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ABSTRACT

Performative reinforcement learning is an emerging dynamical decision making
framework, which extends reinforcement learning to the common applications
where the agent’s policy can change the environmental dynamics. Existing works
on performative reinforcement learning only aim at a performatively stable (PS)
policy that maximizes an approximate value function. However, there is a prov-
ably positive constant gap between the PS policy and the desired performatively
optimal (PO) policy that maximizes the original value function. In contrast, this
work proposes a zeroth-order Frank-Wolfe algorithm (0-FW) algorithm with a
zeroth-order approximation of the performative policy gradient in the Frank-Wolfe
framework, and obtains the first polynomial-time convergence to the desired PO
policy under the standard regularizer dominance condition. For the convergence
analysis, we prove two important properties of the nonconvex value function. First,
when the policy regularizer dominates the environmental shift, the value function
satisfies a certain gradient dominance property, so that any stationary point (not
PS) of the value function is a desired PO. Second, though the value function has
unbounded gradient, we prove that all the sufficiently stationary points lie in a con-
vex and compact policy subspace I1a, where the policy value has a constant lower
bound A > 0 and thus the gradient becomes bounded and Lipschitz continuous.
Experimental results also demonstrate that our 0-FW algorithm is more effective
than the existing algorithms in finding the desired PO policy.

1 INTRODUCTION

Reinforcement learning is a useful dynamic decision making framework with many successes in
Al such as AlphaGo (Silver et al.l 2017), AlphaStar (Vinyals et al., [2019), Pluribus (Brown &
Sandholml 2019), large language model alignment (Bai et al., 2022) and reasoning (Havrilla et al.,
2024). However, most reinforcement learning works ignore the effect of the deployed policy on the
environmental dynamics, including transition kernel and reward function. This effect is significant
in multi-agent systems, particularly the Stackelberg game, where leaders’ policy change triggers
the followers’ policy change, which in turn affects the environmental dynamics faced by the leader
(Mandal et al.l |2023). For example, a recommender system (leader) affects the users’ (followers)
demographics and their interaction strategy with the system (Chaney et al.,[2018}; [Mansoury et al.|
2020). Autonomous vehicles (leaders) affect the strategies of the pedestrians and the other vehicles
(followers) (Nikolaidis et al.l [2017).

To account for such effect of deployed policy on environmental dynamics, performative reinforcement
learning has been proposed by (Mandal et al.,|2023)) where the transition kernel p,; and reward function
r. are modeled as functions of the deployed policy 7. The ultimate goal is to find the performatively
optimal (PO) policy that maximizes the performative value function, defined as the accumulated
discounted reward when deploying a policy 7 to its corresponding environment (p,, ). However,
the policy-dependent environmental dynamics pose significant challenges to achieve PO. Hence,
(Mandal et al.;[2023) pursues a suboptimal performatively stable (PS) policy using repeated retraining
method with environmental dynamics fixed for the current policy at each policy optimization step.
However, (Mandal et al., [2023)) shows that PS can have a positive constant distance to PO.

Extensions of the basic performative reinforcement learning problem (Mandal et al.l 2023)) have been
proposed and all of them focus on the suboptimal PS policy. For example, Rank et al.| (2024) allows
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the environmental dynamics to gradually adjust to the currently deployed policy, and proposes a
mixed delayed repeated retraining algorithm with accelerated convergence to a PS policy. Mandal
& Radanovic|(2024)) extends (Mandal et al.,|2023) from tabular setting to linear Markov decision
processes with large number of states, and also obtains the convergence rate of the repeated retraining
algorithm to a PS policy. [Pollatos et al.|(2025) obtains a PS policy that is robust to data contamination.
Sahitaj et al.[(2025) obtains a performatively stable equilibrium as an extension of PS policy to
performative Markov potential games with multiple competitive agents.

In sum, all these existing performative reinforcement learning works pursue a suboptimal PS policy
by repeated retraining algorithms. Therefore, we want to ask the following basic research question:

Q: Is there an algorithm that converges to the desired performatively optimal (PO) policy?

1.1 OUR CONTRIBUTIONS

We will answer affirmatively to the research question above in the following steps. Each step yields a
novel contribution.

e  We study an entropy regularized performative reinforcement learning problem, compatible with
the basic performative reinforcement learning problem in (Mandal et al.| 2023). We prove that the
objective function satisfies a certain gradient dominance condition, which implies that an approximate
stationary point (not the suboptimal PS) is the desired approximate PO policy, under a standard
regularizer dominance condition similar to that used by (Mandal et al.l 2023} Rank et al.| [2024;
Mandal & Radanovic, |2024; Pollatos et al., [2025) to ensure convergence to a suboptimal PS policy.
The proof adopts novel techniques such as recursion for p,-related error term and frequent switch
among various necessary and sufficient conditions of smoothness and strong concavity like properties
for various variables (see Section [3.2).

e  We obtain a policy lower bound as a decreasing function of a stationary measure. This bound
not only implies the unbounded performative policy gradient (a challenge to find a stationary policy
and thus PO), but also inspires us to find a stationary policy in the policy subspace IIn with a
constant policy lower bound A > 0 where we prove the objective function to be Lipschitz continuous
and Lipschitz smooth (a solution to this challenge). The lower bound A is obtained using a novel
technique which simplifies a complicated inequality of the minimum policy value 7[amin($)|s] in
two cases (see Section[3.3).

e  We construct a zeroth-order estimation of the performative policy gradient and obtains its
estimation error. This is more challenging than the existing zeroth-order estimation methods since
our objective function is only well-defined on the policy space, a compact subset of a linear subspace
of the Euclidean space RIS!I41. To solve this puzzle, we adjust a two-point estimation to the linear
subspace L of policy difference, and simplify the estimation error analysis by mapping policies onto
the Euclidean space RISI(1=1) via orthogonal transformation (see Section .

e We propose a zeroth-order Frank-Wolfe (0-FW) algorithm (see Algorithm[I)) by combining the
performative policy gradient estimation above with the Frank-Wolfe algorithm. Then we obtain a
polynomial computation complexity of our 0-FW algorithm to converge to a stationary policy, which
is also the desired PO policy under the regularizer dominance condition above. The convergence
analysis uses a policy averaging technique to show that an approximate stationary policy on Il is
also approximately stationary on the whole policy space II (see Section .2}

Finally, we briefly show that the results above, including gradient dominance, Lipschitz properties and
the finite-time convergence of 0-FW algorithm to the desired PO, can be adjusted to the performative
reinforcement learning problem with the quadratic regularizer used by (Mandal et al., 2023; Rank
et al.| 2024; [Pollatos et al.,|2025) (see Appendix M])

2 PRELIMINARY: PERFORMATIVE REINFORCEMENT LEARNING

2.1 PROBLEM FORMULATION

Performative reinforcement learning is characterized by a Markov decision process (MDP) M, =
(S, A, pr, 7, p) that depends on a certain policy w. Here, S and .4 denote the finite state and
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action spaces respectively. The policy 7 € [0, 1]ISIMI| transition kernel p, € [0,1)/SI°41, reward
rx € [0,1]ISII41] and initial state distribution p € [0,1]!S! are vectors that represent distributions.
Specifically, the policy 7 € [0, 1]/, with entries 7(a|s) for any state s € S and action a € A,

lies in the policy space 11 ef {relo, 1]|‘S|2‘““| > aeam(als) =1,Vs € S}, such that 7(-|s) for

any state s can be seen as a distribution over .A. The transition kernel p, € [0, 1] IS114] dependent on

policy = € II, with entries p,(s'|s,a) for any s,s’ € S and a € A, lies in the transition kernel space

P {pe o1l Y e P(s']s,a)=1,Vs €S, a € A} such that p(-[s, a) can be seen as a

S def . . . .
state distribution on S. 7, € R = [0, 1]/ is the reward function with entries (s, a) € [0,1]

forany s € Sanda € A. p € [0,1]!5! is the initial state distribution such that > ¢ p(s) = 1.
Note that we consider p,, 7, p, ™ as Euclidean vectors, so that we can conveniently define their

Euclidean norm. For example, we define [[px|l, = [X, oo [Px(s']s,a)[7] Y9 for any ¢ > 1 and

lpr |l = maxs 4.5 [Pr(s']$, a)|. Such norms can be similarly defined over ., p, 7 by summing or
maximizing over all the entries. Specifically, denote || - || = || - ||2 by convention.

When an agent applies its policy © € II to MDP M, = (S, A, pxs, 7x, p), the initial environmental
state sg € S is generated from the distribution p. Then at each time ¢ = 0,1, 2, . . ., the agent takes
arandom action a; ~ 7(-|s;) based on the current state s; € S, the environment transitions to the
next state s;41 ~ pn(-|st, a;) and provides reward r; = 7,/(s4,a4) € [0, 1] to the agent. The value
of applying policy 7 to M+ can be characterized by the following value function:
o0
Vi def Erp . p [ Z Vra (e, at)} — ANH (7). (D
t=0
Here, Er ;_, , is the expectation under policy , transition kernel p,+ and initial state distribution p.
v € (0,1) is the discount factor. H () is a regularizer with coefficient A > 0 to ensure or accelerate
algorithm convergence. Existing works use the quadratic regularizers such as . (7) =% ||dr, , ||
(Mandal et al., 2023; |Rank et al.,[2024; [Pollatos et al., [2025) and H ./ (7) = % ||<I>Td7r’pﬂ, |? (Mandal

& Radanovic, 2024) with a feature matrix ®, where the occupancy measure d , € [0, 1] ISTIAT for
any policy 7 and transition kernel p is defined as the following distribution on S x A.

def =
dmp(sa a) = (1 - '7) Z’Ytﬂmﬂ,p,p{st = S,at = a}7 2)
t=0
Then the state occupancy measure defined as d ,(s) def > adx p(s,a) satisfies the following
well-known Bellman equation for any state s’ € S.
drp(s)=(1 —’y)p(s’)+vzdﬂ7p(s)7r(a|s)p(s'|s, a). 3)

The goal of performative reinforcement learning is to find the performatively optimal (PO) policy 7
that maximizes the performative value function V' (with «' = m in Eq. ), as defined below.

Definition 1 (Ultimate Goal: PO). For any € > 0, a policy w € 1l is defined as e-performatively
optimal (e-PO) if max e V/\’f;r, — Vi < e Specifically, we call a 0-PO policy as a PO policy.

Conventional reinforcement learning can be seen as a special case of performative reinforcement
learning with fixed environmental dynamics, namely, fixed transition kernel p, = p and fixed reward
function 7, = r. However, this may fail on applications with policy-dependent environmental
dynamics, such as recommender system and autonomous driving as explained in Section T}

2.2  EXISTING REPEATED RETRAINING METHODS FOR PERFORMATIVELY STABLE (PS)
PoLICY

Achieving an e-PO policy (defined by Definition |1)) is challenging, due to the policy-dependent
environmental dynamics p, and r. To alleviate the challenge, all the existing works (Mandal et al.|
2023 Rank et al.} 2024; Mandal & Radanovic, [2024; Pollatos et al., [2025}; Sahitaj et al.,[2025) aim at
a performatively stable (PS) policy mpg defined as follows, as an approximation to a PO policy.

mps € argmax V. “)
mell ’



Under review as a conference paper at ICLR 2026

In other words, a PS policy mpg has the optimal value on the fixed environment M .. However,
Mandal et al.| (2023) shows that a PS policy can be suboptimal.

Nevertheless, we will briefly introduce the suboptimal repeated retraining algorithms in their works,
to later partially inspire our method that converges to the global optimal PO policy. All these
repeated retraining algorithms share the fundamental idea that in each iteration ¢, the next policy
1~ arg max, VY is obtained by solving the conventional reinforcement learning problem
under fixed dynamics p,, and r,. This strategy highly relies on conventional reinforcement learning
but fail to make full use of the policy-dependent dynamics, which leads to the suboptimal PS policy.
Next, we will propose our significantly different strategies to achieve the desired PO policy.

3  ENTROPY REGULARIZED PERFORMATIVE REINFORCEMENT LEARNING

In this section, we obtain critical properties of an entropy regularized performative reinforcement
learning problem for achieving the desired PO policy.

3.1 NEGATIVE ENTROPY REGULARIZER

We consider the following negative entropy regularizer of the policy m, which is widely used in
reinforcement learning to encourage environment exploration and accelerate convergence (Mnih
et al., [2016; Mankowitz et al.,|2019; Cen et al., [2022; |(Chen & Huang, 2024)).

Hﬂ',(ﬂ-) = Eﬂ,pﬂ/,p{zvt logﬂ-(at‘stﬂ' (5)

t=0
In addition, this negative entropy regularizer can be seen as a strongly convex function of the
occupancy measure d ,, , (proved in Appendix [D), which is critical to develop algorithms convergent
to a PO (see Theorem later) or PS policy (Mandal et al.,[2023)). For optimization problem on a
probability simplex variable (policy 7 or occupancy measure d), negative entropy regularizer is more
natural and yields faster theoretical convergence than the quadratic regularizers used in the existing

performative reinforcment learning works (Mandal et al., 2023} [Rank et al., |2024; |Pollatos et al.,
2025) (see pages 43-45 of (Chen, 2020) for explanation).

Therefore, we will mainly focus on the following entropy-regularized value function, which is
obtained by substituting the negative entropy regularizer (3)) into the general value function (T).

Vi def Erp. 0 [ Z Y e (s, a:) — Alog w(at|st)]} . 6)
t=0

Specifically, we will study the critical properties of the entropy-regularized value function (&) (Section
M) to develop algorithm that converges to PO (Sections 4. 1}4.2). Then we will briefly discuss about
how to adjust these results to the existing quadratic regularizers (Appendix [M)).

We make the following standard assumptions to study the properties of the value function (6).
Assumption 1 (Sensitivity). There exist constants €y, €, > 0 such that for any m, 7' € I,
Ipr —prl| <eplln’ =7, lrw —rzl <& lln’—|| ©)
Assumption 2 (Smoothness). p. and r, are Lipschitz smooth with modulus S,,, S, > 0 respectively,
thatis, forany wm € II, 5,8’ € S, a € A, we have
||v7rp7r’(5/‘3a a) — VWPW(S/‘S’ a)ll SSP||7T/ -l (®)
|Vare (s,a) — Vare(s,a)| <S.||7" — x| )

Assumption 3. There exists a constant D > 0 such that inf rcr1 pep ses dr p(s) > D.

Assumptions|T}j2]ensure that the environmental dynamics p, and r adjust continuously and smoothly
to policy 7, and thus the performative value function V" is differentiable with performative policy
gradient V.V . Similar versions of Assumption|I|on environmental sensitivity have also been used
for performative reinforcement learning (Mandal et al.}, 2023} [Rank et al.| [2024; Mandal & Radanovic|
2024; Pollatos et al., 2025} |Sahitaj et al., [2025)). Assumptionhas been used (Zhang et al., 2021}
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Sahitaj et al.,[2025) or implied by stronger assumptions (Wei et al., 2021} |Chen et al.| 2022; |Agarwal
et al.l [2021}; [Leonardos et al., [2022; Wang et al.| 2023 |Chen & Huang| 2024} Bhandari & Russo,
2024) in conventional reinforcement learning (see Appendix |E{for the proof), which guarantees that
each state is visited sufficiently often.

3.2 GRADIENT DOMINANCE

For the nonconvex policy optimization problem max,cr Vy . in Eq. on the convex policy space
II, it is natural to consider its approximate stationary solution as defined below.

Definition 2 (Stationary Policy). For any ¢ > 0, a policy m € 1l is e-stationary if
maxXsern <V7T Vi@ — 7r> < e. We call a O-stationary policy as a stationary policy.

Note that for a policy to be the desired PO, it is necessary to be stationary, while the PS policy targeted
by existing works is neither necessary nor sufficient. Furthermore, we will show that stationary policy
can also be a sufficient condition of the desired PO under mild conditions. As a preliminary step, we
show the important gradient dominance property of the objective function as follows.

Theorem 1 (Gradient Dominance). Under Assumptions[I}3} the entropy regularized value function
(6) satisfies the following gradient dominance property for any 7o, m € IL

Vi, SV, + D7 max (Vi VTG, — mo) — Sl = mol 2. (10)
where
e DA 69|S](1+ Alog | A))
p 2 2 '12(1 S [ (VI + 76,18 + 5,0 )

- -7)?
S +4E'r' \/ |A +€p\/|8

- 2 (11

D2(1 —7)?

The gradient dominance property above generalizes that used in the conventional unregularized
reinforcement learning (see Lemma 4 of (Agarwal et al.| [2021))), which implies that stationary policy
is close to a PO policy as shown in the corollary below.

Corollary 1. Under Assumptions any De-stationary policy is an ( )-PO policy. Fur-
thermore, this is also the desired e-PO policy if p > 0. The PO policy is unique if pn > 0.

Remark: Corollary[I]implies that a De-stationary policy is always (¢ + |1||S|)-close to the desired
PO policy with || proportional to the environmental sensitivity O(e, + €, + S, + ;). Furthermore,
since pt = [O(1) — O(ep + Sp)]A — O(€p + €, + S, + Sy) by Eq. (11), when O(e, + S,) < O(1) and

. . . . O(ep+er+Sp+Sy)
the regularizer strength dominates the environmental shift (A > (an)—o—(epis,ﬂ)’ we have ;1 > 0 so

that the De-stationary policy is also the desired e-PO policy. Note that similar regularizer dominance
condition has also been used to guarantee convergence to a suboptimal PS policy (Mandal et al.|
2023} [Rank et al.l 2024} Mandal & Radanovic| 2024; Pollatos et al., 2025)).

3.3 PoLicY LOWER BOUND AND LIPSCHITZ PROPERTIES

Policy Lower Bound: Based on Section[3.2] we can focus on achieving an e-stationary policy. A
major challenge is the unbounded performative policy gradient V V" on 11. Specifically, we will
show that as 7(a|s) — 0 for any state s and action a, W x|l = +o0. To tackle this challenge,
we prove the following policy lower bound.

Theorem 2. If Assumptions[l|and[3|hold, and p, rr are differentiable functions of , then there
exists a constant T,y > 0 (see its value in Eq. (96) in Appendix[H) such that the following policy
lower bound holds for any m €11, s € S, a € A.

2
7(als) = Tmin exp | - @(1 — WVaVi ' =), (12)
Here, the policy 7' is defined as follows depending on :
7I-[CIJmi11(<S)|<5]7 a = amax(s)
7' (als) = { T[amax(s)[s], @ = amin(s), (13)
m(als), Otherwise



Under review as a conference paper at ICLR 2026

where amax(s) € argmax,m(als) and amiy(s) € arg min,m(als).

Implications of Theorem @: First, as w(als) — 0, we have (V,V] 7' —7m) — 400, so
[IV2V{. || = 400 as aforementioned. Second, any stationary policy  satisfies (V V7,7’ —m) <
0, so w(a|s) > Tmin. Therefore, we can search e-stationary policy on the convex and compact policy

subspace I1a of {m €1l : 7(als) > A} with lower bound A € (0, Tyip].

Lipschitz Properties: Theorem 2]inspires us to find an e-stationary policy in the policy subspace ITa,
where the performative value function V', is Lipschitz continuous and Lipschitz smooth as follows.

Theorem 3. Under Assumptions[I\2} there exist constants Ly, {5 > 0 (see the values in Egs. (@) and
(-) in Appendlx[z]) such that the following Lipschitz propreties hold for any A > 0 and 7,7’ € Tla.

‘ﬂ'/ U L)\ 71" T EA
Viw = Vial < XIn =7l Ve Vi = VeVl < Tl =7l (14)

4 ZEROTH-ORDER FRANK-WOLFE (0-FW) ALGORITHM

4.1 PERFORMATIVE POLICY GRADIENT ESTIMATION

In Section |3} we have obtained important properties of the entropy regularized performative value
Junction V7 (defined by Eq. @), which indicates that it suffices to find an e-stationary policy in
the subspace ITa for A € (0, Tmin]- To achieve this goal, an accurate estimation of the performative
policy gradient V V)" is important but also challenging, since the performative policy gradient
involves the unknown gradients V,p(s'|s, a) and V7. (s, a).

Despite these challenges in estimating V.V, note that V" for any policy m can be evaluated by
policy evaluation in conventional reinforcement learning under fixed environment p,. and r, (for
fixed 7). Furthermore, for any ¢y, > 0 and 7 € (0, 1), many existing policy evaluation algorithms
such as temporal difference (Bhandari et al., 2018} |Li et al.| [2023 [Samsonov et al., 2023), can obtain

VA » ~ V. with small error bound |V>\ « — V3| < ev with probability at least 1 —

As aresult, we will consider a zeroth-order estimation of V. V" using policy evaluation. However,
this has another challenge that V7 is only well-defined on 7 € II, so we cannot directly apply the
existing zeroth-order estimation methods (Agarwal et al.,[2010; Shamir}, [2017; Malik et al., [2020)
which require the objective function to be well-defined on a sphere. Fortunately, for any 7, 7’ € II,
the policy difference ' — 7 lies in the following linear subspace of dimensionality |S|(|.4] — 1).

Lo &t {ueRlSHAlzZu(a|s):0,Vs€S}. (15)

Therefore, inspired by the popular two-point zeroth-order estimations, we estimate V. V" as follows.

N

~ |S| |A| T+ou; T—0u;
g)\,ﬁ(ﬂ') INS ; VA 7r+5u1_v)\7r Sug )ui7 (16)

where {u;}¥ | are i.i.d. samples uniformly from U; N Lo with Uy e {u € RISIAL: |ju||=1}. Our

estimation (I6) above is more tricky than the existing two-point zeroth-order estimations (Agarwal
et al.,2010; Shamir, 2017; Malik et al.,|2020) where u; is uniformly distributed on U;. To elaborate,
we replace their Uy with Uy N Ly, a unit sphere on the linear subspace Lo, and further require 7 € IIa
and ) < A, to guarantee that 7 + du;, ™ — du; € Il for any u; € Uy N Ly and thus the gradient
estimation is well-defined (see Appendix [J] for the proof). Moreover, we use the following three
steps to obtain u; uniformly from U; N Lg: (1) Obtain v; uniformly from Uy ; (2) Project v; onto Ly
as Eq. below; (3) Normalize this projection by u; = proj, (v:)/|[proj., (vs)l|-

projg, (vi)(als) = vi(als) Alsz : (17)

The gradient estimation (I6) has the following provable error bound.
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Proposition 1. Forany A > 6 > 0, n € (0,1) and m € Il the stochastic gradient (@) is
well-defined (i.e., ™ + du; and ™ — du; therein are valid policies defined by 11) and approximates the
projected performative policy gradient proj. (Vi Vﬂﬂ) with the following error bound (see its full
expression in Eq. (II0) in Appendix[J), with probability at least 1 — n.

log(N/n)

N . x €
[935(m) — proie, (V- Vi) | < O(F + =5 2L +4). (18)

Remark: Proposition[TJabove aims Algorithm 1 Zeroth-order Frank-Wolfe (0-FW) Algorithm

to approximate proj. (VAVY{ ) — -

instead of V, V| . This is é iﬁﬂ?;ﬁzZ’gXllgi 56>HO’ ev 20,6>0.
. ’ ~ . : H 0 A-

sufficient to find an e-stationary 3+ for Iterations £ — 0,1,....7 — 1 do

olicy, because for any policies . . .
P ,y . any p 4:  Obtain i.i.d. vectors {v;}X; uniformly from the unit
m, 7', the stationarity measure dof 3

{uGR'SH“‘” s |l =13

only involves (V. VJ 7' —m) = sphere U; =
(proj, (VaVi.), r'—r)ast'—r € 5 Obtain {projz, (vi)}/L from Egq. -

Lo. Therefore, we only care about ~ 6:  Obtain {u;} | where u; = proj (vi)/|[proj, (v:)]-
proje, (VxV{T,). The estimation 7.  Obtain stochastic policy evaluation Vi ~ V7 which

error above can be arbitrarily : ’ N

: . satisfies |V — VT | < ey form € {m & du,}; ;.
SFna” with sufficiently large'batch- 8 Obtain stochastic péT;formative policy gradient estima-
size N (to reduce the variance), tion g s (¢) using Eq. "

small d (to reduce the bias), and pol-

icy evaluation error ey < 6. 9:  Obtain 7, by Eq. 21).

10:  Update 741 by Eq. (20).
11: end for _
12: Output: 77 where T'€ arg ming <, <7 1(ga 5 (7¢), Tt — 7).

4.2 ZEROTH-ORDER FRANK-WOLFE (0-FW) ALGORITHM

With the estimated gradient §, s(7;) defined by Eq. , we consider the following Frank-Wolfe
algorithm to find an e-stationary policy.

Ty =argmaX ey, <7T7g)\,5(7rt)>7 (19)
Ti1 =T + B(Tr — 7). 20)

Lemma 1. The step (I9) has the analytical solution below.

Aja # a(s)

m(als) = {1 —A(JA| = 1);a = a.(s)’ 2n

where a;(s) € arg max, g s(m)(als).

See the proof of Lemmal[I]in Section[C.I} Then combining the performative policy gradient estimation
(see Section [3.T) with the Frank-Wolfe algorithm, we propose our zeroth-order Frank-Wolfe (0-FW)
algorithm (see Algorithm ).

We obtain the following convergence result of Algorithm [I]in Theorem ] the main theoretical result
of this work, as follows.

Theorem 4. Suppose Assumptions hold. For any n € (0,1) and precision 0 < € <
. I 2 288L,|S|" | A| . .
min [24\/2|S| D SIAD(A=7) ], select the following hyperparameters for Algorithm

D7tmin

' A= Toin 3= 5}7;/7;“‘%6', § = 0(e), ey = O(?), N = Ole 2log(n~te1)], and the number

of iterations T = O(e~2) (see Egs. - in Appendix @ for detailed expression of these
hyperparameters). Then with probability at least 1 — 1, the output policy 77 of AlgorithmE] isa
De-stationary policy. Furthermore, if u > 0, 73 is also an €-PO policy. The total number of policy
evaluations is 2NT = Oe *log(n~te 1)).

Comparison with Existing Works: Theorem [4] indicates that our 0-FW algorithm for the first
time converges to the desire PO policy with arbitrarily small precision € in polynomial computation
complexity, under the regularizer dominance condition that 4 > 0. In contrast, existing works
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only converge to a suboptimal PS policy under a similar regularizer dominance condition (Mandal
et all, 2023}, [Rank et al.} 2024, [Mandal & Radanovic], [2024}; [Pollatos et al.} 2025). Our preferable
convergence result is due to the main algorithmic difference that existing works use repeated re-
training algorithms with iteration 74 ; ~arg maxweHV/\’t; where the policy 7 is deployed in a fixed
environment M, with 7 # m;, while our 0-FW algorithm evaluates V7 where 7 is always deployed
at its corresponding environment M.

Proposition 2. If A < my,in/3 and a policy w satisfies maxzeny (Vo VYT, T —m) < %,
then the stationary measures on Iln and 11 bound each other as follows.

Vo Vi 7 —m) <2 Vo Vi, 7 — 22
max(VaViz, @ —m) <2 max (Vo Vi, @ —m) (22)

To prove Proposition 2] note that 7/ defined by Eq. also belongs to I1a, so Theorem [2]implies
m(als) > 2A. Then for any 75 € II, we have 2" € Tl and thus

o + T

max(V V', m—7m) = 2 max 5

mo€ell o €ll

<V,rVA”7r, —7r> < 2 max (VL Vi, 7 — 7).
) FTEllA !

5 PROOF SKETCH AND NOVELTY

Intuition and Novelty for Proving Theorem[I} Define the following more refined value function

def >
N7 pr) By | 3011 (s1 )~ Mog ' (arls)][s0 ~ )] (23)
t=0
To get the intuition, we will first prove the bound (I0) in the special case with fixed p, = p and

r = r. Then we allow non-constant p, to inspect the perturbation on the bound (I0), and finally see
the effect of non-constant . on the bound (T0).

(Step 1): For conventional reinforcement learning with fixed p, = p and r, = r, denote d, =
adr, p+ (1 —a)dr, p (@ € [0,1]). Based on the Bellman equation (3)), d,, = d, , is the occupancy

measure of the policy 7, (als) = d; (‘Z’S‘;). Therefore, V/\Ti;*ru can be rewritten as Jy(7q, Ta, p, 1) =
Y salda(s,a)[r(s,a) — Alogma(als)], which has the following strong concavity like property by
Pinsker’s inequality.

J/\(ﬂ—owﬂ—fup'/r) - a‘])\(ﬂ-hﬂ—lap: ’I") - (1 - a)J)\(ﬂ-[hﬂ—()ap? ’I")

:ﬁ [ady (s)KL[m1 ()| ma(als)] + (1 = a)do(s)KL[mo(:|s) | 7o (als)]]
Dla(1 — ) 5
Zﬂllm — mol|*. (24)

(Step 2): Consider a harder case with non-constant p, and constant reward r, = 7. Similarly,
denote do, = ady, . + (1 —)dr, p, and m,(als) = ds{f?;’;). The non-constant p,: brings a major
challenge that d,, = dx,, . required by Step 1 above no longer holds. To solve this challenge, we
need to bound the error term e, (s) = dr,, p, (5) — do(s) which we prove to satisfy the following
novel recursion.

eals) =7 Y [eals)malals)pr, (5']s,) + ha(s,a,8)],

where hy(s,a,s") = do(s,a)pa, (8'|s,a) — adi(s,a)pg, (s']s,a) — (1 — a)do(s,a)pr, (s']s, a).
Since d,, (s, a)px, (s'|s,a) is a Lipschitz smooth function of «, we can upper bound |h, (s, a, s')|
and substitute this bound to the recursion above, which yields the following novel error bound.

S leats)] = P 2 ey (VI + 2 TS + 850 =)
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The bound above reflects the effect of non-constant p,, which perturbs the bound 4) into

a(l—a)u
2

where i, DA _ GUSICLENSEIAD [ (/1] 4 ey /[8T) 4, (1 )] equals o in Eq. L1} when
e =95, =0.

(Step 3): Now we consider performative reinforcement learning with non-constant p, and 7. The
policy 7, and its occupancy measure d, are the same as in Case II above. Then the function
w(a) = ady(m,m1,p1,7) + (1 — a)Jx (70, 70, Po, Ta) can be proved us || — mol|?-Lipschitz
smooth with parameter jio = f1 — 11 > 0. Using r = r in Eq. (Z23), we obtain the following strong
concavity like property with . = p1 — po.

VAﬂ,:ra —alt —(1—a)Vy

)\.7T1 )\,71'0

J>\(7Ta>Waypmr)—aj)\(ﬂhﬁhpl,7’)—(1—@)J>\(7T0,7T0a170,7’) > ||7T1—7T0H27 (25)

=\ (T, Tas Pas Ta) — ax(m1, ™1, p1,71) — (1 — @) Jx (70, ™0, Pos T0)

>a(1—a)u1| a(l —04),u|

- 2 2
Finally, the dominance property follows from the inequality above as o — +0.

|7r1—7r0H2 + w(a)—aw(l)—(1—a)w(0) > | — ’7'('0”2.

Intuition and Novelty for Proving Theorem 2} At first, consider conventional reinforcement
learning with fixed environmental dynamics pr = p and 7 = r. In this case, V.V has analytical
form (see Eq. ), so by direct computation we obtain the following inequality with constant

C=1+ %ﬂgm (see Eq. for detail)

1 T[amax(5)]$]
(Vad\(m,m, p,r), 7 —m)> —max{ T [amax (8)]8] =7 [amin (8)|s {)\logi— C’}}
Ty el 8] = lamin o) s]) | Now e,
To obtain a lower bound of 7[amin(s)|s], we simplify the inequality above by considering two

cases, T{amin(5)|s] > $7[amax(s)|s] > ﬁ and 7[amin(s)]s] < 37[amax(s)|s]. In the second

case, we replace T[amax($)]8] and 7 [amax ($)|s] — T[amin(s)|s] above with their lower bounds -
p [Al

and ﬁ respectively. Then combining the two cases proves the lower bound (12)) at the special
case of ¢, = ¢, = 0. Then we extend from conventional reinforcement learning to performative
reinforcement learning which involves a gradient perturbation with magnitude of at most O (e, + €;,)

(see Eq. ([O4) for detail) based on the chain rule and leads to the lower bound (T2)) for any €, €, > 0.

Intuition and Novelty for Proving Propositioq%lz Unlike existing zeroth-order estimations
on the whole Euclidean space, our estimation is made on the policy space II, which lies
in the linear manifold £y + |A|~' < RISIMI. The key to our proof is to find an orthogonal
transformation 7" : RISIUAI=D — £ 5o that the goal is simplified to analyze the gradient estimation

of fx(z) «“ V)\T;w(z;)rﬁzil on any x € RISI(AI=D),

Intuition and Novelty for Proving Theorem[d} Standard convergence analysis of Frank-Wolfe

algorithm yields that maxzerr, (VWV; ﬁT =T < % on ITn. However, it requires a trick to
prove the following PropositionElwhich implies that 77 is De-stationary on II.

6 EXPERIMENTS

We compare our Algorithm [I] with the existing repeated retraining algorithm in a simulation envi-
ronment. See Appendix [B] for the implementation details. Then for the policies 7; obtained by each
algorithm, we plot the training curves of the performative value function V;;t (A = 0.5) and the
unregularized performative value function V(" in Figure(l|in Appendix [B} which show that our
Algorithm [T] converges better than the existing repeated retraining algorithm on both regularized and
unregularized performative value functions.

7 CONCLUSION

We have studied an entropy-regularized performative reinforcement learning problem, obtained
its important properties including gradient dominance, policy lower bound, Lipschitz continuity
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and smoothness. Based on these properties, we have proposed a zeroth-order Frank-Wolfe (0-
FW) algorithm only using sample-based policy evaluation, which for the first time converges to
a performatively optimal (PO) policy with polynomial number of policy evaluations under the
regularizer dominance condition. These theoretical results also holds for the quadratice regularizers
used in the existing works on performative reinforcement learning (see Appendix [M]for discussion).
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A RELATED WORKS

Non-stationary Reinforcement Learning: The performative reinforcement learning studied in this
work relates to some non-stationary reinforcement learning. For example, |Gajane et al.[(2018));
et al.| (2020); [Cheung et al.| (2020); Wei & Luo| (2021)); Domingues et al.| (2021) provide theoretical
results assuming that the non-stationary environment (rewards and transitions) change in a bounded
amount or number, and [Even-Dar & Mansour| (2004); Dekel & Hazan|(2013); Rosenberg & Mansour|
study reinforcement learning with adversarial reward functions.

Performative Prediction: Performative prediction proposed by (Perdomo et al.} 2020) is a stochastic
optimization framework where the data distribution depends on the decision policy. Compared with
performative prediction, performative reinforcement learning is similar but more complex due to the
policy-dependent transition dynamics.

Various algorithms have been obtained with finite-time convergence to various solutions of per-

formative prediction. For example, Mendler-Diinner et al| (2020); Brown et al| (2022)); [Li & Wai

(2022) converge to a performatively stable solution that approximates the performatively optimal
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solution (the primary goal). [zzo et al.| (2021)); Roy et al.| (2022)); Haitong et al.| (2024) converge to a

stationary point of the nonconvex performative prediction objective. Miller et al.| (2021)); Ray et al.
converge to the performatively optimal solution (the primary goal), which relies on the strong
assumptions that the loss function is strongly convex with degree dominating the distribution shift and
that the data distribution satisfies mixture dominance condition or belongs to a location-scale family,
such that the objective function becomes convex as proved by (Miller et al [2021). In contrast, we
have proved an analogous result that the objective of performative reinforcement learning (harder than
performative prediction) is gradient dominant (see our Theorem[T)) without these strong assumptions.
In particular, our condition of regularizer dominating the environmental shift is analogous to their
condition of strong convexity dominating the distribution shift, but our value function still remains
nonconvex which is more challenging than their strongly convex losses.

A survey of performative prediction can be seen in (Hardt & Mendler-Diinner, 2023).

B EXPERIMENTAL DETAILS AND RESULTS

We compare our Algorithm [T] with the existing repeated retraining algorithm in a simulation envi-
ronment with 5 states, 4 actions, discount factor v = 0.95, entropy regularizer coefficient A = 0.5,
as well as transition kernel p.(s'|s,a) = ZJ%:‘(Z)I:)T?(ZILtiﬂl and reward 7 (s,a) = m(als) that
depend on the policy 7. We implement our Algorithm 1 for 401 iterations with N = 1000, 8 = 0.01,
A =103, = 10~*, the uniform policy initialization (i.e. 7o(a|s) = 1/4) and the performative
value functions are evaluated by value iteration.

Recall that the repeated retraining algorithm is a general framework which obtains the next policy
M1 ~ argmax e VY, ;¢ = 0,1,...,7 — 1 by solving the conventional entropy-regularized
reinforcement learning problem under the fixed dynamics p,, and r,. To solve this conventional
entropy-regularized reinforcement learning problem, we select the following natural policy gradient
algorithm because its output 7,11 := 7 x has been proved to converge linearly to the optimal
solution of arg max, V', as we increase the number K of natural policy gradient steps

2022).

1 n ( S, A, .
T (a]s) = me(als) 7T exp [M]k =0,1,....K—1.  (26)
Zs k(5) 1—7
where
def — A Q)\ Saal;ﬂ-,,k:
Zik(s) = Z men(a’]s)! T T3 exp {w}
a’'€A
Qx(s,a;m) def Erp..p {Zﬂ/ rx(8t,at) — Nogm(at|st)]|so = s, a0 = a}.

t=0

Here, we also implement 7' = 401 outer iterations of the repeated retraining algorithm, and for the
inner loop we apply K = 1000 natural policy gradient steps with stepsize n = 0.01.

The experiment is implemented on Python 3.9, using Apple M1 Pro with 8§ cores and 16 GB memory,
which costs about 110 minutes in total. Then for the policies {m; }#%9 obtained by each algorithm,
we plot the training curves of the performative value functlon V)\“; (defined by Eq. @ with A = 0.5)
and the unregularized performative value function Vi, (defined by Eq. (EI) with A = 0) on the left
and right side of Figure [I] respectively, which show that the existing repeated retraining algorithm
stucks at the initial uniform policy 7y since g is a performatively stable (PS) policy, while our
Algorithm[T] converges well on both regularized and unregularized performative value functions in a
similar pattern.

C SUPPORTING LEMMAS

C.1 FRANK-WOLFE STEP

We repeat LemmalI] as follows.
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Figure 1: Experimental Results.

Lemma 2. The step (I9) has the following analytical solution.

r(als) {A;a # ds(s)

27
~AA -~ 1)sa = aus) @7

where a;(s) € arg max, g s(m)(als).
Proof. For 7; defined by Eq. and for any 7 € I, we have

(Ttr — 7, gxs(me))

=" dna(m)(als)F(als) — n(als)]

=3 {ana(m)lans)ls[1 = AJA = 1) = 7la(s)ls]] = 0 ans(m)als)ln(als) - A}

a#at(s)

23 {anstmlas)ls)[1 - AQA|~ 1) - wla(s)ls]

ona(m)lan(s)ls][n(als) - Al}
aztay(s)

{gAa m)[an(s)]s][1 = A4 1) - wlai(s)]s]

- Qx,a(ﬂt)[&t(S)IS] [1—7[a(s)]s] — A(JA] - 1)] }
=0,

where (a) uses 7(a|s) — A > 0 and gy s(m;)(als) < ga.s(m)[a:(s)|s]. Therefore, Eq. holds,
that is, 7, = argmax, cyy, (7, gx, 5(7rt)> O

C.2 LIPSCHITZ PROPERTY OF OCCUPANY MEASURE

Lemma 3 The occupancy measure d ,, defined by Eq. @) has the following Lipschitz properties for
anym, ' €1, p,p’ € Pand 5 € S.

3 ldar5) = dp(o)] < 72 maxll (1) = w19l < Mn | 28)

gl VIS
D lduy(s) = dup(s)] < EHSI%XHP'H&G) —plls,a)lli = 57— ||P il (29)

1 gl
D ldwrpr(s,0) = drp(s, )] < T, max I7"(|s) — W(~Is)||1+§rga;><|lp’(~ls7 a)=p(:ls,a)l

15



Under review as a conference paper at ICLR 2026

HP Pl (30)

< Yy 4 20

- 1—

Proof. The first < of Eqs. (28) and (29) follows from Lemma 5 of (Chen & Huang| 2024). The
second < of Egs. and (29) uses ||z[; < V/d||z| for any z € R?.

Eq. (30) can be proved as follows.
Z |dr (s, 0) = dr p (s, 0)]
—Zldw v ()7 (als) = dr p(s)7(als)]
< Zdw »(8)' (als) = m(als)] + 7 (als)ldn pr (5) = drp(5)]
< Z[dw/,p'(S) max ||’ (1s') = 7 (1)) + Y dar () = o p(5)]

(@) gl gl
< max |7'(-[s") — 7T(~IS’)H1+ﬁ max ||7T’(-|S)—7r(-\8)||1+§ max [|p'(:|s, a) = p(-]s, a) s

1
g max ' (ls) = w(C1s) |l + 1 max (s, ) = pCls, @)l

SvEIe. Wr||
<

| +

pll;
where (a) uses Egs. (28) and (29). O

C.3 VARIOUS VALUE FUNCTIONS

Define the following value functions.

a(m, ! p,r) L ,p[Zv s1,01) = Mog ' (ar]s)] |0 ~ o]
j Z drp(s,a)[r(s,a) — Nog'(als)], (€2))
Va(m, ', p,ris) ﬂp[Zv F(seyar) = Mog ' (arlsy)][s0 = 5] (32)
QA(WﬂT/ava?S CL : ,p{Z'Yt staat Alog’n—/(a’ﬂst”‘so:saao:a]

=r(s,a) — Mog7'(a|s) + 7Y p(s'|s,a)Va(m, ', p,75s").  (33)

Sl
Note that the value function (€) of interest can be rewritten into the above functions as follows.
V)\ﬂ;ﬂ—/ :Jk (7T7 T Prt s r?T’)
=Zp VAT, T, prr T3 8)

—Zp S)QA(T, T, P, T 5, ).

Hence, we will investigate the properties of the value functions (3T)-(33) as follows.
Lemma 4. For any =« IS I, »p IS P, r € R, we have

Alog | A
VA7‘;7T7 J)\(’/T,ﬂ',p,’f'), V)\(TF, TP, T 8)7 Q)\(’/T,T(‘,p,T'; S, CL) € |:07 Hlioagyll}
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Proof. We will prove the range of Jy (m, 7, p,r) as follows using 7(s, a) € [0, 1]. The proof for the
other value functions follow the same way.

0 < a7 7,0, 7) =B | D2 [ (51,01) = Mog m(ar]s)]
t=0

o0

<D B, | 09" Y [ wlals) log m(alsy)]|
t=0 t=0 a
1

<— 3!
1.5 +/\tz:;7 og |A|
s Alog | A| .
ST,
[
Lemma 5. The gradients of J(m, ', p,r) defined by Eq. have the following expressions.
aJ)\(’/Taﬂ_/apa T') drr p(S)Q)\(TI',’/T,,p,T;S,a)
=T ) (34)
or(als) 11—+
OJx(m, 7', p, 1) _ Adrp(s, @) (35)
on'(als)  (L—m)w'(als)’
/
8‘]5;7(2,];:5; r) :dﬂl’p(szya) [r(s,a) — Aog 7' (als) + yVa(m, 7', p,7;5")], (36)
aJA(T(?ﬂJ?IL T) :dT(,p(S7a)’ (37)
or(s,a) 1—7
aJ)\(ﬂ_v P, T) 7d7r,p(s)[Q)\(7ra USYZREE-D) a) - )‘]
- . (38)
or(als) 1—7

Proof. Eq. (34) follows from the policy gradient expression in Eq. (7) of (Agarwal et al, 2021)), with
reward function r(s, a) replaced by r(s,a) — Alog 7’(als).

Eq. (36) can be proved as follows.

(@) () (als)
L=y

_drp(s,a)

==

where (a) uses Eq. (9) in (Chen & Huang] 2024)).

Eqgs. (33) and (37) can be proved by taking derivatives of Eq. (3T).

Based on the chain rule, Eq. can be proved as follows by adding Eqgs. and with 7’ = .

8J)\(7T77r7p’r) 7|:8J)\(7r77r,7p’ 7") aJ)‘(’/T77T/’p7r)i|
or(als) or(als) or'(als)

p(s']s,a) [r(s,a) — Mog(als) +yVa(m, 7', p,r; 8')]

[7(s,a) — Mogm(als) + yVa(m, 7', p,7;5")],

_dep(8)Qu(m, T p, 7 8,0) Mg (s, a)
- -~ ~ (L=7)w(als)
:dﬂ'ap(s)[Qk(ﬂ-v USYZRAED) a) - )‘]
11—~ ’
where the final = uses d (s, a) = dx p(s)m(als). O

Lemma 6. The function J defined by Eq. (31) has the following Lipschitz properties for any
m,w €Il p,p’ € Pandr,r € R.

[IA(x", 7", p,r) = Ja(m, 7, p,7)| < Ly max || log 7'(-]s) — logm(:[s)]| (39)

|J)\(7T,7T7p/7’l")—JA(TF,?T,p,T” SLZJ”p/_pH (40)
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T rlloe 7 =l

1—vy 7 1-—vw

IV Ir (o) = Va7, 1) < £ max | log ' (}s) — log w(-|s)|
HVPJA(WﬂT’p/’T) - VpJ)\(ﬂ'ﬂT,p, 74)” < €P||pl _pH

| I (7, m,p, ") — Ia(m, 7, p,7)| < I

||V;DJ)\(7T/’ ﬂ-lap/a ’I”/) - vaA(ﬂ-a ™, D, T)H

VISI

<lr m3X||10g7r’(~|S)—logﬂ(-\S)llMpllp’—pH+WIIT —7loo

IVoda(n' 7' o' 7"y — Vo da(m, 7, p, 1)l
cmax [|7'(-]s) — w(|s)[ls +ymaxsq [[P'(-]s, a) — p([s, a)llx
- (1—7)?

\Vadr(x' 7' p' r") = VoI (m, m,p, 7))l
<(|A|(1 + 2 log |A)

+%JQMWNM$J%MMH

(1—=7)?
2¢/|S[(1 + Alog | A) / \/lA ||7‘ 7]l
|A| 5 + Ly|llp" — :
(1=7) -

_ VIAI@C—ytryAlog |A]) _ /ISI(A+Xlog | A]) _ VISIAI(2+3yAlog |A])
where L. (== , Ly W’ =K
2v\5|(1+)\10g|AD

(1—v)3

(41)
(42)
(43)

(44)

(45)

(46)

and by, :=

Proof. Egs. (39), @0), @2) and @3) directly follow from Lemma 6 of (Chen & Huang 2024). Eq.

(@T) can be proved as follows.

‘J)\(']Tvpvrl) - JA(vaa | _’1 Zdwp S a ) 7’(870,)]

gm Z drp(s,a)|r'(s,a) —r(s,a)|

To prove Eq. (#4), note that
‘a‘]k(ﬂ-aﬂ-vpa T/) (9J>\(7r,7r,p,7“) ‘

op(s'ls,a)  Op(s']s,a)
o) dx (8,
(:)# |7J(57 CL) - T(S7 a) + V[V)\(Tﬂ ﬂlvpa T/; 5/) - VX(Wv 7T/,p, r; SI)H
-7
O dy (s, a =
B e
L—n t=0

>~ (1 — ,7)2 ||T/ - T”OO

where (a) uses Eq. (36) and (b) uses Eq. (32). Therefore, we can prove Eq. [@#4) as follows.

va‘])\(ﬂ-/’ leplv 7‘/) - VPJ)\(TI', ™, P, T) ||

§||VPJA(7T/77TI7])/7T/) - VpJ)\(ﬂ,W,p/,T/)H + ||VIJJ)\(7Ta '/Taplarl) - VPJ)\(W,W,p, 7!

+ ||VpJ)\(7T77rap7 rl) - vaA<7ra URY 2 T)H

(47)

OJx(m,m,p, 1) 8J>\(7r,7r,p,r) 2

(a)
< e | log ' (1s) ~logn(13) [+l ol +, | 3 |

S(ZS

18
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) =72,
<t [log 7'(19) ~ logw(19)] + 117 ol + | D= 5 20

(IV'"’;')QHT’ e,

where (a) uses Egs. (42) and (43) and (b) uses Eq. (7).
Then, we prove Eq. (@3) as follows.
HVTJ)\(Wla W/apla TI) - VTJ/\(W7 P, T)H

s,a,s’

<lx max || log7'([s) —logm(-[s)]| + &llp" — pll +

@ lldnr = drpll
1=~
<M
< T
(b) 1 , 5 /
< ngx H7T (|5) - 7T(~|S)||1 + m n;%x ||p ("S,a) *p(~|s,a)|\1,

where (a) uses Eq. (37), (b) uses Eq. (30).
To prove Eq. (@6), we will first prove the following auxiliary bounds.

Qx(m,m,p,r; s,a)—)\(g) [—)\, W—)\] = |Q)\(7r,7r7p,r; s,a)—)\| <Hf\1_0i|A|7 (48)
where (a) uses LemmaEL
Va(r' 7', p' 7’5 s) — Va(m, m,p, 13 8))|
<|Wa(x' 7' p' ' s) = Via(m,m, o'y r's 8) |+ | Va (e, m,p' s v’ ) = Vi (mr, mr, p, 75 8))|
+|Va(m, 7, p, 7"y )= Va(m, m,p, 73 5)|
(@) / / [ = 7lls
< Ly max || log 7'(-[s) — log m(-[s)[| + Lp|lp" — o[l + 1o, 49)

where (a) applies Eqs. (39)-(&I) to the case where the initial state distribution p is probability 1 at s
(so Jx(m, m, p,r) becomes V) (m, m,p,r; s)).

|Q)\(7T ™, D, TI.S a) - QA(W77T7P77"53aa)|

()
- ’p{ZV (¢, ar —T(Stvat)]‘sozs,aoza”

oo

SEW,I,[ Y (se,ai) — (st at)\‘so =s,a0 = a]
=0

o0
<Erp| 37 = 7lloc
t=0

= rle
ST,
where (a) uses Eq. (33).
|Qx(7' 7' p vy s,a) — Qa(m,m,p, 758, a)|

S():S,ao:a:|

(50)

(a)
<\ log'(als) — logm(als H—’y’Z s'|s,a)Va(r', 7' 0’ 1y 8) — p(s'|s, a)Va(m, 7, p, 75 8)]
<Alog7'(a|s) —logm(als)| + ’yZp (s'|s,a)|[Va(r', 7' 0’ 75 8) — Va(m, 7, p, 75 8)|

+y D10 (8ls,a) = p(s'ls, a)l|Va(m, m,p, 73 9))|
S/
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(b)
<log ' (a]s) ~ log w(als)| + 7L max [ log ' (1s") — log ()| + 7Ly llp' — pl

14 Aog|A4]),
L ABIAD s, 0) = pl 1, @)l

where (a) uses Eq. (33), and (b) uses Eq. (49) and Lemma ]
Note that

&1y}

(1- 7)‘&])\(W’,W’,p’,r’) _ Ox(m,m,p,7)
on'(als) on(als)
e s>[QA<w 7,015 5,) = X = dr o ()[Qn (. 7 py 735, 0) = |
| /p/(S) w7, D175, a) — Al
p(S)[Q)\(TF ' pr'sa) — Qa7 0 1y s, a))
+drp(8)[QA(7, 7 P s s,a) — Q)\(ﬂ',ﬂ',p,T;S,a)H
<|dnr pr (5) = drp(s)] - |QA(F, 7 0/ 5 5,a) = A
+drp(s)|Qa(" 7,0 15 s,0) = Qa7 p' s s, a) |
+ dﬂ7p(s)|Q>\(7T',7r’,p’,r; s,a) — Qx(m,m,p,T; s,a)’
(21+)\10g|,4| ’d,r/ . dr p()T = 7)o
- ’ =7
+ dplo) [N o 7 (als) — log m(al)] + 7 L e | o 7' (|) — Iog ()]

v(1+ Alog |A
syl = ol + T A s, ) — s, ]

where (a) uses Eq. (38), (b) uses Eqs. (@8), (50) and (31). Applying triangular inequality to the bound
above, we can prove Eq. (#6) as follows.
||v JA(W/7 ﬂ-,vp,v T,) - VTFJA(TF ™p,T )||

_1+)\log\A| Z|d i 7p($)| I =7l 7’/‘”00 /Zd o

A Zdﬂp ?| log (als) — log m(als) ?

+ [yLn max [[log 7' ([s') — log m(-|s")| + YLyl =PI}, [>_ drp(5)?

v(1+ Alog|AJ)
+— Zd,p 2llp’([s,a) = p(ls, a) I3

(s) — dﬂ,p(s)‘ +

AL ABIAD §~ 1 o)~y (5)] 4 VAT =7l

11— - ’ 1—x
+a \/2 dr p(3)]| log ' (-]3) — log m(s)]2
+ [YLn mirx | log 2’ (') — dog (1) + ALyl — pl]] VI

~¥(1 + Alog | Al)
+(g"w8|2||p Js,a) — p(|s,0)|]

SIAACE 2D [ 1) = )l + i s a) = pCls )]

\/«4 =
A= g /(1) — og (4]
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[Al[yLr max [[Tog «'(-|s") —log 7 (-|s") || + v Lyllp" = pll]
|S](1+ Alog|A|)

/7
1—~ Ip" — pll
O r]A|(y + 2X1og |A]) o /
< . — .
<| (1—7)? + YL | max | 1o 7' (') ~ log w(-|s")]|
2v/I51(1 + Alog |A] o YA =l
e e e

where (a) uses Lemmal[3] (b) uses ||7/(:|s) — 7(:[s)[|1 < ||logn’(:|s) —logm(:|s)|1.
V/IST(14 A log |A])
1P’ (1s,a) = p(ls,a)lly < VISHlIP Cls,a) = pCls,a)| < VSTl = pll. =57 <

VIS||A| (1+)\log|A\ and \ < )\\A|10g|A\. O
1—)? (1—v)?

C.4 ZEROTH-ORDER GRADIENT ESTIMATION ERROR

We import Theorem 1.6.2 of (Tropp et al.,[2015) as follows.

Lemma 7 (Matrix Bernstein Inequality). Suppose complex-valued matrices S, ..., Sy € C41*d2
are independently distributed with ESy, = 0 and ||Si|| < C for each k = 1,..., N. Denote the sum

N . . L
ZN =Y j._, Sk its variance statistic as follows

v(Zy) = max [H f:E(sks;;) ] (52)
k=1

N
SE(SESK)
k=1

where S}, denotes the conjugate transpose of Si. Then for any € > 0, we have

_e2
P{|Zn|| = €} < (dy + d2) exp [U(ZN)fOe/g} (53)

Applying the above lemma to vectors, we obtain the following vector Bernstein inequality.

Lemma 8 (Vector Bernstein Inequality). Suppose independently distributed vectors 1, . ..,z € C?
satisfies ||z|| < cforeachk =1,...,N. Then for any n € (0, 1), with probability at least 1 — 1),
we have

sl < e (50 eanffos(). oo

Proof. Note that S, = xj, — Exj satisfies the conditions of Lemmalw1th d1 =d,dy =1and C
replaced by 2¢. In addition, v(Z ) defined by Eq. ( . 52)) satisfies v(Zx) < 4Nc? since

max[[|SpSill, 1S5Skl < ISElP11Skll* < 4¢®.
For any n € (0, 1), let

:%10g<%) 2Nlog(dj7_1)

Therefore, Lemma [7)implies that

1< € —e2/2
P{NH kz::l("”’“ N Exk)” = N} s (d+Dexp LlNcQ n 206/3} =7

which implies that with probability at least 1 — 1, we have

4c d+1 2 d+1
“me] < = e () e e ()
NHZack zp)|| < " + 2c Nog " )
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For any function f : R? — R, obtain the following zeroth-order stochastic estimator of the gradient
Vf.

d N
D 1@+ Su;) — (o = du)|u; ~ V f(2) (55)

951) = 555
i=1

where § > 0 and {u;}¥; are i.i.d. samples of the uniform distribution on the sphere S; = {u € R? :
[[ull = 1}.
Lemma 9. Suppose f : RY — R is an L-Lipschitz continuous and { ;-smooth function. Then for

any 1 € (0, 1), with probability at least 1 — 1), the gradient estimator gs defined by Eq. (.) 55) has the
following error bound.

ALpd,dt ] d+1
lgs(2) = V@)l =37 ( ; )+2Lfd —log( ; )+5£f. (56)

f

Proof. Note that g5 ;(z) = [ f(z + 6u;) — f(x — du;)]u; has the following norm bound

l964(@)| < 2| f(a+ 6us) — Fla — bui)| -

- L¢]|20u;|| = Lgd.
< 5 fl2ouil = Lyd. 57)

il < 2
=195

Define the following smoothed approximation of f as follows.

F5(2) © Epoumieey) [f (@ + 60)], (58)

where Unif(B,) denotes the uniform distribution on the ball B, ¥ {u € R%: ||lu|| < 1}. Then
based on Lemma 1 of (Flaxman et al.,[2005)), we have

Elgs,i(x)] = V fs(z) = Eyunitmy) [V.f (2 + 0v)]. (39

Therefore, applying Lemma to gs,;(z), the following bound holds with probability at least 1 — 7

1< AL +d d+1 d+1
NHZ[gM( — Vfs(x H< == log ( : ) +2Lgd 1og( ;; ) 60
=1
Note that
[V fs(@) = V(@) = [[Evmvmit@a [Vf(z + 6v) — VF(@)]]| < 6. (61)

As aresult, we can prove the conclusion as follows by using Egs. (60) and (6I) above.

los(x) ~ V@)l =] [ 5 ng )] - Vi@
<% igww} = Vfs(@)|| + IV fs(@) = V(@)

<43L7]fvdlog (dj;l) +2Ld —log(d; 1) + 4ty

C.5 ORTHOGONAL TRANSFORMATION

Lemma 10. There exists an orthogonal transformation T from the space R*™' to Z3 = {z =
[21,...,24) €ERY: Y. 2, = 0}, that is, T is invertible and satisfies the following properties for any
x,y € Zgand a, B € R.

T(az + By) =aT (z) + BT (y), (62)
(T (), T(y)) =(z,y). (63)
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Proof. It can be verified that R? admits the following orthonormal basis with {e;, e;) = 0 for any
i# jand |e] = 1.

1
ep =————[1,1,...,1,—k,0,0,...,0] e REE=1,2,...,d — 1.
k‘(k + 1) N— —
k1l's (d—k—1) 0’s
1
eq =—=[1,1,...,1] € R
d \/g[ - ]
Define the transformation 7~ at z = |71, 22, . .., 24_1] € R?! as follows.
d—1
T(x) =Y we. (64)
i=1

Since Z is a linear subspace of R4 orthogonal to ey, Z; admits the orthonormal basis {ei}f;f. Hence,

T (x) € Z4. Conversely, for any y € Z, there exists unique z € R?~! such that y = Zf;ll Tie;.

Hence, 7 : R%~1 — 24 is invertible.
Forany = = [z1,...,%q_1],%¥ = [y1,--.,¥a—1] € R and a, 8 € R, we can prove Egs. and
({63) respectively as follows.

d—1

T(ox + fy) =

™

(axi + Byi)ei
1
-1

d—1
=x Z zie; + 3 Z Yi€;
i=1

i=1

=aT (z) + BT (y).

(7). Tw) =( dzxdzy>
d—1d-1

= > wyilene;)

i=1 j=1

d—1
=1

K2

U

C.6 BASIC INEQUALITIES

Lemma 11. For any € € (0,0.5] and x > 4¢~!log(e™1), the following inequality holds.

log x <
x

0< (65)

Specifically, any = > 3 satisfies 262 < %

x

Proof. As €' > 2, we have z > 4e !log(e™!) > (4)(2)log(2) > 5.54, so logz > log5.54 >
1.71, which proves the first < of Eq. (63).

Note that the function f(z) = 10% has the following derivative

@) =

where < uses logz > 1.71. Hence, f is monotonic decreasing in x > 4e !log(e™1) > 5.54,
Therefore, we prove the second < of Eq. (63)) as follows.

1—logx

So— <0,

xT

log x <1og[4€1 log(e™1)]
xe ~ e[dellog(e~1)]
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_log4 +log(e™ 1) + log[log(e )]

4log(e1)
(a) —1 —1
< log4 log(e™") + log(e™") _1 66)
4log(2) 4log(e~1)
where (a) uses €1 > 2 and log u < u for u = log(e~1).
Whenz > 3, f/(z) = 15982 < 0,50 f(z) < f(3) = 82 < L. O
Lemma 12. For any 7,7’ € II, we have |7’ — 7| < 1/2|S].
Proof.
I = = I als) el < Slo(ols) (o)) < Sl o)+ wlall) =2
O

D NEGATIVE ENTROPY REGULARIZER AS A STRONGLY CONVEX FUNCTION
OF OCCUPANCY MEASURE

The negative entropy regularizer (3)) can be rewritten as follows

oo 1 dﬂ_ ,(s,a
Mo () = B[ 1 b ls)] = 1 S (oo 200
TPt

t=0 1=7
where drp_,(s) = >, drp_ (s,a’). Hence, it suffices to prove that the following function of
occupancy measure d is strongly convex.

d(s,a)
:;d(s,a)log i) (68)

where d(s) = >, d(s,a’). For any o € [0,1] and occupancy measures dy,dy, denote d, =

ad; + (1 — a)dp and the corresponding policy as 74 (a|s) = dd (f ‘;) Then we have

aH(dy)+ (1 —a)H(dy) — H(da)
:Z {adl(s, a)logmi(als) + (1 — a)do(s, a)logmo(als)

s,a

(67)

s,a

— ladi(s,a) + (1 — a)dy(s,a)]log wa(a|s)}

:Z adl(s a) log m(als) + (1 — a)dy(s,a)log ﬂo(db)}

Ta(als) Ta(als)
N 1 (als) mo(als)
_ Z _adl(s)m(a|3) log Wi(a|5) + (1 — a)do(s)mo(als) log WZ(a|s)]

=" [ad(s)KLm (13) |ma (als)] + (1 = @)do(s)KL(mo(-[s)]ma (als)]

25 o (5)m (1) = w117 + (1~ a)dofs)oC1s) — maC15)E]

S

2L 5 [allmi(1) = maCls)E + (1 - a)limolcls) — ma (1))

D
25 [ozmSaX||7T1("5) — 7o (8)|F + (1 —a) max lmo(:|s) — 7Ta(|S)Hﬂ
©@D(1 -
< % lallds = dal? + (1 = @) max||do — dal3]
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D(1—
DO o1 - a2y - dolf + (1 — ) - o]

e L ©9)

where (a) uses Pinsker’s inequality, (b) uses Assumption |3} (c) uses Eq. with p’ = p. The
inequality above implies that H (d) is D(1 — -y)-strongly convex, so the negative entropy regularizer
(67) can be seen as a D-strongly convex function of the occupancy measure d , , .

E EXISTING ASSUMPTIONS THAT IMPLIES ASSUMPTION [3]

The following assumptions have been used in the reinforcement learning literature. We will show
that each of these assumptions implies Assumption [3]

Assumption 4. (Bhandari & Russo,|2024) p(s) > 0 for any s € S.

Assumption 5. (Agarwal et al.| 2021} |Leonardos et al.l 2022, |Wang et al.| 2023} |Chen & Huangl
2024) D), := SUp,cr1 pep ldr p/plloo < 0.

Assumption 6. (Wei et al.| 2021} |Chen et al.| | 2022) There exists a constant piymin > 0 and mixing

time tix € N such that under any policy m € 11 and transition kernel p € P, the stationary state
distribution [, ,,(s) has uniform lower bound minges fir p(S) > fimin, and

1
drv [Pﬂ,p,p(stm = ')v Mﬂ,p} < 1
where Pr. . ,(St,.. = -) denotes the state distribution at time t,,;,, under the policy T, transition kernel
p and initial state distribution p, and drv denotes the total variation distance between two probability
distributions.

(70)

Proof of Assumption @=-Assumption 3} For any policy 7 € II, transition kernel p € P and state

s € S, we have
s) :dep(s,a)
a

@ Z(l - )Z'Ytpﬂ,p,p{st =s,ay = a}
a t=0
=) Z’Ytpﬂ,p,p{st = s}
t=0
>(1 = 7)Prpp{s0 = s}
=1 =)p(s)
>(1— i .
(1 — ) min p(s)

As S is a finite state space, p(s) > 0,Vs € S implies that min,es p(s) > 0. Hence, Assumption 3]
holds with D = (1 — ) minges p(s) > 0.

Proof of Assumptlo J—)Assumptlonl: If p(s) = 0 for a state s, then Assumption [5|implies that
drp(s) = N> oV Prppfse =5} =0 for any 7 € Il and p € P, which means the state s
will never be Vlslted Therefore, we can exclude all such states s from S such that Assumption 4]
holds, which implies Assumption [3|as proved above.

Proof of Assumption [6}=-Assumption 3 Eq [70) implies that for any n € N, we have
1
drv [PT"JMP(SntmiX = ,uﬂ'7p = Z UP) ,P,p{sntm.x S} — /,me(s” < 47

Select n = [log(y,1,)/log4]. Then the bound above implies [Py p ,{Snt = 8} — frp(s)] <
Hmin/2 for any state s, which along with fir ,(S) > fimin implies that P, ,{sps = S} > fbmin/2.
Therefore, we can prove Assumption [3|as follows.

o0
. Hmin .
dﬂ-’p(s) :(1 o ,Y) Z ’ytpﬂ—vpvp{st = S} Z (1 - V)ryntm‘xIPﬂ'7p7p{Sntmlx = S} Z Tryntm”‘(l - FY)
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F PROOF OF THEOREM [1]

Fix any 7o, 1 € II. For any a € [0,1], denote do, = adyr, p,. + (1 = @)dr, . > Ta(als) = dg(z';)

where d(s) = Y, da(s,a’), and po = pr,, . It can be easily verified that dy = dr py, d1 = dr, p,
and d, = ady + (1 — a)dy. Then we can obtain the following derivatives and their bounds about

T do in Egs. (TI)-(77).
da(5)[d1(s,a) = do(s, )] = da(s, a)[di(s) = do(s)]

d2,(s)
_[ady () + (1 — a)do(s)][da (s, @) — do(s,a)] — [ad: (s, @) + (1 — a)do(s,)][d1 (s) — do(s)]
d2,(s)
_do(s)di(s,a) —do(s,a)dy(s)
dz,(s)
_ do(s)di(s)[m1(als) — mo(als)]
= dlg(s) Sk (71)
Hence,
dme, |2 do(s)d1(s 7r1 a| ) — 7o (als)] |2
o N e
0 ) ()] mindo( ), ) ale) — (el
<§[ () (o) | ra(als) — mo(als)]
D23 (i (als) — mo(als)? < D2 w1 — ol 72)

s,a

where (a) uses dq (s) = adi(s) + (1 — a)do(s) > min[dy(s), d1(s)] and (b) uses Assumption 3]
Then by taking derivative of Eq. (71)), we have

& (a]s) = — 2201 (s)lm(als) — mo(als)][d(5) — do(5)]
do " a3 (s) |

(73)

Hence,

ol P e

2max{do(s), di ()] minfdo(s), da (s)]]di (s) — do(s)|12
< Z [ D2 min[dy(s),d:(s)] }

[1(als) —mo(als))?

<D ma [|di (3) — do(5)[?] 3 [m (als) — moals)]?

s,a

<D~ ol [ 1) - do<s>|}2

® Al L7 2
<(@2D7%)?|lm — molf® W” \ﬁHpm pﬂo”}
(¢ |A| e \/IS 2
<@D7Pm — moll? [ P2 — woll + T — ol

B (ep/|S]+ V/]A])
<(@2D2)2|my — o[ L2 ' - ) I (74)

where (a) uses do (s) = adi(s) + (1 — a)do(s) > min[do(s),d1(s)] > D, (b) uses Lemma[3] and
(c) uses Assumption [T}

do(s)ca (5)| - [ 2]
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| B a1 5,0) — do(s. )] - ZALVBELL g, )

& () {|d1(57a) —do(s,a)| + |dy(s) 7d0(5)q
< max([do(s),d1(s)] min[do(s),d1(s)]

= min?[dy(s), d1 (s)]

da(s)
[[d1(s,a) — do(s, a)| + 2ma(als)|di(s) — do(s)]]

<D~ '|di(s,a) — do(s,a)| + 2ma(als)|di(s) — do(s)]]- (75)
a5, a)pals']5,0)]
=pas]s, @)1 (5,0) — dos, )] + da(s,0) -~ (als) - Vrpr, (5|3, a)
pa(5/|57a)[d1(5,a)d0(57a)]+da(s’a)dO(S)dlgz)([:)l(a|S)ﬂ-O(a|S)] . vrrp-rra (s'|5,a) (76)

Then for any «, o’ € [0, 1], we have

e (5,00 (515,0)) = (s, 0)pa( 15,

oo (5/15,0) = pa(s']3,0)] - 1du (5, @) — do(s, )| + do(s)dy (s)|m (als) — molals)]

[ do (s, dor(s,a)  da(s,a)

di/(s di/(s) - da(s) vapvru (S/‘&a)H
(b)
Seplmar = mallldi(s, a) — do(s, a)|
max|[dy(s), d1(s)] min[do(s), d1(s)]
min[do(s), d1(s)]
+ D eplmi(als) — mo(als)| - [|di(s,a) — do(s,a)| + 2ma(als)|di(s) = do(s)]] - [o' — o

a
907, (15,0 = o (s )] +

+ mar (as)|mi(als) — mo(als)] - -S| Tar — Tl

()
<eD7Mmy —mol - o’ — al - |di(s, a) — do(s,a)|
+ Spmar(als) - [mi(als) — mo(als)| - [do(s) + di(s)] - D™ Hwy — mo| - [o” — q
+ D™t ey|mi(als) — mo(als)| - [|di(s,a) — do(s, a)| + 2ma(als)|di(s) — do(s)]] - |/ — o
(d)
Sedp(svaﬂal _O‘|a (77)

where (a) uses Eq. (76)), (b) uses Assumptions [I{2| d,/(s,a) = duo/ (8)7ar(a]s), dor(s) = &’dq(s) +
(1 — )do(s) > min[dy(s),d:(s)] and Eq. (75), (c) uses Assumption [3| as well as Eq. , (d)
adi(s)mi(als)+(1—a)do(s)mo(als) <

ady (s)+(1—a)do(s) -

defines /4, (s, a) as the following Eq. 1j and uses 7, (a|s) =
mo(als) + m1(als).

Lap(s,a) =2Dep||m1 — mol||di(s,a) — do(s,a)]
+2D ™ ep[mi(als) + mo(als)] - [m1(als) — mo(als)| - |di(s) — do(s)]
+D71S,[mi(als) + mo(als)]-|mi(als) — mo(als)]-|lmy — 7ol - [do(s) + di(s)]. (78)

Denote e, (s) = dxr, p, (s) — da(s) as the error term due to the policy-dependent transition kernel

Do = pﬁalﬂ Note that the occupancy measure (2 satisfies that the Bellman equation (3] repeated as
follows.

dep(s') = (L =7)p(s) + 7D drp(s)m(als)p(s']s,a), s €S. (79)

Therefore, the error term e, (s) satisfies the following recursion.
ea(s’)

'If pr,, = p does not depend on the policy 7., it can be easily verified that e, (s) = 0 forall s € S.
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=dr., p. (") —adi(s") — (1 — a)do(s)
=7 [y po (9)Ta(al$)pa(s']s, @) — adz, p, ()71 (als)p1(s']s, a)

— (1= @)duy po (5)mo(als)po(s'] s, a)]
=Y Z[ea(s)ﬂa(a|s)pa(sl|s’ a) + da(57 a)pa(sl‘sa a) - Cle (87 a)pl(s/\s, a)

- (1 —a)do(s,a)po(s’]s,a)]. (80)

The above inequality implies that
> leals)]
s/
<y Y [lea(s)Imalals)pa(s'ls,a)

s,a,s’

+ |da(57 a>poz(5/|sa a) *O‘dl(sv a)pl (5l|57 a)i (1 - a)dO(Sa a)p0(5l|57 a)”

DY lea)+ 2D S py 5.0

() Sla(l — a _
<Y Jeals)| + % [2D Yyl — moll S Idi(s, a) — do(s, a)]

s,a

+4D 7 e|lm1 — molloo 3 d1(s) — do(s)] + 4D Sp||m1 — mollos - |1 — 7T0||}

(e) v|S|a(1—a _ 1
27 S lea@+ L= 6016y sl 1 (VI =0l +23/TIe,  ])

+4D 718, |1 — o 2]

(d) _ €
<93 leals)] + 3D ISla(1 — @)lim — moll2 [+ 2 (VAT + 16, V18] + 53

I—y
where (a) uses Eq. which implies that d,, (s, a)pa(s'|s, %s a Lipschitz smooth function with

Lipschitz constant £4,(s, a) defined by Eq. (78), (b) uses Eq. (78), (c) uses ||71 — mo|oe < |1 — o]
and Lemma[3] and (d) uses Assumption[I} Rearranging the above inequality, we get

> leals) < an — ol [en (VIAl +vep/IS]) + Sp(1 —=)]. (8D

Therefore, for any reward function r, we have

J)x(ﬂ-ouﬂ-oupour) - aJ}\(ﬂ-lvﬂ-lvplvr) - (1 - OK)J/\(Wo,TFO,pO,T)

@ - i - Z [dﬂmpa (s,a)[r(s,a) — ANogma(als)] — adi(s,a)r(s,a) — ANogm (als)]
— (I =a)do(s,a)[r(s,a) — Xogmg(als)]
=1 i 5 [[dm,pa (s,a) = da(s, a)][r(s,a) — Alogma(als)] + da(s, a)[r(s, a) — Alog ma(als)]

— ad; (s,a)[r(s,a) — Aogm(al]s)] — (1 — a)dy(s,a)[r(s,a) — )\logwo(a|s)]}

Y ldrepa(s) = da(s)lmalals)[r(s, a) — Mogma(als)]

s,a

g > [adl(sva) log m(als) + (1 — a)do(s, a) log 770(@\3)]

Y 2 To(als) Ta(als)
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© 1+ Alog|A
2L o)

+ﬁ2 {adl(s);@(a'@ o 2(&3 )+(=a)do(s) Y (mofals) log ;j(‘;'?) )]

S a

@ 14 AloglA| 37|S|a
> 1_?' | 7})( 1= 2 )||7T — 7ol [ep (VA +vep/IS) + Sp(1 = 7)]

25 [ads ()KL (15) 7 ()] + (1 — @)do()KL o ()] (1]

1_

9 TSl MBI e, (/T + 26, + 50 )]

+ 3y 3 [oda(6)lm(49) = ma 1) + (1 = )do(s)moCls) = ma 19
£ SSlelt U MOBIAD 1, 2y (/AT + 265 1ST) + 8501 )

A 1—a)do(s 2

t o 2 e S Pt s,

+ (1= ado(9)]| S m 1)~ w1 ]
@Al — a) o~ do(s)di(s)
@3S 5 W (1) — mo )

- StaQ U LMD o, — 2 (VAT + 265 8T) + 51— )]
(M DAa(l — a) 9
= ﬂ\lm — mo|

- 2StellZ S AOEIAD i, — ol ey (/AT + 265 I81) + (1. )]
(;)ma(;—a) Im1 = 7o, (82)

where (a) uses Eq. (31), (b) uses dr, . (,a) = dr, p, (5)Ta(als), da(s,a) = duo(s)me(als) and
do = ad; + (1 — « do, (c) uses 7(s,a) € [0,1], = > ma(als)logma(als) € [0,log|.Al] and
ea(s) = dn, p.(s) — dua(s), (d) uses Eq. (22), (e) uses Pinsker’s inequality, (f) uses mq(a|s) =

dgﬁ;‘;) = Cfi‘il((s) m1(als) + %Wo(a\s), (g) uses do(s) = adi(s) + (1 — a)do(s), (h) uses

Assumption[3|and dq(s) < max[do(s), d1(s)], and (i) defines the constant i; below.

of DX 67/S|(1+ Alog|A))
#1d:f1—7 s l(?(l—vog| |[ (VIAI+ 76 V/18]) + Sp(1 = 7)) (83)

Next, we begin to consider the policy-dependent reward r, = r._. Define the function w(a) =
aJy(m, 7,01, 7a) + (1 — @)\ (70, To, Do, Ta ), which has the following derivative

wl(a) :'])\(ﬂ-177r17p17ra) - J)\(ﬂ-Oaﬂ-OapOara)

dmg,
+ [av’r“])\(ﬂ-:hﬂ-l)pl) ’ra) + (1 - a)v’l“])\(ﬂ-()7TrO?pO)rOé)](vﬂ'rﬂ'a)E (84)
For any 0 < o < o < 1, we prove the smoothness of w(«) as follows.
[w'(a) — w'(e)]
' dﬂ'@
(leﬂlapla T&) - JA(T(Oaﬂ-Ovp(%T&)](vﬂ'rﬂ'&)wda
/ / dﬂ'a dﬂ'a
+ [a'V da(m1, 71, p1, 7)) + (1 — )VTJA(WO,Wo,po,raf)](Vﬂma,)( o )
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dm,
+ [V Ix (71,71, P15 m0r) + (1= @) Ve dx (70, 70, pos 70 )] (Vars,, — Vﬂm)w
+{d/[Vodr (71,71, P15 mar) = Vi (71, 71,01, 7a)]

dm,,

+ (1 - al)[er/\(WO; 7707p0ara’) - vTJ/\(T‘-Oy WOapOzra)]}(Vﬂrﬂa)w
dmg,
do

+ (O/ - a)[vTJ/\(ﬂ-la ﬂ-lapla/ra) - V’I‘J)\(ﬂ-03ﬂb7p07ra)]<v Tﬂ'a>

(@) o er|lm —m -
< / D||(11_,y)02”(m§><||7fl('|8)7T0('|8)||1+7H81§1X||P1('|87a)Po('Saa)Hl)d@

€ _ € S|+ +/]A SpllTar — To _
- 2H7T17 |2|:7( )4 | ‘_ |):||O/704|+ ” - ” .D 1H7T177T0||
€ |lm — 7
+0t 10— al - T s (1) — o 13)ls -+ mase o (15, ) — poCls, @)1
D(l—’}/) s s,a
®) €|l — ol
<2’ —af- W(\/ |A[[l71 = moll +vv/ISlpr — poll)
267”Hﬂ'1 77T0H2 |:7(6;D |S| + AD:||O(/ —Oé| + S ||7Tl 7T0|| | / —«
D2(1—+) 11—y D%(1—7)
(9 2€,.||m1 — o]
===y (VHllm = moll +96,v/[8]Im = mollJa’ = ol
2ye,||my — mol|? Sr(l V)|l = mol|?
+2—(\/|A+€p\/|8) 2 2 o’ —a
D2(1 D2(1—7)
46T Al + e S)) + S (
VA V1S ey — mol?lef

D2(1 - )

where (a) uses Assumptions I I Ve dA( )|l < 1= (implied by Eq .) as well as Eqgs. ,

and . (b) uses Eq. l.i and ||z||; < \foH for any z € R?, (c) uses Assumptlon and (d)
uses D,y € [0, 1]. The inequality above implies that w(«) is po Hm — 7ol|?-Lipschitz smooth with
the constant o defined as follows.

_ A (VA + /IS) + 5:(1 = 7) (85)

D2(1—~)?

Therefore,

Vi —aVi —(1—a)Vy
:J)\(ﬂ—om Waypaﬂ"a) - aJ)\(Trlvﬂ-lapla Tl) - (]- - Q)J)\(WONTO»pO»rO)

wa(l —a)

(g)aJ,\(m,?Thplﬂ“a)-F(l—a)JA(Wo,meoﬂ"a)‘f’ 5 |71 — mol|”
—aJy(my, 71, p1, 1) — (1 — @) Jx (70, 70, Pos, 7o)

—w(a) — aw(1) — (1 — a)w(0) + me — o2

Szl =e), e

e (36)

2
where (a) uses Eq. (82) with r replaced by r, (b) uses the fact proved above that w(«) is pal|m —

7ol|%-Lipschitz smooth and (c) defines the following constant .
def
Ho=H1 = p2

(@ DX 67|S|(1+ Xlog|Al)
—1_7 D=7 [ (\/|A —|—’yep\/\8)+5 (1 -~ ]
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5 (1 =) +e(VI]A] +€p\/|8 &7)

D?(1 —v)?
where (a) uses Egs. (83) and (85). Rearranging Eq. (86)), we obtain that
Vie — Vo j—
P 2 sy v+ M e

(%

Letting « — +0 above, we can prove the conclusion as follows.

)\‘n'o

= [%V;za} a=0
ovye [

)\Tr()
- Z 87'('0
@Z (s% Z 87rOMO mi(als) — mo(als)]
i) OV, W
Z (8)[ 87ro (s,d) ZWO am) (s a)}
12 (')WOMFO 7o (als) — mo(als)]

<D~ meax<VMV)\ﬂ0 77r0>,

where (a) uses Eq. (71)), and (b) uses Assumption [3|as well as the following Eq. (88) where 7y € II

LH
Vim = Wi, + 5 llm — mo|1?

Talals)]

a=0

is defined as 7 (a*|s) = 1 for a certain a* € arg max,, m and 73 (a’ls) = 0 fora’ # a*.
8V)\7T(T)r0 av)\Tr(T)rg V)\Tr(;ro
= 88
Zﬂ-o 87T0 (s,a) e 671'0 (s,a’) Zﬂ'o als) dm(s,a)’ (88)

G PROOF OF COROLLARY 1

Based on Theorem ([T} Eq. (87) holds for any 7o, 7; € II as repeated below.

VL, SV, + D7 max (Ve VT o — o) = 5l — ol (89)

In the above inequality, let 7 € argmax, VY . and my = 7 is any a De-stationary policy of
interest. Then the inequality above becomes

. (&)
?}gﬁivﬂﬁ <V + D' De~ %Hﬂl —7|? < ViTp 4 e+ [ullS],

where (a) uses Lemma This implies that maxzery V;t 5= ij7r <
stationary policy 7 is also an (e + |u||S])-PO policy.

If i > 0, the inequality above further implies that maxx 1y Vf’ 7 — VX n < € thatis, the De-stationary

policy = is also an e-PO policy.

Furthermore, suppose 1 > 0 and there are two PO policies 7y, 1 € 11, which should satisfy
\— V;?ro = meax Vs

)\71'1

maX<V V)\ o) 7r0> =0.

mell

Substituting the two equalities above into Eq. (10), we obtain that 4|1 — 7o[|* < 0, which along
with ¢ > 0 implies m; = 7o, that is, the PO policy is unique.
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H PROOF OF THEOREM

Forany 7 € II, p € P, r € R, we have
8J)\(7T77T7p7 T) (a)dﬂ7p(8)[Q>\(7T77T,p7T;S,CL) - >\]

on(als) 1—7

@dw,p(s) / Y
M[r(smAMogw(a|s>+v§p<s s, a)Va(m,p738)], ©0)

where (a) uses Egs. (38), and (b) uses Eq. (33).
Then we have
Vads(m,m,p,7) " (7' — )

=3 G 1)~ a1

O |amax(8)]$]

aJ)\ (,/Ta m™,p,T )
Onlamin(s)|s]

= Z {df%(S) (W[amax(s)‘s] - W[amin(sﬂs]) [T[S, Amin(8)] = 78, Amax(8)]

(7' amin(5)15] = 7lamn(s)15]) ]

max 3 S
+ /\log [[ ‘ + Y Z |5 amln ) - p(8/|37 amax(s))]v)\(ﬂ'ap7 r; 3/)] }

7 [Amax (5) 5] (1 + Xlog | A|)
T[@min (8)|$] -1- 1—7 }}’ O

where () uses T[amax(s)|s] — T[amin(s)[s] > 0, r(a|s) € [0,1], p(s'|s,a) € [0,1] for any s, a, s’
and Lemmald]

Consider the following two cases.

(Case 1) If T[amin (5)|s] = 27 [amax(s)]s], then as T[amax(s)]s] > T We have T [@min(8)[8] > AT
(Case II) [amin(s)]s] < 37 [amax(s)|s], then as T[amax(s)|s] > \7¥|’ Eq. lb implies that

vﬂ"]}\(ﬂ-ﬂ ™ Dy T)T(ﬂ-l - 7T)

7[amax(s)]s] 1 1 +yAlog|A|
> masx { 2(1— ) [Mog A5l 1—7 J}
1 . 1+ ~vAlog|A|
>~ A= (Mo (1A min mfamin(s)]s]) + 22 . 92)

which further implies that for any s € S and a € A, we have
m(als) > [amin(s)]s]
1/A+ylog|A]  2[A|
1—7~ A
> L [f 1 24
—2/ApR/A Al=7) A
Note that in the two cases above, Eq. (93) always holds.

1
>—exp [—

> (1= )Vada(m,m,p, )T (7 = )]

(L= NVeda(mmp.r) (7 =), ©3)

Furthermore, if Assumptionmholds and p,, r, are differentiable functions of 7, then we have
HVﬁJ,\(ﬂ,W,pmrw) - VWJA(W,W7P7’{—,T7})|7’-}:WH
=||VpJr (7, 7, D2, 72 ) Vil + Vo d A (70,7, Dy 7 ) Vi |
<[V s pms ) [ Vapal| + [ Ve a (7 pms v [ V|

WeVIS|(L+ Mog|A]) e

4
R = o
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where (a) uses Assumption [I]as well as Egs. (@0) and (@I). Therefore,
T
I:vﬂ'J/\(ﬂ—7 URY 2 rfr)|7~r:7r] (T‘J - 7T)
:vﬂ'JA(ﬂ—JTapTra TW)T(Tr/ - 7T) - [vﬂJ)\(Tra 7T7p7r77n7r) - V'rrt])\(ﬁaﬂapﬁ'arﬁ'”ﬁ':ﬂ'}—r(ﬂ/ - W)
SV‘ITJA(TF77T)pTr7 TTF)T<7T/ - ﬂ-) + HVTFJA(TF’ 7T7p7ra7"7r) - VTI'J)\<7T) 7T7Pﬁ'7r7~r)|ﬁ':‘lTH Ilﬂ-/ - 7T||

(a) ep/|S|(1 + Alog|A|) €
< T r_ 2 4 T
SV da(m e ra) (1 =)+ RSI (P T 4 ), ©5)

where (a) uses Eq. and Lemma([I2} Substituting p = p, r = 7, and then Eq. (93) into Eq. (93),
we can prove Eq. as follows.

1 1 2| A|
=S APa) exp { - YTy S WS
ep\/|S|(1+)\log|.A\)+ €r )H

(1—79)? L=y

m(als)

(Ve s peyr) (7 = ) + V/2S](

2 (v - ),

where the = uses VT = J, AT, T, Dy 7 ) and Ty, defined as follows.
def 1

e | 2 A|\/2I8] repy/IST(1 + Alog | A])
Mmin = 5 AT/ @=) eXp{ TA1-4) { 1—~ + ET] } ©6)

=Tmin €XP |: -

I PROOF OF THEOREM 3]

For any policies 7, 7/, we have
|V)\ﬂ:ﬂ" - V):w'
<|In(T s prr s ) — TN, Py )|
§|J>\(7T/,pw’,r7r') - JA(lepw/aT'rr” + |J)\(7T/,pﬂ/,7’ﬂ) - JA(lepmrTr”
+ |JA(7T/7PW7TW) - J)\(ﬂ-)pﬂ';rﬂ')‘

(2 77 — 7zl

+ Lpllprr = prll + Lr max [ log 7'([s) — log w(|s)]|

(®) €
< (Lo + 7)1 =l + Lﬁ\/z Itog 7 (-1s) — log (-1

(©)
< (Lpep + 16_77“7) |log 7" —log | + Ly| logn — log ||

D iog " — log |, 97)

where (a) uses Egs. (39), and [@T), (b) uses Assumption[7] (c) uses | logy — log | < |y — z| for
any x,y € R, and (d) defines the following constant.

VIAI(2 =7 + A log |A|) + €,/|S|(1 + Alog | A]) + €,(1 — )

Er

LA:Lpep—i_]_f’y—i_Lﬂ': (177)2
o . VIA|(2— Alog|A S|(1+Alog|A .
L e 4 16_7+L”: |A[2—y+~ og(1|_)—7%)6;\/| [(1+Alog|A]) 16_7 98)

Note that for any u,v > A > 0,

|log u — log v| =log max(u,v) — log min(u, v)

max(u,v) 1 1 )
- ~/min(u,v) ;dm < Z[max(u, v) — min(u,v)] = |u X v '
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Therefore, for any 7, 7" € IIa def {m €Il : w(al]s) > A}, we have
[log 7 —log 7[> = [log ' (als) — log w(a|s)|?

Ss,a
<A™ 2ZIW (als) —7(als)]* = A72||x" — ]|,

Substituting the above inequality into Eq. (97) proves the first inequality of Eq. (97).
Next, we will prove the second inequality of Eq. (97) about the Lipschitz continuity of the following
performative policy gradient.
Vﬂ'v,\ﬂ:ﬂ— :vﬂ"])\(ﬂ-7 T, Prs Tﬂ')
:vﬂ'J)\ (Wa T, D7, Tfr) |7?:7r + (Vﬂ'pﬂ')vp,r J)\(ﬂ', T, Py r’/’l’) + (vw?ﬁﬂ')vmr J/\(ﬂ', T, Py rﬂ')'

For any 7, 7’ € TIa, we have

IV Vi = Va Vi
< Ve da(@ 7 pz, 17 ) la=nr — Vada (7, 7,05, 77) |5=x||
FVarpw | NIVp AT 7 sy r) = Vi IA(T T Dy 7o) |
F [IVp Ia(m, 7, ey 7| - IIV Pt = Vabrl|
+ ”Vﬂ’rw/” : HVTW/JA('”—/aW 7p7r/77"7r/) - VT’«JX(Wvﬂ,meW)”
+ Ve N7, P T )| - VT — Vaarz||
(i)(|A|(1 + 2 log | A])

+ 9Ly ) max | log 7’ (-s) — log m(-|s)]

- (1—79)?
1+ Alog|A|) |A\H7"7r' — Tl oo
g [P ARIA) L] IS — piel 4+ Y
(1—7)? -7
+ e[ e | og 7' (15) —og w19 + £yl = pell + =2 VISl =il
Yer
+ LpSplln’ — = + W(msax I7"(-]s) = m(-s)]l1 + max ||p7r' Js,a) — p(:ls,a)1)
Sy ,
+EHW -
®) |A|(1+2/\log|A\) 2(1+ Alog|Al) ,
< - el _
(PGS + 551w =l + o ISTA| (1_7)2 + Ly In' — 7
/Al =7l (s
+T+6p[zu =l + Lpe 1’ ¢|s " = ]

+ LpSplln’ — 7T||+ (\/IS 7" =7l + & V/IS]lI7’ —WH) ||7r -l

(¢) |A|(1+2)\log|A\) |S| 12(1 4+ Alog|.Al|) ,
(i )|| |+ W[W Lp} I = =
€|’ — 7] €p lpep 2—~ ,
AW T bot 224 T e V/|S]| |7 —
ATAG -y T AL T Ay VIS =l
+ YeEr V |8|(1 + EP) ” / || LPSP + ST/(l _ 7) ||7T/ _ 7r||
AJA|(1 —7)? AlA|
<i><|«4|(1+2klog|«4\)Jr TV IA[2 - 7+7A10g|A|)>|| -
- A(l—7)? A(l—7)?
i8I 120+ Aog 4D | 2/BI0+ Mog Y
JAIL (1—9)? (1—-7)?
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VISIIA[(2 + 3yAlog |A]) | 2€,7|S|(1 + Alog | A|) 2—v )
x| (1) MR Ve v S ]
er\/W(l -7+ VCT\/E(I + €p) 7’ — x|
AJA|(1 —7)?
N Sp/IS](1+ Mog |A]) + S,-(1 — ) I —
AJA|(1 = 7)?
SSAIN +Mog|AI)” g \/|«9||«4|(5+6A10g\«4|)H -
Al —~)? Al —9)?
o [VIAI(L =) + VST + 260)] +5,V/[SI0 + Mog A+ 81 =) - o
AJA[(T— )2 o

where (a) uses Eqgs. (@) (@T) and (@#4)-@G) as well as Assumptions[T}2] and (b) uses the following

bounds for any m, 7’ € A, (c) uses A < [A|~! (since forany m € IIa, 1 = > w(als) > AJA|),
VIA[(2—y+yAlog|Al) V1S1(1+Alog |A[) VIS A[(2+3yA log | A])

(d) uses Ly := (W_% Ly = Ty e = = v; and

by = W defined in Lemma@ (e) uses £, defined by Eq. (100).

max || log 7' (-|s) — log m(-[s)|| <A™ max |7'(-|s) = w([s)]| < A7 |« — 7],

(a) ,
[px = prll <epllm" =,
a) ,
77 = Talloe <llra =7z < €fl7” =7,
max [|7'(-[s) = 7(-[s)[[1 <V/IS|max [[7'(-|s) = 7 (|s)l| < VIS|[I7" = =l],

max e (15, @) — pe(:1s,0)llx <V/ISTmax e (15, @) — pa(-ls, 0)]

(a)
<VISlllpz = prll < e V/IS]lI7" = 7.
Here, (a) uses Assumption|[I] Finally, define the Lipschitz constant ¢ as follows and thus Eq. (99)
implies the second inequality of Eq. that ||V VT P v AV <b 27" = x|

¢ aef 3| A[(1 4 Alog |A])  ep+/IS[AI(5 + 6X1og | A])
A= +
(1—7)? (1—9)3
& [VIAI(L—7) + V/IS|(v + 2¢)] N Sp/ISI(1+ Mog | A]) + S,.(1 — )
|AJ(1 = )2 |A[(1 —7)? '

(100)

J PROOF OF PROPOSITION [I]

We prove the validity of the stochastic gradient (I6) first. For any 7w € IIx, s € S and a € A, we have
m(als) > A, som(als) <1 — A(since ), w(a’|s) = 1). For any u; € Uy, we have |u;(a|s)| < 1.
Therefore,

(7 £ 0u;)(als) > w(a|s) — Ou;(als)] > A —d >0, (101)

which means 7 &+ du; € II. Hence, V/{f;, is well defined for " € {7 + du;, m — du; }.

Then we will prove the estimation error bound (T8). Based on Lemma[I0} there exists an orthogonal
transformation 7~ : R = Zia—1={z=[21,--.,24]] € RIS 2,=0}.

Note that any 2 € RISIUAI=1) can be written as © = [2,]scs, a concatenation of |S| vectors

. € R, Therefore, we can define the transformation 7' : RISI(AI-1) _y £ def {ue RISIIAL
u(-|s) € Z14-1,Vs € S} as follows

[T(x)](-|s) = T(xs),¥s €S (102)
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where z, € R are extracted from |.A| entries of = [2,]ses. Forany & = [2,]ses,Y = [Ys]ses €
RISIOAI=1) and o, B € R, we can prove that T is an orthogonal transformation as follows.

[T(ax + By)(-]s) = T(ows + Bys) = aT (xs) + BT (ys) = a[T()](|s) + B[T(x)](-]s)
=T(ax+ fy) = oT'(x) + T (y).

Define the following set.
T — A Y {r el : TN m — |4}, (103)

where 7 — |A|~! € RISIA has entries (7 — [A|71)(als) = w(als) — |A| 7L, so 7 — |A|7L € Lo.
Furthermore, since IIA is a convex and compact set and T-1is an orthogonal transformation,
~1(a — |A|71) is a convex and compact subset of L.

Then for any z € T-1(IIn — |A|71), we have T'(z) + | A|~! € IIa, so we can define the function

def | T(@)HA
@) = Vir@a-

Note that as VAJ is a differentiable function of 7, so for any 7’ € II and fixed = € II we have
Vi = Vi = (Va Vi =) Vi = Vi = (proje, (Va Vi)' — )
T =7l o —
—0 (as7’ € Mand 7’ — 7), (104)

where the above = uses 7' — m € L. Then, we can prove that f is differentiable with gradient
Vi) = T (proje, VaVi | __ () Al- ,), since for any ' € T-(IIa — |A[~!) and fixed

r € T71(IIa — |A|7!) we have

f)\(aj/) _ f/\(;z:) — <T71 [projLO (v”V)\TW|7r:T(a:)+|A|—1)}ax/ _ :Z:>
|#" — |

(a) 1 T )+ A" T @)+ A

o H[T(z/) + A7 = [T(x) + |A‘_li” [ AT @)+ A= T " AT (x)+] Al !
- <pr0.j£0 (VWVATTFL‘—:T(w)J’_IA‘—l)? [T(I,) + |‘A|71] - [T(SC) + ‘A|71]>}

Yo asz’ € T-Ya — |A7Y) and 2" — =, (105)
where (a) uses the property of the orthogonal transformation 7', and (b) uses Eq. (T04) and the fact
that 2’ — x means ||[T(z") + |A|7!] = [T'(z) + |A|- 1H—Hx—$”—>0

Furthermore, we will show that f)(z) is a Lipscthiz continuous and Lipschitz smooth function of
x € Ila. For any z,2’ € T~Y(Ia — | A|~1), we have

1 1 ( (b L
@) = fal)| =V L = v HT( ) =T@)| C R’ ~ ol
IV fa(z') = V fala |—||T Hprojz, (VaVie|r—pun)] = T [proje, (VaVila |, pe)]

s projﬁo (VaVia e T(a)+] A~ 0) = Proj, (VaViia| T(a)+a)-1) |
<[ (Va VS| (Vo V]
(@) X / ®) ) 4x /
<A NTE) =T@)I = Sl -l

In both the inequalities above, (a) applies Theorem!to T(z)+ | A7, T(2') + |A| =t € TIa and (b)

uses the property of the orthogonal transformation 7". The two inequalities above implies that f) is
an £ -Lipschitz continuous and & 2 -Lipschitz smooth function on 7~ (ITx — |A| 7).

=T (z')+|A|~ ) =T (z)+|A|~ 1)“
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Denote

[S1014]=1) &
T+ou; 71' Su;
I (M) =15 ;:1 | U [ (106)

which replaces V/\’T ;, with V' ;, in Eq. || The estimation error of the performative policy gradient
estimator above can be rewritten as follows for any 7 € IIa.

grs(m) = projz, (VaVi,)

@ (ISI0AI=D) S~ (pmbsnynsu,
:(QN(S;(V/\ ;rit;u _wagau) ) = proj, (V2 Vi;)

N
OSUAZD §5 (1 s LA 4574 u] o[-~ AT 5]

T (w)) = T~ [projz, (V< Vi)
N
S (A A1) 677 ] [ A1) = 7 ]
T (w)) = VAT (7 = A7), (107)

where (a) uses Eq. , (b) uses fi(z) Lof V; ;ﬁgﬁgil and the property of the orthogonal

transformation 7!, (c) uses Viz(z) =T~ (proj,:OV V)\”W|7T T ()AL ) Note that in the above
Eq. (107), m € IIa and wu; is uniformly distributed on the sphere U; N Ly with U1 = { € RISIIALL

[[ul|=1}.

Hence, 7 + du; € IIa_s which implies T (7 — |A|7) £ 6T Y (w;) = T~ (m £ 6u; — |A|7Y) €
T-YOa_s — |A|7Y). Also, T~ !(u;) is uniformly distributed on the sphere T-1(U; o) =
Sisiqal—1) = {u € RISIVAI=D || = 1}. Therefore, we can apply Lemma|§|to the above

Eq. li where the function f is an A{‘ A
onT~

lgx,s(m) — proj ., (VA V)

4L,|S|(]A[-1) IS[(JA]
= 3/\]\7(A—6) 1°g<

Afj 5-Lipschitz smooth function

(ITa—s — |A|71), and obtain the following bound which holds with probability at least 1 — 7

—D+ 1y LyS|(lA[-1) ISI(lA[-1)+ 2
7 )+R s \/ tog ( " )+A—A6

4L,|S||A] ISI|A]\ | LaIS||A| |2 |S||-Al A
S3N(A-5)1°g( )+ v (5 >+A 5

(108)

Note that |V)\ Vs | < ey holds for any a certain policy 7 with probability at least 1 —7). Therefore,
with probablhty at least 1 — 2Nn, we have

|V;;T, — V,\’fﬂ,| <ey,Vr' € {rm£ou} Y, (109)

Therefore, with probability at least 1 — (2N + 1)n, Egs. (108)) and (109) hold and thus we have

192.5(7) = proj, (Va Vi)
<Nga6(m) = gas (M)l + [lga.s(m) — proje, (Va Vi)l

ISIGAI 1) §-
_ +éu; +ou; (7T —6u; —0u;
z (VTF Sus — V)jrﬂ'-i-qgu V)\Tiﬂ__%w + V/\Tﬂ—qgui)ui

INGS P A, m+0u;
4L,[S||A]| ISIIAlN | LaIS]IA| |S|A] 60>
3N(A—6)log( )+ 73 5 N1 ( " )+A—6
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OSIJA] o ({145, Coun ombu _éu
S N§ ZH(V)\T;H-%;M—V;tw-l-lgbb_v)iﬂ—lg;,+V)\Ti7r—lgfub)u2|’
=1

4L,|S]|A] ISIALN | LAISIA] [2 SI[A 60
+3N(A—5)10g( " )+ =25 e o )+ 35

|8HA| al Crmt-du; T+ou;
= N6 i:Zl(‘V/\a:+5ﬁi_V)\,7t+5ui )
4L |S||A] ISIA[Y | LaISIIA| | 2 |S||A] 60>
I —1

T 3N(A =) os ( " )+ 25wl " )+
(©2|S|[Aley | 4L)|S||A| IS[IA[\ | LaIS[lA] |2 SI|A| o)
< I 2

ST 3N os o )+ 25w s ( " )+ ats

where (a) uses Egs. , and 1) (b) uses Jensen’s inequality that ||% ZZ\; 7|2 <
+ Zf\il ||z;||? for any vectors {x;} X, of the same dimensionality, (c) uses |V>\”;r - V)\f;/| < ey for
any policy 7’. By replacing 1 with 3% in the inequality above, we prove the error bound as
follows which holds with probability at least 1 — ).

Crm—Oug T—0u;
+‘V>\,7r75ui + VA,TK‘*(;’IJ,i

||§/\,6(7T) - projEO(V,rV)CW)H
<2|3|\A|€v+ 4L, |S||A]

3NIS|A[N | LAIS[IAl |2 B3NS A| 64x
=770 3N(A—5)10g< )+ =as e ( " )+ (10
_n€v |, log(N/n)
_0(5+7\/ﬁ +6)

K PROOF OF PROPOSITION 2]

For any 7 € Il A, it is easily seen that the corresponding 7’ defined by Eq. also belongs to IIA.
Therefore,

DX
V.V —7) < Vi Vi -7 < ———.
< A, ™ 7T> = 7%2%)2< A, ™ 7T> = 5|A|(1 _’7)
Substituting the above inequality into Eq. (T2), we obtain that
2 2 min
m(als) >mmin €Xp [— %(1 — UV V7 = 7T>i| > “Mmin > 2A.
Therefore, for any 7 € II, we can prove that % € I1A as follows.
ma(als) + m(als) S 0+2A A
2 - 2
Therefore, we can prove Eq. (22) as follows.
(a)
max(V,.Vy ., Ty —7) =2 max <V7,Vfﬂ, AT 7r> < 2max (VW ., 7T —m7).
ma €11 ’ mo €11 ’ €l ,

where (a) uses T2 € Ila.

L PROOF OF THEOREM [4]

If m; € IIA, then m41 € IIA, since I1A is a convex set and 7,41 obtained by Eq. is a convex
combination of 7, 7, € IIA. Since mg € IIa, we have m; € IIA for all £ by induction. Therefore,
Proposition (1| implies that the following bound holds simultaneously for all {7;}7_; C IIn with
probability at least 1 — 7.

9x,5(m¢) — projz, (VaVy2 )|l
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2S|| Ay ALy|S|IA| STNIS|[Al\ LS|4 STNISIIAN 6y
< ] 2
=75 T3INGB-—) os o )+ 25w s ( " )+ a

The bound above further implies that for any 7 € II, we have
|<§/\,6(7"t) - VTFV)\T[;;—HTF - 7Tt>|

(i)|<g>\75(ﬂ't) prOJLO (v V)\ 7Tt 7Tf>|
<) ~ o, (V2 i
2|S||Alev | 4Lx|S[A| 3TN|S|| Al
5 3TN(A-_9) log( " )
LyIS|IA] |2 3TN|S||A| 50,
TV
TTA TS Nog( )*A_(;]’
where (a) uses T, — 7, T — 1 € Lo for T, @ € I, and (b) uses Eq. (IT1) and Lemma([12]

2|$|[

(112)

Under the conditions above, we have
Vﬂ't+1

A4

0y
ZVﬁn (VaVi, o Mg — ) — 2A|\7Tt+1 — m||?

NE

V,\W;t + B(VaVi5, T — m) — Knﬁt — ||
_ t ~ ~ e ~ ~ e)\ﬁ2 ~ 2
VA T B(Ga,s(me), T — ) + 5<V7TVA7T” — gas(me), T — ) — oA |7 — ]|

Qvy j - 0x|518° 2|S||A
2V, + Blans(me), e — m) — % - ﬁm[w
AL|S|A] 3TN|S||A[\ = LA|S||A| |2 STN|S|IA 50,
! 2
STN(A =5) " ( )+ Ay e )3

where (a) uses the Z* -Lipschitz smoothness of V{ o on IIA, (b) uses Eq. . (c) uses Eq. |i and
LemmalI2]

Rearranging and averaging Eq. (TI3) over ¢t = 0,1,...,T — 1, we obtain that

rrelax (Grs(mq), T — 75)
£l ( 7) 5 = TF)

b]_ —
sz a5 (me), Ty — )

}, (113)

V”;T—W;O 01818 25| Ale
A 75 A ,\|A| 2|S|[ \ ||5 lev
4L,[S|A| 3TN|S|JAlN | LaISIIAl |2 3T'N[S||A] 60
3TN(A—<S)10g( )+ Ao v 1og ( )+A—5}
14 AoglA| 60|18 21| Ale
4L, |S||A] STNIS|IIAL | LaSIAl [2 . /3TNISIAl | 66
STN(A —0) © ( )+ Ay e )+ as) a

where (a) uses Lemmamwhich means 7, satisfies Eq. (]E[) and (b) uses the output rule of Algorithm
that T € arg min0<t<T 1{Gx,s(m¢), T — m). Therefore,

max <V V)\Tr , T 7TT>

Tella
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= max [(VaWT = gy 5(mny), 7 = 77) + (ir,6(Try ) 7 — 775)]

Tella
()1 1 2
D1 NoglA] | BISIE |y oy 2AS Ak
TB1-v) A 5
4L, |S|]A| 3TN|S|| A Ly|S||A] |2 3TN|S||A| 0l
1 —1
3TN(A —6) os )+ 25w e ( )+ ass) 119
where (a) uses Egs. (TT2) and (TT4).
Use the following hyperparameter choices for Algorithm [T]
p_—
A — min
3 (116)
DAe DTmeE
=0 11
B =Tan81 ~ 36055~ O (17
12(1 4+ Alog|A|)  4320,|S|(1 4+ Alog|.Al) PN
T = = = 1
Dep(1 —1) Tmin D2 (1 — 7)e? 0le™) (118)
DAe Drpine (@) A
_ _ min _ O €) < — 119
48+/2|S|¢)  144+/2|S|¥x (© < 2 (19
D minl)2 2
¢ T G TOE (120)

€ - =
Y T RIS[AIVRIS] 138240, [S]P|A]
66355213 SP°A? 165888L§|S\3|A|2 12060, S|?A/(1 + Alog | A])
D2r 2 €2 gmaX ( D2 ) D27]7Tmin(1 — ’)/)62 )

<3IST|]|AI) +3

+ 2log

=0[e *log(n e )] (121)

where (a) uses € < 24,/2|S|¢x/D. With the hyperparameter choices above, we obtain the following

inequalities (122))-

21S]- LaIS[|A] 3TN|5HAI)

A—9§ Nl ( 7

(0)24L,|S[*5|A| [log N 2
Q2ALNS|7IA| [log +ilog(m%’AISI IA\(1+Mog|AI)>

Tmin N N 777TIIIinD2(1 - 7)62
(b) 1.5 =
02ALIS 1A [
Tmin 4
_12\/5L>\|S|1'5|A| Dryyine D (122)
Tmin V16588 |S|LFIA] — 127

where (a) uses Eq. (118) and 6 < A/2 = mp,;,/6 implied by Egs. (116) and (119), (b) uses
2

Eq. 1| and its implication that N > 4& 1log(é~!) with € = 1658881@3‘21;|S|3|A\2 < 0.5 (since
A
€< W) which implies logN < € based on Lemma
1 3T N|S|| A 1og(TN) 3ISIIAN @1 1
] ( ) - lo ( ) < - 4-=1 12
TN % TN TN n ) S273 (123)
where (a) uses NT' > N > max {3, 2log (%)} and Lemma
4L, |S|| A 3TN|S||A| \fLA|S|\A| 3TN|S||A|
5] s ) Sy (STNISIAlY
ISl 37N B — o) 108 0 | TN
(b)
< De (124)
12
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where (a) uses % <+V2andy < VY fory = ﬁ log (%) < 1 (Eq. ), and (b) uses
T > 1 and Eq. (122). By substituting the hyperparameter choices (116)-(121)) as well as Eqs. (122))

and (124) into Eq. (T3], we have

max <V VMr ST — 7T1:>

Tella
14+ Alog |A] | 4,[S[B 2|S||Alev
< ot bl Rl
<Thi- T A *? 2\3|[ -
AL |S||A] 3TNIS||A|N | LalS||A| 3TNIS||Al\ | 60y
3TN(A—6)10g( )+ Ao N1 ( " )+A—6]
<1+)\log|A\ ef(1—7) £5]S] Ae

= B(1—7) 12D(1+AloglA]) = A 12D¢,|S|
N 4\/2|S||SHA| de € € 2\/2|8]6x Ac
s " 48D|S||Al/2]S] 12D " 12D AJ2 48,/2|S|Dty
De (o) DX
= < 07—
2 7 5lA[(1—7)

where (a) uses € < %. Then based on Proposition the inequality above implies that

m&%{w V)\7r T 7TT> < De,

which means 7 is a De-stationary policy. Then if 4 > 0, Corollary implies that 7 is also an
e-PO policy.

M ADIJUSTING OUR RESULTS TO THE EXISTING QUADRATIC REGULARIZER

In Section[d] we have proposed a 0-FW algorithm and obtain its finite-time convergence result to the
desired PO policy for our entropy-regularized value function (6). We will briefly show that 0-FW
algorithm can also converge to PO for the existing performative reinforcement learning defined by
the value function (m) with quadratic regularizer H, () = 1| dx,, ,||* (Mandal et al., 2023} Rank!
et al.| [2024; [Pollatos et al., [2025)). The performative value function can be rewritten as the following
A-strongly concave function of d 5, .

Ve = {drp, ) = Mdrp, II°- (125)

We can prove the performative value function above also satisfies Theorem I] (gradient dominance)
with a different p, following the same proof logic, since both regularizers H . (7) are strongly convex
functions of d . which implies that VA’T’ o Isa p-strongly concave function of « as shown in the
proof of Theorem |l|in Appendix [F| By direct calculation, we can also show that V" above is a
Lipschitz continuous and Lipschitz smooth function of 7 € II. With these two properties, we can
follow the proof logic of Theorem []to show that the 0-FW algorithm (with the same procedure as
that of Algonthm I except the different values of V/\’T“ in the policy evaluation step) converges to
a stationary policy of the performative value functton @ which by gradient dominance is a PO
policy when the new value of 4 satisfies > 0.

N USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs to generate some functions in the experimental code, and then checked and edited the
code to ensure that it exactly implements the algorithms.
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