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ABSTRACT

Performative reinforcement learning is an emerging dynamical decision making
framework, which extends reinforcement learning to the common applications
where the agent’s policy can change the environmental dynamics. Existing works
on performative reinforcement learning only aim at a performatively stable (PS)
policy that maximizes an approximate value function. However, there is a prov-
ably positive constant gap between the PS policy and the desired performatively
optimal (PO) policy that maximizes the original value function. In contrast, this
work proposes a zeroth-order Frank-Wolfe algorithm (0-FW) algorithm with a
zeroth-order approximation of the performative policy gradient in the Frank-Wolfe
framework, and obtains the first polynomial-time convergence to the desired PO
policy under the standard regularizer dominance condition. For the convergence
analysis, we prove two important properties of the nonconvex value function. First,
when the policy regularizer dominates the environmental shift, the value function
satisfies a certain gradient dominance property, so that any stationary point (not
PS) of the value function is a desired PO. Second, though the value function has
unbounded gradient, we prove that all the sufficiently stationary points lie in a con-
vex and compact policy subspace Π∆, where the policy value has a constant lower
bound ∆ > 0 and thus the gradient becomes bounded and Lipschitz continuous.
Experimental results also demonstrate that our 0-FW algorithm is more effective
than the existing algorithms in finding the desired PO policy.

1 INTRODUCTION

Reinforcement learning is a useful dynamic decision making framework with many successes in
AI, such as AlphaGo (Silver et al., 2017), AlphaStar (Vinyals et al., 2019), Pluribus (Brown &
Sandholm, 2019), large language model alignment (Bai et al., 2022) and reasoning (Havrilla et al.,
2024). However, most reinforcement learning works ignore the effect of the deployed policy on the
environmental dynamics, including transition kernel and reward function. This effect is significant
in multi-agent systems, particularly the Stackelberg game, where leaders’ policy change triggers
the followers’ policy change, which in turn affects the environmental dynamics faced by the leader
(Mandal et al., 2023). For example, a recommender system (leader) affects the users’ (followers)
demographics and their interaction strategy with the system (Chaney et al., 2018; Mansoury et al.,
2020). Autonomous vehicles (leaders) affect the strategies of the pedestrians and the other vehicles
(followers) (Nikolaidis et al., 2017).

To account for such effect of deployed policy on environmental dynamics, performative reinforcement
learning has been proposed by (Mandal et al., 2023) where the transition kernel pπ and reward function
rπ are modeled as functions of the deployed policy π. The ultimate goal is to find the performatively
optimal (PO) policy that maximizes the performative value function, defined as the accumulated
discounted reward when deploying a policy π to its corresponding environment (pπ, rπ). However,
the policy-dependent environmental dynamics pose significant challenges to achieve PO. Hence,
(Mandal et al., 2023) pursues a suboptimal performatively stable (PS) policy using repeated retraining
method with environmental dynamics fixed for the current policy at each policy optimization step.
However, (Mandal et al., 2023) shows that PS can have a positive constant distance to PO.

Extensions of the basic performative reinforcement learning problem (Mandal et al., 2023) have been
proposed and all of them focus on the suboptimal PS policy. For example, Rank et al. (2024) allows
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the environmental dynamics to gradually adjust to the currently deployed policy, and proposes a
mixed delayed repeated retraining algorithm with accelerated convergence to a PS policy. Mandal
& Radanovic (2024) extends (Mandal et al., 2023) from tabular setting to linear Markov decision
processes with large number of states, and also obtains the convergence rate of the repeated retraining
algorithm to a PS policy. Pollatos et al. (2025) obtains a PS policy that is robust to data contamination.
Sahitaj et al. (2025) obtains a performatively stable equilibrium as an extension of PS policy to
performative Markov potential games with multiple competitive agents.

In sum, all these existing performative reinforcement learning works pursue a suboptimal PS policy
by repeated retraining algorithms. Therefore, we want to ask the following basic research question:

Q: Is there an algorithm that converges to the desired performatively optimal (PO) policy?

1.1 OUR CONTRIBUTIONS

We will answer affirmatively to the research question above in the following steps. Each step yields a
novel contribution.

• We study an entropy regularized performative reinforcement learning problem, compatible with
the basic performative reinforcement learning problem in (Mandal et al., 2023). We prove that the
objective function satisfies a certain gradient dominance condition, which implies that an approximate
stationary point (not the suboptimal PS) is the desired approximate PO policy, under a standard
regularizer dominance condition similar to that used by (Mandal et al., 2023; Rank et al., 2024;
Mandal & Radanovic, 2024; Pollatos et al., 2025) to ensure convergence to a suboptimal PS policy.
The proof adopts novel techniques such as recursion for pπ-related error term and frequent switch
among various necessary and sufficient conditions of smoothness and strong concavity like properties
for various variables (see Section 3.2).

• We obtain a policy lower bound as a decreasing function of a stationary measure. This bound
not only implies the unbounded performative policy gradient (a challenge to find a stationary policy
and thus PO), but also inspires us to find a stationary policy in the policy subspace Π∆ with a
constant policy lower bound ∆ > 0 where we prove the objective function to be Lipschitz continuous
and Lipschitz smooth (a solution to this challenge). The lower bound ∆ is obtained using a novel
technique which simplifies a complicated inequality of the minimum policy value π[amin(s)|s] in
two cases (see Section 3.3).

• We construct a zeroth-order estimation of the performative policy gradient and obtains its
estimation error. This is more challenging than the existing zeroth-order estimation methods since
our objective function is only well-defined on the policy space, a compact subset of a linear subspace
of the Euclidean space R|S||A|. To solve this puzzle, we adjust a two-point estimation to the linear
subspace L0 of policy difference, and simplify the estimation error analysis by mapping policies onto
the Euclidean space R|S|(|A|−1) via orthogonal transformation (see Section 4.1).

• We propose a zeroth-order Frank-Wolfe (0-FW) algorithm (see Algorithm 1) by combining the
performative policy gradient estimation above with the Frank-Wolfe algorithm. Then we obtain a
polynomial computation complexity of our 0-FW algorithm to converge to a stationary policy, which
is also the desired PO policy under the regularizer dominance condition above. The convergence
analysis uses a policy averaging technique to show that an approximate stationary policy on Π∆ is
also approximately stationary on the whole policy space Π (see Section 4.2).

Finally, we briefly show that the results above, including gradient dominance, Lipschitz properties and
the finite-time convergence of 0-FW algorithm to the desired PO, can be adjusted to the performative
reinforcement learning problem with the quadratic regularizer used by (Mandal et al., 2023; Rank
et al., 2024; Pollatos et al., 2025) (see Appendix M).

2 PRELIMINARY: PERFORMATIVE REINFORCEMENT LEARNING

2.1 PROBLEM FORMULATION

Performative reinforcement learning is characterized by a Markov decision process (MDP) Mπ =
(S,A, pπ, rπ, ρ) that depends on a certain policy π. Here, S and A denote the finite state and
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action spaces respectively. The policy π ∈ [0, 1]|S||A|, transition kernel pπ ∈ [0, 1]|S|2|A|, reward
rπ ∈ [0, 1]|S||A|, and initial state distribution ρ ∈ [0, 1]|S| are vectors that represent distributions.
Specifically, the policy π ∈ [0, 1]|S||A|, with entries π(a|s) for any state s ∈ S and action a ∈ A,
lies in the policy space Π

def
=

{
π ∈ [0, 1]|S|2|A| :

∑
a∈A π(a|s) = 1,∀s ∈ S

}
, such that π(·|s) for

any state s can be seen as a distribution over A. The transition kernel pπ ∈ [0, 1]|S|2|A| dependent on
policy π ∈ Π, with entries pπ(s′|s, a) for any s, s′ ∈ S and a ∈ A, lies in the transition kernel space
P def

=
{
p ∈ [0, 1]|S|2|A| :

∑
s′∈S p(s′|s, a)=1,∀s∈S, a∈A

}
such that pπ(·|s, a) can be seen as a

state distribution on S. rπ ∈ R def
= [0, 1]|S||A| is the reward function with entries rπ(s, a) ∈ [0, 1]

for any s ∈ S and a ∈ A. ρ ∈ [0, 1]|S| is the initial state distribution such that
∑

s∈S ρ(s) = 1.
Note that we consider pπ, rπ, ρ, π as Euclidean vectors, so that we can conveniently define their
Euclidean norm. For example, we define ∥pπ∥q =

[∑
s,a,s′ |pπ(s′|s, a)|q

]1/q
for any q > 1 and

∥pπ∥∞ = maxs,a,s′ |pπ(s′|s, a)|. Such norms can be similarly defined over rπ , ρ, π by summing or
maximizing over all the entries. Specifically, denote ∥ · ∥ = ∥ · ∥2 by convention.

When an agent applies its policy π ∈ Π to MDP Mπ′ = (S,A, pπ′ , rπ′ , ρ), the initial environmental
state s0 ∈ S is generated from the distribution ρ. Then at each time t = 0, 1, 2, . . ., the agent takes
a random action at ∼ π(·|st) based on the current state st ∈ S, the environment transitions to the
next state st+1 ∼ pπ′(·|st, at) and provides reward rt = rπ′(st, at) ∈ [0, 1] to the agent. The value
of applying policy π to Mπ′ can be characterized by the following value function:

V π
λ,π′

def
= Eπ,pπ′ ,ρ

[ ∞∑
t=0

γtrπ′(st, at)
]
− λHπ′(π). (1)

Here, Eπ,pπ′ ,ρ is the expectation under policy π, transition kernel pπ′ and initial state distribution ρ.
γ ∈ (0, 1) is the discount factor. Hπ′(π) is a regularizer with coefficient λ ≥ 0 to ensure or accelerate
algorithm convergence. Existing works use the quadratic regularizers such as Hπ′(π)= 1

2∥dπ,pπ′∥2
(Mandal et al., 2023; Rank et al., 2024; Pollatos et al., 2025) and Hπ′(π)= 1

2∥Φ
⊤dπ,pπ′∥2 (Mandal

& Radanovic, 2024) with a feature matrix Φ, where the occupancy measure dπ,p ∈ [0, 1]|S||A| for
any policy π and transition kernel p is defined as the following distribution on S ×A.

dπ,p(s, a)
def
= (1− γ)

∞∑
t=0

γtPπ,p,ρ{st = s, at = a}, (2)

Then the state occupancy measure defined as dπ,p(s)
def
=

∑
a dπ,p(s, a) satisfies the following

well-known Bellman equation for any state s′ ∈ S.

dπ,p(s
′)=(1−γ)ρ(s′)+γ

∑
s,a

dπ,p(s)π(a|s)p(s′|s, a). (3)

The goal of performative reinforcement learning is to find the performatively optimal (PO) policy π
that maximizes the performative value function V π

λ,π (with π′ = π in Eq. (1)), as defined below.

Definition 1 (Ultimate Goal: PO). For any ϵ ≥ 0, a policy π ∈ Π is defined as ϵ-performatively
optimal (ϵ-PO) if maxπ′∈Π V π′

λ,π′ − V π
λ,π ≤ ϵ. Specifically, we call a 0-PO policy as a PO policy.

Conventional reinforcement learning can be seen as a special case of performative reinforcement
learning with fixed environmental dynamics, namely, fixed transition kernel pπ ≡ p and fixed reward
function rπ ≡ r. However, this may fail on applications with policy-dependent environmental
dynamics, such as recommender system and autonomous driving as explained in Section 1.

2.2 EXISTING REPEATED RETRAINING METHODS FOR PERFORMATIVELY STABLE (PS)
POLICY

Achieving an ϵ-PO policy (defined by Definition 1) is challenging, due to the policy-dependent
environmental dynamics pπ and rπ . To alleviate the challenge, all the existing works (Mandal et al.,
2023; Rank et al., 2024; Mandal & Radanovic, 2024; Pollatos et al., 2025; Sahitaj et al., 2025) aim at
a performatively stable (PS) policy πPS defined as follows, as an approximation to a PO policy.

πPS ∈ argmax
π∈Π

V π
λ,πPS

. (4)
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In other words, a PS policy πPS has the optimal value on the fixed environment MπPS
. However,

Mandal et al. (2023) shows that a PS policy can be suboptimal.

Nevertheless, we will briefly introduce the suboptimal repeated retraining algorithms in their works,
to later partially inspire our method that converges to the global optimal PO policy. All these
repeated retraining algorithms share the fundamental idea that in each iteration t, the next policy
πt+1≈ argmaxπ∈ΠV

π
λ,πt

is obtained by solving the conventional reinforcement learning problem
under fixed dynamics pπt

and rπt
. This strategy highly relies on conventional reinforcement learning

but fail to make full use of the policy-dependent dynamics, which leads to the suboptimal PS policy.
Next, we will propose our significantly different strategies to achieve the desired PO policy.

3 ENTROPY REGULARIZED PERFORMATIVE REINFORCEMENT LEARNING

In this section, we obtain critical properties of an entropy regularized performative reinforcement
learning problem for achieving the desired PO policy.

3.1 NEGATIVE ENTROPY REGULARIZER

We consider the following negative entropy regularizer of the policy π, which is widely used in
reinforcement learning to encourage environment exploration and accelerate convergence (Mnih
et al., 2016; Mankowitz et al., 2019; Cen et al., 2022; Chen & Huang, 2024).

Hπ′(π) = Eπ,pπ′ ,ρ

[ ∞∑
t=0

γt log π(at|st)
]
. (5)

In addition, this negative entropy regularizer can be seen as a strongly convex function of the
occupancy measure dπ,pπ′ (proved in Appendix D), which is critical to develop algorithms convergent
to a PO (see Theorem 1 later) or PS policy (Mandal et al., 2023). For optimization problem on a
probability simplex variable (policy π or occupancy measure d), negative entropy regularizer is more
natural and yields faster theoretical convergence than the quadratic regularizers used in the existing
performative reinforcment learning works (Mandal et al., 2023; Rank et al., 2024; Pollatos et al.,
2025) (see pages 43-45 of (Chen, 2020) for explanation).

Therefore, we will mainly focus on the following entropy-regularized value function, which is
obtained by substituting the negative entropy regularizer (5) into the general value function (1).

V π
λ,π′

def
= Eπ,pπ′ ,ρ

[ ∞∑
t=0

γt[rπ′(st, at)− λ log π(at|st)]
]
. (6)

Specifically, we will study the critical properties of the entropy-regularized value function (6) (Section
4) to develop algorithm that converges to PO (Sections 4.1-4.2). Then we will briefly discuss about
how to adjust these results to the existing quadratic regularizers (Appendix M).

We make the following standard assumptions to study the properties of the value function (6).
Assumption 1 (Sensitivity). There exist constants ϵp, ϵr > 0 such that for any π, π′ ∈ Π,

∥pπ′−pπ∥≤ϵp∥π′−π∥, ∥rπ′−rπ∥≤ϵr∥π′−π∥ (7)

Assumption 2 (Smoothness). pπ and rπ are Lipschitz smooth with modulus Sp, Sr > 0 respectively,
that is, for any π ∈ Π, s, s′ ∈ S, a ∈ A, we have

∥∇πpπ′(s′|s, a)−∇πpπ(s
′|s, a)∥ ≤Sp∥π′ − π∥, (8)

∥∇πrπ′(s, a)−∇πrπ(s, a)∥ ≤Sr∥π′ − π∥. (9)

Assumption 3. There exists a constant D > 0 such that infπ∈Π,p∈P,s∈S dπ,p(s) ≥ D.

Assumptions 1-2 ensure that the environmental dynamics pπ and rπ adjust continuously and smoothly
to policy π, and thus the performative value function V π

λ,π is differentiable with performative policy
gradient ∇πV

π
λ,π . Similar versions of Assumption 1 on environmental sensitivity have also been used

for performative reinforcement learning (Mandal et al., 2023; Rank et al., 2024; Mandal & Radanovic,
2024; Pollatos et al., 2025; Sahitaj et al., 2025). Assumption 3 has been used (Zhang et al., 2021;
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Sahitaj et al., 2025) or implied by stronger assumptions (Wei et al., 2021; Chen et al., 2022; Agarwal
et al., 2021; Leonardos et al., 2022; Wang et al., 2023; Chen & Huang, 2024; Bhandari & Russo,
2024) in conventional reinforcement learning (see Appendix E for the proof), which guarantees that
each state is visited sufficiently often.

3.2 GRADIENT DOMINANCE

For the nonconvex policy optimization problem maxπ∈Π V π
λ,π in Eq. (6) on the convex policy space

Π, it is natural to consider its approximate stationary solution as defined below.
Definition 2 (Stationary Policy). For any ϵ ≥ 0, a policy π ∈ Π is ϵ-stationary if
maxπ̃∈Π

〈
∇πV

π
λ,π, π̃ − π

〉
≤ ϵ. We call a 0-stationary policy as a stationary policy.

Note that for a policy to be the desired PO, it is necessary to be stationary, while the PS policy targeted
by existing works is neither necessary nor sufficient. Furthermore, we will show that stationary policy
can also be a sufficient condition of the desired PO under mild conditions. As a preliminary step, we
show the important gradient dominance property of the objective function as follows.
Theorem 1 (Gradient Dominance). Under Assumptions 1-3, the entropy regularized value function
(6) satisfies the following gradient dominance property for any π0, π1 ∈ Π.

V π1

λ,π1
≤V π0

λ,π0
+D−1 max

π∈Π

〈
∇π0

V π0

λ,π0
, π − π0

〉
− µ

2
∥π1 − π0∥2, (10)

where

µ
def
=

Dλ

1− γ
− 6γ|S|(1 + λ log |A|)

D(1− γ)3
[
ϵp
(√

|A|+ γϵp
√
|S|

)
+ Sp(1− γ)

]
−

Sr(1− γ) + 4ϵr(
√
|A|+ ϵp

√
|S|)

D2(1− γ)2
, (11)

The gradient dominance property above generalizes that used in the conventional unregularized
reinforcement learning (see Lemma 4 of (Agarwal et al., 2021)), which implies that stationary policy
is close to a PO policy as shown in the corollary below.
Corollary 1. Under Assumptions 1-3, any Dϵ-stationary policy is an (ϵ+ |µ||S|)-PO policy. Fur-
thermore, this is also the desired ϵ-PO policy if µ ≥ 0. The PO policy is unique if µ > 0.

Remark: Corollary 1 implies that a Dϵ-stationary policy is always (ϵ+ |µ||S|)-close to the desired
PO policy with |µ| proportional to the environmental sensitivity O(ϵp + ϵr + Sp + Sr). Furthermore,
since µ = [O(1)−O(ϵp+Sp)]λ−O(ϵp+ ϵr+Sp+Sr) by Eq. (11), when O(ϵp+Sp) < O(1) and
the regularizer strength dominates the environmental shift (λ ≥ O(ϵp+ϵr+Sp+Sr)

O(1)−O(ϵp+Sp)
), we have µ ≥ 0 so

that the Dϵ-stationary policy is also the desired ϵ-PO policy. Note that similar regularizer dominance
condition has also been used to guarantee convergence to a suboptimal PS policy (Mandal et al.,
2023; Rank et al., 2024; Mandal & Radanovic, 2024; Pollatos et al., 2025).

3.3 POLICY LOWER BOUND AND LIPSCHITZ PROPERTIES

Policy Lower Bound: Based on Section 3.2, we can focus on achieving an ϵ-stationary policy. A
major challenge is the unbounded performative policy gradient ∇πV

π
λ,π on Π. Specifically, we will

show that as π(a|s) → 0 for any state s and action a, ∥∇πV
π
λ,π∥ → +∞. To tackle this challenge,

we prove the following policy lower bound.
Theorem 2. If Assumptions 1 and 3 hold, and pπ, rπ are differentiable functions of π, then there
exists a constant πmin > 0 (see its value in Eq. (96) in Appendix H) such that the following policy
lower bound holds for any π ∈ Π, s ∈ S, a ∈ A.

π(a|s) ≥πmin exp
[
− 2|A|

λ
(1− γ)⟨∇πV

π
λ,π, π

′ − π⟩
]
, (12)

Here, the policy π′ is defined as follows depending on π:

π′(a|s) =


π[amin(s)|s], a = amax(s)

π[amax(s)|s], a = amin(s)

π(a|s), Otherwise

, (13)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where amax(s) ∈ argmaxaπ(a|s) and amin(s) ∈ argminaπ(a|s).

Implications of Theorem 2: First, as π(a|s) → 0, we have ⟨∇πV
π
λ,π, π

′ −π⟩ → +∞, so
∥∇πV

π
λ,π∥ → +∞ as aforementioned. Second, any stationary policy π satisfies ⟨∇πV

π
λ,π, π

′ − π⟩ ≤
0, so π(a|s) ≥ πmin. Therefore, we can search ϵ-stationary policy on the convex and compact policy
subspace Π∆

def
= {π ∈ Π : π(a|s) ≥ ∆} with lower bound ∆ ∈ (0, πmin].

Lipschitz Properties: Theorem 2 inspires us to find an ϵ-stationary policy in the policy subspace Π∆,
where the performative value function V π

λ,π is Lipschitz continuous and Lipschitz smooth as follows.

Theorem 3. Under Assumptions 1-2, there exist constants Lλ, ℓλ > 0 (see the values in Eqs. (98) and
(100) in Appendix I) such that the following Lipschitz propreties hold for any ∆ > 0 and π, π′ ∈ Π∆.

|V π′

λ,π′ − V π
λ,π| ≤

Lλ

∆
∥π′ − π∥, ∥∇π′V π′

λ,π′ −∇πV
π
λ,π∥ ≤ ℓλ

∆
∥π′ − π∥. (14)

4 ZEROTH-ORDER FRANK-WOLFE (0-FW) ALGORITHM

4.1 PERFORMATIVE POLICY GRADIENT ESTIMATION

In Section 3, we have obtained important properties of the entropy regularized performative value
function V π

λ,π (defined by Eq. (6)), which indicates that it suffices to find an ϵ-stationary policy in
the subspace Π∆ for ∆ ∈ (0, πmin]. To achieve this goal, an accurate estimation of the performative
policy gradient ∇πV

π
λ,π is important but also challenging, since the performative policy gradient

involves the unknown gradients ∇πpπ(s
′|s, a) and ∇πrπ(s, a).

Despite these challenges in estimating ∇πV
π
λ,π, note that V π

λ,π for any policy π can be evaluated by
policy evaluation in conventional reinforcement learning under fixed environment pπ and rπ (for
fixed π). Furthermore, for any ϵV > 0 and η ∈ (0, 1), many existing policy evaluation algorithms
such as temporal difference (Bhandari et al., 2018; Li et al., 2023; Samsonov et al., 2023), can obtain
V̂ π
λ,π ≈ V π

λ,π with small error bound |V̂ π
λ,π − V π

λ,π| ≤ ϵV with probability at least 1− η.

As a result, we will consider a zeroth-order estimation of ∇πV
π
λ,π using policy evaluation. However,

this has another challenge that V π
λ,π is only well-defined on π ∈ Π, so we cannot directly apply the

existing zeroth-order estimation methods (Agarwal et al., 2010; Shamir, 2017; Malik et al., 2020)
which require the objective function to be well-defined on a sphere. Fortunately, for any π, π′ ∈ Π,
the policy difference π′ − π lies in the following linear subspace of dimensionality |S|(|A| − 1).

L0
def
=

{
u ∈ R|S||A| :

∑
a

u(a|s)=0,∀s ∈ S
}
. (15)

Therefore, inspired by the popular two-point zeroth-order estimations, we estimate ∇πV
π
λ,π as follows.

ĝλ,δ(π)=
|S|(|A|−1)

2Nδ

N∑
i=1

(
V̂ π+δui

λ,π+δui
−V̂ π−δui

λ,π−δui

)
ui, (16)

where {ui}Ni=1 are i.i.d. samples uniformly from U1 ∩ L0 with U1
def
= {u ∈ R|S||A| : ∥u∥=1}. Our

estimation (16) above is more tricky than the existing two-point zeroth-order estimations (Agarwal
et al., 2010; Shamir, 2017; Malik et al., 2020) where ui is uniformly distributed on U1. To elaborate,
we replace their U1 with U1∩L0, a unit sphere on the linear subspace L0, and further require π ∈ Π∆

and δ < ∆, to guarantee that π + δui, π − δui ∈ Π for any ui ∈ U1 ∩ L0 and thus the gradient
estimation (16) is well-defined (see Appendix J for the proof). Moreover, we use the following three
steps to obtain ui uniformly from U1 ∩ L0: (1) Obtain vi uniformly from U1; (2) Project vi onto L0

as Eq. (17) below; (3) Normalize this projection by ui = projL0
(vi)/∥projL0

(vi)∥.

projL0
(vi)(a|s) = vi(a|s)−

1

|A|
∑
a′

vi(a
′|s). (17)

The gradient estimation (16) has the following provable error bound.
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Proposition 1. For any ∆ > δ > 0, η ∈ (0, 1) and π ∈ Π∆, the stochastic gradient (16) is
well-defined (i.e., π + δui and π − δui therein are valid policies defined by Π) and approximates the
projected performative policy gradient projL0

(∇πV
π
λ,π) with the following error bound (see its full

expression in Eq. (110) in Appendix J), with probability at least 1− η.

∥ĝλ,δ(π)− projL0
(∇πV

π
λ,π)∥ ≤ O

(ϵV
δ

+
log(N/η)√

N
+ δ

)
. (18)

Algorithm 1 Zeroth-order Frank-Wolfe (0-FW) Algorithm

1: Inputs: T , N , ∆ > δ > 0, ϵV ≥ 0, β > 0.
2: Initialize: policy π0 ∈ Π∆.
3: for Iterations t = 0, 1, . . . , T − 1 do
4: Obtain i.i.d. vectors {vi}Ni=1 uniformly from the unit

sphere U1
def
= {u∈R|S||A| : ∥u∥=1}.

5: Obtain {projL0
(vi)}Ni=1 from Eq. (17).

6: Obtain {ui}Ni=1 where ui = projL0
(vi)/∥projL0

(vi)∥.
7: Obtain stochastic policy evaluation V̂ π

λ,π ≈ V π
λ,π which

satisfies |V̂ π
λ,π − V π

λ,π| ≤ ϵV for π ∈ {πt ± δui}Ni=1.
8: Obtain stochastic performative policy gradient estima-

tion ĝλ,δ(πt) using Eq. (16).
9: Obtain π̃t by Eq. (21).

10: Update πt+1 by Eq. (20).
11: end for
12: Output: πT̃ where T̃ ∈argmin0≤t≤T−1⟨ĝλ,δ(πt),π̃t−πt⟩.

Remark: Proposition 1 above aims
to approximate projL0

(∇πV
π
λ,π)

instead of ∇πV
π
λ,π. This is

sufficient to find an ϵ-stationary
policy, because for any policies
π, π′, the stationarity measure
only involves ⟨∇πV

π
λ,π, π

′−π⟩ =
⟨projL0

(∇πV
π
λ,π), π

′−π⟩ as π′−π ∈
L0. Therefore, we only care about
projL0

(∇πV
π
λ,π). The estimation

error (18) above can be arbitrarily
small with sufficiently large batch-
size N (to reduce the variance),
small δ (to reduce the bias), and pol-
icy evaluation error ϵV ≪ δ.

4.2 ZEROTH-ORDER FRANK-WOLFE (0-FW) ALGORITHM

With the estimated gradient ĝλ,δ(πt) defined by Eq. (16), we consider the following Frank-Wolfe
algorithm to find an ϵ-stationary policy.

π̃t =argmaxπ∈Π∆
⟨π, ĝλ,δ(πt)⟩, (19)

πt+1 =πt + β(π̃t − πt). (20)

Lemma 1. The step (19) has the analytical solution below.

π̃t(a|s) =
{
∆; a ̸= ãt(s)

1−∆(|A| − 1); a = ãt(s)
, (21)

where ãt(s) ∈ argmaxaĝλ,δ(πt)(a|s).

See the proof of Lemma 1 in Section C.1. Then combining the performative policy gradient estimation
(see Section 3.1) with the Frank-Wolfe algorithm, we propose our zeroth-order Frank-Wolfe (0-FW)
algorithm (see Algorithm 1).

We obtain the following convergence result of Algorithm 1 in Theorem 4, the main theoretical result
of this work, as follows.
Theorem 4. Suppose Assumptions 1-3 hold. For any η ∈ (0, 1) and precision 0 < ϵ ≤
min

[
24
√
2|S| ℓλD , 2λ

5|A|D2(1−γ) ,
288Lλ|S|1.5|A|

Dπmin

]
, select the following hyperparameters for Algorithm

1: ∆ = πmin

3 , β = Dπminϵ
36ℓλ|S| , δ = O(ϵ), ϵV = O(ϵ2), N = O[ϵ−2 log(η−1ϵ−1)], and the number

of iterations T = O(ϵ−2) (see Eqs. (116)-(121) in Appendix L for detailed expression of these
hyperparameters). Then with probability at least 1 − η, the output policy π̃T̃ of Algorithm 1 is a
Dϵ-stationary policy. Furthermore, if µ ≥ 0, π̃T̃ is also an ϵ-PO policy. The total number of policy
evaluations is 2NT = O[ϵ−4 log(η−1ϵ−1)].

Comparison with Existing Works: Theorem 4 indicates that our 0-FW algorithm for the first
time converges to the desire PO policy with arbitrarily small precision ϵ in polynomial computation
complexity, under the regularizer dominance condition that µ ≥ 0. In contrast, existing works
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only converge to a suboptimal PS policy under a similar regularizer dominance condition (Mandal
et al., 2023; Rank et al., 2024; Mandal & Radanovic, 2024; Pollatos et al., 2025). Our preferable
convergence result is due to the main algorithmic difference that existing works use repeated re-
training algorithms with iteration πt+1≈argmaxπ∈ΠV

πt

λ,π where the policy π is deployed in a fixed
environment Mπt

with π ̸= πt, while our 0-FW algorithm evaluates V π
λ,π where π is always deployed

at its corresponding environment Mπ .

Proposition 2. If ∆ ≤ πmin/3 and a policy π satisfies maxπ̃∈Π∆
⟨∇πV

π
λ,π, π̃ − π⟩ ≤ Dλ

5|A|(1−γ) ,
then the stationary measures on Π∆ and Π bound each other as follows.

max
π̃∈Π

⟨∇πV
π
λ,π, π̃ − π⟩ ≤2 max

π̃∈Π∆

⟨∇πV
π
λ,π, π̃ − π⟩ (22)

To prove Proposition 2, note that π′ defined by Eq. (13) also belongs to Π∆, so Theorem 2 implies
π(a|s) ≥ 2∆. Then for any π2 ∈ Π, we have π2+π

2 ∈ Π∆ and thus

max
π2∈Π

⟨∇πV
π
λ,π, π2−π⟩ = 2 max

π2∈Π

〈
∇πV

π
λ,π,

π2 + π

2
−π

〉
≤ 2 max

π̃∈Π∆

⟨∇πV
π
λ,π, π̃ − π⟩.

5 PROOF SKETCH AND NOVELTY

Intuition and Novelty for Proving Theorem 1: Define the following more refined value function

Jλ(π, π
′, p, r)

def
= Eπ,p

[ ∞∑
t=0

γt[r(st, at)−λ log π′(at|st)]
∣∣∣s0∼ρ

]
. (23)

To get the intuition, we will first prove the bound (10) in the special case with fixed pπ ≡ p and
rπ ≡ r. Then we allow non-constant pπ to inspect the perturbation on the bound (10), and finally see
the effect of non-constant rπ on the bound (10).

(Step 1): For conventional reinforcement learning with fixed pπ ≡ p and rπ ≡ r, denote dα =
αdπ1,p + (1−α)dπ0,p (α ∈ [0, 1]). Based on the Bellman equation (3), dα = dπα,p is the occupancy
measure of the policy πα(a|s) = dα(s,a)

dα(s) . Therefore, V πα

λ,πα
can be rewritten as Jλ(πα, πα, p, r) =∑

s,a dα(s, a)[r(s, a) − λ log πα(a|s)], which has the following strong concavity like property by
Pinsker’s inequality.

Jλ(πα, πα, p, r)− αJλ(π1, π1, p, r)− (1− α)Jλ(π0, π0, p, r)

=
1

1− γ

∑
s

[
αd1(s)KL[π1(·|s)∥πα(a|s)] + (1− α)d0(s)KL[π0(·|s)∥πα(a|s)]

]
≥Dλα(1− α)

2(1− γ)
∥π1 − π0∥2. (24)

(Step 2): Consider a harder case with non-constant pπ and constant reward rπ ≡ r. Similarly,
denote dα = αdπ1,pπ1

+ (1−α)dπ0,pπ0
and πα(a|s) = dα(s,a)

dα(s) . The non-constant pπ brings a major
challenge that dα = dπα,pπα

required by Step 1 above no longer holds. To solve this challenge, we
need to bound the error term eα(s) = dπα,pα

(s) − dα(s) which we prove to satisfy the following
novel recursion.

eα(s
′) = γ

∑
s,a

[
eα(s)πα(a|s)pπα

(s′|s, a) + hα(s, a, s
′)
]
,

where hα(s, a, s
′) = dα(s, a)pπα

(s′|s, a) − αd1(s, a)pπ1
(s′|s, a) − (1 − α)d0(s, a)pπ0

(s′|s, a).
Since dα(s, a)pπα

(s′|s, a) is a Lipschitz smooth function of α, we can upper bound |hα(s, a, s
′)|

and substitute this bound to the recursion above, which yields the following novel error bound.∑
s

|eα(s)| ≤
3γ|S|α(1− α)

D(1− γ)2
∥π1 − π0∥2

[
ϵp
(√

|A|+ γϵp
√
|S|

)
+ Sp(1− γ)

]
,

8
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The bound above reflects the effect of non-constant pπ , which perturbs the bound (24) into

Jλ(πα, πα, pα, r)−αJλ(π1, π1, p1, r)−(1−α)Jλ(π0, π0, p0, r) ≥
α(1−α)µ1

2
∥π1−π0∥2, (25)

where µ1
def
= Dλ

1−γ −
6γ|S|(1+λ log |A|)

D(1−γ)3

[
ϵp
(√

|A|+γϵp
√
|S|

)
+Sp(1−γ)

]
equals µ in Eq. (11) when

ϵr = Sr = 0.

(Step 3): Now we consider performative reinforcement learning with non-constant pπ and rπ. The
policy πα and its occupancy measure dα are the same as in Case II above. Then the function
w(α) = αJλ(π1, π1, p1, rα) + (1 − α)Jλ(π0, π0, p0, rα) can be proved µ2∥π1 − π0∥2-Lipschitz
smooth with parameter µ2 = µ− µ1 ≥ 0. Using r = rα in Eq. (25), we obtain the following strong
concavity like property with µ = µ1 − µ2.

V πα

λ,πα
− αV π1

λ,π1
− (1− α)V π0

λ,π0

=Jλ(πα, πα, pα, rα)− αJλ(π1, π1, p1, r1)− (1− α)Jλ(π0, π0, p0, r0)

≥α(1−α)µ1

2
∥π1−π0∥2 + w(α)−αw(1)−(1−α)w(0) ≥ α(1− α)µ

2
∥π1 − π0∥2.

Finally, the dominance property (10) follows from the inequality above as α → +0.

Intuition and Novelty for Proving Theorem 2: At first, consider conventional reinforcement
learning with fixed environmental dynamics pπ ≡ p and rπ ≡ r. In this case, ∇πV

π
λ,π has analytical

form (see Eq. (90)), so by direct computation we obtain the following inequality with constant
C = 1 + γ(1+λ log |A|)

1−γ (see Eq. (91) for detail)

⟨∇πJλ(π, π, p, r), π
′ − π⟩≥ 1

1−γ
max

s

{(
π[amax(s)|s]−π[amin(s)|s]

)[
λlog

π[amax(s)|s]
π[amin(s)|s]

− C
]}
.

To obtain a lower bound of π[amin(s)|s], we simplify the inequality above by considering two
cases, π[amin(s)|s] ≥ 1

2π[amax(s)|s] ≥ 1
2|A| and π[amin(s)|s] < 1

2π[amax(s)|s]. In the second
case, we replace π[amax(s)|s] and π[amax(s)|s]− π[amin(s)|s] above with their lower bounds 1

|A|
and 1

2|A| respectively. Then combining the two cases proves the lower bound (12) at the special
case of ϵp = ϵr = 0. Then we extend from conventional reinforcement learning to performative
reinforcement learning which involves a gradient perturbation with magnitude of at most O(ϵp + ϵr)
(see Eq. (94) for detail) based on the chain rule and leads to the lower bound (12) for any ϵp, ϵr ≥ 0.

Intuition and Novelty for Proving Proposition 1: Unlike existing zeroth-order estimations
on the whole Euclidean space, our estimation (16) is made on the policy space Π, which lies
in the linear manifold L0 + |A|−1 ⊂ R|S||A|. The key to our proof is to find an orthogonal
transformation T : R|S|(|A|−1) → L0, so that the goal is simplified to analyze the gradient estimation
of fλ(x)

def
= V

T (x)+|A|−1

λ,T (x)+|A|−1 on any x ∈ R|S|(|A|−1).

Intuition and Novelty for Proving Theorem 4: Standard convergence analysis of Frank-Wolfe
algorithm yields that maxπ̃∈Π∆

⟨∇πV
πT̃

λ,πT̃
, π̃ − πT̃ ⟩ ≤

Dϵ
2 on Π∆. However, it requires a trick to

prove the following Proposition 2 which implies that πT̃ is Dϵ-stationary on Π.

6 EXPERIMENTS

We compare our Algorithm 1 with the existing repeated retraining algorithm in a simulation envi-
ronment. See Appendix B for the implementation details. Then for the policies πt obtained by each
algorithm, we plot the training curves of the performative value function V πt

λ,πt
(λ = 0.5) and the

unregularized performative value function V πt
0,πt

in Figure 1 in Appendix B, which show that our
Algorithm 1 converges better than the existing repeated retraining algorithm on both regularized and
unregularized performative value functions.

7 CONCLUSION

We have studied an entropy-regularized performative reinforcement learning problem, obtained
its important properties including gradient dominance, policy lower bound, Lipschitz continuity

9
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and smoothness. Based on these properties, we have proposed a zeroth-order Frank-Wolfe (0-
FW) algorithm only using sample-based policy evaluation, which for the first time converges to
a performatively optimal (PO) policy with polynomial number of policy evaluations under the
regularizer dominance condition. These theoretical results also holds for the quadratice regularizers
used in the existing works on performative reinforcement learning (see Appendix M for discussion).
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A RELATED WORKS

Non-stationary Reinforcement Learning: The performative reinforcement learning studied in this
work relates to some non-stationary reinforcement learning. For example, Gajane et al. (2018); Fei
et al. (2020); Cheung et al. (2020); Wei & Luo (2021); Domingues et al. (2021) provide theoretical
results assuming that the non-stationary environment (rewards and transitions) change in a bounded
amount or number, and Even-Dar & Mansour (2004); Dekel & Hazan (2013); Rosenberg & Mansour
(2019) study reinforcement learning with adversarial reward functions.

Performative Prediction: Performative prediction proposed by (Perdomo et al., 2020) is a stochastic
optimization framework where the data distribution depends on the decision policy. Compared with
performative prediction, performative reinforcement learning is similar but more complex due to the
policy-dependent transition dynamics.

Various algorithms have been obtained with finite-time convergence to various solutions of per-
formative prediction. For example, Mendler-Dünner et al. (2020); Brown et al. (2022); Li & Wai
(2022) converge to a performatively stable solution that approximates the performatively optimal
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solution (the primary goal). Izzo et al. (2021); Roy et al. (2022); Haitong et al. (2024) converge to a
stationary point of the nonconvex performative prediction objective. Miller et al. (2021); Ray et al.
(2022) converge to the performatively optimal solution (the primary goal), which relies on the strong
assumptions that the loss function is strongly convex with degree dominating the distribution shift and
that the data distribution satisfies mixture dominance condition or belongs to a location-scale family,
such that the objective function becomes convex as proved by (Miller et al., 2021). In contrast, we
have proved an analogous result that the objective of performative reinforcement learning (harder than
performative prediction) is gradient dominant (see our Theorem 1) without these strong assumptions.
In particular, our condition of regularizer dominating the environmental shift is analogous to their
condition of strong convexity dominating the distribution shift, but our value function still remains
nonconvex which is more challenging than their strongly convex losses.

A survey of performative prediction can be seen in (Hardt & Mendler-Dünner, 2023).

B EXPERIMENTAL DETAILS AND RESULTS

We compare our Algorithm 1 with the existing repeated retraining algorithm in a simulation envi-
ronment with 5 states, 4 actions, discount factor γ = 0.95, entropy regularizer coefficient λ = 0.5,
as well as transition kernel pπ(s′|s, a) = π(a|s)+π(a|s′)+1∑

s′′ [π(a|s)+π(a|s′′)+1] and reward rπ(s, a) = π(a|s) that
depend on the policy π. We implement our Algorithm 1 for 401 iterations with N = 1000, β = 0.01,
∆ = 10−3, δ = 10−4, the uniform policy initialization (i.e. π0(a|s) ≡ 1/4) and the performative
value functions are evaluated by value iteration.

Recall that the repeated retraining algorithm is a general framework which obtains the next policy
πt+1 ≈ argmaxπ∈ΠV

π
λ,πt

; t = 0, 1, . . . , T − 1 by solving the conventional entropy-regularized
reinforcement learning problem under the fixed dynamics pπt and rπt . To solve this conventional
entropy-regularized reinforcement learning problem, we select the following natural policy gradient
algorithm because its output πt+1 := πt,K has been proved to converge linearly to the optimal
solution of argmaxπ∈ΠV

π
λ,πt

as we increase the number K of natural policy gradient steps (Cen
et al., 2022).

πt,k+1(a|s) =
1

Zt,k(s)
πt,k(a|s)1−

ηλ
1−γ exp

[ηQλ(s, a;πt,k)

1− γ

]
, k = 0, 1, . . . ,K − 1. (26)

where

Zt,k(s)
def
=

∑
a′∈A

πt,k(a
′|s)1−

ηλ
1−γ exp

[ηQλ(s, a
′;πt,k)

1− γ

]
,

Qλ(s, a;π)
def
=Eπ,pπ,ρ

[ ∞∑
t=0

γt[rπ(st, at)− λ log π(at|st)]
∣∣∣s0 = s, a0 = a

]
.

Here, we also implement T = 401 outer iterations of the repeated retraining algorithm, and for the
inner loop we apply K = 1000 natural policy gradient steps with stepsize η = 0.01.

The experiment is implemented on Python 3.9, using Apple M1 Pro with 8 cores and 16 GB memory,
which costs about 110 minutes in total. Then for the policies {πt}400t=0 obtained by each algorithm,
we plot the training curves of the performative value function V πt

λ,πt
(defined by Eq. (6) with λ = 0.5)

and the unregularized performative value function V πt
0,πt

(defined by Eq. (6) with λ = 0) on the left
and right side of Figure 1 respectively, which show that the existing repeated retraining algorithm
stucks at the initial uniform policy π0 since π0 is a performatively stable (PS) policy, while our
Algorithm 1 converges well on both regularized and unregularized performative value functions in a
similar pattern.

C SUPPORTING LEMMAS

C.1 FRANK-WOLFE STEP

We repeat Lemma 1 as follows.

14
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Figure 1: Experimental Results.

Lemma 2. The step (19) has the following analytical solution.

π̃t(a|s) =
{
∆; a ̸= ãt(s)

1−∆(|A| − 1); a = ãt(s)
, (27)

where ãt(s) ∈ argmaxaĝλ,δ(πt)(a|s).

Proof. For π̃t defined by Eq. (27) and for any π ∈ Π∆, we have

⟨π̃t − π, ĝλ,δ(πt)⟩

=
∑
s,a

ĝλ,δ(πt)(a|s)[π̃t(a|s)− π(a|s)]

=
∑
s

{
ĝλ,δ(πt)[ãt(s)|s]

[
1−∆(|A| − 1)− π[ãt(s)|s]

]
−

∑
a ̸=ãt(s)

ĝλ,δ(πt)(a|s)[π(a|s)−∆]
}

(a)

≥
∑
s

{
ĝλ,δ(πt)[ãt(s)|s]

[
1−∆(|A| − 1)− π[ãt(s)|s]

]
−

∑
a ̸=ãt(s)

ĝλ,δ(πt)[ãt(s)|s][π(a|s)−∆]
}

=
∑
s

{
ĝλ,δ(πt)[ãt(s)|s]

[
1−∆(|A| − 1)− π[ãt(s)|s]

]
− ĝλ,δ(πt)[ãt(s)|s]

[
1− π[ãt(s)|s]−∆(|A| − 1)

]}
=0,

where (a) uses π(a|s) −∆ ≥ 0 and ĝλ,δ(πt)(a|s) ≤ ĝλ,δ(πt)[ãt(s)|s]. Therefore, Eq. (19) holds,
that is, π̃t = argmaxπ∈Π∆

⟨π, ĝλ,δ(πt)⟩.

C.2 LIPSCHITZ PROPERTY OF OCCUPANY MEASURE

Lemma 3. The occupancy measure dπ,p defined by Eq. (2) has the following Lipschitz properties for
any π, π′ ∈ Π, p, p′ ∈ P and s̃ ∈ S.∑

s

|dπ′,p(s)− dπ,p(s)| ≤
γ

1− γ
max

s
∥π′(·|s)− π(·|s)∥1 ≤

γ
√
|A|

1− γ
∥π′ − π∥ (28)

∑
s

|dπ,p′(s)− dπ,p(s)| ≤
γ

1− γ
max
s,a

∥p′(·|s, a)− p(·|s, a)∥1 ≤
γ
√
|S|

1− γ
∥p′ − p∥ (29)

∑
s,a

|dπ′,p′(s, a)− dπ,p(s, a)| ≤
1

1− γ
max

s
∥π′(·|s)− π(·|s)∥1+

γ

1−γ
max
s,a

∥p′(·|s, a)−p(·|s, a)∥1
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≤
√
|A|

1− γ
∥π′ − π∥+

γ
√
|S|

1− γ
∥p′ − p∥ (30)

Proof. The first ≤ of Eqs. (28) and (29) follows from Lemma 5 of (Chen & Huang, 2024). The
second ≤ of Eqs. (28) and (29) uses ∥x∥1 ≤

√
d∥x∥ for any x ∈ Rd.

Eq. (30) can be proved as follows.∑
s,a

|dπ′,p′(s, a)− dπ,p(s, a)|

=
∑
s,a

|dπ′,p′(s)π′(a|s)− dπ,p(s)π(a|s)|

≤
∑
s,a

dπ′,p′(s)|π′(a|s)− π(a|s)|+ π(a|s)|dπ′,p′(s)− dπ,p(s)|

≤
∑
s

[dπ′,p′(s)max
s′

∥π′(·|s′)− π(·|s′)∥1] +
∑
s

|dπ′,p′(s)− dπ,p(s)|

(a)

≤ max
s′

∥π′(·|s′)− π(·|s′)∥1+
γ

1− γ
max

s
∥π′(·|s)−π(·|s)∥1+

γ

1−γ
max
s,a

∥p′(·|s, a)− p(·|s, a)∥1

≤ 1

1− γ
max

s
∥π′(·|s)− π(·|s)∥1 +

γ

1− γ
max
s,a

∥p′(·|s, a)− p(·|s, a)∥1

≤
√
|A|

1− γ
∥π′ − π∥+

γ
√
|S|

1− γ
∥p′ − p∥,

where (a) uses Eqs. (28) and (29).

C.3 VARIOUS VALUE FUNCTIONS

Define the following value functions.

Jλ(π, π
′, p, r)

def
=Eπ,p

[ ∞∑
t=0

γt[r(st, at)− λ log π′(at|st)]
∣∣∣s0 ∼ ρ

]
=

1

1− γ

∑
s,a

dπ,p(s, a)[r(s, a)− λ log π′(a|s)], (31)

Vλ(π, π
′, p, r; s)

def
=Eπ,p

[ ∞∑
t=0

γt[r(st, at)− λ log π′(at|st)]
∣∣∣s0 = s

]
, (32)

Qλ(π, π
′, p, r; s, a)

def
=Eπ,p

[ ∞∑
t=0

γt[r(st, at)− λ log π′(at|st)]
∣∣∣s0 = s, a0 = a

]
=r(s, a)− λ log π′(a|s) + γ

∑
s′

p(s′|s, a)Vλ(π, π
′, p, r; s′). (33)

Note that the value function (6) of interest can be rewritten into the above functions as follows.

V π
λ,π′ =Jλ(π, π, pπ′ , rπ′)

=
∑
s

ρ(s)Vλ(π, π, pπ′ , rπ′ ; s)

=
∑
s,a

ρ(s)π(a|s)Qλ(π, π, pπ′ , rπ′ ; s, a).

Hence, we will investigate the properties of the value functions (31)-(33) as follows.

Lemma 4. For any π ∈ Π, p ∈ P , r ∈ R, we have
V π
λ,π, Jλ(π, π, p, r), Vλ(π, π, p, r; s), Qλ(π, π, p, r; s, a) ∈

[
0, 1+λ log |A|

1−γ

]
.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof. We will prove the range of Jλ(π, π, p, r) as follows using r(s, a) ∈ [0, 1]. The proof for the
other value functions follow the same way.

0 ≤ Jλ(π, π, p, r) =Eπ,p,ρ

[ ∞∑
t=0

γt[r(st, at)− λ log π(at|st)]
]

≤
∞∑
t=0

γt + λEπ,p,ρ

[ ∞∑
t=0

γt
∑
a

[−π(a|st) log π(a|st)]
]

≤ 1

1− γ
+ λ

∞∑
t=0

γt log |A|

≤1 + λ log |A|
1− γ

.

Lemma 5. The gradients of Jλ(π, π′, p, r) defined by Eq. (31) have the following expressions.

∂Jλ(π, π
′, p, r)

∂π(a|s)
=
dπ,p(s)Qλ(π, π

′, p, r; s, a)

1− γ
, (34)

∂Jλ(π, π
′, p, r)

∂π′(a|s)
=− λdπ,p(s, a)

(1− γ)π′(a|s)
, (35)

∂Jλ(π, π
′, p, r)

∂p(s′|s, a)
=
dπ,p(s, a)

1− γ

[
r(s, a)− λ log π′(a|s) + γVλ(π, π

′, p, r; s′)
]
, (36)

∂Jλ(π, π
′, p, r)

∂r(s, a)
=
dπ,p(s, a)

1− γ
, (37)

∂Jλ(π, π, p, r)

∂π(a|s)
=
dπ,p(s)[Qλ(π, π, p, r; s, a)− λ]

1− γ
. (38)

Proof. Eq. (34) follows from the policy gradient expression in Eq. (7) of (Agarwal et al., 2021), with
reward function r(s, a) replaced by r(s, a)− λ log π′(a|s).
Eq. (36) can be proved as follows.

p(s′|s, a) (a)
=

dπ,p(s)π(a|s)
1− γ

[
r(s, a)− λ log π(a|s) + γVλ(π, π

′, p, r; s′)
]

=
dπ,p(s, a)

1− γ

[
r(s, a)− λ log π(a|s) + γVλ(π, π

′, p, r; s′)
]
,

where (a) uses Eq. (9) in (Chen & Huang, 2024).

Eqs. (35) and (37) can be proved by taking derivatives of Eq. (31).

Based on the chain rule, Eq. (38) can be proved as follows by adding Eqs. (34) and (35) with π′ = π.

∂Jλ(π, π, p, r)

∂π(a|s)
=
[∂Jλ(π, π′, p, r)

∂π(a|s)
+

∂Jλ(π, π
′, p, r)

∂π′(a|s)

]∣∣∣
π′=π

=
dπ,p(s)Qλ(π, π, p, r; s, a)

1− γ
− λdπ,p(s, a)

(1− γ)π(a|s)

=
dπ,p(s)[Qλ(π, π, p, r; s, a)− λ]

1− γ
,

where the final = uses dπ,p(s, a) = dπ,p(s)π(a|s).

Lemma 6. The function Jλ defined by Eq. (31) has the following Lipschitz properties for any
π, π′ ∈ Π, p, p′ ∈ P and r, r′ ∈ R.

|Jλ(π′, π′, p, r)− Jλ(π, π, p, r)| ≤ Lπ max
s

∥ log π′(·|s)− log π(·|s)∥ (39)

|Jλ(π, π, p′, r)− Jλ(π, π, p, r)| ≤ Lp∥p′ − p∥ (40)
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|Jλ(π, π, p, r′)− Jλ(π, π, p, r)| ≤
∥r′ − r∥∞

1− γ
≤ ∥r′ − r∥

1− γ
(41)

∥∇pJλ(π
′, π′, p, r)−∇pJλ(π, π, p, r)∥ ≤ ℓπ max

s
∥ log π′(·|s)− log π(·|s)∥ (42)

∥∇pJλ(π, π, p
′, r)−∇pJλ(π, π, p, r)∥ ≤ ℓp∥p′ − p∥ (43)

∥∇pJλ(π
′, π′, p′, r′)−∇pJλ(π, π, p, r)∥

≤ℓπ max
s

∥log π′(·|s)−log π(·|s)∥+ℓp∥p′−p∥+
√

|S|
(1− γ)2

∥r′−r∥∞ (44)

∥∇rJλ(π
′, π′, p′, r′)−∇rJλ(π, π, p, r)∥

≤maxs ∥π′(·|s)− π(·|s)∥1 + γmaxs,a ∥p′(·|s, a)− p(·|s, a)∥1
(1− γ)2

(45)

∥∇πJλ(π
′, π′, p′, r′)−∇πJλ(π, π, p, r)∥

≤
( |A|(1 + 2λ log |A|)

(1− γ)2
+ γLπ

)
max

s
∥ log π′(·|s)− log π(·|s)∥

+ γ
√
|A|

[2√|S|(1 + λ log |A|)
(1− γ)2

+ Lp

]
∥p′ − p∥+

√
|A|∥r′ − r∥∞

1− γ
, (46)

where Lπ :=

√
|A|(2−γ+γλ log |A|)

(1−γ)2 , Lp :=

√
|S|(1+λ log |A|)

(1−γ)2 , ℓπ :=

√
|S||A|(2+3γλ log |A|)

(1−γ)3 and ℓp :=
2γ|S|(1+λ log |A|)

(1−γ)3 .

Proof. Eqs. (39), (40), (42) and (43) directly follow from Lemma 6 of (Chen & Huang, 2024). Eq.
(41) can be proved as follows.

|Jλ(π, p, r′)− Jλ(π, p, r)| =
∣∣∣ 1

1− γ

∑
s,a

dπ,p(s, a)[r
′(s, a)− r(s, a)]

∣∣∣
≤ 1

1− γ

∑
s,a

dπ,p(s, a)|r′(s, a)− r(s, a)|

=
1

1− γ

∑
s,a

dπ,p(s, a)∥r′ − r∥∞

=
1

1− γ
∥r′ − r∥∞ ≤ 1

1− γ
∥r′ − r∥.

To prove Eq. (44), note that∣∣∣∂Jλ(π, π, p, r′)
∂p(s′|s, a)

− ∂Jλ(π, π, p, r)

∂p(s′|s, a)

∣∣∣
(a)
=

dπ,p(s, a)

1− γ

∣∣r′(s, a)− r(s, a) + γ[Vλ(π, π
′, p, r′; s′)− Vλ(π, π

′, p, r; s′)]
∣∣

(b)

≤ dπ,p(s, a)

1− γ

[
∥r′ − r∥∞ + γ

∞∑
t=0

γt∥r′ − r∥∞
]

≤dπ,p(s, a)

(1− γ)2
∥r′ − r∥∞ (47)

where (a) uses Eq. (36) and (b) uses Eq. (32). Therefore, we can prove Eq. (44) as follows.

∥∇pJλ(π
′, π′, p′, r′)−∇pJλ(π, π, p, r)∥

≤∥∇pJλ(π
′, π′, p′, r′)−∇pJλ(π, π, p

′, r′)∥+ ∥∇pJλ(π, π, p
′, r′)−∇pJλ(π, π, p, r

′)∥
+ ∥∇pJλ(π, π, p, r

′)−∇pJλ(π, π, p, r)∥

(a)

≤ ℓπ max
s

∥ log π′(·|s)− log π(·|s)∥+ℓp∥p′ − p∥+

√√√√∑
s,a,s′

∣∣∣∂Jλ(π, π, p, r′)
∂p(s′|s, a)

− ∂Jλ(π, π, p, r)

∂p(s′|s, a)

∣∣∣2
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(b)

≤ℓπ max
s

∥ log π′(·|s)− log π(·|s)∥+ ℓp∥p′ − p∥+

√√√√∥r′ − r∥2∞
(1− γ)4

∑
s,a,s′

d2π,p(s, a)

≤ℓπ max
s

∥ log π′(·|s)− log π(·|s)∥+ ℓp∥p′ − p∥+
√
|S|

(1− γ)2
∥r′ − r∥∞,

where (a) uses Eqs. (42) and (43) and (b) uses Eq. (47).

Then, we prove Eq. (45) as follows.

∥∇rJλ(π
′, π′, p′, r′)−∇rJλ(π, π, p, r)∥

(a)
=

∥dπ′,p′ − dπ,p∥
1− γ

≤∥dπ′,p′ − dπ,p∥1
1− γ

(b)

≤ 1

(1− γ)2
max

s
∥π′(·|s)− π(·|s)∥1 +

γ

(1− γ)2
max
s,a

∥p′(·|s, a)− p(·|s, a)∥1,

where (a) uses Eq. (37), (b) uses Eq. (30).

To prove Eq. (46), we will first prove the following auxiliary bounds.

Qλ(π, π, p, r; s, a)−λ
(a)
∈
[
−λ,

1+λ log |A|
1− γ

−λ
]
⇒

∣∣Qλ(π, π, p, r; s, a)−λ
∣∣≤ 1+λ log |A|

1− γ
, (48)

where (a) uses Lemma 4.

|Vλ(π
′, π′, p′, r′; s)− Vλ(π, π, p, r; s)|

≤|Vλ(π
′, π′, p′, r′; s)−Vλ(π, π, p

′, r′; s)|+|Vλ(π, π, p
′, r′; s)−Vλ(π, π, p, r

′; s)|
+|Vλ(π, π, p, r

′; s)−Vλ(π, π, p, r; s)|
(a)

≤Lπ max
s

∥ log π′(·|s)− log π(·|s)∥+ Lp∥p′ − p∥+ ∥r′ − r∥∞
1− γ

, (49)

where (a) applies Eqs. (39)-(41) to the case where the initial state distribution ρ is probability 1 at s
(so Jλ(π, π, p, r) becomes Vλ(π, π, p, r; s)).

|Qλ(π, π, p, r
′; s, a)−Qλ(π, π, p, r; s, a)|

(a)
=
∣∣∣Eπ,p

[ ∞∑
t=0

γt[r′(st, at)− r(st, at)]
∣∣∣s0 = s, a0 = a

]∣∣∣
≤Eπ,p

[ ∞∑
t=0

γt[r′(st, at)− r(st, at)|
∣∣∣s0 = s, a0 = a

]
≤Eπ,p

[ ∞∑
t=0

γt∥r′ − r∥∞
∣∣∣s0 = s, a0 = a

]
≤∥r′ − r∥∞

1− γ
, (50)

where (a) uses Eq. (33).

|Qλ(π
′, π′, p′, r; s, a)−Qλ(π, π, p, r; s, a)|

(a)

≤λ| log π′(a|s)− log π(a|s)|+ γ
∣∣∣∑

s′

[p′(s′|s, a)Vλ(π
′, π′, p′, r; s)− p(s′|s, a)Vλ(π, π, p, r; s)]

∣∣∣
≤λ| log π′(a|s)− log π(a|s)|+ γ

∑
s′

p′(s′|s, a)|Vλ(π
′, π′, p′, r; s)− Vλ(π, π, p, r; s)|

+ γ
∑
s′

|p′(s′|s, a)− p(s′|s, a)||Vλ(π, π, p, r; s)|
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(b)

≤λ| log π′(a|s)− log π(a|s)|+ γLπ max
s′

∥ log π′(·|s′)− log π(·|s′)∥+ γLp∥p′ − p∥

+
γ(1 + λ log |A|)

1− γ
∥p′(·|s, a)− p(·|s, a)∥1, (51)

where (a) uses Eq. (33), and (b) uses Eq. (49) and Lemma 4.

Note that

(1− γ)
∣∣∣∂Jλ(π′, π′, p′, r′)

∂π′(a|s)
− ∂Jλ(π, π, p, r)

∂π(a|s)

∣∣∣
(a)
=
∣∣dπ′,p′(s)[Qλ(π

′, π′, p′, r′; s, a)− λ]− dπ,p(s)[Qλ(π, π, p, r; s, a)− λ]
∣∣

≤
∣∣[dπ′,p′(s)− dπ,p(s)][Qλ(π

′, π′, p′, r′; s, a)− λ]

+ dπ,p(s)[Qλ(π
′, π′, p′, r′; s, a)−Qλ(π

′, π′, p′, r; s, a)]

+ dπ,p(s)[Qλ(π
′, π′, p′, r; s, a)−Qλ(π, π, p, r; s, a)]

∣∣
≤
∣∣dπ′,p′(s)− dπ,p(s)

∣∣ · ∣∣Qλ(π
′, π′, p′, r′; s, a)− λ

∣∣
+ dπ,p(s)

∣∣Qλ(π
′, π′, p′, r′; s, a)−Qλ(π

′, π′, p′, r; s, a)
∣∣

+ dπ,p(s)
∣∣Qλ(π

′, π′, p′, r; s, a)−Qλ(π, π, p, r; s, a)
∣∣

(b)

≤ 1 + λ log |A|
1− γ

∣∣dπ′,p′(s)− dπ,p(s)
∣∣+ dπ,p(s)∥r′ − r∥∞

1− γ

+ dπ,p(s)
[
λ| log π′(a|s)− log π(a|s)|+ γLπ max

s′
∥ log π′(·|s′)− log π(·|s′)∥

+ γLp∥p′ − p∥+ γ(1 + λ log |A|)
1− γ

∥p′(·|s, a)− p(·|s, a)∥1
]
,

where (a) uses Eq. (38), (b) uses Eqs. (48), (50) and (51). Applying triangular inequality to the bound
above, we can prove Eq. (46) as follows.

(1− γ)
∥∥∇π′Jλ(π

′, π′, p′, r′)−∇πJλ(π, π, p, r)
∥∥

≤1 + λ log |A|
1− γ

√∑
s,a

∣∣dπ′,p′(s)− dπ,p(s)
∣∣2 + ∥r′ − r∥∞

1− γ

√∑
s,a

dπ,p(s)2

+ λ

√∑
s,a

dπ,p(s)2| log π′(a|s)− log π(a|s)|2

+
[
γLπ max

s′
∥ log π′(·|s′)− log π(·|s′)∥+ γLp∥p′ − p∥

]√∑
s,a

dπ,p(s)2

+
γ(1 + λ log |A|)

1− γ

√∑
s,a

dπ,p(s)2∥p′(·|s, a)− p(·|s, a)∥21

≤
√
|A|(1 + λ log |A|)

1− γ

∑
s

|dπ′,p′(s)− dπ,p(s)|+
√
|A|∥r′ − r∥∞

1− γ

+ λ

√∑
s

dπ,p(s)∥ log π′(·|s)− log π(·|s)∥2

+
[
γLπ max

s′
∥ log π′(·|s′)− log π(·|s′)∥+ γLp∥p′ − p∥

]√
|A|

+
γ(1 + λ log |A|)

1− γ

√
|S|

∑
s,a

∥p′(·|s, a)− p(·|s, a)∥2

(a)

≤
γ
√
|A|(1 + λ log |A|)

(1− γ)2
[
max

s
∥π′(·|s)− π(·|s)∥1 +max

s,a
∥p′(·|s, a)− p(·|s, a)∥1

]
+

√
|A|∥r′ − r∥∞

1− γ
+ λmax

s′
∥ log π′(·|s′)− log π(·|s′)∥
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+
√
|A|

[
γLπ max

s′
∥ log π′(·|s′)− log π(·|s′)∥+ γLp∥p′ − p∥

]
+

γ
√
|S|(1 + λ log |A|)

1− γ
∥p′ − p∥

(b)

≤
[ |A|(γ + 2λ log |A|)

(1− γ)2
+ γLπ

]
max
s′

∥ log π′(·|s′)− log π(·|s′)∥

+ γ
√
|A|

[2√|S|(1 + λ log |A|)
(1− γ)2

+ Lp

]
∥p′ − p∥+

√
|A|∥r′ − r∥∞

1− γ
,

where (a) uses Lemma 3, (b) uses ∥π′(·|s)− π(·|s)∥1 ≤ ∥ log π′(·|s)− log π(·|s)∥1,

∥p′(·|s, a) − p(·|s, a)∥1 ≤
√

|S|∥p′(·|s, a) − p(·|s, a)∥ ≤
√
|S|∥p′ − p∥, γ

√
|S|(1+λ log |A|)

1−γ ≤√
|S||A|(1+λ log |A|)

(1−γ)2 and λ ≤ λ|A| log |A|
(1−γ)2 .

C.4 ZEROTH-ORDER GRADIENT ESTIMATION ERROR

We import Theorem 1.6.2 of (Tropp et al., 2015) as follows.
Lemma 7 (Matrix Bernstein Inequality). Suppose complex-valued matrices S1, . . . , SN ∈ Cd1×d2

are independently distributed with ESk = 0 and ∥Sk∥ ≤ C for each k = 1, . . . , N . Denote the sum
ZN =

∑N
k=1 Sk its variance statistic as follows

v(ZN ) = max
[∥∥∥ N∑

k=1

E(SkS
∗
k)
∥∥∥,∥∥∥ N∑

k=1

E(S∗
kSk)

∥∥∥], (52)

where S∗
k denotes the conjugate transpose of Sk. Then for any ϵ ≥ 0, we have

P{∥ZN∥ ≥ ϵ} ≤ (d1 + d2) exp
[ −ϵ2/2

v(ZN ) + Cϵ/3

]
. (53)

Applying the above lemma to vectors, we obtain the following vector Bernstein inequality.
Lemma 8 (Vector Bernstein Inequality). Suppose independently distributed vectors x1, . . . , xN ∈ Cd

satisfies ∥xk∥ ≤ c for each k = 1, . . . , N . Then for any η ∈ (0, 1), with probability at least 1− η,
we have ∥∥∥ 1

N

N∑
k=1

(xk − Exk)
∥∥∥ <

4c

3N
log

(d+ 1

η

)
+ 2c

√
2

N
log

(d+ 1

η

)
. (54)

Proof. Note that Sk = xk − Exk satisfies the conditions of Lemma 7 with d1 = d, d2 = 1 and C
replaced by 2c. In addition, v(ZN ) defined by Eq. (52) satisfies v(ZN ) ≤ 4Nc2 since

max[∥SkS
∗
k∥, ∥S∗

kSk∥2] ≤ ∥S∗
k∥2∥Sk∥2 ≤ 4c2.

For any η ∈ (0, 1), let

ϵ =
4c

3
log

(d+ 1

η

)
+ c

√
2N log

(d+ 1

η

)
.

Therefore, Lemma 7 implies that

P
{ 1

N

∥∥∥ N∑
k=1

(xk − Exk)
∥∥∥ ≥ ϵ

N

}
≤ (d+ 1) exp

[ −ϵ2/2

4Nc2 + 2cϵ/3

]
≤ η,

which implies that with probability at least 1− η, we have

1

N

∥∥∥ N∑
k=1

(xk − Exk)
∥∥∥ <

ϵ

N
=

4c

3N
log

(d+ 1

η

)
+ 2c

√
2

N
log

(d+ 1

η

)
.
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For any function f : Rd → R, obtain the following zeroth-order stochastic estimator of the gradient
∇f .

gδ(x) =
d

2Nδ

N∑
i=1

[f(x+ δui)− f(x− δui)]ui ≈ ∇f(x) (55)

where δ > 0 and {ui}Ni=1 are i.i.d. samples of the uniform distribution on the sphere Sd = {u ∈ Rd :
∥u∥ = 1}.
Lemma 9. Suppose f : Rd → R is an Lf -Lipschitz continuous and ℓf -smooth function. Then for
any η ∈ (0, 1), with probability at least 1− η, the gradient estimator gδ defined by Eq. (55) has the
following error bound.

∥gδ(x)−∇f(x)∥ ≤4Lfd

3N
log

(d+ 1

η

)
+ 2Lfd

√
2

N
log

(d+ 1

η

)
+ δℓf . (56)

Proof. Note that gδ,i(x)
def
= d

2δ [f(x+ δui)− f(x− δui)]ui has the following norm bound

∥gδ,i(x)∥ ≤ d

2δ

∣∣f(x+ δui)− f(x− δui)
∣∣ · ∥ui∥ ≤ d

2δ
· Lf∥2δui∥ = Lfd. (57)

Define the following smoothed approximation of f as follows.

fδ(x)
def
= Ev∼Unif(Bd)[f(x+ δv)], (58)

where Unif(Bd) denotes the uniform distribution on the ball Bd
def
= {u ∈ Rd : ∥u∥ ≤ 1}. Then

based on Lemma 1 of (Flaxman et al., 2005), we have

E[gδ,i(x)] = ∇fδ(x) = Ev∼Unif(Bd)[∇f(x+ δv)]. (59)

Therefore, applying Lemma 8 to gδ,i(x), the following bound holds with probability at least 1− η.

1

N

∥∥∥ N∑
i=1

[gδ,i(x)−∇fδ(x)]
∥∥∥ <

4Lfd

3N
log

(d+ 1

η

)
+ 2Lfd

√
2

N
log

(d+ 1

η

)
. (60)

Note that

∥∇fδ(x)−∇f(x)∥ =
∥∥Ev∼Unif(Bd)[∇f(x+ δv)−∇f(x)]

∥∥ ≤ δℓf . (61)

As a result, we can prove the conclusion as follows by using Eqs. (60) and (61) above.

∥gδ(x)−∇f(x)∥ =
∥∥∥[ 1

N

N∑
i=1

gδ,i(x)
]
−∇f(x)

∥∥∥
≤
∥∥∥[ 1

N

N∑
i=1

gδ,i(x)
]
−∇fδ(x)

∥∥∥+ ∥∇fδ(x)−∇f(x)∥

<
4Lfd

3N
log

(d+ 1

η

)
+ 2Lfd

√
2

N
log

(d+ 1

η

)
+ δℓf .

C.5 ORTHOGONAL TRANSFORMATION

Lemma 10. There exists an orthogonal transformation T from the space Rd−1 to Zd = {z =
[z1, . . . , zd] ∈ Rd :

∑
i zi = 0}, that is, T is invertible and satisfies the following properties for any

x, y ∈ Zd and α, β ∈ R.

T (αx+ βy) =αT (x) + βT (y), (62)
⟨T (x), T (y)⟩ =⟨x, y⟩. (63)
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Proof. It can be verified that Rd admits the following orthonormal basis with ⟨ei, ej⟩ = 0 for any
i ̸= j and ∥ei∥ = 1.

ek =
1√

k(k + 1)
[1, 1, . . . , 1︸ ︷︷ ︸

k 1′s

,−k, 0, 0, . . . , 0︸ ︷︷ ︸
(d−k−1) 0′s

] ∈ Rd; k = 1, 2, . . . , d− 1.

ed =
1√
d
[1, 1, . . . , 1︸ ︷︷ ︸

d 1′s

] ∈ Rd.

Define the transformation T at x = [x1, x2, . . . , xd−1] ∈ Rd−1 as follows.

T (x) =

d−1∑
i=1

xiei. (64)

Since Zd is a linear subspace of Rd orthogonal to ed, Zd admits the orthonormal basis {ei}d−1
i=1 . Hence,

T (x) ∈ Zd. Conversely, for any y ∈ Zd, there exists unique x ∈ Rd−1 such that y =
∑d−1

i=1 xiei.
Hence, T : Rd−1 → Zd is invertible.

For any x = [x1, . . . , xd−1], y = [y1, . . . , yd−1] ∈ Rd−1 and α, β ∈ R, we can prove Eqs. (62) and
(63) respectively as follows.

T (αx+ βy) =

d−1∑
i=1

(αxi + βyi)ei

=α

d−1∑
i=1

xiei + β

d−1∑
i=1

yiei

=αT (x) + βT (y).

⟨T (x), T (y)⟩ =
〈 d−1∑

i=1

xiei,

d−1∑
j=1

yjej

〉

=

d−1∑
i=1

d−1∑
j=1

xiyj⟨ei, ej⟩

=

d−1∑
i=1

xiyi = ⟨x, y⟩.

C.6 BASIC INEQUALITIES

Lemma 11. For any ϵ ∈ (0, 0.5] and x ≥ 4ϵ−1 log(ϵ−1), the following inequality holds.

0 <
log x

x
≤ ϵ (65)

Specifically, any x ≥ 3 satisfies log x
x ≤ 1

2 .

Proof. As ϵ−1 ≥ 2, we have x ≥ 4ϵ−1 log(ϵ−1) ≥ (4)(2) log(2) > 5.54, so log x > log 5.54 >
1.71, which proves the first < of Eq. (65).

Note that the function f(x) = log x
x has the following derivative

f ′(x) =
1− log x

x2
< 0,

where < uses log x > 1.71. Hence, f is monotonic decreasing in x ≥ 4ϵ−1 log(ϵ−1) > 5.54,
Therefore, we prove the second ≤ of Eq. (65) as follows.

log x

xϵ
≤ log[4ϵ−1 log(ϵ−1)]

ϵ[4ϵ−1 log(ϵ−1)]
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=
log 4 + log(ϵ−1) + log[log(ϵ−1)]

4 log(ϵ−1)

(a)

≤ log 4

4 log(2)
+

log(ϵ−1) + log(ϵ−1)

4 log(ϵ−1)
= 1, (66)

where (a) uses ϵ−1 ≥ 2 and log u ≤ u for u = log(ϵ−1).

When x ≥ 3, f ′(x) = 1−log x
x2 < 0, so f(x) ≤ f(3) = log 3

3 < 1
2 .

Lemma 12. For any π, π′ ∈ Π, we have ∥π′ − π∥ ≤
√
2|S|.

Proof.

∥π′ − π∥2 =
∑
s,a

|π′(a|s)− π(a|s)|2 ≤
∑
s,a

[π′2(a|s) + π2(a|s)] ≤
∑
s,a

[π′(a|s) + π(a|s)] = 2|S|.

D NEGATIVE ENTROPY REGULARIZER AS A STRONGLY CONVEX FUNCTION
OF OCCUPANCY MEASURE

The negative entropy regularizer (5) can be rewritten as follows

Hπ′(π) = Eπ,pπ′ ,ρ

[ ∞∑
t=0

γt log π(at|st)
]
=

1

1− γ

∑
s,a

dπ,pπ′ (s, a) log
dπ,pπ′ (s, a)

dπ,pπ′ (s)
, (67)

where dπ,pπ′ (s) =
∑

a′ dπ,pπ′ (s, a
′). Hence, it suffices to prove that the following function of

occupancy measure d is strongly convex.

H(d) =
∑
s,a

d(s, a) log
d(s, a)

d(s)
, (68)

where d(s) =
∑

a′ d(s, a′). For any α ∈ [0, 1] and occupancy measures d1, d0, denote dα =

αd1 + (1− α)d0 and the corresponding policy as πα(a|s) = dα(s,a)
dα(s) . Then we have

αH(d1) + (1− α)H(d0)−H(dα)

=
∑
s,a

[
αd1(s, a) log π1(a|s) + (1− α)d0(s, a) log π0(a|s)

− [αd1(s, a) + (1− α)d0(s, a)] log πα(a|s)
]

=
∑
s,a

[
αd1(s, a) log

π1(a|s)
πα(a|s)

+ (1− α)d0(s, a) log
π0(a|s)
πα(a|s)

]
=
∑
s,a

[
αd1(s)π1(a|s) log

π1(a|s)
πα(a|s)

+ (1− α)d0(s)π0(a|s) log
π0(a|s)
πα(a|s)

]
=
∑
s

[
αd1(s)KL[π1(·|s)∥πα(a|s)] + (1− α)d0(s)KL[π0(·|s)∥πα(a|s)]

]
(a)

≥ 1

2

∑
s

[
αd1(s)∥π1(·|s)− πα(·|s)∥21 + (1− α)d0(s)∥π0(·|s)− πα(·|s)∥21

]
(b)

≥D

2

∑
s

[
α∥π1(·|s)− πα(·|s)∥21 + (1− α)∥π0(·|s)− πα(·|s)∥21

]
≥D

2

[
αmax

s
∥π1(·|s)− πα(·|s)∥21 + (1− α)max

s
∥π0(·|s)− πα(·|s)∥21

]
(c)

≥D(1− γ)

2

[
α∥d1 − dα∥21 + (1− α)max

s
∥d0 − dα∥21

]
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=
D(1− γ)

2

[
α(1− α)2∥d1 − d0∥21 + (1− α)α2∥d1 − d0∥21

]
=
α(1− α)

2
·D(1− γ)∥d1 − d0∥21. (69)

where (a) uses Pinsker’s inequality, (b) uses Assumption 3, (c) uses Eq. (30) with p′ = p. The
inequality above implies that H(d) is D(1− γ)-strongly convex, so the negative entropy regularizer
(67) can be seen as a D-strongly convex function of the occupancy measure dπ,pπ′ .

E EXISTING ASSUMPTIONS THAT IMPLIES ASSUMPTION 3

The following assumptions have been used in the reinforcement learning literature. We will show
that each of these assumptions implies Assumption 3.
Assumption 4. (Bhandari & Russo, 2024) ρ(s) > 0 for any s ∈ S.
Assumption 5. (Agarwal et al., 2021; Leonardos et al., 2022; Wang et al., 2023; Chen & Huang,
2024) Dρ := supπ∈Π,p∈P ∥dπ,p/ρ∥∞ < ∞.
Assumption 6. (Wei et al., 2021; Chen et al., 2022) There exists a constant µmin > 0 and mixing
time tmix ∈ N such that under any policy π ∈ Π and transition kernel p ∈ P , the stationary state
distribution µπ,p(s) has uniform lower bound mins∈S µπ,p(s) ≥ µmin, and

dTV

[
Pπ,p,ρ(stmix = ·), µπ,p

]
≤ 1

4
, (70)

where Pπ,p,ρ(stmix = ·) denotes the state distribution at time tmix, under the policy π, transition kernel
p and initial state distribution ρ, and dTV denotes the total variation distance between two probability
distributions.

Proof of Assumption 4⇒Assumption 3: For any policy π ∈ Π, transition kernel p ∈ P and state
s ∈ S, we have

dπ,p(s) =
∑
a

dπ,p(s, a)

(a)
=

∑
a

(1− γ)

∞∑
t=0

γtPπ,p,ρ{st = s, at = a}

=(1− γ)

∞∑
t=0

γtPπ,p,ρ{st = s}

≥(1− γ)Pπ,p,ρ{s0 = s}
=(1− γ)ρ(s)

≥(1− γ)min
s∈S

ρ(s).

As S is a finite state space, ρ(s) > 0,∀s ∈ S implies that mins∈S ρ(s) > 0. Hence, Assumption 3
holds with D = (1− γ)mins∈S ρ(s) > 0.

Proof of Assumption 5⇒Assumption 3: If ρ(s) = 0 for a state s, then Assumption 5 implies that
dπ,p(s) = (1− γ)

∑∞
t=0 γ

tPπ,p,ρ{st = s} = 0 for any π ∈ Π and p ∈ P , which means the state s
will never be visited. Therefore, we can exclude all such states s from S such that Assumption 4
holds, which implies Assumption 3 as proved above.

Proof of Assumption 6⇒Assumption 3: Eq. (70) implies that for any n ∈ N+, we have

dTV

[
Pπ,p,ρ(sntmix = ·), µπ,p

]
=

1

2

∑
s

|Pπ,p,ρ{sntmix = s} − µπ,p(s)| ≤
1

4n
.

Select n = ⌈log(µ−1
min)/ log 4⌉. Then the bound above implies |Pπ,p,ρ{sntmix = s} − µπ,p(s)| ≤

µmin/2 for any state s, which along with µπ,p(s) ≥ µmin implies that Pπ,p,ρ{sntmix = s} ≥ µmin/2.
Therefore, we can prove Assumption 3 as follows.

dπ,p(s) =(1− γ)

∞∑
t=0

γtPπ,p,ρ{st = s} ≥ (1− γ)γntmixPπ,p,ρ{sntmix = s} ≥ µmin

2
γntmix(1− γ).
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F PROOF OF THEOREM 1

Fix any π0, π1 ∈ Π. For any α ∈ [0, 1], denote dα = αdπ1,pπ1
+ (1− α)dπ0,pπ0

, πα(a|s) = dα(s,a)
dα(s)

where dα(s) =
∑

a′ dα(s, a
′), and pα = pπα . It can be easily verified that d0 = dπ0,p0 , d1 = dπ1,p1

and dα = αd0 + (1− α)d1. Then we can obtain the following derivatives and their bounds about
πα, dα in Eqs. (71)-(77).

dα(s)[d1(s, a)− d0(s, a)]− dα(s, a)[d1(s)− d0(s)]

d2α(s)

=
[αd1(s) + (1− α)d0(s)][d1(s, a)− d0(s, a)]− [αd1(s, a) + (1− α)d0(s, a)][d1(s)− d0(s)]

d2α(s)

=
d0(s)d1(s, a)− d0(s, a)d1(s)

d2α(s)

=
d0(s)d1(s)[π1(a|s)− π0(a|s)]

d2α(s)
. (71)

Hence, ∥∥∥dπα

dα

∥∥∥2 =
∑
s,a

∣∣∣d0(s)d1(s)[π1(a|s)− π0(a|s)]
d2α(s)

∣∣∣2
(a)

≤
∑
s,a

[max[d0(s), d1(s)]min[d0(s), d1(s)]

min2[d0(s), d1(s)]

]2
[π1(a|s)− π0(a|s)]2

(b)

≤D−2
∑
s,a

[π1(a|s)− π0(a|s)]2 ≤ D−2∥π1 − π0∥2, (72)

where (a) uses dα(s) = αd1(s) + (1 − α)d0(s) ≥ min[d0(s), d1(s)] and (b) uses Assumption 3.
Then by taking derivative of Eq. (71), we have

d2

dα2
πα(a|s) = −2d0(s)d1(s)[π1(a|s)− π0(a|s)][d1(s)− d0(s)]

d3α(s)
. (73)

Hence,∥∥∥d2πα

dα2

∥∥∥2 =
∑
s,a

∣∣∣2d0(s)d1(s)[π1(a|s)− π0(a|s)][d1(s)− d0(s)]

[αd1(s) + (1− α)d0(s)]3

∣∣∣2
(a)

≤
∑
s,a

[2max[d0(s), d1(s)]min[d0(s), d1(s)]
∣∣d1(s)− d0(s)

∣∣
D2 min[d0(s), d1(s)]

]2
[π1(a|s)−π0(a|s)]2

≤(2D−2)2 max
s

[
|d1(s)− d0(s)|2

]∑
s,a

[π1(a|s)− π0(a|s)]2

≤(2D−2)2∥π1 − π0∥2
[∑

s

|d1(s)− d0(s)|
]2

(b)

≤(2D−2)2∥π1 − π0∥2
[γ√|A|
1− γ

∥π1 − π0∥+
γ
√
|S|

1− γ
∥pπ1 − pπ0∥

]2
(c)

≤(2D−2)2∥π1 − π0∥2
[γ√|A|
1− γ

∥π1 − π0∥+
γϵp

√
|S|

1− γ
∥π1 − π0∥

]2
≤(2D−2)2∥π1 − π0∥4

[γ(ϵp√|S|+
√

|A|)
1− γ

]2
, (74)

where (a) uses dα(s) = αd1(s) + (1− α)d0(s) ≥ min[d0(s), d1(s)] ≥ D, (b) uses Lemma 3, and
(c) uses Assumption 1.

d0(s)d1(s)
∣∣∣ d

dα

[dα(s, a)
d2α(s)

]∣∣∣
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=
∣∣∣d0(s)d1(s)

d2α(s)
[d1(s, a)− d0(s, a)]−

2d0(s)d1(s)dα(s, a)

d3α(s)
[d1(s)− d0(s)]

∣∣∣
≤d0(s)d1(s)

d2α(s)

[
|d1(s, a)− d0(s, a)|+

2dα(s, a)

dα(s)
|d1(s)− d0(s)|

]
≤max[d0(s), d1(s)]min[d0(s), d1(s)]

min2[d0(s), d1(s)]

[
|d1(s, a)− d0(s, a)|+ 2πα(a|s)|d1(s)− d0(s)|

]
≤D−1

[
|d1(s, a)− d0(s, a)|+ 2πα(a|s)|d1(s)− d0(s)|

]
. (75)

d

dα
[dα(s, a)pα(s

′|s, a)]

=pα(s
′|s, a)[d1(s, a)− d0(s, a)] + dα(s, a) ·

d

dα
πα(a|s) · ∇πpπα

(s′|s, a)

=pα(s
′|s, a)[d1(s, a)−d0(s, a)]+

dα(s, a)d0(s)d1(s)[π1(a|s)−π0(a|s)]
d2α(s)

· ∇πpπα(s
′|s, a) (76)

Then for any α, α′ ∈ [0, 1], we have∣∣∣ d

dα
[dα′(s, a)pα′(s′|s, a)]− d

dα
[dα(s, a)pα(s

′|s, a)]
∣∣∣

(a)

≤|pα′(s′|s, a)− pα(s
′|s, a)| · |d1(s, a)− d0(s, a)|+ d0(s)d1(s)|π1(a|s)− π0(a|s)|·[∣∣∣dα′(s, a)

d2α′(s)

∣∣∣∥∇πpπα′ (s
′|s, a)−∇πpπα

(s′|s, a)∥+
∣∣∣dα′(s, a)

d2α′(s)
− dα(s, a)

d2α(s)

∣∣∣∥∇πpπα
(s′|s, a)∥

]
(b)

≤ϵp∥πα′ − πα∥|d1(s, a)− d0(s, a)|

+ πα′(a|s)|π1(a|s)− π0(a|s)| ·
max[d0(s), d1(s)]min[d0(s), d1(s)]

min[d0(s), d1(s)]
· Sp∥πα′ − πα∥

+D−1ϵp|π1(a|s)− π0(a|s)| ·
[
|d1(s, a)− d0(s, a)|+ 2πα(a|s)|d1(s)− d0(s)|

]
· |α′ − α|

(c)

≤ϵpD
−1∥π1 − π0∥ · |α′ − α| · |d1(s, a)− d0(s, a)|

+ Spπα′(a|s) · |π1(a|s)− π0(a|s)| · [d0(s) + d1(s)] ·D−1∥π1 − π0∥ · |α′ − α|
+D−1ϵp|π1(a|s)− π0(a|s)| ·

[
|d1(s, a)− d0(s, a)|+ 2πα(a|s)|d1(s)− d0(s)|

]
· |α′ − α|

(d)

≤ ℓdp(s, a)|α′ − α|, (77)

where (a) uses Eq. (76), (b) uses Assumptions 1-2, dα′(s, a) = dα′(s)πα′(a|s), dα′(s) = α′d1(s) +
(1 − α′)d0(s) ≥ min[d0(s), d1(s)] and Eq. (75), (c) uses Assumption 3 as well as Eq. (72), (d)
defines ℓdp(s, a) as the following Eq. (78) and uses πα(a|s) = αd1(s)π1(a|s)+(1−α)d0(s)π0(a|s)

αd1(s)+(1−α)d0(s)
≤

π0(a|s) + π1(a|s).

ℓdp(s, a) =2D−1ϵp∥π1 − π0∥|d1(s, a)− d0(s, a)|
+2D−1ϵp[π1(a|s) + π0(a|s)] · |π1(a|s)− π0(a|s)| · |d1(s)− d0(s)|
+D−1Sp[π1(a|s) + π0(a|s)]·|π1(a|s)− π0(a|s)|·∥π1 − π0∥ · [d0(s) + d1(s)]. (78)

Denote eα(s) = dπα,pα
(s)− dα(s) as the error term due to the policy-dependent transition kernel

pα = pπα
1. Note that the occupancy measure (2) satisfies that the Bellman equation (3) repeated as

follows.

dπ,p(s
′) = (1− γ)ρ(s′) + γ

∑
s,a

dπ,p(s)π(a|s)p(s′|s, a), s′ ∈ S. (79)

Therefore, the error term eα(s) satisfies the following recursion.

eα(s
′)

1If pπα ≡ p does not depend on the policy πα, it can be easily verified that eα(s) = 0 for all s ∈ S.
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=dπα,pα
(s′)− αd1(s

′)− (1− α)d0(s
′)

=γ
∑
s,a

[dπα,pα
(s)πα(a|s)pα(s′|s, a)− αdπ1,p1

(s)π1(a|s)p1(s′|s, a)

− (1− α)dπ0,p0
(s)π0(a|s)p0(s′|s, a)]

=γ
∑
s,a

[eα(s)πα(a|s)pα(s′|s, a) + dα(s, a)pα(s
′|s, a)− αd1(s, a)p1(s

′|s, a)

− (1− α)d0(s, a)p0(s
′|s, a)]. (80)

The above inequality implies that∑
s′

|eα(s′)|

≤γ
∑
s,a,s′

[
|eα(s)|πα(a|s)pα(s′|s, a)

+ |dα(s, a)pα(s′|s, a)−αd1(s, a)p1(s
′|s, a)−(1− α)d0(s, a)p0(s

′|s, a)|
]

(a)

≤γ
∑
s

|eα(s)|+
γα(1− α)

2

∑
s,a,s′

ℓdp(s, a)

(b)

≤γ
∑
s

|eα(s)|+
γ|S|α(1− α)

2

[
2D−1ϵp∥π1 − π0∥

∑
s,a

|d1(s, a)− d0(s, a)|

+ 4D−1ϵp∥π1 − π0∥∞
∑
s

|d1(s)− d0(s)|+ 4D−1Sp∥π1 − π0∥∞ · ∥π1 − π0∥
]

(c)

≤γ
∑
s

|eα(s)|+
γ|S|α(1−α)

2

[
6D−1ϵp∥π1−π0∥·

1

1− γ

(√
|A|∥π1−π0∥+γ

√
|S|∥pπ1

−pπ0
∥
)

+ 4D−1Sp∥π1 − π0∥2
]

(d)

≤γ
∑
s

|eα(s)|+ 3D−1γ|S|α(1− α)∥π1 − π0∥2
[ ϵp
1− γ

(
√
|A|+ γϵp

√
|S|) + Sp

]
,

where (a) uses Eq. (77) which implies that dα(s, a)pα(s′|s, a) is a Lipschitz smooth function with
Lipschitz constant ℓdp(s, a) defined by Eq. (78), (b) uses Eq. (78), (c) uses ∥π1−π0∥∞ ≤ ∥π1−π0∥
and Lemma 3, and (d) uses Assumption 1. Rearranging the above inequality, we get∑

s

|eα(s)| ≤
3γ|S|α(1− α)

D(1− γ)2
∥π1 − π0∥2

[
ϵp
(√

|A|+ γϵp
√
|S|

)
+ Sp(1− γ)

]
. (81)

Therefore, for any reward function r, we have

Jλ(πα, πα, pα, r)− αJλ(π1, π1, p1, r)− (1− α)Jλ(π0, π0, p0, r)

(a)
=

1

1− γ

∑
s,a

[
dπα,pα

(s, a)[r(s, a)− λ log πα(a|s)]− αd1(s, a)[r(s, a)− λ log π1(a|s)]

− (1− α)d0(s, a)[r(s, a)− λ log π0(a|s)]
]

=
1

1− γ

∑
s,a

[
[dπα,pα

(s, a)− dα(s, a)][r(s, a)− λ log πα(a|s)] + dα(s, a)[r(s, a)− λ log πα(a|s)]

− αd1(s, a)[r(s, a)− λ log π1(a|s)]− (1− α)d0(s, a)[r(s, a)− λ log π0(a|s)]
]

(b)
=

1

1− γ

∑
s,a

[dπα,pα(s)− dα(s)]πα(a|s)[r(s, a)− λ log πα(a|s)]

+
λ

1− γ

∑
s,a

[
αd1(s, a) log

π1(a|s)
πα(a|s)

+ (1− α)d0(s, a) log
π0(a|s)
πα(a|s)

]
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(c)

≥ − 1 + λ log |A|
1− γ

∑
s

|eα(s)|

+
λ

1− γ

∑
s

[
αd1(s)

∑
a

(
π1(a|s) log

π1(a|s)
πα(a|s)

)
+(1−α)d0(s)

∑
a

(
π0(a|s) log

π0(a|s)
πα(a|s)

)]
(d)

≥ − 1 + λ log |A|
1− γ

3γ|S|α(1− α)

D(1− γ)2
∥π1 − π0∥2

[
ϵp
(√

|A|+ γϵp
√
|S|

)
+ Sp(1− γ)

]
+

λ

1− γ

∑
s

[
αd1(s)KL[π1(·|s)∥πα(·|s)] + (1− α)d0(s)KL[π0(·|s)∥πα(·|s)]

]
(e)

≥ − 3γ|S|α(1− α)(1 + λ log |A|)
D(1− γ)3

∥π1 − π0∥2
[
ϵp
(√

|A|+ γϵp
√
|S|

)
+ Sp(1− γ)

]
+

λ

2(1− γ)

∑
s

[
αd1(s)∥π1(·|s)− πα(·|s)∥21 + (1− α)d0(s)∥π0(·|s)− πα(·|s)∥21

]
(f)
= − 3γ|S|α(1− α)(1 + λ log |A|)

D(1− γ)3
∥π1 − π0∥2

[
ϵp
(√

|A|+ γϵp
√
|S|

)
+ Sp(1− γ)

]
+

λ

2(1− γ)

∑
s

[
αd1(s)

∥∥∥ (1− α)d0(s)

dα(s)
[π1(·|s)− π0(·|s)]

∥∥∥2
1

+ (1− α)d0(s)
∥∥∥αd1(s)
dα(s)

[π1(·|s)− π0(·|s)]
∥∥∥2
1

]
(g)
=

λα(1− α)

2(1− γ)

∑
s

d0(s)d1(s)

dα(s)
∥π1(·|s)− π0(·|s)∥21

− 3γ|S|α(1− α)(1 + λ log |A|)
D(1− γ)3

∥π1 − π0∥2
[
ϵp
(√

|A|+ γϵp
√
|S|

)
+ Sp(1− γ)

]
(h)

≥ Dλα(1− α)

2(1− γ)
∥π1 − π0∥2

− 3γ|S|α(1− α)(1 + λ log |A|)
D(1− γ)3

∥π1 − π0∥2
[
ϵp
(√

|A|+ γϵp
√
|S|

)
+ Sp(1− γ)

]
(i)
=
µ1α(1− α)

2
∥π1 − π0∥2, (82)

where (a) uses Eq. (31), (b) uses dπα,pα
(s, a) = dπα,pα

(s)πα(a|s), dα(s, a) = dα(s)πα(a|s) and
dα = αd1 + (1 − α)d0, (c) uses r(s, a) ∈ [0, 1], −

∑
a πα(a|s) log πα(a|s) ∈ [0, log |A|] and

eα(s) = dπα,pα
(s) − dα(s), (d) uses Eq. (22), (e) uses Pinsker’s inequality, (f) uses πα(a|s) =

dα(s,a)
dα(s) = αd1(s)

dα(s) π1(a|s) + (1−α)d0(s)
dα(s) π0(a|s), (g) uses dα(s) = αd1(s) + (1 − α)d0(s), (h) uses

Assumption 3 and dα(s) ≤ max[d0(s), d1(s)], and (i) defines the constant µ1 below.

µ1
def
=

Dλ

1− γ
− 6γ|S|(1 + λ log |A|)

D(1− γ)3
[
ϵp
(√

|A|+ γϵp
√
|S|

)
+ Sp(1− γ)

]
. (83)

Next, we begin to consider the policy-dependent reward rα = rπα
. Define the function w(α) =

αJλ(π1, π1, p1, rα) + (1− α)Jλ(π0, π0, p0, rα), which has the following derivative

w′(α) =Jλ(π1, π1, p1, rα)− Jλ(π0, π0, p0, rα)

+ [α∇rJλ(π1, π1, p1, rα) + (1− α)∇rJλ(π0, π0, p0, rα)](∇πrπα
)
dπα

dα
(84)

For any 0 ≤ α ≤ α′ ≤ 1, we prove the smoothness of w(α) as follows.

|w′(α′)− w′(α)|

=
∣∣∣ ∫ α′

α

∇r[Jλ(π1, π1, p1, rα̃)− Jλ(π0, π0, p0, rα̃)](∇πrπα̃)
dπα̃

dα̃
dα̃

+ [α′∇rJλ(π1, π1, p1, rα′) + (1− α′)∇rJλ(π0, π0, p0, rα′)](∇πrπα′ )
(dπα′

dα′ − dπα

dα

)
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+ [α′∇rJλ(π1, π1, p1, rα′) + (1− α′)∇rJλ(π0, π0, p0, rα′)](∇πrπα′ −∇πrπα
)
dπα

dα

+
{
α′[∇rJλ(π1, π1, p1, rα′)−∇rJλ(π1, π1, p1, rα)]

+ (1− α′)[∇rJλ(π0, π0, p0, rα′)−∇rJλ(π0, π0, p0, rα)]
}
(∇πrπα)

dπα

dα

+ (α′ − α)[∇rJλ(π1, π1, p1, rα)−∇rJλ(π0, π0, p0, rα)](∇πrπα
)
dπα

dα

∣∣∣
(a)

≤
∫ α′

α

ϵr∥π1 − π0∥
D(1− γ)2

(
max

s
∥π1(·|s)− π0(·|s)∥1 + γmax

s,a
∥p1(·|s, a)− p0(·|s, a)∥1

)
dα̃

+
ϵr

1− γ
· 2D−2∥π1−π0∥2

[γ(ϵp√|S|+
√

|A|)
1− γ

]
|α′−α|+ Sr∥πα′ − πα∥

1− γ
·D−1∥π1−π0∥

+ 0 + |α′ − α| · ϵr∥π1 − π0∥
D(1− γ)2

(
max

s
∥π1(·|s)− π0(·|s)∥1 + γmax

s,a
∥p1(·|s, a)− p0(·|s, a)∥1

)
(b)

≤2|α′ − α| · ϵr∥π1 − π0∥
D(1− γ)2

(√
|A|∥π1 − π0∥+ γ

√
|S|∥p1 − p0∥

)
+

2ϵr∥π1 − π0∥2

D2(1− γ)

[γ(ϵp√|S|+
√

|A|)
1− γ

]
|α′ − α|+ Sr∥π1 − π0∥2

D2(1− γ)
|α′ − α|

(c)

≤ 2ϵr∥π1 − π0∥
D(1− γ)2

(√
|A|∥π1 − π0∥+ γϵp

√
|S|∥π1 − π0∥

)
|α′ − α|

+
2γϵr∥π1 − π0∥2

D2(1− γ)2
(√

|A|+ ϵp
√
|S|

)
|α′ − α|+ Sr(1− γ)∥π1 − π0∥2

D2(1− γ)2
|α′ − α|

(d)

≤
4ϵr(

√
|A|+ γϵp

√
|S|) + Sr(1− γ)

D2(1− γ)2
∥π1 − π0∥2|α′ − α|,

where (a) uses Assumptions 1-2, ∥∇rJλ(·, ·, ·, ·)∥ ≤ 1
1−γ (implied by Eq. (41)) as well as Eqs. (45),

(72) and (74), (b) uses Eq. (72) and ∥x∥1 ≤
√
d∥x∥ for any x ∈ Rd, (c) uses Assumption 1, and (d)

uses D, γ ∈ [0, 1]. The inequality above implies that w(α) is µ2∥π1 − π0∥2-Lipschitz smooth with
the constant µ2 defined as follows.

µ2 =
4ϵr(

√
|A|+ ϵp

√
|S|) + Sr(1− γ)

D2(1− γ)2
(85)

Therefore,

V πα

λ,πα
− αV π1

λ,π1
− (1− α)V π0

λ,π0

=Jλ(πα, πα, pα, rα)− αJλ(π1, π1, p1, r1)− (1− α)Jλ(π0, π0, p0, r0)

(a)

≥αJλ(π1, π1, p1, rα) + (1− α)Jλ(π0, π0, p0, rα) +
µ1α(1− α)

2
∥π1 − π0∥2

− αJλ(π1, π1, p1, r1)− (1− α)Jλ(π0, π0, p0, r0)

=w(α)− αw(1)− (1− α)w(0) +
µ1α(1− α)

2
∥π1 − π0∥2

(b)

≥ (µ1 − µ2)α(1− α)

2
∥π1 − π0∥2

(c)
=
µα(1− α)

2
∥π1 − π0∥2, (86)

where (a) uses Eq. (82) with r replaced by rα, (b) uses the fact proved above that w(α) is µ2∥π1 −
π0∥2-Lipschitz smooth, and (c) defines the following constant µ.

µ
def
=µ1 − µ2

(a)
=

Dλ

1− γ
− 6γ|S|(1 + λ log |A|)

D(1− γ)3
[
ϵp
(√

|A|+ γϵp
√
|S|

)
+ Sp(1− γ)

]
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−
Sr(1− γ) + 4ϵr(

√
|A|+ ϵp

√
|S|)

D2(1− γ)2
, (87)

where (a) uses Eqs. (83) and (85). Rearranging Eq. (86), we obtain that

V πα

λ,πα
− V π0

λ,π0

α
≥ V π1

λ,π1
− V π0

λ,π0
+

µ(1− α)

2
∥π1 − π0∥2.

Letting α → +0 above, we can prove the conclusion as follows.

V π1

λ,π1
− V π0

λ,π0
+

µ

2
∥π1 − π0∥2

≤
[ d

dα
V πα

λ,πα

]∣∣∣
α=0

≤
∑
s,a

∂V π0

λ,π0

∂π0(s, a)

[ d

dα
πα(a|s)

]∣∣∣
α=0

(a)
=

∑
s

d1(s)

d0(s)

∑
a

∂V π0

λ,π0

∂π0(s, a)
[π1(a|s)− π0(a|s)]

≤
∑
s

d1(s)

d0(s)

[
max
a′

∂V π0

λ,π0

∂π0(s, a′)
−
∑
a

π0(a|s)
∂V π0

λ,π0

∂π0(s, a)

]
(b)

≤D−1
∑
s,a

∂V π0

λ,π0

∂π0(s, a)
[π∗

0(a|s)− π0(a|s)]

≤D−1 max
π∈Π

〈
∇π0

V π0

λ,π0
, π − π0

〉
,

where (a) uses Eq. (71), and (b) uses Assumption 3 as well as the following Eq. (88) where π∗
0 ∈ Π

is defined as π∗
0(a

∗|s) = 1 for a certain a∗ ∈ argmaxa′
∂V

π0
λ,π0

∂π0(s,a′) and π∗
0(a

′|s) = 0 for a′ ̸= a∗.

∑
a

π∗
0(a|s)

∂V π0

λ,π0

∂π0(s, a)
= max

a′

∂V π0

λ,π0

∂π0(s, a′)
≥

∑
a

π0(a|s)
∂V π0

λ,π0

∂π0(s, a)
. (88)

G PROOF OF COROLLARY 1

Based on Theorem 1, Eq. (87) holds for any π0, π1 ∈ Π as repeated below.

V π1

λ,π1
≤V π0

λ,π0
+D−1 max

π∈Π

〈
∇π0

V π0

λ,π0
, π − π0

〉
− µ

2
∥π1 − π0∥2, (89)

In the above inequality, let π1 ∈ argmaxπ∈ΠV
π
λ,π and π0 = π is any a Dϵ-stationary policy of

interest. Then the inequality above becomes

max
π̃∈Π

V π̃
λ,π̃ ≤V π

λ,π +D−1 ·Dϵ− µ

2
∥π1 − π∥2

(a)

≤ V π
λ,π + ϵ+ |µ||S|,

where (a) uses Lemma 12. This implies that maxπ̃∈Π V π̃
λ,π̃ − V π

λ,π ≤ ϵ + |µ||S|, that is, the Dϵ-
stationary policy π is also an (ϵ+ |µ||S|)-PO policy.

If µ ≥ 0, the inequality above further implies that maxπ̃∈Π V π̃
λ,π̃−V π

λ,π ≤ ϵ, that is, the Dϵ-stationary
policy π is also an ϵ-PO policy.

Furthermore, suppose µ > 0 and there are two PO policies π0, π1 ∈ Π, which should satisfy

V π1

λ,π1
= V π0

λ,π0
= max

π∈Π
V π
λ,π,

max
π∈Π

〈
∇π0V

π0

λ,π0
, π − π0

〉
= 0.

Substituting the two equalities above into Eq. (10), we obtain that µ
2 ∥π1 − π0∥2 ≤ 0, which along

with µ > 0 implies π1 = π0, that is, the PO policy is unique.
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H PROOF OF THEOREM 2

For any π ∈ Π, p ∈ P , r ∈ R, we have

∂Jλ(π, π, p, r)

∂π(a|s)
(a)
=

dπ,p(s)[Qλ(π, π, p, r; s, a)− λ]

1− γ

(b)
=
dπ,p(s)

1− γ

[
r(s, a)− λ− λ log π(a|s) + γ

∑
s′

p(s′|s, a)Vλ(π, p, r; s
′)
]
, (90)

where (a) uses Eqs. (38), and (b) uses Eq. (33).

Then we have

∇πJλ(π, π, p, r)
⊤(π′ − π)

=
∑
s

[∂Jλ(π, π, p, r)
∂π[amax(s)|s]

(
π′[amax(s)|s]− π[amax(s)|s]

)
+

∂Jλ(π, π, p, r)

∂π[amin(s)|s]
(
π′[amin(s)|s]− π[amin(s)|s]

)]
=
∑
s

{dπ,p(s)

1− γ

(
π[amax(s)|s]− π[amin(s)|s]

)[
r[s, amin(s)]− r[s, amax(s)]

+ λ log
π[amax(s)|s]
π[amin(s)|s]

+ γ
∑
s′

[p(s′|s, amin(s))− p(s′|s, amax(s))]Vλ(π, p, r; s
′)
]}

(a)

≥ 1

1− γ
max

s

{(
π[amax(s)|s]−π[amin(s)|s]

)[
λ log

π[amax(s)|s]
π[amin(s)|s]

−1− γ(1 + λ log |A|)
1− γ

]}
, (91)

where (a) uses π[amax(s)|s] − π[amin(s)|s] ≥ 0, r(a|s) ∈ [0, 1], p(s′|s, a) ∈ [0, 1] for any s, a, s′

and Lemma 4.

Consider the following two cases.

(Case I) If π[amin(s)|s] ≥ 1
2π[amax(s)|s], then as π[amax(s)|s] ≥ 1

|A| , we have π[amin(s)|s] ≥ 1
2|A| .

(Case II) π[amin(s)|s] < 1
2π[amax(s)|s], then as π[amax(s)|s] ≥ 1

|A| , Eq. (91) implies that

∇πJλ(π, π, p, r)
⊤(π′ − π)

≥max
s

{π[amax(s)|s]
2(1− γ)

[
λ log

1

|A|π[amin(s)|s]
− 1 + γλ log |A|

1− γ

]}
≥− 1

2|A|(1− γ)

[
λ log

(
|A|min

s
π[amin(s)|s]

)
+

1 + γλ log |A|
1− γ

]
, (92)

which further implies that for any s ∈ S and a ∈ A, we have

π(a|s) ≥π[amin(s)|s]

≥ 1

|A|
exp

[
− 1/λ+ γ log |A|

1− γ
− 2|A|

λ
(1− γ)∇πJλ(π, π, p, r)

⊤(π′ − π)
]

≥ 1

2|A|1/(1−γ)
exp

[
− 1

λ(1− γ)
− 2|A|

λ
(1− γ)∇πJλ(π, π, p, r)

⊤(π′ − π)
]
, (93)

Note that in the two cases above, Eq. (93) always holds.

Furthermore, if Assumption 1 holds and pπ , rπ are differentiable functions of π, then we have∥∥∇πJλ(π, π, pπ, rπ)−∇πJλ(π, π, pπ̃, rπ̃)|π̃=π

∥∥
=
∥∥∇pJλ(π, π, pπ, rπ)∇πpπ +∇rJλ(π, π, pπ, rπ)∇πrπ

∥∥
≤
∥∥∇pJλ(π, π, pπ, rπ)

∥∥∥∥∇πpπ
∥∥+

∥∥∇rJλ(π, π, pπ, rπ)
∥∥∥∥∇πrπ

∥∥
(a)

≤
ϵp
√
|S|(1 + λ log |A|)
(1− γ)2

+
ϵr

1− γ
, (94)
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where (a) uses Assumption 1 as well as Eqs. (40) and (41). Therefore,[
∇πJλ(π, π, pπ̃, rπ̃)|π̃=π

]⊤
(π′ − π)

=∇πJλ(π, π, pπ, rπ)
⊤(π′ − π)−

[
∇πJλ(π, π, pπ, rπ)−∇πJλ(π, π, pπ̃, rπ̃)|π̃=π

]⊤
(π′ − π)

≤∇πJλ(π, π, pπ, rπ)
⊤(π′ − π) +

∥∥∇πJλ(π, π, pπ, rπ)−∇πJλ(π, π, pπ̃, rπ̃)|π̃=π

∥∥∥π′ − π∥
(a)

≤∇πJλ(π, π, pπ, rπ)
⊤(π′ − π) +

√
2|S|

(ϵp√|S|(1 + λ log |A|)
(1− γ)2

+
ϵr

1− γ

)
, (95)

where (a) uses Eq. (94) and Lemma 12. Substituting p = pπ , r = rπ and then Eq. (95) into Eq. (93),
we can prove Eq. (12) as follows.

π(a|s) ≥ 1

2|A|1/(1−γ)
exp

{
− 1

λ(1− γ)
− 2|A|

λ
(1− γ)·

[
∇πJλ(π, π, pπ, rπ)

⊤(π′ − π) +
√
2|S|

(ϵp√|S|(1 + λ log |A|)
(1− γ)2

+
ϵr

1− γ

)]}
=πmin exp

[
− 2|A|

λ
(1− γ)⟨∇πV

π
λ,π, π

′ − π⟩
]
,

where the = uses V π
λ,π = Jλ(π, π, pπ, rπ) and πmin defined as follows.

πmin
def
=

1

2|A|1/(1−γ)
exp

{
− 1

λ(1− γ)
−

2|A|
√

2|S|
λ

[ϵp√|S|(1 + λ log |A|)
1− γ

+ ϵr

]}
, (96)

I PROOF OF THEOREM 3

For any policies π, π′, we have

|V π′

λ,π′ − V π
λ,π|

≤|Jλ(π′, pπ′ , rπ′)− Jλ(π, pπ, rπ)|
≤|Jλ(π′, pπ′ , rπ′)− Jλ(π

′, pπ′ , rπ)|+ |Jλ(π′, pπ′ , rπ)− Jλ(π
′, pπ, rπ)|

+ |Jλ(π′, pπ, rπ)− Jλ(π, pπ, rπ)|
(a)

≤ ∥rπ′ − rπ∥
1− γ

+ Lp∥pπ′ − pπ∥+ Lπ max
s

∥ log π′(·|s)− log π(·|s)∥

(b)

≤
(
Lpϵp +

ϵr
1− γ

)
∥π′ − π∥+ Lπ

√∑
s

∥ log π′(·|s)− log π(·|s)∥2

(c)

≤
(
Lpϵp +

ϵr
1− γ

)
∥ log π′ − log π∥+ Lπ∥ log π′ − log π∥

(d)
=Lλ∥ log π′ − log π∥, (97)

where (a) uses Eqs. (39), (40) and (41), (b) uses Assumption 7, (c) uses | log y − log x| ≤ |y − x| for
any x, y ∈ R, and (d) defines the following constant.

Lλ = Lpϵp +
ϵr

1− γ
+ Lπ =

√
|A|(2− γ + γλ log |A|) + ϵp

√
|S|(1 + λ log |A|) + ϵr(1− γ)

(1− γ)2
.

Lλ
def
=Lpϵp +

ϵr
1− γ

+ Lπ =

√
|A|(2−γ+γλ log |A|)+ϵp

√
|S|(1+λ log |A|)

(1− γ)2
+

ϵr
1− γ

(98)

Note that for any u, v ≥ ∆ > 0,

| log u− log v| = logmax(u, v)− logmin(u, v)

=

∫ max(u,v)

min(u,v)

1

x
dx ≤ 1

∆
[max(u, v)−min(u, v)] =

|u− v|
∆

.
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Therefore, for any π, π′ ∈ Π∆
def
= {π ∈ Π : π(a|s) ≥ ∆}, we have

∥ log π′ − log π∥2 =
∑
s,a

| log π′(a|s)− log π(a|s)|2

≤∆−2
∑
s,a

|π′(a|s)− π(a|s)|2 = ∆−2∥π′ − π∥2.

Substituting the above inequality into Eq. (97) proves the first inequality of Eq. (97).

Next, we will prove the second inequality of Eq. (97) about the Lipschitz continuity of the following
performative policy gradient.

∇πV
π
λ,π =∇πJλ(π, π, pπ, rπ)

=∇πJλ(π, π, pπ̃, rπ̃)|π̃=π + (∇πpπ)∇pπ
Jλ(π, π, pπ, rπ) + (∇πrπ)∇rπJλ(π, π, pπ, rπ).

For any π, π′ ∈ Π∆, we have

∥∇π′V π′

λ,π′ −∇πV
π
λ,π∥

≤
∥∥∇π′Jλ(π

′, π′, pπ̃, rπ̃)|π̃=π′ −∇πJλ(π, π, pπ̃, rπ̃)|π̃=π

∥∥
+ ∥∇π′pπ′∥ · ∥∇pπ′Jλ(π

′, π′, pπ′ , rπ′)−∇pπ
Jλ(π, π, pπ, rπ)∥

+ ∥∇pπJλ(π, π, pπ, rπ)∥ · ∥∇π′pπ′ −∇πpπ∥
+ ∥∇π′rπ′∥ · ∥∇rπ′Jλ(π

′, π′, pπ′ , rπ′)−∇rπJλ(π, π, pπ, rπ)∥
+ ∥∇rπJλ(π, π, pπ, rπ)∥ · ∥∇π′rπ′ −∇πrπ∥

(a)

≤
( |A|(1 + 2λ log |A|)

(1− γ)2
+ γLπ

)
max

s
∥ log π′(·|s)− log π(·|s)∥

+
[2(1 + λ log |A|)

(1− γ)2
+ γLp

]√
|S||A|∥pπ′ − pπ∥+

√
|A|∥rπ′ − rπ∥∞

1− γ

+ ϵp

[
ℓπ max

s
∥ log π′(·|s)− log π(·|s)∥+ ℓp∥pπ′ − pπ∥+

2− γ

1− γ

√
|S|∥rπ′ − rπ∥∞

]
+ LpSp∥π′ − π∥+ γϵr

(1− γ)2
(
max

s
∥π′(·|s)− π(·|s)∥1 +max

s,a
∥pπ′(·|s, a)− pπ(·|s, a)∥1

)
+

Sr

1− γ
∥π′ − π∥

(b)

≤
( |A|(1 + 2λ log |A|)

∆(1− γ)2
+

γLπ

∆

)
∥π′ − π∥+ ϵp

√
|S||A|

[2(1 + λ log |A|)
(1− γ)2

+ γLp

]
∥π′ − π∥

+
ϵr
√
|A|∥π′ − π∥
1− γ

+ ϵp

[ℓπ
∆

∥π′ − π∥+ ℓpϵp∥π′ − π∥+ 2− γ

1− γ
ϵr
√
|S|∥π′ − π∥

]
+ LpSp∥π′ − π∥+ γϵr

(1− γ)2
(√

|S|∥π′ − π∥+ ϵp
√
|S|∥π′ − π∥

)
+

Sr

1− γ
∥π′ − π∥

(c)

≤
( |A|(1 + 2λ log |A|)

∆(1− γ)2
+

γLπ

∆

)
∥π′ − π∥+ ϵp

∆

√
|S|
|A|

[2(1 + λ log |A|)
(1− γ)2

+ γLp

]
∥π′ − π∥

+
ϵr∥π′ − π∥

∆
√
|A|(1− γ)

+
ϵp
∆

[
ℓπ +

ℓpϵp
|A|

+
2− γ

|A|(1− γ)
ϵr
√
|S|

]
∥π′ − π∥

+
γϵr

√
|S|(1 + ϵp)

∆|A|(1− γ)2
∥π′ − π∥+ LpSp + Sr/(1− γ)

∆|A|
∥π′ − π∥

(d)

≤
( |A|(1 + 2λ log |A|)

∆(1− γ)2
+

γ
√

|A|(2− γ + γλ log |A|)
∆(1− γ)2

)
∥π′ − π∥

+
ϵp
∆

√
|S|
|A|

[2(1 + λ log |A|)
(1− γ)2

+
γ
√
|S|(1 + λ log |A|)

(1− γ)2

]
∥π′ − π∥
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+
ϵp
∆

[√|S||A|(2 + 3γλ log |A|)
(1− γ)3

+
2ϵpγ|S|(1 + λ log |A|)

|A|(1− γ)3
+

2− γ

|A|(1− γ)
ϵr
√
|S|

]
∥π′ − π∥

+
ϵr
√

|A|(1− γ) + γϵr
√
|S|(1 + ϵp)

∆|A|(1− γ)2
∥π′ − π∥

+
Sp

√
|S|(1 + λ log |A|) + Sr(1− γ)

∆|A|(1− γ)2
∥π′ − π∥

≤3|A|(1 + λ log |A|)
∆(1− γ)2

∥π′ − π∥+
ϵp
√
|S||A|(5 + 6λ log |A|)

∆(1− γ)3
∥π′ − π∥

+
ϵr
[√

|A|(1− γ) +
√
|S|(γ + 2ϵp)

]
+ Sp

√
|S|(1 + λ log |A|) + Sr(1− γ)

∆|A|(1− γ)2
∥π′ − π∥, (99)

where (a) uses Eqs. (40), (41) and (44)-(46) as well as Assumptions 1-2, and (b) uses the following
bounds for any π, π′ ∈ ∆, (c) uses ∆ ≤ |A|−1 (since for any π ∈ Π∆, 1 =

∑
a π(a|s) ≥ ∆|A|),

(d) uses Lπ :=

√
|A|(2−γ+γλ log |A|)

(1−γ)2 , Lp :=

√
|S|(1+λ log |A|)

(1−γ)2 , ℓπ :=

√
|S||A|(2+3γλ log |A|)

(1−γ)3 and

ℓp := 2γ|S|(1+λ log |A|)
(1−γ)3 defined in Lemma 6, (e) uses ℓλ defined by Eq. (100).

max
s

∥ log π′(·|s)− log π(·|s)∥ ≤∆−1 max
s

∥π′(·|s)− π(·|s)∥ ≤ ∆−1∥π′ − π∥,

∥pπ′ − pπ∥
(a)

≤ ϵp∥π′ − π∥,

∥rπ′ − rπ∥∞ ≤∥rπ′ − rπ∥
(a)

≤ ϵr∥π′ − π∥,

max
s

∥π′(·|s)− π(·|s)∥1 ≤
√
|S|max

s
∥π′(·|s)− π(·|s)∥ ≤

√
|S|∥π′ − π∥,

max
s,a

∥pπ′(·|s, a)− pπ(·|s, a)∥1 ≤
√

|S|max
s,a

∥pπ′(·|s, a)− pπ(·|s, a)∥

≤
√
|S|∥pπ′ − pπ∥

(a)

≤ ϵp
√
|S|∥π′ − π∥.

Here, (a) uses Assumption 1. Finally, define the Lipschitz constant ℓλ as follows and thus Eq. (99)
implies the second inequality of Eq. (97) that ∥∇π′V π′

λ,π′ −∇πV
π
λ,π∥ ≤ ℓλ

∆ ∥π′ − π∥.

ℓλ
def
=

3|A|(1 + λ log |A|)
(1− γ)2

+
ϵp
√
|S||A|(5 + 6λ log |A|)

(1− γ)3

+
ϵr
[√

|A|(1− γ) +
√
|S|(γ + 2ϵp)

]
|A|(1− γ)2

+
Sp

√
|S|(1 + λ log |A|) + Sr(1− γ)

|A|(1− γ)2
. (100)

J PROOF OF PROPOSITION 1

We prove the validity of the stochastic gradient (16) first. For any π ∈ Π∆, s ∈ S and a ∈ A, we have
π(a|s) ≥ ∆, so π(a|s) ≤ 1−∆ (since

∑
a′ π(a′|s) = 1). For any ui ∈ U1, we have |ui(a|s)| ≤ 1.

Therefore,

(π ± δui)(a|s) ≥ π(a|s)− δ|ui(a|s)| ≥ ∆− δ > 0, (101)

which means π ± δui ∈ Π. Hence, V π′

λ,π′ is well defined for π′ ∈ {π + δui, π − δui}.

Then we will prove the estimation error bound (18). Based on Lemma 10, there exists an orthogonal
transformation T : R|A|→Z|A|−1={z=[z1, . . . , z|A|] ∈ R|A| :

∑
i zi=0}.

Note that any x ∈ R|S|(|A|−1) can be written as x = [xs]s∈S , a concatenation of |S| vectors
xs ∈ R|A|. Therefore, we can define the transformation T : R|S|(|A|−1) → L0

def
=

{
u ∈ R|S||A| :

u(·|s) ∈ Z|A|−1,∀s ∈ S
}

as follows

[T (x)](·|s) = T (xs),∀s ∈ S (102)
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where xs ∈ R|A| are extracted from |A| entries of x = [xs]s∈S . For any x = [xs]s∈S , y = [ys]s∈S ∈
R|S|(|A|−1) and α, β ∈ R, we can prove that T is an orthogonal transformation as follows.

[T (αx+ βy)](·|s) = T (αxs + βys) = αT (xs) + βT (ys) = α[T (x)](·|s) + β[T (x)](·|s)
⇒T (αx+ βy) = αT (x) + βT (y).

⟨T (x), T (y)⟩ =
∑
s

〈
[T (x)](·|s), [T (y)](·|s)

〉
=

∑
s

⟨T (xs), T (ys)⟩ =
∑
s

⟨xs, ys⟩ = ⟨x, y⟩.

Define the following set.

T−1(Π∆ − |A|−1)
def
= {π ∈ Π∆ : T−1(π − |A|−1)}, (103)

where π − |A|−1 ∈ R|S||A| has entries (π − |A|−1)(a|s) = π(a|s) − |A|−1, so π − |A|−1 ∈ L0.
Furthermore, since Π∆ is a convex and compact set and T−1 is an orthogonal transformation,
T−1(Π∆ − |A|−1) is a convex and compact subset of L0.

Then for any x ∈ T−1(Π∆ − |A|−1), we have T (x) + |A|−1 ∈ Π∆, so we can define the function
fλ(x)

def
= V

T (x)+|A|−1

λ,T (x)+|A|−1 .

Note that as V π
λ,π is a differentiable function of π, so for any π′ ∈ Π and fixed π ∈ Π we have

V π′

λ,π′ − V π
λ,π − ⟨∇πV

π
λ,π, π

′ − π⟩
∥π′ − π∥

=
V π′

λ,π′ − V π
λ,π − ⟨projL0

(∇πV
π
λ,π), π

′ − π⟩
∥π′ − π∥

→0 ( as π′ ∈ Π and π′ → π), (104)

where the above = uses π′ − π ∈ L0. Then, we can prove that fλ is differentiable with gradient
∇fλ(x) = T−1

(
projL0

∇πV
π
λ,π

∣∣
π=T (x)+|A|−1

)
, since for any x′ ∈ T−1(Π∆ − |A|−1) and fixed

x ∈ T−1(Π∆ − |A|−1) we have

fλ(x
′)− fλ(x)−

〈
T−1

[
projL0

(
∇πV

π
λ,π

∣∣
π=T (x)+|A|−1

)]
, x′ − x

〉
∥x′ − x∥

(a)
=

1∥∥[T (x′) + |A|−1]− [T (x) + |A|−1]
∥∥[V T (x′)+|A|−1

λ,T (x′)+|A|−1 − V
T (x)+|A|−1

λ,T (x)+|A|−1

−
〈
projL0

(
∇πV

π
λ,π

∣∣
π=T (x)+|A|−1

)
, [T (x′) + |A|−1]− [T (x) + |A|−1]

〉]
(b)→0 as x′ ∈ T−1(Π∆ − |A|−1) and x′ → x, (105)

where (a) uses the property of the orthogonal transformation T , and (b) uses Eq. (104) and the fact
that x′ → x means

∥∥[T (x′) + |A|−1]− [T (x) + |A|−1]
∥∥ = ∥x′ − x∥ → 0.

Furthermore, we will show that fλ(x) is a Lipscthiz continuous and Lipschitz smooth function of
x ∈ Π∆. For any x, x′ ∈ T−1(Π∆ − |A|−1), we have

|fλ(x′)− fλ(x)| =
∣∣V T (x′)+|A|−1

λ,T (x′)+|A|−1 − V
T (x)+|A|−1

λ,T (x)+|A|−1

∣∣ (a)

≤ Lλ

∆
∥T (x′)− T (x)∥ (b)

=
Lλ

∆
∥x′ − x∥,

∥∇fλ(x
′)−∇fλ(x)∥ =

∥∥T−1
[
projL0

(
∇πV

π
λ,π

∣∣
π=T (x′)

)]
− T−1

[
projL0

(
∇πV

π
λ,π

∣∣
π=T (x)

)]∥∥
(b)
=
∥∥projL0

(
∇πV

π
λ,π

∣∣
π=T (x′)+|A|−1

)
− projL0

(
∇πV

π
λ,π

∣∣
π=T (x)+|A|−1

)∥∥
≤
∥∥(∇πV

π
λ,π

∣∣
π=T (x′)+|A|−1

)
−

(
∇πV

π
λ,π

∣∣
π=T (x)+|A|−1

)∥∥
(a)

≤ ℓλ
∆

∥T (x′)− T (x)∥ (b)
=

ℓλ
∆

∥x′ − x∥,

In both the inequalities above, (a) applies Theorem 3 to T (x) + |A|−1, T (x′) + |A|−1 ∈ Π∆ and (b)
uses the property of the orthogonal transformation T . The two inequalities above implies that fλ is
an Lλ

∆ -Lipschitz continuous and ℓλ
∆ -Lipschitz smooth function on T−1(Π∆ − |A|−1).
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Denote

gλ,δ(π)=
|S|(|A|−1)

2Nδ

N∑
i=1

(
V π+δui

λ,π+δui
−V π−δui

λ,π−δui

)
ui, (106)

which replaces V̂ π′

λ,π′ with V π′

λ,π′ in Eq. (16). The estimation error of the performative policy gradient
estimator above can be rewritten as follows for any π ∈ Π∆.

gλ,δ(π)− projL0
(∇πV

π
λ,π)

(a)
=
( |S|(|A|−1)

2Nδ

N∑
i=1

(
V π+δui

λ,π+δui
−V π−δui

λ,π−δui

)
ui

)
− projL0

(∇πV
π
λ,π)

(b)
=
( |S|(|A|−1)

2Nδ

N∑
i=1

(
fλ

[
T−1(π − |A|−1) + δT−1(ui)

]
−fλ

[
T−1(π − |A|−1])− δT−1(ui)

])
·

T−1(ui)
)
− T−1[projL0

(∇πV
π
λ,π)]

(c)
=
( |S|(|A|−1)

2Nδ

N∑
i=1

(
fλ

[
T−1(π − |A|−1) + δT−1(ui)

]
−fλ

[
T−1(π − |A|−1])− δT−1(ui)

])
·

T−1(ui)
)
−∇fλ[T

−1(π − |A|−1)], (107)

where (a) uses Eq. (16), (b) uses fλ(x)
def
= V

T (x)+|A|−1

λ,T (x)+|A|−1 and the property of the orthogonal
transformation T−1, (c) uses ∇fλ(x) = T−1

(
projL0

∇πV
π
λ,π

∣∣
π=T (x)+|A|−1

)
. Note that in the above

Eq. (107), π ∈ Π∆ and ui is uniformly distributed on the sphere U1 ∩ L0 with U1
def
= {u ∈ R|S||A| :

∥u∥=1}.

Hence, π ± δui ∈ Π∆−δ which implies T−1(π − |A|−1)± δT−1(ui) = T−1(π ± δui − |A|−1) ∈
T−1(Π∆−δ − |A|−1). Also, T−1(ui) is uniformly distributed on the sphere T−1(U1,0) =

S|S|(|A|−1) = {u ∈ R|S|(|A|−1) : ∥u∥ = 1}. Therefore, we can apply Lemma 9 to the above
Eq. (107) where the function fλ is an Lλ

∆−δ -Lipschitz continuous and ℓλ
∆−δ -Lipschitz smooth function

on T−1(Π∆−δ − |A|−1), and obtain the following bound which holds with probability at least 1− η.

∥gλ,δ(π)− projL0
(∇πV

π
λ,π)∥

≤4Lλ|S|(|A|−1)

3N(∆− δ)
log

( |S|(|A|−1) + 1

η

)
+
Lλ|S|(|A|−1)

∆− δ

√
2

N
log

( |S|(|A|−1)+1

η

)
+

δℓλ
∆− δ

≤ 4Lλ|S||A|
3N(∆− δ)

log
( |S||A|

η

)
+

Lλ|S||A|
∆− δ

√
2

N
log

( |S||A|
η

)
+

δℓλ
∆− δ

. (108)

Note that |V̂ π
λ,π−V π

λ,π| ≤ ϵV holds for any a certain policy π with probability at least 1−η. Therefore,
with probability at least 1− 2Nη, we have

|V̂ π′

λ,π′ − V π′

λ,π′ | ≤ ϵV ,∀π′ ∈ {π ± δui}Ni=1 (109)

Therefore, with probability at least 1− (2N + 1)η, Eqs. (108) and (109) hold and thus we have

∥ĝλ,δ(π)− projL0
(∇πV

π
λ,π)∥

≤∥ĝλ,δ(π)− gλ,δ(π)∥+ ∥gλ,δ(π)− projL0
(∇πV

π
λ,π)∥

(a)

≤
∥∥∥ |S|(|A|−1)

2Nδ

N∑
i=1

(
V̂ π+δui

λ,π+δui
− V π+δui

λ,π+δui
−V̂ π−δui

λ,π−δui
+ V π−δui

λ,π−δui

)
ui

∥∥∥
+

4Lλ|S||A|
3N(∆− δ)

log
( |S||A|

η

)
+

Lλ|S||A|
∆− δ

√
2

N
log

( |S||A|
η

)
+

δℓλ
∆− δ
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(b)

≤ |S||A|
Nδ

N∑
i=1

∥∥(V̂ π+δui

λ,π+δui
− V π+δui

λ,π+δui
−V̂ π−δui

λ,π−δui
+ V π−δui

λ,π−δui

)
ui

∥∥
+

4Lλ|S||A|
3N(∆− δ)

log
( |S||A|

η

)
+

Lλ|S||A|
∆− δ

√
2

N
log

( |S||A|
η

)
+

δℓλ
∆− δ

≤|S||A|
Nδ

N∑
i=1

(
|V̂ π+δui

λ,π+δui
− V π+δui

λ,π+δui
|+|V̂ π−δui

λ,π−δui
+ V π−δui

λ,π−δui
|
)

+
4Lλ|S||A|
3N(∆− δ)

log
( |S||A|

η

)
+

Lλ|S||A|
∆− δ

√
2

N
log

( |S||A|
η

)
+

δℓλ
∆− δ

(c)

≤ 2|S||A|ϵV
δ

+
4Lλ|S||A|
3N(∆− δ)

log
( |S||A|

η

)
+

Lλ|S||A|
∆− δ

√
2

N
log

( |S||A|
η

)
+

δℓλ
∆− δ

,

where (a) uses Eqs. (16), (55) and (108), (b) uses Jensen’s inequality that ∥ 1
N

∑N
i=1 xi∥2 ≤

1
N

∑N
i=1 ∥xi∥2 for any vectors {xi}Ni=1 of the same dimensionality, (c) uses |V̂ π′

λ,π − V π′

λ,π′ | ≤ ϵV for
any policy π′. By replacing η with η

3N in the inequality above, we prove the error bound (18) as
follows which holds with probability at least 1− η.

∥ĝλ,δ(π)− projL0
(∇πV

π
λ,π)∥

≤2|S||A|ϵV
δ

+
4Lλ|S||A|
3N(∆− δ)

log
(3N |S||A|

η

)
+
Lλ|S||A|
∆− δ

√
2

N
log

(3N |S||A|
η

)
+

δℓλ
∆− δ

(110)

=O
(ϵV
δ

+
log(N/η)√

N
+ δ

)
K PROOF OF PROPOSITION 2

For any π ∈ Π∆, it is easily seen that the corresponding π′ defined by Eq. (13) also belongs to Π∆.
Therefore,

⟨∇πV
π
λ,π, π

′ − π⟩ ≤ max
π̃∈Π∆

⟨∇πV
π
λ,π, π̃ − π⟩ ≤ Dλ

5|A|(1− γ)
.

Substituting the above inequality into Eq. (12), we obtain that

π(a|s) ≥πmin exp
[
− 2|A|

Dλ
(1− γ)⟨∇πV

π
λ,π, π

′ − π⟩
]
≥ 2πmin

3
≥ 2∆.

Therefore, for any π2 ∈ Π, we can prove that π2+π
2 ∈ Π∆ as follows.

π2(a|s) + π(a|s)
2

≥ 0 + 2∆

2
= ∆.

Therefore, we can prove Eq. (22) as follows.

max
π2∈Π

⟨∇πV
π
λ,π, π2 − π⟩ =2 max

π2∈Π

〈
∇πV

π
λ,π,

π2 + π

2
− π

〉 (a)

≤ 2 max
π̃∈Π∆

⟨∇πV
π
λ,π, π̃ − π⟩.

where (a) uses π2+π
2 ∈ Π∆.

L PROOF OF THEOREM 4

If πt ∈ Π∆, then πt+1 ∈ Π∆, since Π∆ is a convex set and πt+1 obtained by Eq. (20) is a convex
combination of πt, π̃t ∈ Π∆. Since π0 ∈ Π∆, we have πt ∈ Π∆ for all t by induction. Therefore,
Proposition 1 implies that the following bound holds simultaneously for all {πt}Tt=1 ⊆ Π∆ with
probability at least 1− η.

∥ĝλ,δ(πt)− projL0
(∇πV

πt

λ,πt
)∥
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≤2|S||A|ϵV
δ

+
4Lλ|S||A|

3TN(∆− δ)
log

(3TN |S||A|
η

)
+

Lλ|S||A|
∆− δ

√
2

N
log

(3TN |S||A|
η

)
+

δℓλ
∆− δ

.

(111)
The bound above further implies that for any π ∈ Π, we have∣∣〈ĝλ,δ(πt)−∇πV

πt

λ,πt
, π − πt

〉∣∣
(a)
=
∣∣〈ĝλ,δ(πt)− projL0

(∇πV
πt

λ,πt
), π − πt

〉∣∣
≤∥ĝλ,δ(πt)− projL0

(∇πV
πt

λ,πt
)∥ · ∥π − πt∥

(b)

≤
√
2|S|

[2|S||A|ϵV
δ

+
4Lλ|S||A|

3TN(∆− δ)
log

(3TN |S||A|
η

)
+

Lλ|S||A|
∆− δ

√
2

N
log

(3TN |S||A|
η

)
+

δℓλ
∆− δ

]
, (112)

where (a) uses π̃t − πt, π̃ − πt ∈ L0 for π̃t, π̃ ∈ Π∆, and (b) uses Eq. (111) and Lemma 12.

Under the conditions above, we have
V

πt+1

λ,πt+1

(a)

≥V πt

λ,πt
+ ⟨∇πV

πt

λ,πt
, πt+1 − πt⟩ −

ℓλ
2∆

∥πt+1 − πt∥2

(b)
=V πt

λ,πt
+ β⟨∇πV

πt

λ,πt
, π̃t − πt⟩ −

ℓλβ
2

2∆
∥π̃t − πt∥2

=V πt

λ,πt
+ β⟨ĝλ,δ(πt), π̃t − πt⟩+ β⟨∇πV

πt

λ,πt
− ĝλ,δ(πt), π̃t − πt⟩ −

ℓλβ
2

2∆
∥π̃t − πt∥2

(c)

≥V πt

λ,πt
+ β⟨ĝλ,δ(πt), π̃t − πt⟩ −

ℓλ|S|β2

∆
− β

√
2|S|

[2|S||A|ϵV
δ

+
4Lλ|S||A|

3TN(∆− δ)
log

(3TN |S||A|
η

)
+

Lλ|S||A|
∆− δ

√
2

N
log

(3TN |S||A|
η

)
+

δℓλ
∆− δ

]
, (113)

where (a) uses the ℓλ
∆ -Lipschitz smoothness of V π

λ,π on Π∆, (b) uses Eq. (20), (c) uses Eq. (112) and
Lemma 12.

Rearranging and averaging Eq. (113) over t = 0, 1, . . . , T − 1, we obtain that
max
π̃∈Π∆

⟨ĝλ,δ(πT̃ ), π̃ − πT̃ ⟩

(a)
= ⟨ĝλ,δ(πT̃ ), π̃T̃ − πT̃ ⟩
(b)

≤ 1

T

T−1∑
t=0

⟨ĝλ,δ(πt), π̃t − πt⟩

≤
V πT

λ,πT
− V π0

λ,π0

Tβ
+

ℓλ|S|β
∆

+
√
2|S|

[2|S||A|ϵV
δ

+
4Lλ|S||A|

3TN(∆− δ)
log

(3TN |S||A|
η

)
+

Lλ|S||A|
∆− δ

√
2

N
log

(3TN |S||A|
η

)
+

δℓλ
∆− δ

]
≤1 + λ log |A|

Tβ(1− γ)
+

ℓλ|S|β
∆

+
√
2|S|

[2|S||A|ϵV
δ

+
4Lλ|S||A|

3TN(∆− δ)
log

(3TN |S||A|
η

)
+

Lλ|S||A|
∆− δ

√
2

N
log

(3TN |S||A|
η

)
+

δℓλ
∆− δ

]
, (114)

where (a) uses Lemma 1 which means π̃t satisfies Eq. (19) and (b) uses the output rule of Algorithm
1 that T̃ ∈ argmin0≤t≤T−1⟨ĝλ,δ(πt), π̃t − πt⟩. Therefore,

max
π̃∈Π∆

〈
∇πV

πT̃

λ,πT̃
, π̃ − πT̃

〉
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= max
π̃∈Π∆

[〈
∇πV

πT̃

λ,πT̃
− ĝλ,δ(ππT̃

), π̃ − πT̃

〉
+
〈
ĝλ,δ(ππT̃

), π̃ − πT̃

〉]
(a)

≤ 1 + λ log |A|
Tβ(1− γ)

+
ℓλ|S|β
∆

+ 2
√
2|S|

[2|S||A|ϵV
δ

+
4Lλ|S||A|

3TN(∆− δ)
log

(3TN |S||A|
η

)
+

Lλ|S||A|
∆− δ

√
2

N
log

(3TN |S||A|
η

)
+

δℓλ
∆− δ

]
, (115)

where (a) uses Eqs. (112) and (114).

Use the following hyperparameter choices for Algorithm 1.

∆ =
πmin

3
, (116)

β =
D∆ϵ

12ℓλ|S|
=

Dπminϵ

36ℓλ|S|
= O(ϵ), (117)

T =
12(1 + λ log |A|)

Dϵβ(1− γ)
=

432ℓλ|S|(1 + λ log |A|)
πminD2(1− γ)ϵ2

= O(ϵ−2) (118)

δ =
D∆ϵ

48
√

2|S|ℓλ
=

Dπminϵ

144
√
2|S|ℓλ

= O(ϵ)
(a)

≤ ∆

2
, (119)

ϵV =
Dδϵ

48|S||A|
√
2|S|

=
πminD

2ϵ2

13824ℓλ|S|2|A|
= O(ϵ2) (120)

N =
663552L2

λ|S|3|A|2

D2π2
minϵ

2
logmax

(165888L2
λ|S|3|A|2

D2π2
minϵ

2
,
1296ℓλ|S|2|A|(1 + λ log |A|)

D2ηπmin(1− γ)ϵ2

)
+ 2 log

(3|S||A|
η

)
+ 3

=O[ϵ−2 log(η−1ϵ−1)] (121)

where (a) uses ϵ ≤ 24
√
2|S|ℓλ/D. With the hyperparameter choices above, we obtain the following

inequalities (122)-(124).

2
√
2|S| · Lλ|S||A|

∆− δ

√
2

N
log

(3TN |S||A|
η

)
(a)

≤ 24Lλ|S|1.5|A|
πmin

√
logN

N
+

1

N
log

(1296ℓλ|S|2|A|(1 + λ log |A|)
ηπminD2(1− γ)ϵ2

)
(b)

≤ 24Lλ|S|1.5|A|
πmin

√
ϵ̃+

ϵ̃

4

=
12
√
5Lλ|S|1.5|A|
πmin

· Dπminϵ√
165888Lλ|S|1.5|A|

≤ Dϵ

12
, (122)

where (a) uses Eq. (118) and δ ≤ ∆/2 = πmin/6 implied by Eqs. (116) and (119), (b) uses
Eq. (121) and its implication that N ≥ 4ϵ̃−1 log(ϵ̃−1) with ϵ̃ =

π2
minϵ

2

165888D2L2
λ|S|3|A|2 ≤ 0.5 (since

ϵ ≤ 288DLλ|S|1.5|A|
πmin

), which implies logN
N ≤ ϵ̃ based on Lemma 11.

1

TN
log

(3TN |S||A|
η

)
=
log(TN)

TN
+

1

TN
log

(3|S||A|
η

) (a)

≤ 1

2
+

1

2
= 1, (123)

where (a) uses NT ≥ N ≥ max
[
3, 2 log

(
3|S||A|

η

)]
and Lemma 11.

2
√
2|S| · 4Lλ|S||A|

3TN(∆− δ)
log

(3TN |S||A|
η

) (a)

≤2
√

2|S| ·
√
2Lλ|S||A|
∆− δ

√
1
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log
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(b)

≤Dϵ

12
(124)
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where (a) uses 4
3 <

√
2 and y ≤ √

y for y = 1
TN log

(
3TN |S||A|

η

)
≤ 1 (Eq. (123)), and (b) uses

T ≥ 1 and Eq. (122). By substituting the hyperparameter choices (116)-(121) as well as Eqs. (122)
and (124) into Eq. (115), we have

max
π̃∈Π∆

〈
∇πV

πT̃

λ,πT̃
, π̃ − πT̃

〉
≤1 + λ log |A|
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+

ℓλ|S|β
∆

+ 2
√

2|S|
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+
4Lλ|S||A|

3TN(∆− δ)
log
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≤1 + λ log |A|

β(1− γ)

ϵβ(1− γ)

12D(1 + λ log |A|)
+

ℓλ|S|
∆

· ∆ϵ

12Dℓλ|S|

+
4
√
2|S||S||A|

δ
· δϵ

48D|S||A|
√

2|S|
+

ϵ

12D
+

ϵ

12D
+

2
√

2|S|ℓλ
∆/2

· ∆ϵ

48
√
2|S|Dℓλ

=
Dϵ

2

(a)

≤ Dλ

5|A|(1− γ)
,

where (a) uses ϵ ≤ 2λD2

5|A|(1−γ) . Then based on Proposition 2, the inequality above implies that

max
π̃∈Π

〈
∇πV

πT̃

λ,πT̃
, π̃ − πT̃

〉
≤ Dϵ,

which means πT̃ is a Dϵ-stationary policy. Then if µ ≥ 0, Corollary 1 implies that πT̃ is also an
ϵ-PO policy.

M ADJUSTING OUR RESULTS TO THE EXISTING QUADRATIC REGULARIZER

In Section 4, we have proposed a 0-FW algorithm and obtain its finite-time convergence result to the
desired PO policy for our entropy-regularized value function (6). We will briefly show that 0-FW
algorithm can also converge to PO for the existing performative reinforcement learning defined by
the value function (1) with quadratic regularizer Hπ′(π) = 1

2∥dπ,pπ′∥2 (Mandal et al., 2023; Rank
et al., 2024; Pollatos et al., 2025). The performative value function can be rewritten as the following
λ-strongly concave function of dπ,pπ

.

V π
λ,π = ⟨dπ,pπ , rπ⟩ − λ∥dπ,pπ∥2. (125)

We can prove the performative value function above also satisfies Theorem 1 (gradient dominance)
with a different µ, following the same proof logic, since both regularizers Hπ(π) are strongly convex
functions of dπ,pπ

which implies that V πα

λ,πα
is a µ-strongly concave function of α as shown in the

proof of Theorem 1 in Appendix F. By direct calculation, we can also show that V π
λ,π above is a

Lipschitz continuous and Lipschitz smooth function of π ∈ Π. With these two properties, we can
follow the proof logic of Theorem 4 to show that the 0-FW algorithm (with the same procedure as
that of Algorithm 1 except the different values of V πα

λ,πα
in the policy evaluation step) converges to

a stationary policy of the performative value function (125), which by gradient dominance is a PO
policy when the new value of µ satisfies µ ≥ 0.

N USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs to generate some functions in the experimental code, and then checked and edited the
code to ensure that it exactly implements the algorithms.
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