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Abstract

We consider the Tree Alternating Optimization (TAO) algorithm to train regres-
sion trees with linear predictors in the leaves. Unlike the traditional, greedy recur-
sive partitioning algorithms such as CART, TAO guarantees a monotonic decrease
of the objective function and results in smaller trees of much better accuracy. We
modify the TAO algorithm so that it produces exactly the same result but is much
faster, particularly for high input dimensionality or deep trees. The idea is based
on the fact that, at each iteration of TAO, each leaf receives only a subset of the
training instances. Thus, the optimization of the leaf model can be done exactly
but faster by using the Sherman-Morrison-Woodbury formula. This has the unex-
pected advantage that, once a tree exceeds a critical depth, then making it deeper
makes it faster to train, even though the tree is larger and has more parameters.
Indeed, this can make learning a nonlinear model (the tree) asymptotically faster
than a regular linear regression model. We analyze the corresponding computa-
tional complexity and verify the speedups experimentally in various datasets. The
argument can be applied to other types of trees, whenever the optimization of a
node can be computed in superlinear time of the number of instances.

1 Introduction

Decision trees have been a popular model in machine learning and statistics for many decades,
having high interpretability and fast inference as major advantages, as well as very high accuracy
when ensembled in forests. We consider trees making a hard decision at each node (rather than soft
decision trees). We consider regression (rather than classification) trees, which define a mapping
from R

D to R
E (where E = 1 is scalar regression), and we focus on oblique trees with linear leaves.

Oblique trees use a (possibly sparse) hyperplane split at each decision node and are much more
powerful than axis-aligned trees (which use a single-feature split) while remaining interpretable.
(That said, all the results in this paper carry over to the axis-aligned case as well.) Linear leaves,
which use a linear mapping Aix+bi as predictor, work much better for regression (i.e., continuous
outputs) than constant leaves, which predict a constant output vector.

The traditional algorithms to learn regression trees, such as CART [3] or C5.0 and M5 [19, 20], are
based on greedy recursive partitioning and have been used for decades. While they are fast, simple
and intuitive, they do not optimize a global objective function of all the parameters in the tree, so
they produce overly large trees and achieve low accuracy, particularly for oblique trees and/or for
linear leaves. We focus instead on the family of Tree Alternating Optimization (TAO) algorithms,
proposed more recently for classification [5], regression [28] and other tasks. TAO provides a proper
optimization of a well-defined objective function, so that each iteration decreases the error or leaves
it constant. Compared to CART or M5, this produces trees that are much smaller and much more
accurate. The key idea of TAO, explained in detail for regression in section 3, is to optimize the
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parameters of one node at a time in the tree, typically depthwise from bottom to top. One pass
over all the nodes constitutes one TAO iteration, which is then repeated until convergence. This
has important consequences: within each iteration, all nodes at the same depth can be optimized in
parallel (separability condition); and the optimization of a single node (reduced problem) takes the
form of a weight 0/1 loss binary classifier over a decision node, and of a linear regression fit over a
leaf. The latter requires the solution of a linear system with a coefficient matrix of D×D, where D
is the input dimensionality.

It turns out that this algorithm can be substantially accelerated while producing the same exact
result. We give here an overview of the idea and full details in sections 3 and 4. We focus on
the step over the leaves1. TAO has the peculiarity, unusual compared to most machine learning
algorithms, that it never optimizes a model (here, leaf predictor) over the whole dataset of size N
instances. Instead, since the decision nodes make hard decisions and so the leaves partition the
whole dataset into disjoint subsets, TAO fits independently a separate predictor {Ai,bi} for each
leaf i over only the instances currently reaching that leaf (its reduced set). Thus, the deeper the tree,
the smaller the reduced set at each leaf; and, if the tree exceeds a critical depth ∆∗ = log2

N
D

and is
complete (i.e., having 2∆ leaves for a depth ∆) and balanced (i.e., having uniform reduced sets, each
with M = N2−∆ instances), then each leaf receives fewer instances than the number of features
(dimensionality D). This makes the D ×M data matrix X have rank at most M (rather than D,
as would typically be in practice). Thus, we can use the Sherman-Morrison-Woodbury formula [13,
section 0.7.4] to solve the linear system exactly but inverting an M ×M matrix (involving XTX)
rather than—as done in the original algorithm [28]—inverting a D × D matrix (involving XXT ).
This results in a considerable speedup, particularly for high input dimensionality or deep trees.

The underlying principle here is that, if we have a problem whose cost on the sample size is Na for
a ∈ R, then partitioning the N samples equally into B disjoint groups and solving them has a total
cost NaB1−a, i.e., B1−a times the cost without partitioning. If a = 1 this cost is independent of B,
as happens with oblique decision nodes. But if a > 1 (superlinear cost), as happens with leaves with
linear predictors, then solving for the partition is Ba−1 times faster. For the commonly occurring
quadratic (a = 2) or cubic (a = 3) costs (as with solving linear systems) and when B is large (note
B = 2∆ for a complete binary tree), the speedup can be huge.

This means the cost of the leaf step in our algorithm is not monotonically increasing with the depth
(hence model size): it first increases until the critical depth ∆∗, then decreases. This has the unex-
pected advantage that, once a tree exceeds the critical depth, then making the tree deeper makes the
leaf step faster to train, even though the tree is larger and has more parameters. Indeed, for deep
enough trees and considering the total cost (decision nodes and leaves), this can make learning a
nonlinear model (the tree) asymptotically faster than learning a regular linear regression model.

The above discussion assumes a sequential updating of the nodes. However, in TAO all the nodes
at the same depth define independent optimization problems, so they can be trained in parallel.
Combined with the adaptive computation above, this makes the computational complexity much
faster still.

What if the optimal tree size for a given dataset is not deep enough? In practice, fitting a model
involves cross-validating its hyperparameters, usually by a grid search, which requires training trees
of multiple depths. Thus, even if the final model selected is shallower than the critical depth (which
may or may not be depending on the case), we do need to train deeper trees during the grid search,
where our improved algorithm will speed up the training.

In summary, our paper has the following contributions. First, we propose an exact but faster leaf
step, which makes our algorithm always better than the original one of [28]. This is described in
section 3.1, after we review in detail the original algorithm in section 3. Second, in section 4, we ana-
lyze the computational complexity of our algorithm and show how the leaf step has a non-monotonic
runtime across the depth domain (from depth 0, corresponding to a regular linear regression, through
the critical depth, to depth log2 N , where each leaf has a single instance). We also point out that
the idea applies to other types of trees, having decision nodes or leaves with superlinear cost on the
sample size. Finally, in section 5, we verify the speedups experimentally (in the sequential compu-

1The idea applies to the decision nodes as well, but it makes no difference if the decision nodes have a
computational cost Θ(ND) that is linear on the sample size, as is the case for oblique or axis-aligned trees,
which we focus on here. However, if using decision nodes with a superlinear training cost on N , such as a
kernel machine, the same non-monotonic cost would occur.
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tation setting only) in various real-world datasets, where the reduced sets need not be balanced. We
compare the original (“naive”) algorithm of [28], which optimizes each leaf by solving a D × D
linear system in the regular way (cubic cost on D); and our “adaptive” algorithm, which chooses
the regular way or the SMW one depending on the leaf depth. We also apply the SMW formula to a
traditional tree induction algorithm (CART) and show even larger speedups—as expected, since the
trees it learns are much deeper than TAO’s.

2 Related work

The literature on decision trees is vast. Here we focus on work on regression trees having lin-
ear predictors in the leaves. Decision trees date back to the 1950s [12, 21, 25], and typically use
axis-aligned splits [3, 20] or oblique and sparse oblique splits [3, 5], with constant models at the
leaves. Trees with linear leaves were first introduced in the M5 “model tree” [19] (further studied
in [24, 25]), where a linear regressor is fit at each leaf after constructing a tree with constant labels
using greedy recursive partitioning. The constant labels at the leaves are then replaced with linear
models trained on the data reaching each leaf. Several variants of this idea have been proposed,
including modifications to the splitting or pruning criteria [27, 17]. However, these methods remain
fundamentally suboptimal for two main reasons: 1) the tree is constructed greedily by optimizing an
impurity measure such as variance, and 2) the structure is learned under the assumption of constant
outputs, ignoring the actual form of the final linear leaf models. As a result, the induced trees tend to
be unnecessarily large and prone to overfitting [17]. More recently, exact optimization methods have
been proposed using dynamic programming to construct globally optimal piecewise-linear regres-
sion trees [22]. While theoretically appealing, these methods do not scale to high-dimensional inputs
or deep trees due to their combinatorial nature, and they rely on discretizing the input space via fea-
ture binarization. As such, they effectively solve a different problem from the original continuous
formulation and are limited in practical applicability.

Optimizing decision trees is difficult because 1) the tree makes a hard decision at each node, which
makes it a non-differentiable function, and gradient-based methods do not apply; and 2) there is a
huge number of tree structures. Indeed, even in its simplest version (axis-aligned splits and binary
inputs and outputs), the problem of training a decision tree is NP-hard [14]. The traditional greedy
recursive partitioning procedure, such as CART [3] or C5.0 [20], is an approximate way to solve this
problem, but it does not optimize an objective function of the entire tree’s parameters (involving a
well-defined loss function and regularization term, as with most modern machine learning models).
This results in suboptimal and overly large trees. The Tree Alternating Optimization (TAO) algo-
rithm [5] does optimize such an objective function and is scalable to large datasets. It assumes a
given tree structure with parameters at the nodes and then optimizes the objective function over one
node at a time in alternation, decreasing it at each step until convergence to a local optimum. The
tree structure (e.g. its depth) can be selected by cross-validation. TAO produces trees that are both
more accurate and smaller than greedy recursive partitioning [30]. The fact that TAO can optimize
an essentially arbitrary choice of loss function and tree model has also made it possible to develop
it for tasks to which trees have rarely been applied before, such as clustering [9], dimensionality
reduction2 [4] or semisupervised learning [29], as well as to optimizing forests [8, 6]. In this paper,
we focus on the case of trees with linear leaves [28].

3 The original TAO algorithm for linear leaves and our speedup

The basic optimization algorithm for trees with linear leaves we use is the one in [28]. We give a
self-contained description here. Our version is more general, allowing for a quadratic penalty on the
linear regression weights (i.e., ridge regression). Later, in section 3.1, we describe how we modify
it to speed it up.

Consider a fixed rooted directed tree structure consisting of decision nodes and leaf nodes, indexed
by sets D and L, respectively. The full set of nodes is N = D ∪ L. Each decision node routes an
input instance x ∈ R

D based on a decision function fi(x; θi): R
D → Ci = {lefti, righti}. The

2In fact, the idea for the present work came from the tree autoencoder model [4], which first reported a
non-monotonic cost for the leaf step as a function of the tree depth. There, each leaf of the tree contains a linear
autoencoder (PCA), i.e., a low-rank linear regression.
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decision function determines whether an instance is sent to the left or right child of decision node
i. For oblique decision trees, if wT

i x + wi0 ≥ 0, the instance x is routed to the right child (i.e.,
fi(x; θi) = righti), and to the left otherwise, where θi = {wi, wi0}. Leaf nodes predict outputs
for instances within their decision region by applying gi(x; θi): R

D → R
E . In our case, we define

a linear mapping gi(x; θi) = Aix+ bi, where θi = {Ai,bi}, Ai ∈ R
E×D and bi ∈ R

E . Finally,
we define a tree mapping T(x;Θ): RD → R

E , where Θ = {θi, i ∈ L ∪ D}. The tree routes an
input instance x along a unique path from the root to a leaf, where the corresponding leaf predictor
is applied to produce the output.

To optimize the tree parameters, we define the following objective function for a given training set
{(xn,yn)}Nn=1 ⊂ R

D × R
E , where L(y,y′) = ‖y − y′‖2 is the squared ℓ2-norm loss:

E(Θ) =
N
∑

n=1

L(yn,T(xn;Θ)) + λ
∑

i∈D

‖wi‖1 + α
∑

j∈L

‖Aj‖
2 (1)

(throughout, all norms are Frobenius norms unless otherwise indicated). The regularization parame-
ters λ ≥ 0 and α > 0 control the ℓ1 penalty for decision node parameters wi and the ℓ2 penalty for
leaf node parameters Aj , respectively. We also define the reduced set Ri ⊂ {1, . . . , N} of a node
i ∈ N as the set of training instances that reach i given the current tree parameters.

The algorithm is based on three key theorems, which we briefly discuss below. Detailed proofs can
be found in [5]. We assume that the objective function E(Θ) is separable over training points and
that parameters θi are not shared across nodes.

Theorem 3.1 (Separability condition). Let T(x;Θ) be the regression tree mapping, and i, j ∈ N
be two nodes that are not descendants of each other. Denote the parameters in node i and j by θi

and θj , respectively. Let all other node parameters Θrest = Θ \ {θi, θj} be fixed. Then the function
E(Θ) of eq. (1) can be equivalently rewritten as

E(Θ) = Ei(θi,Θrest) + Ej(θj ,Θrest) + Erest(Θrest) (2)

where Ei does not depend on θj , Ej does not depend on θi, and Erest is independent of θi and θj .

The main idea of this separability condition is that the reduced sets and weights of non descendant
nodes are disjoint. As a result, each pair of non descendant nodes can optimize parameters indepen-
dently using only their respective reduced sets.

Theorem 3.2 (Reduced problem over a decision node). Consider the objective function E(Θ) from
eq. (1) and a decision node i ∈ D. Assuming that all other node parameters remain fixed, the
optimization problem minwi,wi0

E(Θ) can be reformulated in the following way:

min
wi,wi0

∑

n∈Ri

Lin(yin, fi(xn;wi, wi0)) + λ‖wi‖1 (3)

where: Ri is the reduced set of node i; we define the weighted 0/1 loss Lin(yin, ·): Ci →
R

+ ∪ {0} for instance xn ∈ Ri as Lin(yin, y) = lin(y) − lin(yin) ∀y ∈ Ci, where lin(z) =
‖yn −Tz(xn;Θz)‖2 and Tz(·;Θz) is the predictive function for the subtree rooted at node z; and
we define the pseudolabel yin as the child of i that routes xn to the the leaf with the lowest squared
ℓ2-norm loss (in the case of a tie, where the losses for both children are equal for an instance xn,
the instance xn can be removed from the reduced problem, as its routing does not affect the loss).

The pseudolabel yin represents the preferred child for instance xn, determined by comparing the
two losses incurred when routing it to the left and right child nodes and selecting the child with
smaller loss. The weight assigned to xn is the absolute difference between these losses, defined
as γin = |lin(lefti)− lin(righti)|. Thus, this results in a weighted 0/1-loss binary classification
problem. Since optimizing this is NP-hard, we obtain an approximate solution by instead minimizing
an ℓ1-regularized surrogate loss (we use logistic regression).

Theorem 3.3 (Reduced problem over a leaf node). Consider the objective function E(Θ) of eq. (1)
and a leaf node i ∈ L. Assuming that all other node parameters remain fixed, the optimization
problem minAi,bi

E(Θ) can be reformulated in the following way:

min
Ai,bi

∑

n∈Ri

‖yn − (Aixn + bi)‖
2
+ α‖Ai‖

2
. (4)
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The solution to this ridge regression problem is given by the following closed-form expression:

A∗
i = CK−1, b∗

i = yi −A∗
ixi,

where xi =
1

|Ri|

∑

n∈Ri
xn, yi =

1

|Ri|

∑

n∈Ri
yn, C =

∑

n∈Ri
(yn − yi)(xn − xi)

T is the cross-

covariance matrix and K =
∑

n∈Ri
(xn − xi)(xn − xi)

T + αID is the regularized covariance
matrix of the input, with regularization parameter α (ID is the identity matrix of size D).

The algorithm pseudocode is presented in the appendix. Despite the algorithm’s complexity, it can
be summarized as an iterative algorithm that optimizes tree nodes in a depthwise fashion until con-
vergence. Each node is trained on its corresponding reduced set. Decision nodes learn to route
training instances to the leaves where they achieve the lowest error, while leaves are trained as stan-
dard regression models. Each node update decreases the objective function or leaves it unchanged
(if the approximate solution from the surrogate loss increases the objective, we skip the update). The
hyperparameter λ can make ‖wi‖ = 0 for a decision node i, effectively pruning one of its children,
which results in TAO learning the tree structure (subject to being contained in the initial tree).

3.1 Fast solution of the leaf step using the SMW formula

Since the training set is partitioned over the tree leaves, each leaf receives only a subset of the training
instances. If a subset size is smaller than the input dimension, we can solve its leaf linear system
exactly but much faster using the Sherman-Morrison-Woodbury (SMW) formula [13, section 0.7.4].
This states that if H ∈ R

n×n, U ∈ R
n×r, V ∈ R

r×n, and J ∈ R
r×r are given matrices such that

H, J and J−1 +VH−1U are nonsingular, then the inverse of H+UJV can be computed as

(H+UJV)−1 = H−1 −H−1U
(

J−1 +VH−1U
)−1

VH−1.

In our case, assuming both matrices data X, Y are centered, we need to solve a linear system
involving the regularized covariance matrix XXT +αID of D×D, which has a computational cost
of O(D3). However, using the SMW formula (substituting H = αID , U = X, J = IN , V = XT ),
we obtain an expression based on the regularized Gram matrix of N ×N :

(XXT + αID)−1 = α−1ID − α−1X
(

αIN +XTX
)−1

XT .

This formulation implies that instead of solving a linear system of size D × D, we can solve an
N ×N system. We select the method with the lower computational cost based on the relative sizes
of N and D by applying the following formula at each leaf (where X represents its reduced set):

K−1 =

{

(XXT + αID)−1, D ≤ N

α−1(ID −X
(

αIN +XTX
)−1

XT ), N < D.
(5)

The leaf weight is given by A∗ = CK−1. (Computationally, we do not compute a matrix inverse
explicitly, but solve its associated linear system, which is faster and more stable.) This works not
just for TAO but also for the traditional greedy recursive partitioning algorithms CART and M5.

4 Analysis of the computational complexity

We now give the computational complexity of our accelerated TAO training algorithm for an oblique
decision tree with linear leaves. The formulas are somewhat involved because the computations
depend on the size of the leaves’ reduced sets. Consider a complete binary decision tree of depth
∆ with sparse oblique decision nodes. We assume a sparsity coefficient s ∈ [0, 1], where s = 0
corresponds to a completely sparse weight vector w, and s = 1 corresponds to a fully dense weight
vector3. Let the total number of training instances be N , the feature dimension be D, and the
output dimension be E. We assume that the training instances distribute uniformly over the leaves
(“balanced case”), so each leaf contains M = N/2∆ instances; this is the best-case runtime. The
worst-case corresponds to all instances going to the same leaf. In our experiments we observe a wide
variation in leaf reduced set sizes, depending on the dataset. We apply the algorithm in a bottom-up
fashion: leaves are trained first, followed by their parent nodes, up to the root. Below, we provide a
time complexity analysis for one iteration of this process for decision and leaf nodes.

3Although s varies across decision nodes and during training (as some weights become zero or nonzero),
we take it to mean the average proportion of nonzero weights across nodes and across TAO iterations. This is
valid because s appears linearly in the runtime formulas.
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4.1 Leaf nodes

The separability condition in TAO allows all leaves to be optimized independently, as they are non-
descendant to one another. Training each leaf requires solving a ridge regression problem, which has
a computational cost of O(MD2 +D3 +D2E). This cost accounts for computing K and solving
the linear system. Since K is positive definite, we apply the Cholesky decomposition, with cost of
D3/3 flops [10, Section 4.2.5]. The total cost for 2∆ leaves is therefore 2∆O(MD2+D3+D2E) =
O(ND2 + 2∆(D3 +D2E)). The exponential dependency on the tree depth ∆ appears impractical,
but using simple linear algebra techniques, such as the Sherman-Morrison-Woodbury formula, can
significantly reduce this complexity. Call ∆∗ = log2(N/D) the critical depth.

We define two regimes for training each leaf based on the relationship between M = N/2∆ and D:
deep regime, if M < D, which occurs when ∆ ≥ ∆∗; and shallow regime, when ∆ < ∆∗. The
final cost for training all leaves is:

Cost =

{

Θ
(

ND2 +D32∆ +D2 min(N,E2∆) +NDE
)

, ∆ ≤ ∆∗,

Θ
(

N2D2−∆ +N32−2∆ +N22−∆min(N2−∆, E) +N2E2−∆ +NDE
)

, ∆ > ∆∗.

These formulas, while correct, appear complicated to understand and also give the misleading im-
pression of having large costs, because of the terms on 2∆, D3, N3, etc. However, by applying the
inequality in each case (∆ ≤ ∆∗ or ∆ > ∆∗) it follows that the runtime in both regimes is upper
bounded by Θ(ND2 +NDE). Importantly, this shows that, across the whole range of depths from
0 to log2 N :

• We do not incur a large, cubic cost Θ(D3) or Θ(D2E) (repeated for each leaf, i.e., 2∆

times) by naively solving a linear system for the linear mapping matrix Ai of E ×D. The
cost is only proportional to D(D + E), i.e., quadratic on the dimension.

• We do not incur a large, cubic cost on N . The cost is only linear on N .

Two extreme cases arise when: 1) a leaf contains one instance (i.e., ∆ = log2(N)), which has
complexity Θ(ND+NE +NDE); 2) the tree has depth zero, so the tree reduces to a single ridge
regression model with complexityΘ(ND2+NDE+D3+D2E). Thus, a deep enough tree (which
is a nonlinear regression model) has a lower asymptotic complexity than a regular linear regression.

In summary, what we have here is a happy collusion of two factors. First, a cost for the leaf predictors
that depends either superlinearly on the dimension D (and E) and linearly on the sample size N , or
vice versa, depending on how it is computed: solving the regular linear system or using the SMW
formula. And second, an effective sample size N2−∆ at each leaf that decreases (exponentially)
with the tree depth. Thus, switching to the computation that is superlinear on N (the SMW formula)
when the tree is deep enough (i.e., when each leaf receives fewer instances than dimensions) makes
the total cost over all the leaves faster—so much so that the cost even decreases with the depth.

As shown above, in the deep regime the SMW formula is always faster, but how much? This can be
seen by comparing the shallow and deep regimes’ costs: the speedup is faster the deeper the tree is,
or the larger the dimensionality D is (and thus the lower the critical depth is).

The particular case of scalar regression (E = 1) A common case of regression is when we
predict a scalar value rather than a vector. In that case, the complexity simplifies as follows:

Cost =

{

Θ(ND2 +D32∆ +ND), ∆ ≤ ∆∗,

Θ(N2D2−∆ +N32−2∆ +ND), ∆ > ∆∗.

For deep enough trees, the term NDE becomes ND, so the algorithm has no quadratic complexity
on the dimension anymore, while the regular linear regression still contains terms that are quadratic
and cubic on the dimension.

4.2 Decision nodes

Decision nodes are trained level by level. For a single decision node, the training process involves
two steps: first, constructing a reduced problem by sending each training instance to both child
nodes and computing their respective losses. Second, solving the constructed reduced problem with
a logistic regression. To derive the total cost of all decision nodes, note that at the same level, the
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total number of training instances equals N , and the tree has ∆ levels of decision nodes. Then, the
cost for constructing reduced problems for all decision nodes is: Θ

(

1

2
sND∆(∆− 1) +NDE∆

)

.
For solving the logistic regression problems, assume that each solver requires c iterations on aver-
age. The total cost of solving logistic regressions across all levels is Θ(cND∆). Thus, the total
computational complexity for training decision nodes is Θ(ND∆2 +ND(E + c)∆).

4.3 Overall complexity

Combining the costs for leaf and decision node training, the total cost per iteration is Θ(ND∆2 +
ND2 +NDE +ND(E + c)∆). Thus, the overall cost is linear on the number of instances N and
quadratic on the dimensionality D or E. Note that this is asymptotically faster than solving a single
ridge regression, in spite of the increased complexity of the tree’s training procedure.

Training parallelization At level l ∈ {0, . . . ,∆}, each node contains N/2l training instances.
Given 2∆ cores, we can process all nodes at each level in parallel. Consequently, constructing
a reduced problem can be distributed across training instances, resulting in a 2∆ speedup. The
training complexity of all logistic regressions in the decision nodes is upper-bounded by a geometric
series, resulting in Θ(2ND∆), which has a ∆/2 speedup over the sequential computation. For leaf
training, each core is assigned exactly one leaf, reducing the training time by a factor of 2∆ over the
sequential computation.

Inference time Inference refers to mapping an input instance x ∈ R
D to its corresponding leaf

and applying a leaf predictor to compute the output. This involves traversing a single root-to-leaf
path of depth ∆. Given that the decision nodes are sparse, the cost of this traversal is Θ(sD∆),
where s is the sparsity coefficient of the decision nodes. Once the input instance reaches leaf j,
the leaf predictor computes the output as Ajx + bj , which has a cost of Θ(ED). Thus, the total
inference cost is Θ(D(s∆+ E)).

Model selection In practice when training a model on real data, the final tree (with best generaliza-
tion) may be shallow or deep, depending on the case. This will be determined by a model selection
criterion, such as cross-validation, over the depth and other hyperparameters of the tree, which typ-
ically requires a grid search. Whether the grid search is directly over ∆ or over the decision node
sparsity hyperparameter λ, this will result in leaves whose depth spans a range of values both below
and above the critical depth ∆∗. The speedup of our algorithm will occur in the depths above ∆∗.

One problem with very deep trees is that the number of leaves and hence of parameters (in the
linear mappings) becomes very large (particularly if the output dimension E is high). Also, the
resulting tree would likely overfit. This can be solved by using low-rank linear mappings, which are
particularly suitable if there are fewer samples than features. This is a new type of tree model that
we are working on and will report elsewhere.

5 Experiments

We evaluate the speedup of our algorithm (“adaptive”) over the original algorithm (“naive”) of [28]
in several settings and verify that the models and RMSE obtained are the same for both (up to
small numerical differences). We focus on speeding up TAO and some experiments also do this for
CART linear trees (although they have a far lower accuracy, as shown in [28]). We implement the
algorithm in C++ using the Eigen library [11] for linear algebra operations and LIBLINEAR [7] for
solving ℓ1-regularized logistic regressions. The oblique decision tree is randomly initialized: each
scalar weight is sampled from a standard normal distribution, and biases are adjusted to ensure that
training instances are uniformly distributed across all leaves. Although TAO is highly parallelizable,
we do not conduct experiments with parallel computation (section 4.3 gives a brief discussion). For
preprocessing, we use the Python library PIL with a bilinear resampling filter for resizing and the
ndimage package for rotation. For the Infinite MNIST dataset [18], we generated 1M points.

5.1 Speedup as a function of sample size, depth and feature dimension

Fig. 1 compares the naive and adaptive TAO versions with an oblique decision tree with linear leaves
trained on the MNIST dataset (N = 60 000). We fix the regularization parameters to λ = 1 and
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Figure 1: Training time (in seconds) for a single iteration on the MNIST dataset (D = 784) using
the adaptive (top row) and naive (bottom row) algorithms for leaf training across different input
dimensions D and depths ∆. Columns 1–3 show the training time for leaves, decision nodes and its
total sum, respectively, as a function of ∆. Critical depths ∆∗ are indicated by black dots on each
curve. Column 4 shows leaf training time as a function of the sample size N . Black dots now mark
the critical sample size N∗ corresponding to each depth. Sample sizes smaller than or equal to the
N∗ correspond to the deep regime, where the speedup occurs. Error bars indicate standard deviation
over 5 runs.

Naive Adaptive

100 400 900 1600
0

25

50

T
ra

in
in

g
ti

m
e,

s

output dimension E
100 400 900 1600

0

25

50

∆ = 4

∆ = 12

output dimension E

Figure 2: Training time (averaged over
5 runs) of all leaves for a single iteration
on the MNIST dataset (D = 784) us-
ing the adaptive (left column) and naive
(right column) algorithms for leaf train-
ing across different output dimensions
E and depths ∆.

α = 0.001, and construct a curve of training time over tree depth ∆ for different input dimensions
D. To generate datasets of different dimensions, we resize the MNIST images from their original
size of 28 × 28 to 10 × 10, 20 × 20 and 40 × 40, resulting in 4 datasets with feature dimensions
D = {784, 100, 400, 1600} and corresponding critical depth ∆∗ = log2(N/D) ≈ {6, 9, 7, 5},
respectively. Single-output regression labels are generated by applying a random projection unique
to each class. Note that training at depth zero corresponds to solving a single ridge regression.

Starting from depth∆ = 10, which corresponds to the deep regime for all datasets, training all leaves
with the adaptive algorithm takes less than a second. For D = 1600, training all leaves at depth 10
is 8× faster than training a single ridge regression model, and 16× faster at depth 15. The training
cost for all leaves has a non-monotonic behavior, decreasing after the critical depth. In contrast, the
naive algorithm results in an exponential time complexity with respect to ∆. This behavior is shown
in fig. 1 (row 2), where leaf training dominates the overall training cost for deep trees, leading to
an exponential total training time. Decision nodes, on the other hand, have similar training times
for both the naive and adaptive algorithms, as they are unaffected by the specific leaf solver, and the
time is linear over N .

In order to use larger datasets, we used 1M images of 28 × 28 from the Infinite MNIST dataset
images; the input dimension D = 784 and output dimension E = 1 are fixed. Fig. 1 (column 4)
demonstrates that the training time scales linearly with the number of samples for both the naive and
the adaptive algorithms. The black dots mark the critical sample size N∗ for the given tree depth ∆
and input dimension, i.e., N∗ = D2∆. As ∆ increases, N∗ shifts to higher sample sizes, showing
how the boundary between the deep and shallow regimes changes with depth. The training time
curve lies in the deep regime for N < N∗ and in the shallow regime otherwise.

Fig. 2 shows the effect on the training time of the output dimension E. For both the naive and
adaptive algorithms, the training time scales linearly with E because both the leaf and decision node
computations are linear in E. The critical depth here is ∆ = 6, so the red curve represents the deep
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regime and the blue curve the shallow regime. Although both algorithms scale linearly with E, the
naive one has a larger scaling factor of Θ(2∆D2), while for the adaptive one it is only Θ(ND).
This indicates that while both methods experience increased training time as E grows, the adaptive
approach remains significantly more efficient in deep regimes.

5.2 Speedups on various real-world and synthetic datasets

Table 1 shows the training time of oblique decision trees on other datasets (whose descriptions are in
the appendix), across shallow and deep regimes, using the naive and adaptive algorithms. All trees
are trained with fixed hyperparameter values α = 0.01 and λ = 1 for 20 iterations. The RMSE value
(not shown) is identical for both algorithms. We present results ranging from small to large scale.
The difference in training times becomes more pronounced for datasets with higher input dimension
and larger sample size. For example, on moderate-sized datasets such as CT Slice, Rotated MNIST
and Patched Fashion MNIST, the adaptive algorithm achieves up to a 3.5× speedup over the naive
one. On the datasets with high input dimension (e.g. D = 2 500), the speedup reaches 25×.

Our complexity analysis in section 4 assumed a best case: complete trees (with 2∆ leaves for depth
∆) with balanced leaves (having the same number of instances N/2∆). However, our experiments
are not restricted in that way. For example, in the TAO and CART linear trees of table 2, the number
of leaves is much smaller than 2∆, indicating an irregular structure, and the reduced set sizes range
from 8 to 5649 instances. Still, the adaptive algorithm shows a significant speedup.

5.3 Speedup on regression forests using bagging Table 1: Training time (s) averaged over
5 runs for 20 iterations at different tree
depths ∆: adaptive vs naive algorithms.
Dataset D Impl. ∆ T Time (s)

ailerons 40 adap. 13 1 7.67
naive 7.66

CT slice 384 adap. 15 1 119.12
naive 243.25

sarcos 21 adap. 16 1 34.72
naive 34.85

Patched 784 adap. 15 1 1160.24
naive 3990.65

Rotated 784 adap. 15 1 6611.74
naive 17534.83

Random 2500 adap. 15 1 3273.18
naive 83387.20

Patched 784 adap. 3 30 89.47
naive 89.06

Patched 784 adap. 7 30 217.58
naive 222.54

Patched 784 adap. 11 30 331.66
naive 515.36

Patched 784 adap. 15 30 580.12
naive 1995.32

The accuracy can be considerably increased if using an
ensemble of trees (forest) rather than a single tree. Here
we demonstrate this using bagging as ensembling mech-
anism, as in [28]. This means we use T oblique trees,
each trained independently on a bootstrap sample (or
strict subset, by subsampling) of the original dataset, and
define the forest output as the average of the T trees. Our
adaptive algorithm applies to each single tree, so the run-
time gains (relative to the naive algorithm) are the same
as if using a single tree. However, if using subsampling
in bagging, each tree is trained on a subset having fewer
than N samples, so the critical depth becomes smaller,
and the algorithm becomes faster.

Table 1 shows results for the Patched Fashion MNIST
dataset using a forest of size T = 30 trees with depths
ranging from 4 to 15. Each tree is trained for 20 itera-
tions with a strict sample size of 90% of the training set.

5.4 Speedups across hyperparameter tuning

We evaluate the speedup in the practical setting of model selection by cross-validation, where to get
the final model one needs to train multiple trees spanning a range of hyperparameter values and pick
the best one. Since the adaptive algorithm does not change the learned trees, hyperparameter tuning
and model selection is as with the naive one. We consider two methods of hyperparameter tuning.

Grid-search hyperparameter optimization We use a grid search over the regularization parame-
ters λ and α but not over the depth, which we set to relatively large (e.g. ∆ = 15). This is because
varying λ will automatically reduce the number of nodes from the initial, complete tree and produce
a regularization path of trees of different number of leaves, each having a possibly different depth,
and thus an irregular, learned tree structure. Thus, this grid search necessarily evaluates many trees
of both deep and shallow regimes. In fact, when training trees of irregular structure, the idea of
deep/shallow regime really applies to each individual leaf, which has its own depth. It is possible
that the final selected model is shallow (i.e., ∆ < ∆∗) and thus would not, for its final training,
benefit from the adaptive speedup. However, this outcome cannot be known in advance. To find the
optimal model, the grid search must evaluate the deeper trees (i.e., those with ∆ > ∆∗), as the best
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Table 2: Left: grid search time and final model training time on the Patched Fashion MNIST dataset.
∆ denotes the depth of the final selected model, chosen from a regularization path that started at
depth 15 for TAO and from a fully-grown tree for CART. Right: counts of sampled tree depths for
Bayesian hyperparameter optimization frameworks Optuna and Hyperopt (100 trials each).

Grid search

Model ∆
Train

RMSE
Test

RMSE
Search
time, s

Training
time, s

TAO-lin. adap. 10 0.11 0.16 3485.38 253.82
TAO-lin. naive 10 0.11 0.16 6899.90 256.05
CART-lin. adap. 17 0.09 0.19 350.37 45.79
CART-lin. naive 17 0.09 0.19 2444.19 54.08

Random Forest 47 0.06 0.18 N/A 2734.23
XGBoost 6 0.11 0.17 N/A 2117.93

Bayesian hyperparameter
optimization

Depth range Optuna Hyperopt

1–10 4 4
11–20 17 5
21–30 64 62
31–40 15 29

model may be in that regime. Our adaptive method provides a significant practical advantage by ac-
celerating the evaluation of these deeper trees. Therefore, the total computational cost of the entire
hyperparameter search is significantly reduced, as shown in table 2 (left). Note how the speedup
for CART is much larger than for TAO; this is due to the fact that CART trees are much deeper and
larger, in turn due to the suboptimality of CART as a tree learning method.

Bayesian hyperparameter optimization A reviewer of this paper conjectured that using a more
sophisticated hyperparameter optimization (HPO) method instead of a grid search, such as Bayesian
hyperparameter tuning, might not sample deep trees often if they overfit, which might reduce the
speedups achieved. To test this, we use Bayesian hyperparameter tuning for CART with linear leaves
on the Patched Fashion MNIST dataset, using two HPO frameworks: Optuna [1] and Hyperopt [2].
Following standard practice for CART [12], we tune the cost-complexity pruning parameter. We run
each framework for 100 trials with a time limit of 3 hours, minimizing the RMSE loss. The results
in table 2 (left) demonstrate that our adaptive method is critical for the feasibility of these advanced
HPO frameworks. The adaptive algorithm completed the full 100-trial search in under an hour. In
contrast, the naive algorithm timed out after 3 hours, completing only 28% of the scheduled trials.

Furthermore, we analyze the distribution of the tree depths sampled by these frameworks to address
the hypothesis that they would avoid deep trees. The results, shown in table 2 (right), demonstrate
the opposite is true. Using Optuna, 79 of 100 trials resulted in trees with a depth greater than 20.
The trend was even more pronounced with Hyperopt, where 91 of 100 trials resulted in trees with
depths greater than 20.

This provides strong empirical evidence that Bayesian HPO frameworks do not avoid deep trees;
on the contrary, they must extensively explore complex, deep structures to find the optimal model.
This finding underscores that our adaptive speedup is not just beneficial for grid search, but is in fact
essential for making modern HPO techniques computationally feasible.

6 Conclusion

We have improved the TAO algorithm for trees with linear leaves by making it considerably faster
while producing the exact same result. We have achieved this by noting that the optimization over
the leaf predictors separates over disjoint subsets of the training instances. The corresponding linear
system can be solved either in the usual way, with a cost cubic on the input feature dimension, or via
the Sherman-Morrison-Woodbury formula, with a cost cubic on the number of instances. Switching
to the latter once the tree exceeds a critical depth gives a much faster algorithm. The idea applies
also to the traditional CART or M5 algorithms, and to forests with linear leaves.

The argument can be applied to other types of trees, whenever the optimization of a node (whether
a leaf or a decision node) can be computed in superlinear time of the number of instances. We
are exploring this, particularly with low-rank linear mappings, which are more parsimonious than
regular linear mappings.
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A Algorithm

The algorithm is an iterative procedure that optimizes tree nodes in a depthwise fashion until conver-
gence. Each node i is trained on its corresponding reduced set Ri ⊂ {1, . . . , N}. Decision nodes
learn to route training samples to the leaves where they achieve the lowest error, while leaves are
trained as standard regression models. The pseudocode for the modified TAO algorithm is provided
in fig. 3.

input training set {xn}Nn=1;
regularization hyperparameters λ ≥ 0, α ≥ 0;
initial tree T(·;Θ) of depth ∆,
where Θ = {wi, wi0}i∈D ∪ {Aj ,bj}j∈L

N0, . . . ,N∆ ← nodes at depth 0, . . . ,∆, respectively
for each i ∈ N : generateRi (instances that reach node i)
repeat

for d = ∆ down to 0
(par)for i ∈ Nd

if i ∈ L then
{Ai,bi} ← ridge regression solution

onRi with penalty α (see Theorem 3.3 in the main paper)
else

for each instance xn generate pseudolabels yin and sample weights γin
{wi, wi0} ← fit ℓ1-regularized weighted binary classifier on {(xn, γin, yin)}n∈Ri

with penalty λ (see Theorem 3.2 in the main paper)
for each i ∈ N : updateRi on tree T

until stop
return T

Figure 3: Pseudocode for the modified TAO algorithm with linear leaf optimization.
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Table 3: Summary of datasets used in the experiments. N denotes the number of samples, D the
input dimensionality, E the output dimensionality, and ∆∗ the critical depth.

Dataset N D E ∆∗

ailerons 7154 40 1 7
CT slice 32100 384 1 6
SARCOS 44484 21 7 11
Rotated MNIST 60000 784 784 6
Patched Fashion MNIST 60000 784 64 6
Random MNIST 60000 784 1 6
Infinite MNIST 1000000 784 784 10

B Dataset description

Dataset characteristics are summarized in Table 3.

ailerons A dataset where the attributes describe the status of an air-
craft. The task is to predict the control signal applied to the ailerons.
https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html

CT slice A dataset from the UCI repository [16]. Each slice is represented by two polar
histograms capturing bone structures and air inclusions, concatenated into a 384-dimensional
feature vector. The target is the relative position of the slice along the axial axis.
https://archive.ics.uci.edu/datasets

SARCOS A robotics dataset used in [23] where the task is to predict 7 joint
torques from 21 input features including joint positions, velocities, and accelerations.
http://www.gaussianprocess.org/gpml/data/

Rotated A regression task in which MNIST [15] digits are rotated by class-specific angles. The
goal is to predict a rotated image from the original image. The rotation degrees are: 0: 8◦, 1: 49◦, 2:
−57◦, 3: −63◦, 4: 16◦, 5: −18◦, 6: −10◦, 7: −32◦, 8: −71◦, 9: 58◦.

Patched Fashion MNIST A regression task where the model predicts an 8 × 8 patch extracted
from a Fashion MNIST [26] image. The patch location depends on the digit label, with top-left
corners positioned as follows: 0: (17, 6), 1: (10, 19), 2: (17, 18), 3: (6, 0), 4: (2, 16), 5: (13, 12), 6:
(10, 0), 7: (0, 10), 8: (11, 5), 9: (11, 11).

Random MNIST A synthetic regression task where MNIST [15] digits are linearly mapped to a
single scalar value using class-specific random projections. The goal is to predict this value from
the original image.

Infinite MNIST [18] An augmented version of MNIST containing 1 million synthetically gener-
ated digits using pseudo-random deformations and translations. Each image is linearly mapped
to a single scalar value using a class-specific projection, and the task is to predict this value.
https://leon.bottou.org/projects/infimnist
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C Grid-search hyperparameter optimization

We provide an extended version of Table 2 from the main text, which also includes results for the
CTSlice dataset.

Table 4: Hyperparameter search time and final model training time on the Patched Fashion MNIST
and CTSlice datasets. ∆ denotes the depth of the final selected model, chosen from a regularization
path that started at depth 15 for TAO and from a fully-grown tree for CART-linear.

Dataset Model ∆
Train

RMSE
Test

RMSE
Search
time, s

Training
time, s

Patched
MNIST

TAO adap. 10 0.11 0.16 3485.38 253.82
TAO naive 10 0.11 0.16 6899.90 256.05
CART-lin. adap. 17 0.09 0.19 350.37 45.79
CART-lin. naive 17 0.09 0.19 2444.19 54.08

CTSlice

TAO adap. 9 0.44 1.51 548.92 62.65
TAO naive 11 0.21 1.76 741.49 73.83
CART-lin. adap. 31 0.14 2.75 116.90 4.60
CART-lin. naive 31 0.14 2.69 1460.53 5.61
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detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We plan to make available code in the future.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines

(https://nips.cc/public/guides/CodeSubmissionPolicy) for more de-
tails.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experiment section and supplementary material

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Results are averaged over multiple runs with error bars shown.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Supplementary material

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: The paper proposes an algorithmic speedup for training decision trees.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [No]

Justification:

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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