from our measurability assumptions of
Rem. 1 and App. C.1, that πU and ρS,U are well-defined Markov kernels.

C.5.1 Bounds on Information-theoretic Distances

In this subsection, we prove that the quantities KL (ρS,U | |πU ) and Dα (ρS,U | |πU ) can be bounded by
the geometric distance. The next lemma first takes care of the KL divergence, it is a simple application
of Jensen’s inequality, using the fact that the KL divergence is jointly convex in its argument [33,
Theorem 11], we just carefully verify that it works in a continuous setting.

Lemma 6 With the previous notations, we have almost surely with respect to S and U :

KL (ρS,U | |πU ) ≤
1

2s2
W2(ρ̃S,U , π̃U )

2 ≤ 1

2s2T

∫ T

0

∥∥WS
t − Yt

∥∥2 dt.
The first inequality in this Theorem has already been used in [17, Section 4.3]. For the sake of
clarity, we present a proof adapted to our framework. As mentioned before, it is a consequence of the
convexity of KL divergence.
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Proof We start by proving a slightly more general result: let µ and ν be any probability measures on
Rd and f the density of N (0, s2). Let us define F (x) = x log(x). We shall note that F is convex
and bounded from below (this last point authorizes the subsequent use of Fubini’s theorem in the
proof). Let also γ be any coupling between µ and ν, we have, by Jensen’s inequality:

F

(
d(f ∗ µ)
d(f ∗ ν)

(x)

)
= F

(∫
f(x− y)

f ∗ ν(x)
dµ(y)

)
= F

(∫∫
f(x− y)

f(x− z)

f(x− z)

f ∗ ν(x)
dγ(y, z)

)
≤
∫∫

F

(
f(x− y)

f(x− z)

)
f(x− z)

f ∗ ν(x)
dγ(y, z)

Now we integrate over f ∗ ν and apply Fubini’s theorem (which we can do because F is bounded
from below and the measures are probability measures.):

KL (f ∗ µ| |f ∗ ν) ≤
∫∫∫

F

(
f(x− y)

f(x− z)

)
f(x− z)dxdγ(y, z)

=

∫∫
KL
(
N (y, s2)

∣∣ ∣∣N (z, s2)
)
dγ(y, z)

=
1

2s2

∫∫
∥y − z∥2 dγ(y, z),

where we used the formula for KL divergence between Gaussians see [33, Equation 10]. Thus, by
taking the infimum over all couplings:

KL (f ∗ µ| |f ∗ ν) ≤ 1

2s2
W2(µ, ν)

2. (17)

Now we get back to ρS,U and πU , and as coupling, between ρ̃S,U and π̃U , we chose the following

γ = (Y·,W
S
· )#U([0, T ]),

so that we have

W2(ρ̃S,U , π̃U )
2 ≤ 1

T

∫ T

0

∥∥WS
t − Yt

∥∥2 dt.
Eq. (17) then implies the result.

We now have the following corollary.

Corollary 1 In the same setting, we have, almost surely, with respect to S and U :

KL (ρS,U | |πU ) ≤ sup
0≤t≤T

∥∥WS
t − Yt

∥∥2 .
The following lemma shows a similar bound for the Rényi divergence. While Lem. 6 has already
been used in the literature, this next bound is new, to our knowledge. It is slightly more complex
because Dβ (·| |·) is not jointly convex for β > 1, the proof will actually extend the fact that it is
jointly quasi-convex [33, Theorem 13].

Lemma 7 Let us fix β > 1, with the same notations as before, we have:

Dβ (ρS,U | |πU ) ≤
β

2s2
sup

0≤t≤T

∥∥WS
t − Yt

∥∥2 .
Proof We start with a similar calculation to the proof of Lem. 6. Let µ and ν be any probability
measures on Rd and f the density of N (0, s2). Let also γ be a coupling between µ and ν. By
Jensen’s inequality, we have:{

d(f ∗ µ)
d(f ∗ ν)

(x)

}β
=

{∫∫
f(x− y)

f(x− z)

f(x− z)

(f ∗ ν(x))
dγ(y, z)

}β
≤
∫∫ (

f(x− y)

f(x− z)

)β
f(x− z)

f ∗ ν(x)
dγ(y, z)

=
1

f ∗ ν(x)

∫∫
f(x− y)βf(x− z)1−βdγ(y, z),
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where the inequality holds by Jensen’s inequality because we have∫∫
f(x− z)

(f ∗ ν(x))
dγ(y, z) =

∫
f(x− z)

(f ∗ ν(x))
dν(z) = 1.

Now we integrate with respect to f ∗ ν and take the logarithm, by Fubini’s theorem (all functions are
positive), it follows that:

log

(∫
(f ∗ µ(x))β(f ∗ ν(x))1−βdx

)
≤ log

(∫∫∫
f(x− y)βf(x− z)1−βdxdγ(y, z)

)
≤ log

(
ess sup
y,z∼γ

∫
f(x− y)βf(x− z)1−βdx

)
By dividing by β − 1 and putting the log inside the essential supremum, we get:

Dβ (µ| |ν) ≤ log

(
ess sup
y,z∼γ

1

β − 1

∫
f(x− y)βf(x− z)1−βdx

)
= ess sup

y,z∼γ

(
Dβ
(
N (y, s2)

∣∣ ∣∣N (z, s2)
))

= ess sup
y,z∼γ

(
β

2s2
∥y − z∥2

)
,

where we used known formula, deduced from [33, Equation 10 and Theorem 28], to compute the
divergence between Gaussians. Now, we get back to ρS,U and πU , and as coupling, between ρ̃S,U
and π̃U , we chose the same as in the proof of the previous lemma:

γ = (Y·,W
S
· )#U([0, T ]),

so that we have

Dα (ρS,U | |πU ) ≤ sup
0≤t≤T

∥∥WS
t − Yt

∥∥2 .
C.5.2 Proof of Th. 5

Theorem 5 Under Asms. 1 and 2, for any λ>0, with probability at least 1−ζ over (S,U) we have:

λEw∼ρS,U
[R(w)− R̂S(w)] ≤

1

Ts2

∫ T

0

∥WS
u − Yu∥2du+ log(1/ζ) +

Cλ2

n
.

The random variable U is implicitly omitted when proving those bounds, by independence, it does
not change the results (all the results may be true U -almost surely). Note that, to simplify notations,
we denote EρS,U

for Ew∼ρS,U
(and idem for πU ).

Proof Let λ > 0 and ζ ∈ (0, 1). We simply write the result of Th. 10 with the previously defined
priors and posteriors, and with function:

Φ(w, S) := λ
(
R(w)− R̂S(w)

)
.

This gives with probability at least 1− ζ over S ∼ µ⊗n
z

λEρS,U

[
R(w)− R̂S(w)

]
≤ log(1/ζ) + KL (ρS,U | |πU ) + logESEπU

[
eλ(R(w)−R̂S(w))

]
.

The last term can be bounded classically, using the sub-Gaussian assumption and Fubini’s theorem:

ESEπ

[
eλ(R(w)−R̂S(w))

]
= EπU

ES

[
eλ(R(w)−R̂S(w))

]
≤ exp

{
λ2σ2

2n

}
.

By Lem. 6, we have:

KL (ρS,U | |πU ) ≤
1

2s2
W2(π̄U , ρ̄S)

2 ≤ 1

2s2T

∫ T

0

∥∥WS
t − Yt

∥∥ dt.
The result follows.
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C.5.3 Proof of Th. 6

Theorem 6 Under Asms. 1 and 2, for any λ > 0 and β > 1, we have, with probability at least 1− ζ
over the joint distribution of (S,U) and w ∼ ρS,U :

λβ

β − 1

(
R(w)− R̂S(w)

)
≤ 2β − 1

β − 1
log

(
2

ζ

)
+

β

2s2
sup

0≤t≤T
∥WS

t − Yt∥2 +
(

β

β − 1

)2
λ2σ2

2n
.

Proof It is exactly the same thing than for Th. 5, but instead of Th. 10, we use Th. 11, and instead of
Lem. 6, we use Lem. 7.

C.6 Proof of Th. 13

Theorem 13 (Bound under co-dissipativity) We make Asms. 2 and 5 and with a loss ℓ that is M -
smooth in w (but not Lipschitz). We further assume that there exists w0 ∈ Rd such that ∇ℓ(w0, z) ∈
L1(µz). Then, for n large enough, with probability at least 1− ζ over µu ⊗ µ⊗n

z , we have, almost
surely with respect to (S,U):

sup
0≤t≤T

∥WS
t − Yt∥2 ≤ 2K

m
+

4

m2

{
2

n
+

Σ2

n

(
2γ log(M

√
n) + log(2d/ζ)

)}
.

Proof The intuition of the proof is as follows: to use Asm. 5, we would like to differentiate the
function t 7−→

∥∥WS
t − Yt

∥∥2 and then use the differential form of Grönwall Lemma, along with
estimates on the quantity supw∈YU

∥∇R̂S(w) − ∇R(w)∥ introduced in Lem. 5. However, the
aforementioned function is clearly non differentiable everywhere8, because of the jumps of the
driving Lévy process. While we could chain the above argument in case the number of jumps is
almost surely finite (it is the case, for example, if α = 2), we propose here another argument, based
on the regularization of the function by convolution. Let V S = WS − Y , which we continuously
extend to R by setting the value 0 on (−∞, 0). We omit the dependence on U .

Before, describing the rest of the proof, let us take w ∈ Rd, and U a compactly contained open set
that contains w. Then we have, by the smoothness assumption:

∥∇ℓ(w, z)∥ ≤ ∥∇ℓ(w0, z)∥+M sup
w∈U

∥w − w0∥ ,

which ensures, by the dominated convergence theorem, that we can write ∇R(w) = ES [∇ℓ(w, z)],
without issues.

For the rest of the proof, we fix S ∈ Zn, U ∈ Ω as well as T > 0.

Before all, note that, even without the Lipschitz assumption, we can show that the paths of the
processes WS and Y are almost surely bounded, see Remark 6, as they admit cadlag modifications.
Therefore, we can assume, without loss of generality, that, for all T , there exists a compact KT ⊂ Rd

such that, for all 0 ≤ t ≤ T , WS
t , yt ∈ KT .

Let (φ)ϵ>0 be a regularizing sequence, i.e. a sequence of functions φϵ : R −→ R such that:

φϵ ∈ C∞, φϵ ≥ 0, supp(φϵ) ⊂ (−ϵ, ϵ),
∫ ∞

−∞
φϵ(x)dx = 1.

First note that we have:

φϵ ∗ V St =

∫ ∞

−∞
φ′
ϵ(t− s)V Ss ds

=

∫ ∞

−∞

∫ s

0

φ′
ϵ(t− s)

(
−∇R̂S(W

S
u ) +∇R(Yu)

)
duds

=

∫ ∞

−∞

{∫ ∞

s

φ′
ϵ(t− s)ds

}(
−∇R̂S(W

S
u ) +∇R(Yu)

)
du

=

∫ ∞

−∞
φϵ(t− s)

(
−∇R̂S(W

S
u ) +∇R(Yu)

)
du

8But we can see, from Rademacher theorem, that it is differentiable almost everywhere.
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now we compute that, as, by properties of convolution, the derivative of φϵ ∗ V St is φϵ ∗ V St :
d

dt
∥φϵ ∗ V St ∥2 = 2⟨φ′

ϵ ∗ V St , φϵ ∗ V St ⟩

= 2⟨φϵ ∗
(
−∇R̂S(W

S
· ) +∇R(Y·)

)
(t), φϵ ∗ V St ⟩

=: 2(A+B),

where, for t ∈ [0, T ] and some fixed arbitrary η > 0, for ϵ < η:

B := ⟨φϵ ∗
(
−∇R̂S(Y·) +∇R(Y·)

)
(t), φϵ ∗ V St ⟩

≤ ∥φϵ ∗ V St ∥ ·
∥∥∥∥∫ ∞

−∞
φϵ(t− s)

(
−∇R̂S(W

S
u ) +∇R(Yu)

)
du

∥∥∥∥
≤ ∥φϵ ∗ V St ∥Gη∇

∫ ∞

−∞
φϵ(t− u)du

= ∥φϵ ∗ V St ∥Gη∇,
where Gη∇ is like in Eq. (15), but on [0, T + η].

Gη∇ := sup
0≤t≤t+η

∥∇R̂S(Yt)−∇R(Yt)∥.

Now we have:

A :=

∫ ∞

−∞

∫ ∞

−∞
φϵ(t− s)φϵ(t− u)⟨−∇R̂S(W

S
s ) +∇R̂S(Ys),W

S
u − Yu⟩dsdu

=: C +D,

where, by Asm. 5:

C :=

∫ ∞

−∞

∫ ∞

−∞
φϵ(t− s)φϵ(t− u)⟨−∇R̂S(W

S
s ) +∇R̂S(Ys),W

S
s − Ys⟩dsdu

≤
∫ ∞

−∞
φϵ(t− s)

(
−m∥WS

s − Ys∥2 +K
)
ds

= −m
∫ ∞

−∞
φϵ(t− s)∥WS

s − Ys∥2ds+K

By Cauchy-Schwarz’s inequality, we have:∫ ∞

−∞
φϵ(t− s)∥WS

s − Ys∥2ds
∫ ∞

−∞
φϵ(t− s)ds ≥

{∫ ∞

−∞
φϵ(t− s)∥WS

s − Ys∥ds
}2

,

so that by the triangle inequality:

C ≤ −m∥φϵ ∗ V St ∥2 +K.

Let us introduce, thanks to the continuity of the functions ∇R̂S and ∇R and the fact that the
trajectory is in the compact KT+η:

G := max

{
sup

x∈KT+η

∥∇R(x)∥, sup
x∈KT+η

∥∇R̂S(x)∥

}
On the other hand, by noting that WS

· − Y· is 2L-Lipschitz continuous on R and using Cauchy-
Schwarz’s inequality, for ϵ < η:

D :=

∫ ∞

−∞

∫ ∞

−∞
φϵ(t− s)φϵ(t− u)⟨−∇R̂S(W

S
s ) +∇R̂S(Ys),W

S
u − Yu −WS

s + Ys⟩dsdu

≤ 2G

∫ ∞

−∞

∫ ∞

−∞
φϵ(t− s)φϵ(t− u)∥ − ∇R̂S(W

S
s ) +∇R̂S(Ys)∥ · |s− u|dsdu

= 4G2

∫ t+ϵ

t−ϵ

∫ t+ϵ

t−ϵ
φϵ(t− s)φϵ(t− u)|s− u|dsdu

≤ 8G2ϵ.
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Therefore, we have deduced that, for t ∈ [0, T ]:

d

dt
∥φϵ ∗ V St ∥2 ≤ 2∥φϵ ∗ V St ∥Gη∇ − 2m∥φϵ ∗ V St ∥2 + 2K + 16G2ϵ.

By Young’s inequality, we further have:

d

dt
∥φϵ ∗ V St ∥2 ≤

(Gη∇)2

m
−m∥φϵ ∗ V St ∥2 + 2K + 16G2ϵ.

Thus, by Gronwall’s Lemma:

∥φϵ ∗ V St ∥2 ≤
(Gη∇)2 + 2Km+ 16G2mϵ

m2
(1− e−mt) + ∥φϵ ∗ V St ∥2

∣∣∣∣
t=0

e−mt.

Now, as t 7−→ V St is uniformly continuous (because it is Lipschitz continuous, thanks to the
boundedness of ∇wℓ on the trajectories of WS and Y , which are included in a compact), see
App. C.1, we know that φϵ ∗ V St converges uniformly to V St on [0, T ], hence, by taking the limit
ϵ→ 0, we get, for t ∈ [0, T ]:

∥V St ∥2 ≤
(Gη∇)2 + 2Km

m2
(1− e−mt)

As η is arbitrary, we can now simply apply the same reasoning as in the proof of Lem. 5. It gives us
that, for n large enough, with probability at least 1− ζ over µu ⊗ µ⊗n

z , we have:

sup
w∈YU

∥∇R̂S(w)−∇R(w)∥ ≤ 2√
n
+ 2Σ

√
2γ log(M

√
n) + log(2d/ζ)

2n
.

So finally, for n large enough, with probability at least 1− ζ over µu ⊗ µ⊗n
z , we have:

sup
0≤t≤T

∥V St ∥2 ≤ 2K

m
+

4

m2

{
2

n
+

Σ2

n

(
2γ log(M

√
n) + log(2d/ζ)

)}
.

Remark 12 Plugging the above bound in the PAC-Bayesian bounds presented before, with λ =
√
n,

will give a higher convergence rate in n to the terms having big constants. Moreover, the constant
K
2m term is not a problem, as it will be of the order K

2m
√
n

in the PAC-Bayesian bounds.
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