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ABSTRACT

Performative reinforcement learning is an emerging dynamical decision making
framework, which extends reinforcement learning to the common applications
where the agent’s policy can change the environmental dynamics. Existing works
on performative reinforcement learning only aim at a performatively stable (PS)
policy that maximizes an approximate value function. However, there is a prov-
ably positive constant gap between the PS policy and the desired performatively
optimal (PO) policy that maximizes the original value function. In contrast, this
work proposes a zeroth-order Frank-Wolfe algorithm (0-FW) algorithm with a
zeroth-order approximation of the performative policy gradient in the Frank-Wolfe
framework, and obtains the first polynomial-time convergence to the desired PO
policy under the standard regularizer dominance condition. For the convergence
analysis, we prove two important properties of the nonconvex value function. First,
when the policy regularizer dominates the environmental shift, the value function
satisfies a certain gradient dominance property, so that any stationary point (not
PS) of the value function is a desired PO. Second, though the value function has
unbounded gradient, we prove that all the sufficiently stationary points lie in a con-
vex and compact policy subspace I1a, where the policy value has a constant lower
bound A > 0 and thus the gradient becomes bounded and Lipschitz continuous.
Experimental results also demonstrate that our 0-FW algorithm is more effective
than the existing algorithms in finding the desired PO policy.

1 INTRODUCTION

Reinforcement learning is a useful dynamic decision making framework with many successes in
Al such as AlphaGo (Silver et al.l 2017), AlphaStar (Vinyals et al., [2019), Pluribus (Brown &
Sandholml 2019), large language model alignment (Bai et al., 2022) and reasoning (Havrilla et al.,
2024). However, most reinforcement learning works ignore the effect of the deployed policy on the
environmental dynamics, including transition kernel and reward function. This effect is significant
in multi-agent systems, particularly the Stackelberg game, where leaders’ policy change triggers
the followers’ policy change, which in turn affects the environmental dynamics faced by the leader
(Mandal et al.l |2023). For example, a recommender system (leader) affects the users’ (followers)
demographics and their interaction strategy with the system (Chaney et al.,[2018}; [Mansoury et al.|
2020). Autonomous vehicles (leaders) affect the strategies of the pedestrians and the other vehicles
(followers) (Nikolaidis et al.l [2017).

To account for such effect of deployed policy on environmental dynamics, performative reinforcement
learning has been proposed by (Mandal et al.,|2023)) where the transition kernel p,; and reward function
r. are modeled as functions of the deployed policy 7. The ultimate goal is to find the performatively
optimal (PO) policy that maximizes the performative value function, defined as the accumulated
discounted reward when deploying a policy 7 to its corresponding environment (p,, ). However,
the policy-dependent environmental dynamics pose significant challenges to achieve PO. Hence,
(Mandal et al.;[2023) pursues a suboptimal performatively stable (PS) policy using repeated retraining
method with environmental dynamics fixed for the current policy at each policy optimization step.
However, (Mandal et al., [2023)) shows that PS can have a positive constant distance to PO.

Extensions of the basic performative reinforcement learning problem (Mandal et al.l 2023)) have been
proposed and all of them focus on the suboptimal PS policy. For example, Rank et al.| (2024) allows
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the environmental dynamics to gradually adjust to the currently deployed policy, and proposes a
mixed delayed repeated retraining algorithm with accelerated convergence to a PS policy. Mandal
& Radanovic|(2024)) extends (Mandal et al.,|2023) from tabular setting to linear Markov decision
processes with large number of states, and also obtains the convergence rate of the repeated retraining
algorithm to a PS policy. [Pollatos et al.|(2025) obtains a PS policy that is robust to data contamination.
Sahitaj et al.[(2025) obtains a performatively stable equilibrium as an extension of PS policy to
performative Markov potential games with multiple competitive agents.

In sum, all these existing performative reinforcement learning works pursue a suboptimal PS policy
by repeated retraining algorithms. Therefore, we want to ask the following basic research question:

Q: Is there an algorithm that converges to the desired performatively optimal (PO) policy?

1.1 OUR CONTRIBUTIONS

We will answer affirmatively to the research question above in the following steps. Each step yields a
novel contribution.

e  We study an entropy regularized performative reinforcement learning problem, compatible with
the basic performative reinforcement learning problem in (Mandal et al.| 2023). We prove that the
objective function satisfies a certain gradient dominance condition, which implies that an approximate
stationary point (not the suboptimal PS) is the desired approximate PO policy, under a standard
regularizer dominance condition similar to that used by (Mandal et al.l 2023} Rank et al.| [2024;
Mandal & Radanovic, |2024; Pollatos et al., [2025) to ensure convergence to a suboptimal PS policy.
The proof adopts novel techniques such as recursion for p,-related error term and frequent switch
among various necessary and sufficient conditions of smoothness and strong concavity like properties
for various variables (see Section [3.2).

e  We obtain a policy lower bound as a decreasing function of a stationary measure. This bound
not only implies the unbounded performative policy gradient (a challenge to find a stationary policy
and thus PO), but also inspires us to find a stationary policy in the policy subspace IIn with a
constant policy lower bound A > 0 where we prove the objective function to be Lipschitz continuous
and Lipschitz smooth (a solution to this challenge). The lower bound A is obtained using a novel
technique which simplifies a complicated inequality of the minimum policy value 7[amin($)|s] in
two cases (see Section[3.3).

e  We construct a zeroth-order estimation of the performative policy gradient and obtains its
estimation error. This is more challenging than the existing zeroth-order estimation methods since
our objective function is only well-defined on the policy space, a compact subset of a linear subspace
of the Euclidean space RIS!I41. To solve this puzzle, we adjust a two-point estimation to the linear
subspace L of policy difference, and simplify the estimation error analysis by mapping policies onto
the Euclidean space RISI(1=1) via orthogonal transformation (see Section .

e We propose a zeroth-order Frank-Wolfe (0-FW) algorithm (see Algorithm[I)) by combining the
performative policy gradient estimation above with the Frank-Wolfe algorithm. Then we obtain a
polynomial computation complexity of our 0-FW algorithm to converge to a stationary policy, which
is also the desired PO policy under the regularizer dominance condition above. The convergence
analysis uses a policy averaging technique to show that an approximate stationary policy on Il is
also approximately stationary on the whole policy space II (see Section .2}

Finally, we briefly show that the results above, including gradient dominance, Lipschitz properties and
the finite-time convergence of 0-FW algorithm to the desired PO, can be adjusted to the performative
reinforcement learning problem with the quadratic regularizer used by (Mandal et al., 2023; Rank
et al.| 2024; [Pollatos et al.,|2025) (see Appendix M])

2 PRELIMINARY: PERFORMATIVE REINFORCEMENT LEARNING

2.1 PROBLEM FORMULATION

Performative reinforcement learning is characterized by a Markov decision process (MDP) M, =
(S, A, pr, 7, p) that depends on a certain policy w. Here, S and .4 denote the finite state and
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action spaces respectively. The policy 7 € [0, 1]ISIMI| transition kernel p, € [0,1)/SI°41, reward
rx € [0,1]ISII41] and initial state distribution p € [0,1]!S! are vectors that represent distributions.
Specifically, the policy 7 € [0, 1]/, with entries 7(a|s) for any state s € S and action a € A,

lies in the policy space 11 ef {relo, 1]|‘S|2‘““| > aeam(als) =1,Vs € S}, such that 7(-|s) for

any state s can be seen as a distribution over .A. The transition kernel p, € [0, 1] IS114] dependent on

policy = € II, with entries p,(s'|s,a) for any s,s’ € S and a € A, lies in the transition kernel space

P {pe o1l Y e P(s']s,a)=1,Vs €S, a € A} such that p(-[s, a) can be seen as a

S def . . . .
state distribution on S. 7, € R = [0, 1]/ is the reward function with entries (s, a) € [0,1]

forany s € Sanda € A. p € [0,1]!5! is the initial state distribution such that > ¢ p(s) = 1.
Note that we consider p,, 7, p, ™ as Euclidean vectors, so that we can conveniently define their

Euclidean norm. For example, we define [[px|l, = [X, oo [Px(s']s,a)[7] Y9 for any ¢ > 1 and

lpr |l = maxs 4.5 [Pr(s']$, a)|. Such norms can be similarly defined over ., p, 7 by summing or
maximizing over all the entries. Specifically, denote || - || = || - ||2 by convention.

When an agent applies its policy © € II to MDP M, = (S, A, pxs, 7x, p), the initial environmental
state sg € S is generated from the distribution p. Then at each time ¢ = 0,1, 2, . . ., the agent takes
arandom action a; ~ 7(-|s;) based on the current state s; € S, the environment transitions to the
next state s;41 ~ pn(-|st, a;) and provides reward r; = 7,/(s4,a4) € [0, 1] to the agent. The value
of applying policy 7 to M+ can be characterized by the following value function:
o0
Vi def Erp . p [ Z Vra (e, at)} — ANH (7). (D
t=0
Here, Er ;_, , is the expectation under policy , transition kernel p,+ and initial state distribution p.
v € (0,1) is the discount factor. H () is a regularizer with coefficient A > 0 to ensure or accelerate
algorithm convergence. Existing works use the quadratic regularizers such as . (7) =% ||dr, , ||
(Mandal et al., 2023; |Rank et al.,[2024; [Pollatos et al., [2025) and H ./ (7) = % ||<I>Td7r’pﬂ, |? (Mandal

& Radanovic, 2024) with a feature matrix ®, where the occupancy measure d , € [0, 1] ISTIAT for
any policy 7 and transition kernel p is defined as the following distribution on S x A.

def =
dmp(sa a) = (1 - '7) Z’Ytﬂmﬂ,p,p{st = S,at = a}7 2)
t=0
Then the state occupancy measure defined as d ,(s) def > adx p(s,a) satisfies the following
well-known Bellman equation for any state s’ € S.
drp(s)=(1 —’y)p(s’)+vzdﬂ7p(s)7r(a|s)p(s'|s, a). 3)

The goal of performative reinforcement learning is to find the performatively optimal (PO) policy 7
that maximizes the performative value function V' (with «' = m in Eq. ), as defined below.

Definition 1 (Ultimate Goal: PO). For any € > 0, a policy w € 1l is defined as e-performatively
optimal (e-PO) if max e V/\’f;r, — Vi < e Specifically, we call a 0-PO policy as a PO policy.

Conventional reinforcement learning can be seen as a special case of performative reinforcement
learning with fixed environmental dynamics, namely, fixed transition kernel p, = p and fixed reward
function 7, = r. However, this may fail on applications with policy-dependent environmental
dynamics, such as recommender system and autonomous driving as explained in Section T}

2.2  EXISTING REPEATED RETRAINING METHODS FOR PERFORMATIVELY STABLE (PS)
PoLICY

Achieving an e-PO policy (defined by Definition |1)) is challenging, due to the policy-dependent
environmental dynamics p, and r. To alleviate the challenge, all the existing works (Mandal et al.|
2023 Rank et al.} 2024; Mandal & Radanovic, [2024; Pollatos et al., [2025}; Sahitaj et al.,[2025) aim at
a performatively stable (PS) policy mpg defined as follows, as an approximation to a PO policy.

mps € argmax V. “)
mell ’
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In other words, a PS policy mpg has the optimal value on the fixed environment M .. However,
Mandal et al.| (2023) shows that a PS policy can be suboptimal.

Nevertheless, we will briefly introduce the suboptimal repeated retraining algorithms in their works,
to later partially inspire our method that converges to the global optimal PO policy. All these
repeated retraining algorithms share the fundamental idea that in each iteration ¢, the next policy
1~ arg max, VY is obtained by solving the conventional reinforcement learning problem
under fixed dynamics p,, and r,. This strategy highly relies on conventional reinforcement learning
but fail to make full use of the policy-dependent dynamics, which leads to the suboptimal PS policy.
Next, we will propose our significantly different strategies to achieve the desired PO policy.

3  ENTROPY REGULARIZED PERFORMATIVE REINFORCEMENT LEARNING

In this section, we obtain critical properties of an entropy regularized performative reinforcement
learning problem for achieving the desired PO policy.

3.1 NEGATIVE ENTROPY REGULARIZER

We consider the following negative entropy regularizer of the policy m, which is widely used in
reinforcement learning to encourage environment exploration and accelerate convergence (Mnih
et al., [2016; Mankowitz et al.,|2019; Cen et al., [2022; |(Chen & Huang, 2024)).

Hﬂ',(ﬂ-) = Eﬂ,pﬂ/,p{zvt logﬂ-(at‘stﬂ' (5)

t=0
In addition, this negative entropy regularizer can be seen as a strongly convex function of the
occupancy measure d ,, , (proved in Appendix [D), which is critical to develop algorithms convergent
to a PO (see Theorem later) or PS policy (Mandal et al.,[2023)). For optimization problem on a
probability simplex variable (policy 7 or occupancy measure d), negative entropy regularizer is more
natural and yields faster theoretical convergence than the quadratic regularizers used in the existing

performative reinforcment learning works (Mandal et al., 2023} [Rank et al., |2024; |Pollatos et al.,
2025) (see pages 43-45 of (Chen, 2020) for explanation).

Therefore, we will mainly focus on the following entropy-regularized value function, which is
obtained by substituting the negative entropy regularizer (3)) into the general value function (T).

Vi def Erp. 0 [ Z Y e (s, a:) — Alog w(at|st)]} . 6)
t=0

Specifically, we will study the critical properties of the entropy-regularized value function (&) (Section
M) to develop algorithm that converges to PO (Sections 4. 1}4.2). Then we will briefly discuss about
how to adjust these results to the existing quadratic regularizers (Appendix [M)).

We make the following standard assumptions to study the properties of the value function (6).
Assumption 1 (Sensitivity). There exist constants €y, €, > 0 such that for any m, 7' € I,
Ipr —prl| <eplln’ =7, lrw —rzl <& lln’—|| ©)
Assumption 2 (Smoothness). p. and r, are Lipschitz smooth with modulus S,,, S, > 0 respectively,
thatis, forany wm € II, 5,8’ € S, a € A, we have
||v7rp7r’(5/‘3a a) — VWPW(S/‘S’ a)ll SSP||7T/ -l (®)
|Vare (s,a) — Vare(s,a)| <S.||7" — x| )

Assumption 3. There exists a constant D > 0 such that inf rcr1 pep ses dr p(s) > D.

Assumptions|T}j2]ensure that the environmental dynamics p, and r adjust continuously and smoothly
to policy 7, and thus the performative value function V" is differentiable with performative policy
gradient V.V . Similar versions of Assumption|I|on environmental sensitivity have also been used
for performative reinforcement learning (Mandal et al.}, 2023} [Rank et al.| [2024; Mandal & Radanovic|
2024; Pollatos et al., 2025} |Sahitaj et al., [2025)). Assumptionhas been used (Zhang et al., 2021}
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Sahitaj et al.,[2025) or implied by stronger assumptions (Wei et al., 2021} |Chen et al.| 2022; |Agarwal
et al.l [2021}; [Leonardos et al., [2022; Wang et al.| 2023 |Chen & Huang| 2024} Bhandari & Russo,
2024) in conventional reinforcement learning (see Appendix |E{for the proof), which guarantees that
each state is visited sufficiently often.

3.2 GRADIENT DOMINANCE

For the nonconvex policy optimization problem max ¢ Vy . in Eq. (6) on the convex policy space
I1, it is natural to consider its approximate stationary solution as defined below.

Definition 2 (Stationary Policy). For any ¢ > 0, a policy m € 1l is e-stationary if
maxXserg <V7TV£7T, T — 7r> < €. We call a O-stationary policy as a stationary policy.

Note that for a policy to be the desired PO, it is necessary to be stationary, while the PS policy targeted
by existing works is neither necessary nor sufficient. Furthermore, we will show that stationary policy
can also be a sufficient condition of the desired PO under mild conditions. As a preliminary step, we
show the important gradient dominance property of the objective function as follows.

Theorem 1 (Gradient Dominance). Under Assumptions[I}3] the entropy regularized value function
(6) satisfies the following gradient dominance property for any 7y, m € IL

- p
Vil SV + D7 max (W VTG o = mo) = G [l — o, (10)

where

of DA 69]S|(1+ Aog | A|)
et 1S o |A) [ep (VA +76,/18]) + Sp(1 —7)]

1—7 D(1 =)
S (1 —9) +4e (VA —|—ep«/|8 (11
D21~ )2

The gradient dominance property above generalizes that used in the conventional unregularized
reinforcement learning (see Lemma 4 of (Agarwal et al.||2021)), which implies that stationary policy
is close to a PO policy as shown in the corollary below.

Corollary 1. Under Assumptions any De-stationary policy is an ( )-PO policy. Fur-
thermore, this is also the desired e-PO policy if © > 0. The PO policy is unique if pn > 0.

Remark: Corollary[l]implies that a De-stationary policy is always (¢ + |||S|)-close to the desired
PO policy with || proportional to the environmental sensitivity O(e, + €, + S, + S;). Furthermore,
since pp = [O(1) — O(ep + Sp)|A — O(ep + €, + S+ S;) by Eq. (1), when O(e, +.5,) < O(1) and

the regularizer strength dominates the environmental shift (A > %) we have p > 0 so

that the De-stationary policy is also the desired e-PO policy. Note that similar regularizer dominance
condition has also been used to guarantee convergence to a suboptimal PS policy (Mandal et al.|
2023; Rank et al.| [2024; Mandal & Radanovicl |2024; |Pollatos et al .l [2025)).

Intuition and Novelty for Proving Theorem[I; Define the following more refined value function
IA(m, 7 p,r) By [ Z Y r(se, ar) —Mog 7' (arsy)] \so ~p} : (12)

To get the intuition, we will first prove the bound (I0) in the special case with fixed p, = p and
7 = r. Then we allow non-constant p to inspect the perturbation on the bound (I0), and finally see
the effect of non-constant ., on the bound (I0).

(Step 1): For conventional reinforcement learning with fixed p, = p and r, = r, denote d, =

ol p+ (1 —a)dr,,, (o € [0,1]). Based on the Bellman equation (3), do, = dy,, , is the occupancy

d{}‘(f‘(:‘)l) Therefore, V\"> can be rewritten as J) (7o, Ta, p, 1) =

s)], which has the following strong concavity like property by

measure of the policy 7, (als) =

Zs.a d&(s’ a) [T(Sa a) — Aog 7 (a
Pinsker’s inequality.

J)\(Tl'a,ﬂ'a,p, T) - a'])\(ﬂ.hﬂ-la]% T) - (1 - a).])\(ﬂo,ﬂ'o,p7 T)
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1
=== 2 [ (SJKLEm (1)l (als)] + (1~ a)do()KLimo( )] 7o (als)]
Dia(l — «
2(1(_7))”771 — mol|%. (13)
(Step 2): Consider a harder case with non-constant p, and constant reward r, = r. Similarly,

denote do = adyr, p, + (1 —a)dr, p,, and 7q(als) = dc‘l"(f’s‘;). The non-constant p,. brings a major

challenge that d, = dr, j,  required by Step 1 above no longer holds. To solve this challenge, we
need to bound the error term e, (s) = dn,, p, ($) — da(s) which we prove to satisfy the following
novel recursion.

ea(s’) = 'yz [ea(s)wa(a|s)pﬂa (8'|s,a) + ha(s,a, s')],

s,a

where hy(s,a,8") = do(s,a)pr, (8'|s,a) — adi(s,a)pg, (s']s,a) — (1 — a)do(s,a)pm,(s']s, a).
Since dq (s, a)px., (s']|s,a) is a Lipschitz smooth function of «, we can upper bound |k, (s, a, s’)|
and substitute this bound to the recursion above, which yields the following novel error bound.

S leato)] = Py 2 ey (VI + 7 TS + 850 - ).

The bound above reflects the effect of non-constant p,., which perturbs the bound @]) into

a(l—a)u
2

where f1q et % - W [ep (VI Al +7€p/IS]) + Sp(1—7)] equals 2 in Eq. when
€p = S,,. = O

(Step 3): Now we consider performative reinforcement learning with non-constant p,; and 7. The
policy 7, and its occupancy measure d, are the same as in Case II above. Then the function
UJ(O[) = O[JA(T(la T1,P1, Ta) + (1 - O‘)Jk(ﬂ-()a 70, Po, TC%) can be proved ,UQHTH - 7T0||2_I“ipSChitZ
smooth with parameter po = p — p1 > 0. Using r = r in Eq. (T4), we obtain the following strong
concavity like property with p = p1 — po.

V/\Ti;a - aV)C;l —(1-a)V

A,T(o

J)\(ﬂ-aa7T0c7pa77’)704<])\(7rl77r17p177’)7(170‘)‘])\<7T077T0ap0ar) > ||7T177T0H27 (14)

:J)\(ﬂ-omﬂ—ompomra) - a‘])\(ﬂ—177rl>p17r1) - (1 - OC)JA(77077TO7PO;TO)
a(l—«a a(l — «
s all-ai A, .

Finally, the dominance property (I0) follows from the inequality above as aw — +0.

|71 —mol|? 4+ w(a) —cw(1) — (1—a)w(0) >

3.3 PoLIcY LOWER BOUND AND LIPSCHITZ PROPERTIES

Policy Lower Bound: Based on Section[3.2] we can focus on achieving an e-stationary policy. A
major challenge is the unbounded performative policy gradient V V" on IL. Specifically, we will
show that as 7(a|s) — O for any state s and action a, ||V V{7 || — +oc. To tackle this challenge,
we prove the following policy lower bound.

Theorem 2. If Assumptions[l|and[3| hold, and p,, r. are differentiable functions of ©, then there

exists a constant Ty, > 0 (see its value in Eq. (93)) in Appendix[H)) the following policy lower bound

holds forany m € I, s € S, a € A.

2| A|
A

7(als) >Mmin €Xp [— (1 =AUV V7’ — 7T>:|, (15)

Here, the policy 7' is defined as follows depending on m:

7T-[aflnin<s)|3]7 a = amax(s)
7' (als) = { T[amax(8)[s], @ = amin(s) , (16)
m(als), Otherwise

where apmax(s) € arg max,m(als) and amin(s) € arg min,m(als).



Under review as a conference paper at ICLR 2026

Implications of Theorem @: First, as 7(als) — 0, we have (V,V 7' —m) — +o0, so
IV VT || = 400 as aforementioned. Second, any stationary policy 7 satisfies (V. V7,7’ —m) <
0, so 7(a|s) > mmin. Therefore, we can search e-stationary policy on the convex and compact policy

subspace I1a o {m eIl : 7(als) > A} with lower bound A € (0, Tyin].

Intuition and Novelty for Proving Theorem [2; At first, consider conventional reinforcement
learning with fixed environmental dynamics pr = p and 7 = r. In this case, V V{7 has analytical
form (see Eq. (89)), so by direct computation we obtain the following inequality with constant

C=1+ %"fv‘l) (see Eq. for detail)
(Vioda(m,m, p,r), 7 —m)> Lrnax{(71'[amax(s)|s]—71'[amin(s)|s]){)\logw— C}}
1—v s T [@min (8)]8]
To obtain a lower bound of 7[amin(s)|s], we simplify the inequality above by considering two
cases, Tamin(s)|s] > 37[amax(s)|s] > ﬁ and 7[amin(5)]s] < F7[amax(s)|s]. In the second

case, we replace m|amax(s)|s] and m|amax(S)|s] — 7|amin(s)|s| above with their lower bounds a4
P [ Al

and ﬁ respectively. Then combining the two cases proves the lower bound (15)) at the special

case of ¢, = ¢, = 0. Then we extend from conventional reinforcement learning to performative
reinforcement learning which involves a gradient perturbation with magnitude of at most O(e,, + ¢€,)
(see Eq. (93) for detail) based on the chain rule and leads to the lower bound (I5)) for any €, €, > 0.

Lipschitz Properties: Theorem [2]inspires us to find an e-stationary policy in the policy subspace ITa,
where the performative value function V', is Lipschitz continuous and Lipschitz smooth as follows.

Theorem 3. Under Assumptions[I\2] there exist constants Ly, £y > 0 (see the values in Egs. (97) and
in Appendix[ﬂ) such that the following Lipschitz propreties hold for any A > 0 and w, 7" € TIa.

L

7T/ U Tr/ T £>\
Vi =Vial < Klm" =7l (Ve Ve = VeVl < Sl =7l (17)

4 ZEROTH-ORDER FRANK-WOLFE (0-FW) ALGORITHM

4.1 PERFORMATIVE POLICY GRADIENT ESTIMATION

In Section |3} we have obtained important properties of the entropy regularized performative value
Junction VT (defined by Eq. @), which indicates that it suffices to find an e-stationary policy in
the subspace ITa for A € (0, Tmin]- To achieve this goal, an accurate estimation of the performative
policy gradient V V)" is important but also challenging, since the performative policy gradient
involves the unknown gradients V,p(s’|s,a) and V7. (s, a).

Despite these challenges in estimating V.V, note that V" for any policy m can be evaluated by
policy evaluation in conventional reinforcement learning under fixed environment p,. and r, (for
fixed 7). Furthermore, for any €y, > 0 and 7 € (0, 1), many existing policy evaluation algorithms
such as temporal difference (Bhandari et al.| 2018} [Li et al.,|2023} Samsonov et al.,[2023)), can obtain

VYT, A VT with small error bound |‘A/>\’T’Tr — V.| < ev with probability at least 1 — 7.

As aresult, we will consider a zeroth-order estimation of V. V" using policy evaluation. However,
this has another challenge that V" is only well-defined on 7 € II, so we cannot directly apply the
existing zeroth-order estimation methods (Agarwal et al.,[2010; Shamir}, [2017; Malik et al., [2020)
which require the objective function to be well-defined on a sphere. Fortunately, for any 7, 7’ € II,
the policy difference ' — 7 lies in the following linear subspace of dimensionality |S|(].4] — 1).

Lo % {u e RISIAL Zu(a|s):0,V8 € S}. (18)

Therefore, inspired by the popular two-point zeroth-order estimations, we estimate V. V" _ as follows.

N

~ |‘S|(|A|71) 4o, Crm—oug
rs(m)="— g(vx,:% =V i, (19)
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where {u;}¥, arei.i.d. samples uniformly from U; N Lo with U; & {u € RISIMAL: |ju||=1}. Our

estimation (I9) above is more tricky than the existing two-point zeroth-order estimations (Agarwal
et al.,2010; Shamir, 2017; Malik et al.,|2020) where u; is uniformly distributed on U;. To elaborate,
we replace their U; with Uy N Ly, a unit sphere on the linear subspace L, and further require 7 € IIa
and 9 < A, to guarantee that 7 + du;, ™ — du; € Il for any u; € U; N Ly and thus the gradient
estimation (T9) is well-defined (see Appendix [J|for the proof). Moreover, we use the following three
steps to obtain u; uniformly from U; N Ly: (1) Obtain v; uniformly from Uy ; (2) Project v; onto Ly
as Eq. below; (3) Normalize this projection by u; = proj . (z;l-)/||pr0j£0 (v3)]].

projz, (vi)(als) = vilals) — 7 ,4|Z”’ : (20)

The gradient estimation (T9) has the following provable error bound.

Proposition 1. Forany A > § > 0, n € (0,1) and w € Ila, the stochastic gradient ({I9) is
well-defined (i.e., m + du; and m — Su; therein are valid policies defined by 11) and approximates the
projected performative policy gradient proj, (Vx Vie ) with the following error bound (see its full
expression in Eq. (I09) in Appendix[J), with probablllty at least 1 — .

5 : n log(N/n
l9x.5(m) = proj, (Va Vi)l < O(5 + (m/)

Remark: Proposition |I|above aims to approximate proj., (V VY, ) instead of V V" . This is
sufficient to find an e-stationary policy, because for any policies 7, 7/, the stationarity measure only
involves (V. V" 7' —m) = (proj., (VA V), m'—m) as 7' —7 € Lo. Therefore, we only care about
proj, 0(V,TV/\’T,TF). The estimation error above can be arbitrarily small with sufficiently large
batchsize IV (to reduce the variance), small ¢ (to reduce the bias), and policy evaluation error ey, < 9.

+9). (1)

Intuition and Novelty for Proving Proposition [Tt  Unlike existing zeroth-order estimations

on the whole Euclidean space, our estimation is made on the policy space II, which lies

in the linear manifold £y + |A|~'  RISIMI. The key to our proof is to find an orthogonal

transformation 7" : RISIUAI=1) — £ 5o that the goal is simplified to analyze the gradient estimation
def T (z)+|A _

of fr(z) =V, 7(?(1)-‘i-|a|4\ , onany z € RISIIAI=D),

4.2 ZEROTH-ORDER FRANK-WOLFE (0-FW) ALGORITHM

With the estimated gradient gy s(7;) defined by Eq. , we consider the following Frank-Wolfe
algorithm to find an e-stationary policy.
7y =argmax, cp, (7, Gx,s (7)), (22)
Tiy1 =T + B(Tr — ). (23)
Lemma 1. The step (22) has the analytical solution below.

#o(als) = {A; a # ay(s)

24
CA(A = 1)ia = dls) 24

where Gy(s) € argmax, g s(m:)(als).

See the proof of Lemmal[l|in Section[C.I} Then combining the performative policy gradient estimation
(see Section [3.T) with the Frank-Wolfe algorithm, we propose our zeroth-order Frank-Wolfe (0-FW)
algorithm (see Algorithm [I)). We obtain the following convergence result of Algorithm[I]in Theorem
[l the main theoretical result of this work, as follows.

Theorem 4. Suppose Assumptions hold. For any 1 € (0,1) and precision 0 < e <

min [24\/ |% , 5|A\DQ2>\ = 288%7‘;5'_ 1Al ], select the following hyperparameters for Algorithm
I A= Tain 3= ?62;\37 d = Oe), ey = O(e?), N = Ole 2log(n~te™ 1)), and the number

of lteranons T = O(e72?) (see Egs. -@) in Appendix @ for detailed expression of these
hyperparameters). Then with probability at least 1 — 1, the output policy 77 of Algorithm [Z] isa
De-stationary policy. Furthermore, if 1 > 0, 7 is also an e-PO policy. The total number of policy
evaluations is 2NT = Ole *log(n~te™1)].
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Comparison with Existing Works: - _
Theorem B indicates that our 0-FW Algorithm 1 Zeroth-order Frank-Wolfe (0-FW) Algorithm
algorithm for the first time con- 1: Inputs: T, N, A > 6 > 0,ey > 0, 8 > 0.

verges to the desire PO policy with 2. Initialize: policy 7y € IIa.

arbitrarily small precision € in poly-  3: for Iterations t = 0,1,...,7 — 1 do

nomial computation complexity, un-  4:  Obtain i.i.d. vectors {v;};*; uniformly from the unit
der the regularizer dominance con- sphere U def {ue RISIIAL. l[ul| =1}

dition that 4 > 0. In contrast, s Obtain {pijgo (0:)} iV: . from Eq. .

existing works only converge to a . ’ .
suboptimal PS policy under a simi- Obtain {u;};"; where u; = proj, (vi)/|[proj , (v:)ll-

lar regularizer dominance condition ~ 7:  Obtain stochastic policy evaluation VA’T - ~ V{7 which

(Mandal et al., [2023; Rar}k et al.l satisfies |V>\ _ V)\ | < ey forme {7Tt £ 5%}1 .
2024; Mandal & Radanovic 2024, g.  QObtain stochastic performatlve policy gradient estima-
Pollatos et al., |2025). Our prefer- tion gy 5(m¢) using Eq. (19).

able convergence result is due t0 9.  Obtain 7, by Eq. )

the main algorithmic difference that 1o, ypdate 7,1 by Eq. 3.

existing works use repeated retrain- . end for

ing algorithms Xlth eralion T 1~ 13: Qutput: 77 where T € arg ming <, < 1(Gx,s (7 ), e — 7).
arg max, ¢V, ;. where the policy
7 is deployed in a fixed environment
M, with 7 # m;, while our 0-FW algorithm evaluates V" where  is always deployed at its corre-
sponding environment M.

Intuition and Novelty for Proving Theorem[z_f]: Standard convergence analysis of Frank-Wolfe
algorithm yields that maxzem, (Var V/\ T 7TT> < & on ITA. However, it requires a trick to

prove the following Proposition 2] I which 1mp11es that 7 is De-stationary on II.

Proposition 2. [f A < 7in/3 and a policy w satisfies maxzery (VA Vi, T — ) < %,

then the stationary measures on Il o and I1 bound each other as follows.

max(V VY 7 —m) <2 max (V,V 7 —m) (25)

7ell wella

To prove Proposition 2} note that 7’ defined by Eq also belongs to I1a, so Theorem [2]implies
m(als) > 2A. Then for any 75 € II, we have 727 E ITA and thus

max (V. V', , mp—7m) = 2 max <V Vi

ma €Il ma €Il

7T2+7T >

5 <2 max(V VY, 7 —m).

Tella

5 EXPERIMENTS

We compare our Algorithm [T| with the existing repeated retraining algorithm in a simulation envi-
ronment. See Appendix [B]for the implementation details. Then for the policies 7; obtained by each
algorithm, we plot the training curves of the performative value function V)\Ti;t (A = 0.5) and the
unregularized performative value function V', in Figurel|in Appendix B} which show that our
Algorithm [I] converges better than the existing repeated retraining algorithm on both regularized and
unregularized performative value functions.

6 CONCLUSION

We have studied an entropy-regularized performative reinforcement learning problem, obtained
its important properties including gradient dominance, policy lower bound, Lipschitz continuity
and smoothness. Based on these properties, we have proposed a zeroth-order Frank-Wolfe (0-
FW) algorithm only using sample-based policy evaluation, which for the first time converges to
a performatively optimal (PO) policy with polynomial number of policy evaluations under the
regularizer dominance condition. These theoretical results also holds for the quadratice regularizers
used in the existing works on performative reinforcement learning (see Appendix |[M|for discussion).



Under review as a conference paper at ICLR 2026

REFERENCES

Alekh Agarwal, Ofer Dekel, and Lin Xiao. Optimal algorithms for online convex optimization with
multi-point bandit feedback. In Colt, pp. 28—40. Citeseer, 2010.

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy
gradient methods: Optimality, approximation, and distribution shift. The Journal of Machine
Learning Research, 22(1):4431-4506, 2021.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. ArXiv:2204.05862, 2022.

Jalaj Bhandari and Daniel Russo. Global optimality guarantees for policy gradient methods. Opera-
tions Research, 2024.

Jalaj Bhandari, Daniel Russo, and Raghav Singal. A finite time analysis of temporal difference
learning with linear function approximation. In Proceedings of the Conference on learning theory
(COLT), pp. 1691-1692, 2018.

Gavin Brown, Shlomi Hod, and Iden Kalemaj. Performative prediction in a stateful world. In
International conference on artificial intelligence and statistics, pp. 6045-6061, 2022.

Noam Brown and Tuomas Sandholm. Superhuman ai for multiplayer poker. Science, 365(6456):
885-890, 2019.

Shicong Cen, Chen Cheng, Yuxin Chen, Yuting Wei, and Yuejie Chi. Fast global convergence
of natural policy gradient methods with entropy regularization. Operations Research, 70(4):
2563-2578, 2022.

Allison JB Chaney, Brandon M Stewart, and Barbara E Engelhardt. How algorithmic confounding in
recommendation systems increases homogeneity and decreases utility. In Proceedings of the 12th
ACM conference on recommender systems, pp. 224-232, 2018.

Yuxin Chen. Mirror descent. https://yuxinchen2020.github.io/ele522_ optimiz
ation/lectures/mirror_descent.pdf, 2020.

Ziyi Chen and Heng Huang. Accelerated policy gradient for s-rectangular robust mdps with large
state spaces. In Proceedings of the International Conference on Machine Learning (ICML), 2024.

Ziyi Chen, Shaocong Ma, and Yi Zhou. Sample efficient stochastic policy extragradient algo-
rithm for zero-sum markov game. In Proceedings of the International Conference on Learning
Representations (ICLR), 2022.

Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. Reinforcement learning for non-stationary
markov decision processes: The blessing of (more) optimism. In International conference on
machine learning, pp. 1843-1854, 2020.

Ofer Dekel and Elad Hazan. Better rates for any adversarial deterministic mdp. In International
Conference on Machine Learning, pp. 675-683, 2013.

Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Emilie Kaufmann, and Michal Valko. A
kernel-based approach to non-stationary reinforcement learning in metric spaces. In International
Conference on Artificial Intelligence and Statistics, pp. 3538-3546, 2021.

Eyal Even-Dar and Yishay Mansour. Experts in a markov decision process. In Proceedings of the
International Conference on Neural Information Processing Systems (Neurips), volume 17, pp.
401. MIT Press, 2004.

Yingjie Fei, Zhuoran Yang, Zhaoran Wang, and Qiaomin Xie. Dynamic regret of policy optimiza-

tion in non-stationary environments. In Proceedings of the International Conference on Neural
Information Processing Systems (Neurips), pp. 6743—6754, 2020.

10


https://yuxinchen2020.github.io/ele522_optimization/lectures/mirror_descent.pdf
https://yuxinchen2020.github.io/ele522_optimization/lectures/mirror_descent.pdf

Under review as a conference paper at ICLR 2026

Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. Online convex optimization
in the bandit setting: gradient descent without a gradient. In Proceedings of the sixteenth annual
ACM-SIAM symposium on Discrete algorithms, pp. 385-394, 2005.

Pratik Gajane, Ronald Ortner, and Peter Auer. A sliding-window algorithm for markov decision
processes with arbitrarily changing rewards and transitions. ArXiv:1805.10066, 2018.

LIU Haitong, LI Qiang, and Hoi To Wai. Two-timescale derivative free optimization for performative
prediction with markovian data. In Proceedings of the International Conference on Machine
Learning (ICML), 2024.

Moritz Hardt and Celestine Mendler-Diinner. ~ Performative prediction: Past and future.
ArXiv:2310.16608, 2023.

Alexander Havrilla, Yuqing Du, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-
Yu, Eric Hambro, Sainbayar Sukhbaatar, and Roberta Raileanu. Teaching large language models
to reason with reinforcement learning. In Al for Math Workshop @ ICML 2024, 2024.

Zachary Izzo, Lexing Ying, and James Zou. How to learn when data reacts to your model: per-
formative gradient descent. In International Conference on Machine Learning, pp. 4641-4650,
2021.

Stefanos Leonardos, Will Overman, loannis Panageas, and Georgios Piliouras. Global convergence of
multi-agent policy gradient in markov potential games. In ICLR 2022 Workshop on Gamification
and Multiagent Solutions, 2022.

Gen Li, Weichen Wu, Yuejie Chi, Cong Ma, Alessandro Rinaldo, and Yuting Wei. Sharp
high-probability sample complexities for policy evaluation with linear function approximation.
ArXiv:2305.19001, 2023.

Qiang Li and Hoi-To Wai. State dependent performative prediction with stochastic approximation. In
International Conference on Artificial Intelligence and Statistics, pp. 3164-3186, 2022.

Dhruv Malik, Ashwin Pananjady, Kush Bhatia, Koulik Khamaru, Peter L Bartlett, and Martin J
Wainwright. Derivative-free methods for policy optimization: Guarantees for linear quadratic
systems. Journal of Machine Learning Research, 21(21):1-51, 2020.

Debmalya Mandal and Goran Radanovic. Performative reinforcement learning with linear markov
decision process. ArXiv:2411.05234, 2024.

Debmalya Mandal, Stelios Triantafyllou, and Goran Radanovic. Performative reinforcement learning.
In Proceedings of the International Conference on Machine Learning (ICML), pp. 23642-23680,
2023.

Daniel ] Mankowitz, Nir Levine, Rae Jeong, Abbas Abdolmaleki, Jost Tobias Springenberg, Yuanyuan
Shi, Jackie Kay, Todd Hester, Timothy Mann, and Martin Riedmiller. Robust reinforcement
learning for continuous control with model misspecification. In Proceedings of the International
Conference on Learning Representations (ICLR), 2019.

Masoud Mansoury, Himan Abdollahpouri, Mykola Pechenizkiy, Bamshad Mobasher, and Robin
Burke. Feedback loop and bias amplification in recommender systems. In Proceedings of the 29th
ACM international conference on information & knowledge management, pp. 2145-2148, 2020.

Celestine Mendler-Diinner, Juan C Perdomo, Tijana Zrnic, and Moritz Hardt. Stochastic optimization
for performative prediction. In Proceedings of the International Conference on Neural Information
Processing Systems, pp. 4929-4939, 2020.

John P Miller, Juan C Perdomo, and Tijana Zrnic. Outside the echo chamber: Optimizing the
performative risk. In International Conference on Machine Learning, pp. 77107720, 2021.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In Proceedings of the International Conference on Machine Learning (ICML), volume 48,
pp. 1928-1937, 2016.

11



Under review as a conference paper at ICLR 2026

Stefanos Nikolaidis, Swaprava Nath, Ariel D Procaccia, and Siddhartha Srinivasa. Game-theoretic
modeling of human adaptation in human-robot collaboration. In Proceedings of the 2017
ACMY/IEEE international conference on human-robot interaction, pp. 323-331, 2017.

Juan Perdomo, Tijana Zrnic, Celestine Mendler-Diinner, and Moritz Hardt. Performative prediction.
In International Conference on Machine Learning, pp. 7599-7609, 2020.

Vasilis Pollatos, Debmalya Mandal, and Goran Radanovic. On corruption-robustness in performa-
tive reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pp. 19939-19947, 2025.

Ben Rank, Stelios Triantafyllou, Debmalya Mandal, and Goran Radanovic. Performative reinforce-
ment learning in gradually shifting environments. In The 40th Conference on Uncertainty in
Artificial Intelligence (UAI), 2024.

Mitas Ray, Lillian J Ratliff, Dmitriy Drusvyatskiy, and Maryam Fazel. Decision-dependent risk
minimization in geometrically decaying dynamic environments. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 8081-8088, 2022.

Aviv Rosenberg and Yishay Mansour. Online convex optimization in adversarial markov decision
processes. In International Conference on Machine Learning (ICML), pp. 5478-5486, 2019.

Abhishek Roy, Krishnakumar Balasubramanian, and Saeed Ghadimi. Constrained stochastic non-
convex optimization with state-dependent markov data. In Proceedings of the 36th International
Conference on Neural Information Processing Systems, pp. 23256-23270, 2022.

Rilind Sahitaj, Paulius Sasnauskas, Yigit Yalin, Debmalya Mandal, and Goran Radanovi¢. Indepen-
dent learning in performative markov potential games. ArXiv:2504.20593, 2025.

Sergey Samsonov, Daniil Tiapkin, Alexey Naumov, and Eric Moulines. Finite-sample analysis of the
temporal difference learning. ArXiv:2310.14286, 2023.

Ohad Shamir. An optimal algorithm for bandit and zero-order convex optimization with two-point
feedback. Journal of Machine Learning Research, 18(52):1-11, 2017.

David Silver, Julian Schrittwieser, Karen Simonyan, loannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. nature, 550(7676):354-359, 2017.

Joel A Tropp et al. An introduction to matrix concentration inequalities. Foundations and Trends® in
Machine Learning, 8(1-2):1-230, 2015.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaél Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. nature, 575(7782):350-354, 2019.

Qiuhao Wang, Chin Pang Ho, and Marek Petrik. Policy gradient in robust mdps with global
convergence guarantee. In Proceedings of the International Conference on Machine Learning
(ICML), volume 202, pp. 35763-35797, 23-29 Jul 2023.

Chen-Yu Wei and Haipeng Luo. Non-stationary reinforcement learning without prior knowledge: An
optimal black-box approach. In Conference on learning theory (COLT), pp. 4300-4354, 2021.

Chen-Yu Wei, Chung-Wei Lee, Mengxiao Zhang, and Haipeng Luo. Last-iterate convergence of
decentralized optimistic gradient descent/ascent in infinite-horizon competitive markov games. In
Proceedings of the Conference on Learning Theory (COLT), 2021.

Junyu Zhang, Amrit Singh Bedi, Mengdi Wang, and Alec Koppel. Beyond cumulative returns
via reinforcement learning over state-action occupancy measures. In 2021 American Control
Conference (ACC), pp. 894-901. IEEE, 2021.

12



Under review as a conference paper at ICLR 2026

Appendix

Table of Contents
[A"Related Works| 13
[B—Experimental Details and Resulis| 14
|C Supporting Lemmas| 14
IC.1 Frank-Wolfe Step| . . . . . ... ... ... o o 14
|IC.2  Lipschitz Property of Occupany Measure| . . . . . .. ... ... ........ 15
[C3 Various Value Functionsl . . . . . . .. .. . .. . 16
IC.4 Zeroth-order Gradient Estmation Error] . . . . . . . . oo o0 oo 21
IC.5 Orthogonal Transformation| . . . . . ... ... ... ... ... ........ 22
IC.6 BasicInequalities| . . . . .. ... .. oo 23

ID Negative Entropy Regularizer as a Strongly Convex Function of Occupancy Measure| 24

[EExisting Assumptions That Implies Assumption[3| 25
[FProof of Theorem[] 25
|G Proof of Corollary|l| 31
H_Proof of Theorem[2] 31
33
|J_Proof of Proposition][l]| 35
[K™Proof of Proposition 2] 38
[L_Proof of TheoremHl 38
[M "Adjusting Our Results to the Existing Quadratic Regularizer] 41
[N"Use of Large Language Models (LLMs)| 41

A RELATED WORKS

Non-stationary Reinforcement Learning: The performative reinforcement learning studied in this
work relates to some non-stationary reinforcement learning. For example, |Gajane et al.[(2018));
et al.| (2020); [Cheung et al.| (2020); Wei & Luo| (2021)); Domingues et al.| (2021) provide theoretical
results assuming that the non-stationary environment (rewards and transitions) change in a bounded
amount or number, and [Even-Dar & Mansour| (2004); Dekel & Hazan|(2013); Rosenberg & Mansour|
study reinforcement learning with adversarial reward functions.

Performative Prediction: Performative prediction proposed by (Perdomo et al.} 2020) is a stochastic
optimization framework where the data distribution depends on the decision policy. Compared with
performative prediction, performative reinforcement learning is similar but more complex due to the
policy-dependent transition dynamics.

Various algorithms have been obtained with finite-time convergence to various solutions of per-

formative prediction. For example, Mendler-Diinner et al| (2020); Brown et al| (2022)); [Li & Wai

(2022) converge to a performatively stable solution that approximates the performatively optimal
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Figure 1: Experimental Results.

solution (the primary goal). [zzo et al.| (2021); Roy et al.| (2022); |Haitong et al.|(2024) converge to a
stationary point of the nonconvex performative prediction objective. [Miller et al.| (2021); Ray et al.
(2022)) converge to the performatively optimal solution (the primary goal), which relies on the strong
assumptions that the loss function is strongly convex with degree dominating the distribution shift and
that the data distribution satisfies mixture dominance condition or belongs to a location-scale family,
such that the objective function becomes convex as proved by (Miller et al.| 2021)). In contrast, we
have proved an analogous result that the objective of performative reinforcement learning (harder than
performative prediction) is gradient dominant (see our Theorem [I)) without these strong assumptions.
In particular, our condition of regularizer dominating the environmental shift is analogous to their
condition of strong convexity dominating the distribution shift, but our value function still remains
nonconvex which is more challenging than their strongly convex losses.

A survey of performative prediction can be seen in (Hardt & Mendler-Diinner; [2023)).

B EXPERIMENTAL DETAILS AND RESULTS

We compare our Algorithm [T| with the existing repeated retraining algorithm in a simulation envi-
ronment with 5 states, 4 actions, discount factor v = 0.95, entropy regularizer coefficient A = 0.5,

as well as transition kernel pr(s'[s, a) = s~ f%ﬁ‘(;)lj)ﬁzl(ill'ﬁ; 17 and reward 7~ (s, a) = m(als) that

depend on the policy 7. We implement our Algorithm 1 for 401 iterations with N = 1000, 8 = 0.01,
A = 1073, 6 = 10~* and the performative value functions are evaluated by value iteration. The
repeated retraining algorithm obtains the next policy 7,11 by applying the natural policy gradient
algorithm (Cen et al.l |2022) with 401 iterations and stepsize 0.01 to the entropy-regularized rein-
forcement learning with transition kernel p,, and reward r,. Both algorithms start from the uniform
policy (i.e. mo(a|s) = 1/4). The experiment is implemented on Python 3.9, using Apple M1 Pro with
8 cores and 16 GB memory, which costs about 110 minutes in total. Then for the policies {m; }+°%
obtained by each algorithm, we plot the training curves of the performative value function V”‘
(defined by Eq. with A = 0.5) and the unregularized performative value function VO’” (deﬁned
by Eq. (6) with A= 0) on the left and right side of Figure|[I|respectively, which show that the existing
repeated retraining algorithm stucks at the initial uniform policy 7 since g is a performatively
stable (PS) policy, while our Algorithm [I| converges well on both regularized and unregularized
performative value functions in a similar pattern.

C SUPPORTING LEMMAS

C.1 FRANK-WOLFE STEP

We repeat Lemma[T]as follows.
Lemma 2. The step (22) has the following analytical solution.
Aja # a(s)
T = 26
el = {0 e o

14



Under review as a conference paper at ICLR 2026

where a4(s) € argmax,gx,s(m)(als).

Proof. For 7, defined by Eq. (26) and for any 7 € IIa, we have

<7~Tt -, ﬁA,(S(Wt»

= " gns(m)(als)[7i(als) — m(als)]
=> {@A,é(m)[dt(s)\s] [1—A(JA] = 1) = 7[a(s)|s]] - 9as(me)(als)[m(als) — A]}

a#at(s)

(g) Z {Qz\,é(ﬂ't)[dt(s)\s} [1 —A(JAl-1) - ﬂ'[&t(s)|s]]
ns(rlas)ir(ol) - Al
aas
{gu m)fan(s)|s][1 = A(IA] = 1) = wlad(s)]s]]

- Qx,é(ﬂt)[&t(S)IS] [1 = m[a(s)]s] — A(lA| - 1)] }
=0,
where (a) uses 7(als) — A > 0 and g 5(m:)(als) < §x.s(m)a(s)|s]. Therefore, Eq. holds,
O

that is, 7y = arg max, cqy, (7, gx,s (7))

C.2 LIPSCHITZ PROPERTY OF OCCUPANY MEASURE

Lemma 3 The occupancy measure d. ,, defined by Eq. (I) 2) has the following Lipschitz properties for
anym, 7’ €1l, p,p’ € Pand 5 € S.

S dup(6) = drp(o)] < T mx[(ls) = ()] < Mn | @)

3 e (4) ~ 9 < 1 max o/ Clsse) sl < Tt

D lder gy (8,0) = dr (s, )] < %mSaXH?T (-ls) = W('IS)lIlﬂLﬁHﬁXIIp’('ISva)—p('lsva)lh
< \/WII | + ylfp’m (29)

Proof. The first < of Egs. (27) and (Z8) follows from Lemma 5 of (Chen & Huang| 2024). The
second < of Egs. and (28) uses ||z||; < v/d|z| for any z € R%

Eq. (29) can be proved as follows.

S ldar r(5,0) = dr (5. 0)
- Z ldor ()7 (als) — dr p(5)(als)]
<Zdﬂ/ (8)|(als) — 7(als)] + (als)ldnr () = drp(5)
<Z () (45) = 74l + 3 o (5) = o)
< max /(") - (3" o g2 i [ ()=l 2 ma 9/ Cls,0) = pCls, )l
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1
< () = mCl)ls + 1 max ! (. o) = pC s o)
\/ |A\ |5|
H | + 2 ||P pll,
where (a) uses Egs. (IT_7|) and @) O

C.3 VARIOUS VALUE FUNCTIONS

Define the following value functions.

3

N 0,r) DBy | 30" (0, ar) = Alog ' (arlsi)]|s0 ~ ]

t=0
1
Zm Sza: drp(s,a)[r(s,a) — Nog ' (als)], (30)
Va(m, ', p.rs8) “Ei | 307" r(st01) = Alog 7 (arfsi)] |0 = s, 31
t=0

WK

lef.
Qu(m. 79,735, 0) LBy [ S5 r(s1,00) = Mg (aulsi)]|so = 5,00 = a

ﬁ
Il
<

:7"(87 a’) - )‘log 7r'(a|s) + ’YZP(8/|S, a>VA(7T7 77/7107 T3 8/)‘ (32)

S/
Note that the value function (6) of interest can be rewritten into the above functions as follows.
V)\ﬂ:ﬂ” =Jx (Wv T, Pr s rﬂ")
:ZP VAT, 70, prr s T S)

72/7 QA(’/T T, Pty T3 S, a’)

Hence, we will investigate the properties of the value functions (30)-(32) as follows.
Lemma 4. For any « S I, »p IS P, r € R, we have
V)\ﬂ:ﬂ'7 ‘])\(ﬂ-a T, P, 7‘)7 V)\(ﬂ-a TP, T 5)7 Qk(ﬂ-v USYZRAED) Cl) € |:O7 %O:gylm} .

Proof. We will prove the range of J (7, 7, p, ) as follows using (s, a) € [0, 1]. The proof for the
other value functions follow the same way.

0 < Ja(m,m.p,7) =E M[Zv r(se,ar) = Aog w(arls,)]
<3 N[ S0t S nlals) og wlalsy)]
t=0 t=0 a
! +/\Z log | A]
1 7 1log
<1+)\log|y4|.
ST,
O
Lemma 5. The gradients of J\(m, ', p,r) defined by Eq. (30) have the following expressions.
aJ)\(ﬂ-aﬂJap7 T’) 7d7T,P(S)Q>\(7T77T,7p7T;57a) (33)

or(als) B 11—+
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AIx(m, 7' p,7) _ Az p(s,a) (34)
or'(als)  (1—v)n'(als)’
aJ 9 /’ b dT( b
5;&7(75’7[9, Z)T) — ipis,ya) [r(s,a) — Alogn'(als) +yVa(m, 7', p, 75 "), (35)
AJx(m, 7' p,r)  drp(s,a)
r(s,a) o 1l—5 (36)
0Jx (7T7 ™D, T) :dﬂ',P(s)[Q/\ (71—7 ™D, T8, a) - )‘] (37)
o (als) L=y '

Proof. Eq. (33) follows from the policy gradient expression in Eq. (7) of (Agarwal et al| 2021), with
reward function (s, a) replaced by 7(s,a) — Alog ' (als).

Eq. (33) can be proved as follows.

(@) dx p(s)(als)
L—n

_ dmiv(sa a)

==

where (a) uses Eq. (9) in (Chen & Huang, [2024)).

Eqs. (34) and (@) can be proved by taking derivatives of Eq. (30).

Based on the chain rule, Eq. (37) can be proved as follows by adding Eqs. (33) and (34) with 7/ = 7.

3JA(7T,7T,p,7“)7{5JA(7B7T',2?,T) 3JA(7T77T’,p,7“)}
N or(als) or'(als)

p(8/|87 a’) [’I"(S, a’) - )\logw(a|s) + ’YV)\(T(-a 7T/7p7 T sl)]

[7(s,a) — Mog(als) + yVa(m, 7', p, 7 5")],

or(als) rl=n
drp(8)Qn(m, T, p, 155, a) My p(s,a)
- 1 (0~ m(als)
e (5)[Qa(r mp.ri5,0) — N
1—~ ’
where the final = uses d ,(s,a) = dr p(s)7(als). O

Lemma 6. The function J defined by Eq. (30) has the following Lipschitz properties for any
m,r' €Il p,p’ € Pandr,r’ € R.

|J)\(7T/77T/apv 7”) - J)\(ﬂ',’ﬂ',p, 7A)| < L7r max || 10g7‘r/(‘|8) - IOg’lT(‘S)” (38)
|J)\(7T,7T,p/,7")—J)\(ﬂ',’ﬂ',pﬂ"” < LP”pI_pH (39)
/ /
. =l _ = )
|JA(7Ta7T7paT) J>\(7T,7T,p,7“)| = ]-_’Y = 1_,7 ( O)
IVpIx (@', 7' 1) = Vpa (0, 7, p, ) || < £x max [[log 7' (-]s) —log 7(:|s)]| (41)
vaJ)\(ﬂ—vﬂ_aplar) - VPJ)\(,]TvTraI% 7’)” S EPHpI _pH (42)
||V;DJ)\(7T/a ﬂ-/ap/a T/) - VPJA(’]T? T, P, T)H
S
<t maxlog ' (15) g (1) + 6~ + 22 1~ rl @)
||VTJ)\(7T/77T/7P/7T/) - VT‘J)\(W77Tapa T)”
e (1) = 7l + ymassa ' C1s,0) ~ pCs, )l )
- (1—=7)?
||V7TJ)\(7TI,7T/,p/,7J) - Vﬂ‘])\(ﬂ-77rap7 ’I")H
Al(1 + 2\ 1log | A
< (P2 1) 1o (1)~ Tog )]
2¢/[S](1 + Alog | A]) / VIA[IT = rlls
L |p - p| + YA = Moo 4
+ /Al it |l = pll+ (45)

17



Under review as a conference paper at ICLR 2026

where L, _ VIAI@R—y+yAlog|A)) L, \/IS\(1+/\lc2>g;|Al \/lSHA(2+3v3Mog\A|) and 0. —
- - ’ 1 p =
27\S|(1+)\10g|A\) (1—v)2 (1-7) v)
(1—7)3

Proof. Egs. (38), (39), @I) and [@#2) directly follow from Lemma 6 of (Chen & Huang| 2024). Eq.
(@0) can be proved as follows.

\Amnm—ﬁmn|41 7 o, (5, 0) =)
Zdﬂp s,a)|r'(s,a) —r(s,a)|
772dﬁp s,a)||r" — 7)o

1

!
= _ <
I = rlle < =

Ir" =]

To prove Eq. (@3), note that
‘8J>\(7r,7r,p,r') B 8J>\(7r,7r,p,r)‘
Op(s'|s,a) Op(s'|s, a)

drp(S,
(i)# ’T/(S, a) - T(S7 a) + ’Y[V)\(ﬂ.7 ﬂ-lapa 7"/; S/) - V)\(ﬂ-a 77'/717» T S/)”
-7

) dy (s, 0) -
<TEEEL r — rlloo 4+ D2 = e
1 v t=0
drp(s,a)
<P =1 (46)
Gl =l

where (a) uses Eq. (33) and (b) uses Eq. (31). Therefore, we can prove Eq. [@3) as follows.
IVpa(n’ 7', p', 1) = VpJa(m,m,p,7)|

<IVpda(a' 7,0’ r") = Vo da(m,m, o' )l + IVpda(m, 9", 1) = Vi (m, m,p, )|
+ |Vpda(m,m,p,r") — Vpda(m, m,p,7)||

aJ)\ 7T m™p,T ) 8J,\(7r,7r,p,r) 2
Op(s'|s,a) op(s'|s,a)

(a)
< b max | log ' (]5) — log (1) |+, I’ — pll + Zi

() T =T 5o
<t [og 7' (19) ~ logm(19)] + 118 ol + | =00 5

s,a,s’

VIS

W [ = rllo,
where (a) uses Egs. (1)) and (42) and (b) uses Eq. (46).
Then, we prove Eq. (#4) as follows.

IV da(x', 7' ') = Vo d\ (m,m,p,7) |

<lx max || log7'([s) —logm(-[s)]| + &llp" — pll +

@ |dnp = Al
I—x
ey = drplln
< T
(b) 1 . 5 /
< Wmsax H7T (|8) - 7T(-|S)||1 + W n;g;,x ||p (-\s,a) _p('|57a)|‘17

where (a) uses Eq. (36), (b) uses Eq. (29).

18
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To prove Eq. (@3)), we will first prove the following auxiliary bounds.

Qx(m,m,p,r; s,a)—)\(é) [—)\, Hi\l_Ong'A'—/\} = |Q>\(7r,7r7p,7"; s,a)—)\| g%()ng (47)
where (a) uses LemmaEL
[Va(r' 7' p' v’ s) — Vi, m,p, 3 8)]
S, 7 pl s s) = Va(m,m,pl s o' s) |+ Vi, mpls 15 8) = Va(m, o p, s )|
+|Va(m, 7, p, 75 8) = Va(m, m,p, 75 8)|
(Z)L max || log 7' (-|s) — : - I’ = rlle
< Ly max [[log ' (+[s) —logm(:|s)|| + Lp|lp" — pll + o (48)

where (a) applies Eqs. (38)-(@0) to the case where the initial state distribution p is probability 1 at s
(so Jx(m, m, p,r) becomes V) (m, m,p, r;5)).

|Q/\(7T ™ p,’f‘/'S a) - Q/\(ﬂ- 7T7p7T;Saa)|

W{ZV (52, ar) (Suat)]‘so =s,a9 = a} ’

oo

SEW,p[ Y (se, ai) — 7 (st, at)\‘so =s,a9 = a]

(a)

H»
O

<E ,p[Zv I+ = 7lloo 50 = 5,0 = a

; (49)

where (a) uses Eq. (32).

(a)
S>\| IOg’]T/((L|S) - 10g’ﬂ'(&|8)‘ + 7’ Z[pl(s/‘sva)VA(ﬂJ,ﬂ-,vp,vr;s) —p(SI‘S7G)V)\(7T,7T,p7’I’;S)}
S/
S>\| logw/(a|s) - 10g7T(G|S)‘ + ’yzpl(sl|sva)‘vz\(7rlvﬂ-/aplar;8) - V)\(ﬂ-aﬂ—apﬂ’r; S)|
+WZ|P "Is,a) = p(s'|s,a)||Va(7, 7, p, 75 5)|

(b)
<Allog7'(als) —logm(als)| + 7 Lx max||logx'([s") — log w(:[s")| +vLyllp" - pll

1+ Alog|A
+ WD ) — s, )l (50)

where (a) uses Eq. (32)), and (b) uses Eq. (#8) and Lemma[d]
Note that

(1— 7)‘8J,\(7r’,7r',p’,r’) 3 8J,\(7r,7r,p,r)‘
on'(als) Oon(als)

D i ( /s)[QA(w 7 P15 5,a) — Al = e p(5)[Qa (7 py 73 5,0) — |
s (8) = dm p(][QA(T s 7', 775 5,0) = A]

+dwp(8)[QA(7T w0 ' s,a) — Qa7 pl s, a))]

+dyp(8)[QA(F, 7 P s 8, a) — Q,\(T(,TI‘,]),T;S,G)”
S‘dw/,p/ (8) — drp(s | . |Q>\ ' p s a) — )\|

+ dﬂ7p(s)|Q>\(7T',7r’,p’,r’; s,a) — Qx(r' 7' p' s, a)|

19



Under review as a conference paper at ICLR 2026

+ dﬂ',P(s)|Q)\(7r/7 7rl7pl7 T; 87 a) - Q)\(ﬂ-a 7T7p7 71; Sv a)’
drp(8)I7" = 7l

)1 4 Alog | A|
< g (5) = )] + -
+dy p(3) [)\| log 7' (als) — logm(als)| + 7L, max || log '(:|s") — log 7(-|s")||
(1 + )\log |A])

+Lyllp’ — pl + T Ip'(-]s, @) = p(:ls, @)1 |,

where (a) uses Eq. (37), (b) uses Eqs. #7), @9) and (50). Applying triangular inequality to the bound
above, we can prove Eq. (@3) as follows.

HV Jk(ﬂ-lvﬂ-/vp/ﬂﬁ,) - VWJX(Wvﬂ-ap7 T)H

/_
_1+)\log‘./4| Z‘d > 7p(s)|2—|—711_7:l°° ,Zdw,p(s)Q

+A Zdwp 2llog 7' (als) — log m(als)|?

+ YL max [[log 7' ([s') — log m(-|s")| + YLyl =PI, [>_ drp(5)?

1+ Alog|Al)
RIERVED ST

2llp (-]s,a) = p(-|s, a) 17

VIA|(1+ Alog|Al) VIA =7l
< | ‘( Og' | Z‘dﬂ"p/(s)_d,p(s)|+ | |HT T”

1—x — " 1—n

+ VE ()10 7(15) — log n(-Js)

+ [yLr max|[log 7' (-|s") —logm(-|s")]| + vLyllp" = pll] /I Al

~v(1+ Xlog | Al)
+w |S|Z||P (Is,a) = p([s.a)]?
Al(1+ Alog |A ’ !
< | |((17)le |)[m§XH7r ([s) =m(]s)llx + max|p (-s,a) = p(-|s, a)]|1]
\/‘THT — e Amax [[log ' (-|s') — log m(-|s")]

Al [WLﬂ max || log 7' (") — log m(:|s") | + vLy|lp" — pll]
|S|(1 4 Alog|.Al)

/_
1=~ Ip" =
O[] Al(y + 2\ log |.A)) . ,
< . — .
<| iy + L] max | log ' (1s') ~ log w(-|s")|
2/|S|(1 + Alog |A]) / VIAIF =7l
A2+ Lol =l A,

where (a) uses Lemma|[3] (b) uses [|7/(:|s) — 7 (:|s)[1 < [[log 7' (:|s) — 10g7r(-\s)||1,

VIS[(1+ X log |A])
1P (1s,a) — pCls,a)lli < VISTIP (I, a) — pCls,a)ll < ISTIp — pll, DASGEAREAD <
vV ISI[A[(1+Xlog |A]) A A|log | A

1—)2 and \ < ﬁ ]

20



Under review as a conference paper at ICLR 2026

C.4 ZEROTH-ORDER GRADIENT ESTIMATION ERROR

We import Theorem 1.6.2 of (Tropp et al.,[2015) as follows.

Lemma 7 (Matrix Bernstein Inequality). Suppose complex-valued matrices Sy, ..., Sy € Ch*d2
are independently distributed with ESy, = 0 and ||Sy|| < C foreach k = 1,..., N. Denote the sum

N . . .
ZN =Y j._, Sk its variance statistic as follows

) }, (51

N N
v(Zy) = max [H Z]E(SkS}:) ZE(SZSk)‘
k=1 k=1

where S}, denotes the conjugate transpose of Sy. Then for any € > 0, we have

—€2/2
P{||ZNn] > €} < (di +d [—} . 52
U2n] 2 €) < (@ + e [ oo (52)
Applying the above lemma to vectors, we obtain the following vector Bernstein inequality.
Lemma 8 (Vector Bernstein Inequality). Suppose independently distributed vectors 1, . .. ,xx € C4

satisfies ||x|| < cforeachk = 1,...,N. Then for any n € (0, 1), with probability at least 1 — 1),
we have

N
H% ;(azk - ]Ezk)H < 34—;[ log (%) + 2c %log <%) (53)

Proof. Note that Sj, = x, — Ex, satisfies the conditions of Lemma([7|with d; = d, do = 1 and C
replaced by 2c¢. In addition, v(Z ) defined by Eq. satisfies v(Zy) < 4Nc? since

max[[[ S Skll, 1Sk Sk %] < ISE I 1Sk]* < 4c®.

€= %bg (%) +c¢y /2N log (%)

Therefore, Lemma(7]implies that

For any n € (0, 1), let

1< € —€2/2
P{NH ’;(w’“ N Exk)” = N} < (d+Dexp [4Nc2 ¥ 206/3} =7

which implies that with probability at least 1 — 7, we have
N
1 € 4c d+1 2 d+1
= ~Eay)| < - = g log () + 20 [ log ().
NH§(% || < § = 35 108 77)+C N %8 77)

For any function f : R? — R, obtain the following zeroth-order stochastic estimator of the gradient
Vf.

O

gs(x) = 2%‘\[75 Z[f(m + du;) — flx — dwy)u; = Vf(x) (54)

where § > 0 and {u;}¥, arei.i.d. samples of the uniform distribution on the sphere Sy = {u € R% :
[[ull = 1}.

Lemma 9. Suppose f : R — Risan L ¢-Lipschitz continuous and € ¢-smooth function. Then for
any 1 € (0, 1), with probability at least 1 — 1), the gradient estimator g5 defined by Eq. has the
following error bound.

ALjd . d+1 d+1
3N 1g(

2
llgs () = Vf(z)] < T) +2Lydy | 57 log (T) + 845 (55)
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Proof. Note that g5 ;(z) def A 1f(x + 6u;) — f(x — 6u;)]u; has the following norm bound

d d
lgs.i(@)| < 55 |F (@ +0ws) = @ = us)| - Jwill < 55 - Lyl20ws]| = Lyd. (56)

Define the following smoothed approximation of f as follows.

F5(2) € Epumiemy [f (@ + 60)], (57)

where Unif(B,;) denotes the uniform distribution on the ball By o {u € R? : ||ul| < 1}. Then
based on Lemma 1 of (Flaxman et al., [2005)), we have

Elgsi(z)] = Vfs5(z) = Eyntnit@y) [V f (@ + 0v)]. (58)

Therefore, applying Lemma|g]to g5 ;(), the following bound holds with probability at least 1 — ).

1< AL ¢d d+1 d+1
| Dlgsat) - Vs @)]| < S 10g (= g ) +2L5d log( j; ) 69
=1
Note that
[V fs5(@) = V(@) = |[[Evavmit@a [Vf(z + 6v) = Vf(@)]]| < 6. (60)

As aresult, we can prove the conclusion as follows by using Egs. (59) and (60) above.

los(x) ~ V)l =] [ 5 Zgﬁ (2)] - V()|
<l Zgaz )| = Vis@)| + 19 45(@) = V5 @)

ALpd | d+1 d+1
il | ( ) 2L +d —1 ( ) 50
< 3N og 7 + f og 7 + oty

C.5 ORTHOGONAL TRANSFORMATION

Lemma 10. There exists an orthogonal transformation T from the space R4~ to Z4 = {2z =
[21,...,24) € RY: >, 2, = 0}, that is, T is invertible and satisfies the following properties for any
r,y € Zgand o, B € R.
T(ox + By) =aT (z) + BT (), (61)
(T(@), Tw)) =), (62)

Proof. Tt can be verified that R% admits the following orthonormal basis with (e;, e;j) = 0 for any
1 # jand |e;| = 1.

1
er =———[1,1,...,1,—k,0,0,...,0] e R: k=1,2,...,d — 1.
k(/f-i-].) N——— N———
ks (d—k—1) 0’s
1
eq =—=[1,1,...,1] e R%.
d \/g[ - ]
Define the transformation 7" at x = [z, 2o, ..., 2q_1] € R as follows.
d—1
= zie;. (63)
i=1
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Since Z is a linear subspace of R4 orthogonal to ey, Z; admits the orthonormal basis {ei}f;f. Hence,
T (x) € Z4. Conversely, for any y € Z, there exists unique z € R?~! such that y = 2?2_11 Tie;.

Hence, 7 : R%~1 — 24 is invertible.

Forany z = [71,...,24-1],¥ = [Y1,---,¥a—1] € R¥ ! and a, B € R, we can prove Egs. and
([62) respectively as follows.

d—1

T(az+ By) = > (ax;+ Byi)e;
1
d—

=« Z zie; + Z Yi€;

—aT(@) + AT().

%

C.6 BASIC INEQUALITIES

Lemma 11. For any € € (0,0.5] and x > 4~ ! log(e™1), the following inequality holds.

0< log x <

(64)

1
Specifically, any x > 3 sansﬁes =<3

Proof. As ¢! > 2, we have z > 4e tlog(e™t) > (4)(2) log(2) > 5.54, so logz > log5.54 >
1.71, which proves the first < of Eq. (64).
Note that the function f(z) = k’% has the following derivative

) = 1—logx

where < uses logz > 1.71. Hence, f is monotonic decreasing in > 4e !log(e™!) > 5.54,
Therefore, we prove the second < of Eq. (64) as follows.

& <0,

log x < log[4e~1log(e71)]

xe ~ e[dellog(e~1)]
_log4 +log(e") +log[log(e")]
B 4log(e~1)
(a) -1 -1
< log4 log(e™") +log(e™ ") 1, ©5)
4log(2) 4log(e~1)
where (a) uses €1 > 2 and logu < u for u = log(e™1).
When 2 > 3, f/(z) = 1952 < 0,50 f(x) < f(3) = 252 < § 0

Lemma 12. For any 7,7’ € II, we have |7’ — 7| < 1/2|S].
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Proof.
—7|? = Zm (a|s) — m(als |2<Z 2(als) + 72 (als)] Z s) +7(als)] = 2|S|.
O

D NEGATIVE ENTROPY REGULARIZER AS A STRONGLY CONVEX FUNCTION
OF OCCUPANCY MEASURE

The negative entropy regularizer () can be rewritten as follows

L) i )
Hﬂ'/(ﬂ.) = Eﬂ,pw/7p[z’}/t logﬂ'(at|st)] = 7Zd D 5 a) log d’pﬂ(())’ (66)
t=0 TP’

where dr , ,(s) = >, drp_ (s,a’). Hence, it suffices to prove that the following function of
occupancy measure d is strongly convex.

d(s,a)
:;d(s,a)log i) (67)

where d(s) = >, d(s,a’). For any o € [0,1] and occupancy measures d;,dy, denote d, =

ad; + (1 — a)dy and the corresponding policy as w4 (als) = dg(?g). Then we have

QH(dy) + (1 — a)H(do) — H(d,)
:Z [adl(s,a) log 71 (als) + (1 — a)do (s, a)log mo(als)

s,a

— ladi(s,a) + (1 — a)dy(s,a)]log ﬂa(a|s)}

=2 [adl(s,a) log m(als) + (1 = a)do(s,a)log WO(a|S)}

7o (als) Ta(als)

-2 [ (s)ma (el og 4 1 (1 — a5y (afs) g~

mo(als) o(als)
—Z |y ()KL ()| ma (als)] + (1 = @)do(s)KL[o(-|s) | ma(als)]]

@1
> =

{adl(S)llm(-IS) = ma(C[$)IF + (1 = a)do(s)[[mo(-|s) — m(-b)llﬂ

S

2D S [allmi (1)~ waCIs)IE + (1~ )molcls) — w1l

S

Zg {amsax 71(-s) — mal:]8)|1? + (1 — a)mgx lmo(:|s) — 7Ta(|S)Hﬂ

() D(1 —
< M [a||d1 —do|?+(1—a) max l|do — daHﬂ
D(1—
= PO a1 — )2y — doll? + (1~ @)y — do3]
:M -D(1 —7)|ldy — do|3. (68)

where (a) uses Pinsker’s inequality, (b) uses Assumption [3| (c) uses Eq. with p’ = p. The
inequality above implies that H (d) is D(1 — )-strongly convex, so the negative entropy regularizer
@) can be seen as a D-strongly convex function of the occupancy measure dy .
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E EXISTING ASSUMPTIONS THAT IMPLIES ASSUMPTION [3]

The following assumptions have been used in the reinforcement learning literature. We will show
that each of these assumptions implies Assumption [3]

Assumption 4. (Bhandari & Russo,|2024) p(s) > 0 for any s € S.

Assumption 5. (Agarwal et al., [2021} |Leonardos et al., |2022; |Wang et al.| 2023} |Chen & Huang,
2024) D), := SuPrer pep ldrp/plloe < 00

Assumption 6. (Wei et al.| 2021} |Chen et al.| 2022) There exists a constant jimin > 0 and mixing
time tix € N such that under any policy m € 11 and transition kernel p € P, the stationary state
distribution [, ,,(s) has uniform lower bound minges for p(S) > fimin, and

A1V [Prp,p(Sty = ) fimp] < (69)

N

where Pr. , ,(st,.. = -) denotes the state distribution at time t,,;,, under the policy T, transition kernel
p and initial state distribution p, and drv denotes the total variation distance between two probability
distributions.

Proof of Assumption @=Assumption 3} For any policy 7 € II, transition kernel p € P and state

s € S, we have
s) :Zdﬂ,p(s,a)

(@) =
= Z(l =) Z’Ytpmp,p{st =s,a; = a}
a t=0

=) Z'Ytpmp,p{st = s}
t=0

(1= )Pr 50 = 5}

>
=(1=7)p(s)
2(1 ~ ) min p(s).

As S is a finite state space, p(s) > 0,Vs € S implies that min,cs p(s) > 0. Hence, Assumption 3]
holds with D = (1 — ) minses p(s) > 0.

Proof of Assumptlo J—)Assumptlonl: 3L If p(s) = 0 for a state s, then Assumption [5|implies that
drp(s) = N> ooV Prpp{si =5} =0 for any 7 € Il and p € P, which means the state s
will never be Vlslted Therefore, we can exclude all such states s from S such that Assumption [4]
holds, which implies Assumption |3|as proved above.

Proof of Assumption [6}=-Assumption 3} Eq. implies that for any n € N, we have
1
dry [Pw’p,p(sntmax = Nw,p = Z P p,o{Sntme = 5} — brp(s)] < an

Select n = [log(y.1,)/log4]. Then the bound above implies [Py p ,{Snt = 5} — trp(s)] <
Hmin/2 for any state s, which along with fir ,(S) > fimin implies that P , ,{sns... = S} > fimin/2
Therefore, we can prove Assumption [3|as follows.

- Nlmi Hmin M Tmix
dﬂ—vp(s) :(1 - ’y) Z’ytpﬂ—spsp{st = S} Z (1 - ,y),y tle]P)ﬂ—’p7p{sntmix = S} Z T’y k (1 - ’y)'

F PROOF OF THEOREM I

Fix any mo, 7, € II. For any a € [0, 1], denote do = adyr, p, + (1 = @)dry p, > Talals) = 2’ SS‘;)
where d(s) = Y_, da(s,a’), and po = pr, . It can be easily verified that dy = drg py, d1 = dr, p,

25



Under review as a conference paper at ICLR 2026

and d, = ady + (1 — a)d;y. Then we can obtain the following derivatives and their bounds about
T de in Egs. (T0)-(76).
da(s)[d1(s,a) — do(s, a)] — da(s,a)ldi(s) — do(s)]

d2,(s)
_[adi(s) + (1 — a)do(s)]ldi (s, a) — do(s,a)] — [adi(s,a) + (1 — )do(s, a)][d1(s) — do(s)]
()
_do(s)d1(s,a) — do(s,a)d;(s)
dz(s)
_do(s)dy(s)[m1(als) — mo(als)]
—20 2 (5 0 : (70)
Hence,
dmg ||2 do(s)dy(s 71 a| ) — mo(als)] |2
o N e
(@) [max[do(s), d (s)} minfdo(s), di(s)]1? oy
< e ek molals)
Cp- 2> “[mi(als) — mo(als)]* < D72|jmy — mo|1?, (71)

s,a

where (a) uses dq (s) = adi(s) + (1 — a)do(s) > min[dy(s), d1(s)] and (b) uses Assumption 3]
Then by taking derivative of Eq. (70), we have

£ 1) = - ek~ soee) = e )
Hence,
d*7q |2 2do(s)d1 (s)[m1 (als) — mo(als)][d1(s) — do(s)] |
H da? Z’ deht adl(s) (l—oa)do(s)]3 : ’

(%) Z {2 max|dy(s), d1(s)] min[do(s), d1(s)]|d1(s) — do(s)] } 2

a|S)—mola|s 2
D2 min[do(s), di (5)] [m1(als) —mo(als)]

s,a

<(@D?)? max [|di (s) — do(s)[*] 3w (als) — mo(als)]

s,a

<D~ woll?[ 3 1 (s) — dofs)]]

S

(2(2D72 2 [ V |A| H H TV |S‘

2
Pllm = o2 2 e |

16 V1S

2
L = ol

—~

c) r A
2 @D 22|, — o2 [ A

[ — ol + 2

B ry(epy/IS| + 2
§(2D 2)2||7T1—7T0||4 ’7 P | - |)] ,

where (a) uses d(s) = adi(s) + (1 — a)do(s) > min[dy(s), d1(s)] > D, (b) uses Lemma|3] and
(c) uses Assumption [T}

a9 72 [ |

(73)

dz,(s)
| do(s)di(s) 2do(8)d1(8)dn (s, a)
|2 B () — do(s,0)] = =T [da () — do(s)]|
<D a1 5.0) — do(s, )] + 22Dy o) — oo
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< max|[dy(s), d1(s)] min[do(s), d1(s)]
= )

min®[do(s), di(s)]
<D™ [|da(s, a) — do(s, a)| + 2ma(als)|d1(s) — do(s)[]. (74)

[|d1(s,a) — do(s,a)| + 2ma(als)|di(s) — do(s)|]

L 145, @)pals]s, 0)

do
=pa(s'|s,a)[d1(s,a) — do(s,a)] + da(s,a) - %Wa(cds) - VaDr, (8|5, a)
pa(8/|8,a)[d1(8,a)do(s,a)]+da(s’a)dO(S)dlilz)([:)l(a|8)_7r0(a|8)] . vrrpﬂ(, (S/|S,CL) (75)

Then for any «, &/ € [0, 1], we have

[ o (5 (]5,0)] = 3 A, @)pa |5, 0)]

oo (5/15,0) = pa(s']3,0)| - 1du (5, @) — do(s, )| + do(s)ds (s)|m (als) — molals)]

| 9, (515,00 = T (5 | o) o)
(b)
Leplimar — malldi(s,0) — dofs, )]

max|[dy(s),d1(s)] min[do(s), d1(s)]

min[dy(s), d1(s)]
+ D™ ley|mi(als) — mo(als)| - [|di(s, a) — do(s, a)| + 2ma(als)|di(s) = do(s)]] - |a’ — a

IVapr, (s']s, a)ll

+ mar(als)|mi (als) — mo(als)| - < SpllTar = mal|

Ce,D M m — ol - |’ — o - |dy (5, ) — do(s,a)
+ Spmar(als) - [mi(als) — mo(als)| - [do(s) + di(s)] - D™ |m — mol| - [a” — af
+ D_16p|7r1(a|3) —mo(als)]| - [|d1(s,a) —do(s,a)| + 2w (als)|di(s) — do(s)ﬂ o’ =«

@ ,
gédp(sva”a 7O‘|a (76)

where (a) uses Eq. (73), (b) uses Assumptions [[[{2} do (s, a) = dos (8)Tar(als), dor(s) = a’dy(s) +
(1 — a)do(s) > min[dy(s),d1(s)] and Eq. (74), (c) uses Assumption [3|as well as Eq. , (d)
defines {4y (s, a) as the following Eq. and uses 7, (als) = ad1(s)r;é;z(lzgig:zgjgggvm als) <
mo(als) + w1 (als).
Lap(s,a) =2D e, ||m1 — moll|di(s,a) — do(s,a)]
+2D ™ ep[mi(als) + mo(als)] - [m1(als) — mo(als)| - |di(s) — do(s)]
+D 71 Sp[mi(als) + mo(als)]:|mi(als) — mo(als)|- |1 — ol - [do(s) + da(s)]. (77)

Denote e, (s) = dxr, p, (s) — da(s) as the error term due to the policy-dependent transition kernel
Pa = p,,alﬂ Note that the occupancy measure (2) satisfies that the Bellman equation (3] repeated as
follows.

drp(s') = (L=7)p(s) +7 Y dnp(s)m(als)p(s'|s,a), s €8. (78)

Therefore, the error term e, (s) satisfies the following recursion.

ea(s)
=dy, p. () —adi(s) — (1 = a)dy(s")
=7 [y po (9)Ta(al$)pa(s']s, ) — adz, p, ()71 (als)pr(s']s, a)

'If pr,, = p does not depend on the policy 7., it can be easily verified that e, (s) = 0 forall s € S.
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= (1 = @)dug po (8)mo(als)po(s'] s, a)]
=7 Z[ea(s)ﬂa(a|s)pa(8/|s7 a) + da(s, a)pa(s/‘& a) — adi (s, a)pl(s/‘& a)

— (1 — a)do(s,a)po(s’]s,a)]. (79)
The above inequality implies that

S leals)]
<y 3 [leals)[malals)pa(s']s,a)

s,a,s’

+ |da (s, a)pa(s’|s, a) —ady (s, a)p1(s']s, a) — (1 — a)do(s, a)po(s']s, a)]]

&Y lea)+ 22D S dy5,0)

s,a,s’

() Sla(l -« _
<y leals) + % [QD Yepllm = moll Y ldi(s, a) — do(s, a)]

s,a

+4D 7 ep|lmy = Tolloo D ldi(s) — do(s)| + 4D Sy ||m1 — molloo - [|m1 — 7r0||}

(©) 7| S|a(1—a) _ 1
<72 lea@)+ T 6D g llm = moll- g (VIAlllm ~moll+v/1STlpr, ~p )
+4D71S,|my — WOH

(d)
<7D leals)| +3D71ISla(1 - @)l - mol?|
S

16717,}/(\/@""7617\/@) +Sp}7

where (a) uses Eq. which implies that d,, (s, a)p.(s’|s, a) is a Lipschitz smooth function with
Lipschitz constant /4, (s, a) defined by Eq. , (b) uses Eq. (77)), (c) uses ||m1 — mol|oo < ||m1 — 70|

and Lemma[3] and (d) uses Assumption[I} Rearranging the above inequality, we get

> lea] < U=y~ molP e, (VEAT 4 26,V IS1) 4 5,01 ). (50)

Therefore, for any reward function r, we have

J)\(ﬂ—aaﬂ_avpavr) - aJ)\(’/Tlan,Pl,r) - (1 - CM)J)\(’iTo,’/To,pO,T)

@ﬁ Z [dwa,pa (s,a)[r(s,a) — Aogmq(als)] — adi (s, a)[r(s,a) — Alogmi(als)]

— (1 = a)do(s,a)[r(s,a) — Alogmo(als)]

=ﬁ [[dwa,pa (s,a) — da(s,a)][r(s,a) — ANog ma(als)] + da(s,a)[r(s, a) — Xlog ma(als)]

s,a

—ady(s,a)[r(s,a) — Aogmi(als)] — (1 — a)dy(s,a)[r(s,a) — )\logﬂ'o(a|s)]}

@ﬁ D ldr po(5) = da(s)]Ta(als)lr(s, a) — Mogma(als)]
A | 7r1(a|s) T (a‘s)
+ ﬁ 2 [adl(s,a) log (als) + (1 — a)dp(s,a)log 7r2(a|s)]
© 1+ Alog|A|
2o, 2l
+1—)\st: {adl(s)zaxﬁ(a"s) log ;Ti((zu?) ) +(1—a)do(s) Za: (Wo(a|s) log :Z((Z;)) )}
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(i) 1+ Alog|A| 3v|S|a(l — a)

e Im e mlP e (VIAl 16 VIS]) + 5,01 =)
i 1% > [ad ()KL ([3)[ma ()] + (1 = a)do(s)KL[mo(-|3)]|ma(-|s)]

S

@ 3v|Sla(l —a)(1 + Alog |A])

= D(1— ) I = mo* [en (VAT +1epV/I8T) + Sp(1 = )]
+ ﬁ > {adl(s)Hm(‘IS) — ma(:|9)[1T + (1 = @)do(s)||mo(-[s) — W“('|8)“ﬂ
2 B 2NN IAD 1o, 2 (/AT + 26y /BT + 5501~ )
A )do(s) ?
—|—m25: {O&dl His)o[ﬂ'l(B)_ﬂ-O(b)]Hl
+ 1= )o(s)| 52 s ()~ ma 1)
@2t = ) 57 DB s () - maCA9)IR
_ 373|O‘(15(‘i‘)£1$f log AN | = — o2 [eo (VA +76,/18]) + Sp(1 = )]
(ﬁ)m|wl o
- Sl U LMD o, — 2 (AT + 265 8T) + 51 = )]
OBOC= Dy — (8D

where (a) uses Eq. (30), (b) uses dr, . (,a) = dr, p,(5)Ta(als), da(s,a) = du(s)ma(als) and
do = ad; + (1 — « do, (c) uses 7(s,a) € [0,1], = > ma(als)logma(als) € [0,log|.Al] and
ea(s) = dr, p, (8) — du(s), (d) uses Eq. (23), (e) uses Pinsker’s inequality, (f) uses 7, (als) =
% (f;)b) ail((;j) m1(als) + % o(als), (g) uses do(s) = ady(s) + (1 — a)dy(s), (h) uses
Assumption[3|and dq, (s) < max[do(s), d1(s)], and (i) defines the constant 11 below.
aet DX 67[S|(1+ Alog|A|)
=g il l(?(l—yg| D lep (VIA] +vep/IS]) + Sp(1 = 7). (82)

Next, we begin to consider the policy-dependent reward 7, = 7, . Define the function w(«a) =
ady(m,m,p1,7e) + (1 — a)J\ (70, 7o, Do, "o ), Which has the following derivative

wl(a) :J)\(ﬂ177r17p17T(1) - J)\(ﬂ-Oaﬂ-OapOaTa)
dmg,

+ [V A (s, prsra) + (1= @)Ved (70, 0, pos Ta)l (Vara )= (83)
For any 0 < o < o’ < 1, we prove the smoothness of w(«) as follows.
[w'(a’) = w'(a)]
:‘ /a Vo [Ja(mr, ™, p1,ra) — J)\(WO;707poard)](vwrﬁa)%dd
+ [V, (71, 71, p1Ter) + (1 — OLI)VTJ)\(TF(),TFO,po,T’a/)](vﬂ’rﬂ_a,)(dﬂ-a/ _ dﬂ)
do/ da
+ [V Jx (71, 71,01, 70r) + (1 = &) Ve dx (70, 70, 00, 0 )| (Varr, —V Twa)CZ:
+{d/ [V dr (71,71, p1,7ar) = Ve (71, 1,01, Ta)]
+ (1 =) [V, Jdx (70, 70, 0, Tar ) — Vida (0, Wo,po,ra)]}(v rm)dd?
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dm,
+ (& — ) [V, Ia (71, T, 01, 7a) — Vieda (70, T0, Po, Ta) | (VaTr, ) —— do

(@) [o —
[ DR (maxlima 1) = moC 1)l -+ a1 (s, ) - pol s, 0]}

€r _ e/ |S| + /| A Spl|Tar — Ta _
+ . .2D 2H7T1_7TO||2|:7( p | ‘ |>:||O/—Oé|+ || || .D 1H7T1—7T0||
— 5 _ 1_
er|lm —
+0+|0/*04|’”1702”(111%”7?1(45)*Wo('IS)Hl +ymax||p1(-|s, a) = po(‘[s,a)]1)
D(l —’y) s s,a
® erf|m — mol|
<2lo’ — af - "= (VIAlllm = 7ol + 7/1Sllp1 — poll)
(1—7)
2ecms = mol? (/T4 VA Szl
D*(1—19) 11—~ D*(1—)
(9 2€,. || — mol|
S Da—)z (VIAllmy = moll + vepV/ISlllmy = moll) o —
2yer|lm — 7r0|| TA] 18] I G Nm — moll?
+ D2(1— (VIAl + epV/IS]) o D2(1— )2 o
(d)4er (VIA] +’yep\/|8 )+ Si( 2 4
D2(1 — )2 ||7r1 —mol["]a’ — o,

Where (a) uses Assumptions I I Ve dx( )|l < 1= (implied by Eq .) as well as Eqs. ,

71) and . (b) uses Eq. (71) and ||z||; < v/d|z|| for any z € RY, (c) uses Assumptlon and (d)
uses D7 7 € [0, 1]. The inequality above implies that w(«) is pa||m1 — 7o ||>-Lipschitz smooth with
the constant p5 defined as follows.

_ 46T(\/ |'A|+6P ‘SDJ’_ST(l_’Y) (84)
D*(1—~)?
Therefore,
Vg, —aVin, — (1 =)V
:JA(T‘-aaﬂ-(yap(yaTa) - Oé:])\(Tr177T1,p1,7’1) - (1 - Oé)‘])\(ﬂ(%ﬂ-();po,’ro)
(a) ol — «
ZOzJ,\(WlﬂThph?‘a) + (1 - a)J/\(WoﬂTmpoﬁa) + %Hm - 7T0||2
—aJx(m, 71, p1,71) — (1 — @) Jx(mo, T0, Pos T0)
a(l — o
=w(a) — aw(1l) — (1 — a)w(0) + %Hm — 7o ||?
(d) — a(l — o
Z (Ml ,UQ; ( )Hﬂ'l _ 770H2
pa(l —
Quall Za) o )2, (85)

2

where (a) uses Eq. (81) with 7 replaced by 7, (b) uses the fact proved above that w(«) is po||m; —
o H -Lipschitz smooth and (c) defines the following constant .

K im — M2
(@ DX 6v|S|(1+ Alog|Al)
1o D) [en (VA + vep/IS]) + Sp(1 — )]
5 (1 =9) +4er(VI]A] —|—ep\/|S (86)
D(1 —9)?
where (a) uses Egs. (82) and (84). Rearranging Eq. (83)), we obtain that
Ve — Ve p(1—a)
T Ul > 7r1 __ Y/To _ 2.
e 2V Vit I = moll
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Letting « — +0 above, we can prove the conclusion as follows.

"
VL, = Vi, + Sl = ol
d

<[ L yma }
_[da AT a=0

_Zﬁwo/\ﬂo [ (a\s)}

(@)~ da(s) vy, 210
Z do(s) Z dmo(s ”1 (als) = mo(als)]
) vy,

Z i){ awolﬁé Z”‘)“aﬂow)}

ovyre
-1 A Tfo
DY Grtelritel) - (o)

<D~ meax<V W Vo o) 7r0>7

where (a) uses Eq. (70), and (b) uses Assumption [3]as well as the following Eq. where 7§ € 11

a’ m and 7 (a’|s) = 0 for o’ # a*.

3V>\”‘7)T0 3Vﬂ° V)\mjro
= 7
ZWO 87r0 (s,a) s 871'0 (s,a’) Zﬂo als) Omo(s,a)’ @7

is defined as 7 (a*|s) = 1 for a certain a* € arg max

G PROOF OF COROLLARY [l

Based on Theorem|[I} Eq. (86) holds for any 7o, 71 € II as repeated below.
Vit SV, + D7 max (Vi VT o —mo) = 5l — ol (88)

In the above inequality, let 71 € argmax, VY and mg = 7 is any a De-stationary policy of
interest. Then the inequality above becomes

- (&)
masc Vi, <V, + D71 De— B < V4 el S],

where (a) uses Lemma This implies that maxzcyy V{t s V;W <
stationary policy  is also an (e + |u||S])-PO policy.

If i > 0, the inequality above further implies that maxx 1y Vf’ s V)\’f7r < ¢, that is, the De-stationary
policy 7 is also an e-PO policy.

Furthermore, suppose 1 > 0 and there are two PO policies 7y, 1 € 11, which should satisfy

T o u
V)\,ﬂ'1 V)\ o meax V)\,ﬂ’

max <VWOV)\ s T 7r0> =0.

mell

Substituting the two equalities above into Eq. (10), we obtain that 4|1 — 7o[|? < 0, which along
with ¢ > 0 implies m; = 7o, that is, the PO policy is unique.

H PROOF OF THEOREM

Forany 7 € I, p € P, r € R, we have
8(])\(71-77[—7177 T’) (a)dﬂm(S)[Q)\(ﬂ',ﬂ',p,T;S,Q) B )\]

or(als) 1—+
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@d‘n,p(s) oy ’ Lo
2T [r(5,0) = A = Alogrn(als) + v%:p(s s, a)Va(m,p,ris)],  (89)
where (a) uses Egs. (37), and (b) uses Eq. (32).

Then we have

Vaeda(m,m,p,r) " (x' — )
72 [8J/\ TPy )( [amax(s”s] *W[amax(s”s])

O |amax(8)]$]

OIN(mmp,r)
+ aﬂ-[amin(SNS] ( [ mm( )| ] [ mln( )l ])}

= 3 {2 s (515~ i 3)5) 15 i)l o)

+/\10g [[ mex S ‘S +’YZ |5 amln )7p(sl|57amax(s))]v)\(ﬂ;pvr;sl)]}

Amin(5)]9]

(;)L max {(w[amax(8)|8] —W[amin(s)|s]) [)\ log 7T[[Lhnax((S)HS] _1— '7(1 + Alog |AD}}7 (90)

“1-—x T [Amin (8)]$] 1—7

where () uses T[amax ()| — Tlamin(s)|s] > 0, r(als) € [0,1], p(s'|s,a) € [0,1] for any s, a, s’
and Lemmaldl

Consider the following two cases.

(Case 1) If [amin (5)|s] > 27[amax(s)]s], then as T[amax(s)]s] > % we have 7[amin(s)]s] > 2‘1 -
(Case ID) m[amin(5)|s] < 37[amax(s)|s], then as 7[amax(s)]s] > ;. Eq. implies that

vﬂl])\(ﬂ-a ™ D, T)T(ﬂ-l - 7T)

7 [Amax (8)]9] 1 14+ v log |A|
Zm?X{ 2(1 — ) [M B A lamm(s)]s] | 1—~ ]}
1 . 1+ ~vAlog|A|
2 — m |:A log (|A| mslnﬂ'[arnin(SMS]) + ﬁ}, (91)

which further implies that for any s € S and a € A, we have

7(als) >7[amin(s)|s]
S 1
_Wexp [—

1/A+ylog|A]  2[A|
1—7 A

1 | 9/ A|

> - S b

=9/ P { M1—79) A

Note that in the two cases above, Eq. (92) always holds.

(1 =)V da(m, m,p,r) " (7 — W)]

(L= NVada(mmp.r) (7 =), ©2)

Furthermore, if Assumptionmholds and p,, v, are differentiable functions of 7, then we have
||v7r(])\(7r7 T Pry rﬂ') - VTFJA(ﬂ-v ™, Px, 7'7})|ﬁ—:71— ||
:va‘])\(ﬂ-a T Prs Tﬂ)vﬂ'pfr + VTJ/\(Wa T, Prs rﬂ')vﬂ'rﬂ' H
<[[Vpda G, m s ) |[[[Vapr || 4 ([ Ve I (7 s ) || Ve |

(2)ep\/\8|(1+)\10g|,4|)+ €r
=T oy =

where (a) uses Assumption [I]as well as Egs. (39) and (0). Therefore,
[VﬂJA(mW,Pﬁ,Tir)|fr:w]T(7T/ —m)
VDA (T, 7, Py ) (1 = 1) = [V dA (7,7, Dy ) — VA (7,7, Py 72)|7mn] | (7 — )

(93)
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SVWJA(WﬂTapm 7171')T(7TI - ﬂ—) + Hvﬂ't])\(ﬂ—vﬂ-vp‘n'vrﬂ') - vﬂ'J)\(Tr’ 7T7p7~77r7~")|7~7:7TH ”ﬂ-/ - ﬂ—”
(a) ep/|S|(1 + Alog|A|) €

< T _ 9 p r 4
_Vﬂ'J)\(ﬂ-vﬂ'apﬂwrﬂ') (7T 7T)+ ‘S|( (17,7)2 + 1ffy)’ (9 )

where (a) uses Eq. and Lemmal(I2} Substituting p = p,, 7 = 7, and then Eq. (94) into Eq. (92),
we can prove Eq. as follows.

1 1 214
25 o~ xa gy~ Tk -

|:V7TJ>\(7T’7T7p7T’ rﬂ)T(W/ — )+ v/2[S| (ep\/@(ll—’_’y);l()g A + 1 G:'y)} }

m(als)

2 (0w - ),

where the = uses V{7 = I\(, 7, pr, 7 ) and iy defined as follows.

def 1 1 2| Al/2[S] 1ep/IS](1 + Aog | A|)
{_A( - 2V )

Tmin = W exp 1— fy) 1-— Y

=Tmin €XP |: -

I PROOF OF THEOREM 3]

For any policies 7, 7/, we have
|V)\ﬂ:ﬂ" - V):w'
<IN prr s ) — TN, Py )|
§|J>\(7T/,pw’,r7r') - JA(lepw/ar'rr” + |J)\(7T/,p7r/,7‘77) - JA(lepmrTr”
+ |J)\(7T/7pﬂ'7r7r) - J)\(ﬂ-)pﬂ';rﬂ')‘

(2 77 — 7zl

+ Lpllprr = prll + Lr max [ log 7'([s) — log w(|s)]|

(®) €
< (Lot 7 I =l + Lﬁ\/z Itog 7 (-1s) ~ log (1)

(©)
< (Lpep + 16_77“7) |log 7" —log 7| + Ly | logn’ — log ||

L[l logn’ ~ log], (96)
where (a) uses Egs. (38), and (40), (b) uses Assumption[7] (c) uses | logy — log z| < |y — z| for
any x,y € R, and (d) defines the following constant.

VA2 = v 4+ A log |A]) + €,4/[S](1 + Aog | A]) + €,-(1 —7).

€r

Ly = Lyt + 7+ Lo = e
§ 29—y tyAl ST(14A1 .
L e AR o) b /B oo
LA P (1—9)2 L—xy

Note that for any u,v > A > 0,

|log u — log v| =log max(u,v) — log min(u, v)

max(u,v) | 1 _
:/min(u,v) ;dx < Z[max(u,v) — min(u,v)] = %

Therefore, for any 7, 7" € IIa ef {m €Il : 7w(als) > A}, we have

| log " — log 7||? :Z |log ' (als) — log m(als)|?

s,a
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<A™ [x'(als) - w(als)P = A= — %

Substituting the above inequality into Eq. (96) proves the first inequality of Eq. (96).

Next, we will prove the second inequality of Eq. (96) about the Lipschitz continuity of the following
performative policy gradient.

Vo Vi =V AT, T, pre, )
=V (7, 7,07, 7) |f=x + (Vaba) Vo, INT, T, 02, 77) + (Vara) Ve, N7, T, pr, Tr ).
For any 7, 7’ € TIa, we have
IV Vi = Va Vi
<HV NG T | P VﬂJ,\(ﬂ,ﬂ,pﬁ,rﬁ)\%:WH
FIVarpwl - IVp, AT 7 sy 7r) = NV IA(T T Py 1) |
IV (w7, pry )| - ||V |
F |\ Varral - HVTW/JA(W/»W Pty Trt) = Vo I, T D, 1) ||
+ ||VmJA(7T,777pm7“w)H : ||V7r/7‘7r/ - vﬂTWH
(2)(|A|(1 +2Xlog | A|)

+ 9Ly ) max | log 7’ (-s) — log w(-|s)]

U A
1+ Alog|A|) \/lA\Hw — rllo
[P | r ) ST A e el +
(1—7)? —
+ ¢ e | og 7' (19) = og |9 + £yl = pell + =2 VISl =l
Yer
+ LySplin’ = |+ (g (mas (1) = wCJs) 3+ max ||pﬂf<-|s,a> — pelCls,0)ll)
e =l
® /A1 +2)\log|A\) (14 Alog|A|) ,
< AT ATS N L T _
(S + I =l + 6 STAI[ 22 0, e =
oAl =7l | 1 y
+T+ep[zuw'—wn+épepn ' er¢|8|||w’—wu}

+ LpSplln’ — 7T||+ (\/IS g —7T||+6p\/|§||77 —l) + ||7r -

© /1410 +2A10g|A\> ST 1201+ Alog ) .
S( A=) )” 7| + W[W+7LP} 7" — =
el — 7T|| €p lpep 2—v /
W TR G v v ey R Ll
e/ |S|(1+e€ L,S, +S./(1— ,
+ A | |( P) || || p~p A /( ’Y) ”7_(_ 7,”_”
|A|(1 —7)? | Al
(i)(|A|(1+2)\log|A\) vV Al(2 — 'y+’yx\log|A|))” 'l
- Al —7)? Al —9)?
\S| [ (14 Alog|A|) + |S|(1+/\log|AD}H |
JA] (1—79)? (1—=9)2
VISIIA[(2 + 3yAlog |A]) | 26,7|S|(1 + Alog |A|) 2 -y
& + + /18] |17 -
A[ e A=t Ay VS| =l
+ €r V |A|(1_7)+7€T\/ ‘S|(1+€p)||7T/—7TH
AJA|(1 = )2
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AJAI(T =72 ~
3|A|(1+)\log|A|)” ll + ‘/|S||A|(5+6)‘log‘“4|)|\7r’—7r||
A(l—9)? Al —~)3
e [VIAI =) + V/ISI( + 260)] + SISO+ Nog A+ 8,0 =9) - oo
AJA[(1— )2 o

where (a) uses Egs. @ (@0) and (@3)-(@3) as well as Assumptions[I}{2] and (b) uses the following

bounds for any 7,7’ € A, (c) uses A < [A|™! (since for any m € IIn, 1 = Y 7w(als) > AJA)),
— VIAIC—y+yXlog | A]) _ V/ISIA+Alog|Al) _ VISIIAI(2+3yAlog |A])

(d) uses Lﬂ— = - N Lp = W g -7 and

by = W defined in Lemma@ (e) uses £, defined by Eq.

max || log 7' (-|s) — log m(-[s)|| <A™ max |7'(-|s) = w([s)]| < A7 |« — 7],

(a) ,
[P — prll <é€plln” — ],
(a) ,
|77 — TﬂHOO <l — TWH < 67»”7‘[‘ -,
max [|7'([s) = 7 (-[s)[[1 <V/IS|max [[7'(-|s) = 7 (|s)l| < VIS|[l7" =],

max e (15, 0) — pe(-1s,0)llx <V/ISTmax e (15, 0) — pe(:ls, 0)]

(a)
<VIS|llpr = p=ll < eV/IS|lI7" — 7.
Here, (a) uses Assumption|[I] Finally, define the Lipschitz constant ¢ as follows and thus Eq. (98)
implies the second inequality of Eq. that ||V7T1Vf7/ﬂ, =V VT < Sl x" —n|.
def 3| A|(1 + Alog |A]) = ep/|S||Al(5 + 6X1og |A])
O\ = 5 + 3
(1—7) (1=1)

GT[\/W(l =) + VISI(y + 2¢p)] N Sp/IS1(1 + Mog |A]) + S-(1 — )
|AJ(1 — )2 |A[(1 — )2 '

99)

J  PROOF OF PROPOSITION 1]

We prove the validity of the stochastic gradient (T9) first. For any 7 € IIa, s € S and a € A, we have
m(als) > A, som(als) <1 — A (since ), w(a’|s) = 1). For any u; € Uy, we have |u;(a|s)| < 1.
Therefore,

(m £ 6u;)(als) > w(als) — dlu;(als)]| > A—6 >0, (100)
which means 7 &+ du; € II. Hence, V/\f;, is well defined for ' € {7 + du;, ™ — du; }.

Then we will prove the estimation error bound (2T). Based on Lemma [I0] there exists an orthogonal
transformation 7 : R — 2 4y ={z=[z1,...,24] € R : 37, 2,=0}.

Note that any = € RISIIAI=1) can be written as 2 = [z,]scs, a concatenation of |S| vectors

£, € R, Therefore, we can define the transformation 7" : RISI(AI=1) _y £ def {u € RISIMAI
u(-|s) € Z,4/-1,Vs € S} as follows

[T(@@))(-]s) = T(xs),¥s €S (101)

where z, € R are extracted from |.A| entries of 2 = [,]ses. Forany = = [2,]ses, ¥ = [ys]ses €
RISIOAI=1) and o, B € R, we can prove that T is an orthogonal transformation as follows.

[T(ax + By)](-|s) = T(axs + Bys) = aT (zs) + BT (ys) = [T (x)](|s) + BIT(x)](-|s)
=T(ax + By) = oT(z) + BT (y).
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Define the following set.
T (s — |A™H) ¥ fr e a7 Hr — A7)}, (102)

where 7 — [A|™" € RISIMI has entries (7 — |A|7")(als) = m(als) — [A[7! som — A7 € L.
Furthermore since IIa is a convex and compact set and 7~ is an orthogonal transformation,
T-YIIa — |A| 1 is a convex and compact subset of L.

Then for any z € T~ 1(IIa — |A|71), we have T'(x) + |A|~! € I1a, so we can define the function

def v, T(z)+| Al
Iaz) = Vi T () 4] A =1

Note that as V) is a differentiable function of m, so for any 7" € II and fixed € II we have

Vi = Vi = (VaVi o —m) Vi = Vi = (projo, (V2Vi,), o' — )
|7 — ] (|7 — |l
—0 (as7’ € Hand 7’ — ), (103)
where the above = uses 7/ — 7 € EO Then, we can prove that f) is differentiable with gradient
Vi) = T (proje, VaVi,| _ ) HIA- 1), since for any 2/ € T~*(IIa — |A|7!) and fixed

x € T7Y(IIa — |A|71) we have

@) = falz) = (T~ [projg, (VT"V)\TW|W:T(I)+|A|*1)}"r/ —x)
2" — |

(a) 1 T+ A" T @)+ A

) T AT T A Lo s~ Voo ar
— (Pr0icy (VaVial, gy i) [T + A1 = [T(@) + A1 ])]

o as o’ €T '(Ila — |A7Y) and 2’ — =, (104)
where (a) uses the property of the orthogonal transformation 7', and (b) uses Eq. (T03)) and the fact
that —>mmeans” )+ |AI7Y = [T(x) + |A|~ 1H—Hac—a:||—>0

Furthermore, we will show that f)(z) is a Lipscthiz continuous and Lipschitz smooth function of
x € Ila. For any z,2’ € T~ (IIa — |A|71), we have

1 -1 ( ) L L
A T(z)+|A A (6) Lix
) = S@)] =V 2y = Vo < RITE) - T@)) = R’ -l

||Vf)\ (.’17 ) Vf)‘ | _HT I:projﬁo (vﬂv}\ﬂ:‘ﬂ' |7T:T(I,)):| - T_l I:prOjLO (VWV)ZTT" ’w:T(m))] H

< Hprojﬁo (VaVix |7r:T(If)+\A|—1) — Projg, (VTFVAT#|W:T(I)+\A|—1) |
<[ (V2 Vx| = (VaVila|
(@£ ®) £

< JITE) =T@I = <ll2" =,

In both the inequalities above, (a) applies Theoremlto T(x) + A=Y, T(2") + |A|~! € I and (b)
uses the property of the orthogonal transformation 7'. The two 1nequaht1es above implies that f is
an £ -Lipschitz continuous and £ -Lipschitz smooth function on 7~ (ITx — [A|71).

ﬂ:T(xf)+|Arl) w=T(w)+\AI*1)H

Denote
N

‘S| |‘A‘ T+ou; T—0u;
ro(m) =" 5 ; Vi =V Y, (105)

which replaces V{7, with V;, in Eq. lb The estimation error of the performative policy gradient
estimator above can be rewritten as follows for any 7 € IIA.

g,\,é(ﬂ) - Projco(vwvﬂﬂ)
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(a) |‘S|(‘A|71) T+du; T—0u; . T
=\TanNs Z (V/\,:-&-éui _V,\,w—au,-)“i) = proje, (VaVi,)

N
(A S (a1 — A7) 4 07 )]~ 3 [T~ JAI™) = 97 )]
T

) = VAT (7= A7) (106)
def ¢, T(x)+Al""
where (a) uses Eq. (19), (b) uses fa(z) = V| T(2)+ A and the property of the orthogonal

transformation 71, (c) uses V fy(z) = T~ * (proj[;0 VaVis |7r=T(a:)+\A|*1)' Note that in the above

ﬁq” li 7w € IIA and u; is uniformly distributed on the sphere U; N Ly with Uy def {u e RISIAL
ul|=1}.

Hence, 7 4= du; € a5 which implies 771 (7 — |A|71) £ 0T (u;) = T~ (7 £ du; — |A|7Y) €
T-YOa—s — |A|7Y). Also, T !(u;) is uniformly distributed on the sphere T-1(U; ) =
Sisial—1) = {u € RISIVAIZD "+ |ly|| = 1}. Therefore, we can apply Lemma|§|to the above
Eq. where the function f) is an A’:‘ ~<-Lipschitz continuous and Aej 5-Lipschitz smooth function
on T~ (IIa—s — |A|~!), and obtain the following bound which holds with probability at least 1 — 7.

lga,s(m) = proj ., (VA Vi)l
SALNS|(A[=1) |5|(|«4|—1)Jrl)jLLxlsl(lAl—l)\/2log(lsl(lv‘tl—lﬂ-l)Jr YN

=T3N(A-9) Og( n A0 N n A—o

4L, |S||A] ISIAIN | LaISIIAl [ 2 |S||-A] 0y
S3N(A—6)10g( " )+ sy e " )+ a2ty (107)

Note that |V>fr e V)\TH < ey holds for any a certain policy 7 with probability at least 1 —1). Therefore,
with probability at least 1 — 2Nn, we have

Vi — Vi | < ev,Va' € {m £ 0u; bV, (108)

Therefore, with probability at least 1 — (2N + 1)n, Egs. (107) and (108) hold and thus we have
192.6(m) = projz, (V2 Vi)l
<N9a.s(m) = gas (M)l + [lga.s () — proje, (V= ViT )l
(a)
<

N
SIAI=D) SN s rdu  rsu e
— INGS Z (V/\Tifr-&-gui - V;tﬂ'-i-qgui 7V/\Tifr—7gui + V/\Tﬂ—qgui)ui
1=1

4L,[S||A]| ISIALN | LAISIA] [2 |S|A] 60>
+3N(A—6)log( " )+ 25w es( " )+

OSILA| o [ 74 5 I ou
S 5, — Vs, — Vi, + Vi, Jul
=1

- N§

4L,[S||A]| ISIAlN | LAISIJA] [2 SIJA| %N
+3N(A—5)log( " )+ 25w s ( " )

1S]14] &
O 5 i (5 i 9 —(5 i —6 i
<SS (VT = Ve [+ VT2 + VT )
=1

= N§ ,T—0u; T—0u;
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4L,|S]|A] ISIIAIN | LaSIAl (2 |S]|A] 6l
+3N(A—5)log( " )+ 25w s ( " )t s
(©2|S[|Aley | 4Lx|S||A| ISI[Al\ | LaIS||A] [2 |S|A] 30y
< i
=75 +3N(A—5)log( o )+ Ao Nlog( " >+A—§’

where (a) uses Egs. , and l , (b) uses Jensen’s inequality that ||+ Zil 7|2 <
+ Zf\;l ||z ||? for any vectors {x;} Y, of the same dimensionality, (c) uses |V>\7“;r - V;;r,| < ey for
any policy 7’. By replacing 7 with 5% in the inequality above, we prove the error bound as
follows which holds with probability at least 1 — 7.

192.5(7) = proj, (Va Vi)

2|S||Aley | 4L,|S|| Al 3NI[S||A]N | LaIS[|A] |2 B3NS A 60>

< .

=75 +3N(A76)10g( )+=ams v ( " )+ass 109
ev | log(N/n)

—o(L 4 28
G +— 9

K PROOF OF PROPOSITION 2]

For any 7 € Il, it is easily seen that the corresponding 7’ defined by Eq. also belongs to IIA.
Therefore,

DX
V. Vi r—m) < max (V,Vy ,7—m) < ————.
< A, > = ﬁGHA< A, > = 5|A|(1 — 'Y)
Substituting the above inequality into Eq. (T5), we obtain that
2 .A 2 min
7(als) >mmin €xp [— L(1 — ANV VT — 7T>} > ZMmin 5 oA,
DX ’ 3
Therefore, for any 7, € II, we can prove that ”2; T ¢ IIA as follows.
ma(als) + w(als) S 0+ 2A _A
2 - 2
Therefore, we can prove Eq. (25) as follows.
(V. VE ) =2 max (v, V7 T >(2)2 (VA V7 — )
max(V, ,mo —m) =2max (V, VI  ——— —7) < 2max(V, V] 7 —m).
ma €11 Amo 112 mo €11 A 2 FEA A

where (a) uses % € Ila.

L. PROOF OF THEOREM (4]

If m; € IIa, then m;41 € IIA, since I1A is a convex set and 7,4 obtained by Eq. is a convex
combination of 7, 7, € IIa. Since mg € IIa, we have m; € IIA for all £ by induction. Therefore,
Proposition (1| implies that the following bound holds simultaneously for all {r;}7_; C IIn with
probability at least 1 — 7.

9x,5(me) — projz, (VaVyZ )|l

2|8 4L,5|S 3T'N|S Ly|S 2 3T'N|S o¢
CASlAley | ALNSIAL 1, (STNISIALY | LSIAL 2, STNISIAL) | bt

B 3TN(A —6) A-s \|N n A—4§
(110)

The bound above further implies that for any 7 € II, we have

[(Gno(m) = VVTt 7w — 7))

2| (gr.5(me) — proje, (VaViL ) m — )]
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<lx.6(m) = proj, (VaVis ) - I = .|

(b) 2|S|| Aley 4L, |S||A] 3TN|S||A
<
< VST =5 TSN o) ( )
Ly|S||A] |2 3TN|S||A| Y5\
— /=1 111
As s ( Rt (1
where (a) uses Ty — m, @ — m; € Lo for Ty, @ € I, and (b) uses Eq. (IT0) and Lemmal[12]
Under the conditions above, we have
Tt+1
A Teq1
@ ¢
>V, + (VW e T+l T ) — ﬁ”ﬁﬂ - 7TtH2
b . 0582
v, + BTV, o = ) = 2o —
Tt ~ ~ Tt ~ ~ E B 2
—VA B s (me), T — ) + BV VL — s (me), T — me) — TN |7 — el
- . . )|S 2|S||Ale
SV, + Blans(m). 7 - my - 2 o[ Al
4Ly |S||A] 3TN|S||A Ly|S||A] 3T N|S||A 80y
3TN(A—5)1°g( )+ 7275 NIOg( )]

where (a) uses the %-Lipschitz smoothness of V/\’T, » onlla, (b) uses Eq. , (c) uses Eq. |D and
Lemmal[I2]

Rearranging and averaging Eq. (IT2) over ¢ = 0,1,...,T — 1, we obtain that

max (g5 (m7), @ — 77
=<A 7), TF = T7)

(

1 7=

S Zgum Ty — )
=0

V“§ Vv, S 2|8

A TTﬁ Ao A|A|5Jr 2|S|{ \ ||(;4\6v
AL |S||A] BTNIS|IAl LS|4l 2 /3TN|S|IA| 505
STN(A —0) ° ( )+ 25w e ( " )+ 3]

1+ MoglA|  0,]S|3 21S|| Ale

STﬁ(1_|7)|+ A|S] +m{\ ||6\v

ALy |S||A] 3TNIS|IAN  LyS|IAl |2 3TN|S||A| 505
3TN(A75)IOg( )+ 25w s ( )+ s a1

where (a) uses Lemmamwhich means 7 satisfies Eq. @) and (b) uses the output rule of Algorithm
that T € argming<,<p_1(gx,s(mt), 7t — m¢). Therefore,

max <V V)\Tr , T — 777:>

wella
—7?61%)2 [(V V/\7T~ — 0, 5(7T7r ), T — Wf> + <§/\,6(7wa)’7~7 - 77%>]
(@14 XloglA| 2x|S|8 2|S||Aley
< o b £ it e A
S 2 2|S\{ :
ALN|SA] 3TN|S|A]Y | LalS[IA] 3TN|S|A| 0y
3TN(A—<S)10g( )+ NIOg( | R L
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where (a) uses Egs. (TTI)) and (TT3).

Use the following hyperparameter choices for Algorithm I}

Tmin
A= 115
3 (115)
DAe DT pin€

— - - 116
B =108 ~ 30055~ O (116)

_12(1+ Mog | A|)  43205|S|(1+ Alog |A]) . s
T="Dedi-2) ~ memDii-ma ) am

DAe Drine (@) A
- - —0) < =, 118
481/2|81¢\  144./2|S|¢y (€) < 2 (19
2.2

Doe MuinDE 2y (119)

6 p— p—
VT 48|S||A[V2IS]  138244,[SPJ A
663552L2|5| AR, (165888L2|S\ A2 12060582 |A\(1+)\log\A|))
D272 log D272 T D2mmm (1 — 7)€

mlIl IIllH

+2log (M) +3
7
=0le ?log(n~'e™ )] (120)

where (a) uses € < 24,/2|S|¢,/D. With the hyperparameter choices above, we obtain the following

inequalities (T21))-

Ly|S||A| |2 3TN|S||A
o A [ (S

(a)24L L5 log N 1 12 2 1 1
DAULISIA N | 1 12960 ISPLAL+ Mgl A))

Tmin N N NTmin D (1 — 7)€?
(1)24L, S]] A]
o Tmin 4
_12\/5L,\|S|1'5|.A| D7 mine D (121)
Tmin vV 165888 L)\‘S|15|A‘ - ]-2

where (a) uses Eq. (117) and 6 < A/2 = m,;,/6 implied by Egs. (113) and (118)), (b) uses
2

Eq. 1| and its implication that N > 4& 1log(é~!) with € = 1658881753‘zl;|5|3|A\2 < 0.5 (since
A
€< W) which 1mp11es N < ¢ based on Lemma
| STNIS|AN  log(TN) 1 . /3IS|AN @ 1 1
1 ( ): — 1 ( )<f L 122
TN % 1 T~ TN ° n ) S273 (122)

where (a) uses NT' > N > max [3, 2log (%)} and Lemma

4L5|S|| A 3TN|S||A|\ (@ V2Ly|S||Al | 1 3TN|S||A
2|S| - 1 <2/2|S| - A ——log [ ———2
Sl 3rna - ( ) S2VAS 5\ T °g< )
(b)De
Y (123)

where (a) uses 3 < v2andy < /g fory = - log (%‘SHA') < 1 (Eq. (122)), and (b) uses

T > 1 and Eq. %y substituting the hyperparameter choices (I13)-(120) as well as Egs. (I21))

and (123) into Eq. , we have
max (Vo VT 7 =)
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1+ Alog|A /|8 2|S||A
< Og|‘_~_)\| \5+2m[||\5|6v

- TB(1—-9) A
ALA|S||A| 3TN|S|JA[ | LaISIIAl |2 3T'N|S||A| Oy
STN(A—(S)lOg( )+ Ay e " )+ a25)
<1+)\log|A\ ef(l —7) 25|S| Ae

B(1—~) 12D(1+AloglA]) A 12D4,S]
+4m|5\|fl|' Je L€ € +2\/m€>\. Ae
) 48D|S||A|\/2|S] 12D 12D A/2 48,/2|S|Dey
_De@ D\
2 7 5lAI(L-7)’

where (a) uses € < %. Then based on Proposition the inequality above implies that

YIves ~
max{(V.V, ¥ 7 —m=) < De
7~T€H< LRSI T> = Y6

which means 77 is a De-stationary policy. Then if u > 0, CorollaryE]implies that 77 is also an
€-PO policy.

M ADJUSTING OUR RESULTS TO THE EXISTING QUADRATIC REGULARIZER

In Section 4] we have proposed a 0-FW algorithm and obtain its finite-time convergence result to the
desired PO policy for our entropy-regularized value function (6). We will briefly show that 0-FW
algorithm can also converge to PO for the existing performative reinforcement learning defined by
the value function (ﬁ[) with quadratic regularizer H,/ () = 3||dx ,_, |* (Mandal et al., 2023; Rank
et al.| [2024; [Pollatos et al., [2025)). The performative value function can be rewritten as the following
A-strongly concave function of d , .

Vi = {drpra) = Mldnp, |17 (124)

We can prove the performative value function above also satisfies Theorem [I] (gradient dominance)
with a different u, following the same proof logic, since both regularizers H., (7) are strongly convex
functions of d , which implies that V;’ o Is a p-strongly concave function of « as shown in the
proof of Theorem |1|in Appendix [F| By direct calculation, we can also show that V" above is a
Lipschitz continuous and Lipschitz smooth function of m € II. With these two properties, we can
follow the proof logic of Theorem []to show that the 0-FW algorithm (with the same procedure as
that of Algorithm|l|{except the different values of V/\’T’;‘ra in the policy evaluation step) converges to
a stationary policy of the performative value function (124), which by gradient dominance is a PO
policy when the new value of y satisfies p > 0.

N USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs to generate some functions in the experimental code, and then checked and edited the
code to ensure that it exactly implements the algorithms.
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