

ACHIEVE PERFORMATIVELY OPTIMAL POLICY FOR PERFORMATIVE REINFORCEMENT LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Performative reinforcement learning is an emerging dynamical decision making framework, which extends reinforcement learning to the common applications where the agent’s policy can change the environmental dynamics. Existing works on performative reinforcement learning only aim at a performatively stable (PS) policy that maximizes an approximate value function. However, there is a provably positive constant gap between the PS policy and the desired performatively optimal (PO) policy that maximizes the original value function. In contrast, this work proposes a zeroth-order Frank-Wolfe algorithm (0-FW) algorithm with a zeroth-order approximation of the performative policy gradient in the Frank-Wolfe framework, and obtains **the first polynomial-time convergence to the desired PO** policy under the standard regularizer dominance condition. For the convergence analysis, we prove two important properties of the nonconvex value function. First, when the policy regularizer dominates the environmental shift, the value function satisfies a certain gradient dominance property, so that any stationary point (not PS) of the value function is a desired PO. Second, though the value function has unbounded gradient, we prove that all the sufficiently stationary points lie in a convex and compact policy subspace Π_Δ , where the policy value has a constant lower bound $\Delta > 0$ and thus the gradient becomes bounded and Lipschitz continuous. Experimental results also demonstrate that our 0-FW algorithm is more effective than the existing algorithms in finding the desired PO policy.

1 INTRODUCTION

Reinforcement learning is a useful dynamic decision making framework with many successes in AI, such as AlphaGo (Silver et al., 2017), AlphaStar (Vinyals et al., 2019), Pluribus (Brown & Sandholm, 2019), large language model alignment (Bai et al., 2022) and reasoning (Havrilla et al., 2024). However, most reinforcement learning works ignore the effect of the deployed policy on the environmental dynamics, including transition kernel and reward function. This effect is significant in multi-agent systems, particularly the Stackelberg game, where leaders' policy change triggers the followers' policy change, which in turn affects the environmental dynamics faced by the leader (Mandal et al., 2023). For example, a recommender system (leader) affects the users' (followers) demographics and their interaction strategy with the system (Chaney et al., 2018; Mansouri et al., 2020). Autonomous vehicles (leaders) affect the strategies of the pedestrians and the other vehicles (followers) (Nikolaidis et al., 2017).

To account for such effect of deployed policy on environmental dynamics, performative reinforcement learning has been proposed by (Mandal et al., 2023) where the transition kernel p_π and reward function r_π are modeled as functions of the deployed policy π . The ultimate goal is to find the *performatively optimal (PO)* policy that maximizes the *performative value function*, defined as the accumulated discounted reward when deploying a policy π to its corresponding environment (p_π, r_π) . However, the policy-dependent environmental dynamics pose significant challenges to achieve PO. Hence, (Mandal et al., 2023) pursues a suboptimal *performatively stable (PS)* policy using repeated retraining method with environmental dynamics fixed for the current policy at each policy optimization step. However, (Mandal et al., 2023) shows that PS can have a positive constant distance to PO.

Extensions of the basic performative reinforcement learning problem (Mandal et al., 2023) have been proposed and all of them focus on the suboptimal PS policy. For example, Rank et al. (2024) allows

054 the environmental dynamics to gradually adjust to the currently deployed policy, and proposes a
 055 mixed delayed repeated retraining algorithm with accelerated convergence to a PS policy. Mandal
 056 & Radanovic (2024) extends (Mandal et al., 2023) from tabular setting to linear Markov decision
 057 processes with large number of states, and also obtains the convergence rate of the repeated retraining
 058 algorithm to a PS policy. Pollatos et al. (2025) obtains a PS policy that is robust to data contamination.
 059 Sahitaj et al. (2025) obtains a performatively stable equilibrium as an extension of PS policy to
 060 performative Markov potential games with multiple competitive agents.

061 In sum, all these existing performative reinforcement learning works pursue a suboptimal PS policy
 062 by repeated retraining algorithms. Therefore, we want to ask the following basic research question:
 063

064 ***Q: Is there an algorithm that converges to the desired performatively optimal (PO) policy?***

066 1.1 OUR CONTRIBUTIONS

068 We will answer affirmatively to the research question above in the following steps. Each step yields a
 069 novel contribution.

- 070 • We study an entropy regularized performative reinforcement learning problem, compatible with
 071 the basic performative reinforcement learning problem in (Mandal et al., 2023). We prove that the
 072 objective function satisfies a certain gradient dominance condition, which implies that an approximate
 073 stationary point (not the suboptimal PS) is the desired approximate PO policy, under a standard
 074 regularizer dominance condition similar to that used by (Mandal et al., 2023; Rank et al., 2024;
 075 Mandal & Radanovic, 2024; Pollatos et al., 2025) to ensure convergence to a suboptimal PS policy.
 076 The proof adopts novel techniques such as recursion for p_π -related error term and frequent switch
 077 among various necessary and sufficient conditions of smoothness and strong concavity like properties
 078 for various variables (see Section 3.2).
- 079 • We obtain a policy lower bound as a decreasing function of a stationary measure. This bound
 080 not only implies the unbounded *performative policy gradient* (a challenge to find a stationary policy
 081 and thus PO), but also inspires us to find a stationary policy in the policy subspace Π_Δ with a
 082 constant policy lower bound $\Delta > 0$ where we prove the objective function to be Lipschitz continuous
 083 and Lipschitz smooth (a solution to this challenge). The lower bound Δ is obtained using a novel
 084 technique which simplifies a complicated inequality of the minimum policy value $\pi[a_{\min}(s)|s]$ in
 085 two cases (see Section 3.3).
- 086 • We construct a zeroth-order estimation of the *performative policy gradient* and obtains its
 087 estimation error. This is more challenging than the existing zeroth-order estimation methods since
 088 our objective function is only well-defined on the policy space, a compact subset of a linear subspace
 089 of the Euclidean space $\mathbb{R}^{|\mathcal{S}||\mathcal{A}|}$. To solve this puzzle, we adjust a two-point estimation to the linear
 090 subspace \mathcal{L}_0 of policy difference, and simplify the estimation error analysis by mapping policies onto
 091 the Euclidean space $\mathbb{R}^{|\mathcal{S}|(|\mathcal{A}|-1)}$ via orthogonal transformation (see Section 4.1).
- 092 • We propose a zeroth-order Frank-Wolfe (0-FW) algorithm (see Algorithm 1) by combining the
 093 *performative policy gradient* estimation above with the Frank-Wolfe algorithm. Then we obtain a
 094 polynomial computation complexity of our 0-FW algorithm to converge to a stationary policy, which
 095 is also the desired PO policy under the regularizer dominance condition above. The convergence
 096 analysis uses a policy averaging technique to show that an approximate stationary policy on Π_Δ is
 097 also approximately stationary on the whole policy space Π (see Section 4.2).

098 Finally, we briefly show that the results above, including gradient dominance, Lipschitz properties and
 099 the finite-time convergence of 0-FW algorithm to the desired PO, can be adjusted to the performative
 100 reinforcement learning problem with the quadratic regularizer used by (Mandal et al., 2023; Rank
 101 et al., 2024; Pollatos et al., 2025) (see Appendix M).

102 2 PRELIMINARY: PERFORMATIVE REINFORCEMENT LEARNING

103 2.1 PROBLEM FORMULATION

104 Performative reinforcement learning is characterized by a Markov decision process (MDP) $\mathcal{M}_\pi =$
 105 $(\mathcal{S}, \mathcal{A}, p_\pi, r_\pi, \rho)$ that depends on a certain policy π . Here, \mathcal{S} and \mathcal{A} denote the finite state and

108 action spaces respectively. The policy $\pi \in [0, 1]^{|\mathcal{S}||\mathcal{A}|}$, transition kernel $p_\pi \in [0, 1]^{|\mathcal{S}|^2|\mathcal{A}|}$, reward $r_\pi \in [0, 1]^{|\mathcal{S}||\mathcal{A}|}$, and initial state distribution $\rho \in [0, 1]^{|\mathcal{S}|}$ are vectors that represent distributions.
109 Specifically, the policy $\pi \in [0, 1]^{|\mathcal{S}||\mathcal{A}|}$, with entries $\pi(a|s)$ for any state $s \in \mathcal{S}$ and action $a \in \mathcal{A}$,
110 lies in the policy space $\Pi \stackrel{\text{def}}{=} \{\pi \in [0, 1]^{|\mathcal{S}||\mathcal{A}|} : \sum_{a \in \mathcal{A}} \pi(a|s) = 1, \forall s \in \mathcal{S}\}$, such that $\pi(\cdot|s)$ for
111 any state s can be seen as a distribution over \mathcal{A} . The transition kernel $p_\pi \in [0, 1]^{|\mathcal{S}|^2|\mathcal{A}|}$ dependent on
112 policy $\pi \in \Pi$, with entries $p_\pi(s'|s, a)$ for any $s, s' \in \mathcal{S}$ and $a \in \mathcal{A}$, lies in the transition kernel space
113 $\mathcal{P} \stackrel{\text{def}}{=} \{p \in [0, 1]^{|\mathcal{S}|^2|\mathcal{A}|} : \sum_{s' \in \mathcal{S}} p(s'|s, a) = 1, \forall s \in \mathcal{S}, a \in \mathcal{A}\}$ such that $p_\pi(\cdot|s, a)$ can be seen as a
114 state distribution on \mathcal{S} . $r_\pi \in \mathcal{R} \stackrel{\text{def}}{=} [0, 1]^{|\mathcal{S}||\mathcal{A}|}$ is the reward function with entries $r_\pi(s, a) \in [0, 1]$
115 for any $s \in \mathcal{S}$ and $a \in \mathcal{A}$. $\rho \in [0, 1]^{|\mathcal{S}|}$ is the initial state distribution such that $\sum_{s \in \mathcal{S}} \rho(s) = 1$.
116 Note that we consider p_π, r_π, ρ, π as Euclidean vectors, so that we can conveniently define their
117 Euclidean norm. For example, we define $\|p_\pi\|_q = [\sum_{s, a, s'} |p_\pi(s'|s, a)|^q]^{1/q}$ for any $q > 1$ and
118 $\|p_\pi\|_\infty = \max_{s, a, s'} |p_\pi(s'|s, a)|$. Such norms can be similarly defined over r_π, ρ, π by summing or
119 maximizing over all the entries. Specifically, denote $\|\cdot\| = \|\cdot\|_2$ by convention.
120

121 When an agent applies its policy $\pi \in \Pi$ to MDP $\mathcal{M}_{\pi'} = (\mathcal{S}, \mathcal{A}, p_{\pi'}, r_{\pi'}, \rho)$, the initial environmental
122 state $s_0 \in \mathcal{S}$ is generated from the distribution ρ . Then at each time $t = 0, 1, 2, \dots$, the agent takes
123 a random action $a_t \sim \pi(\cdot|s_t)$ based on the current state $s_t \in \mathcal{S}$, the environment transitions to the
124 next state $s_{t+1} \sim p_{\pi'}(\cdot|s_t, a_t)$ and provides reward $r_t = r_{\pi'}(s_t, a_t) \in [0, 1]$ to the agent. The value
125 of applying policy π to $\mathcal{M}_{\pi'}$ can be characterized by the following *value function*:

$$V_{\lambda, \pi'}^{\pi} \stackrel{\text{def}}{=} \mathbb{E}_{\pi, p_{\pi'}, \rho} \left[\sum_{t=0}^{\infty} \gamma^t r_{\pi'}(s_t, a_t) \right] - \lambda \mathcal{H}_{\pi'}(\pi). \quad (1)$$

126 Here, $\mathbb{E}_{\pi, p_{\pi'}, \rho}$ is the expectation under policy π , transition kernel $p_{\pi'}$ and initial state distribution ρ .
127 $\gamma \in (0, 1)$ is the discount factor. $\mathcal{H}_{\pi'}(\pi)$ is a regularizer with coefficient $\lambda \geq 0$ to ensure or accelerate
128 algorithm convergence. Existing works use the quadratic regularizers such as $\mathcal{H}_{\pi'}(\pi) = \frac{1}{2} \|d_{\pi, p_{\pi'}}\|^2$
129 (Mandal et al., 2023; Rank et al., 2024; Pollatos et al., 2025) and $\mathcal{H}_{\pi'}(\pi) = \frac{1}{2} \|\Phi^\top d_{\pi, p_{\pi'}}\|^2$ (Mandal
130 & Radanovic, 2024) with a feature matrix Φ , where the occupancy measure $d_{\pi, p} \in [0, 1]^{|\mathcal{S}||\mathcal{A}|}$ for
131 any policy π and transition kernel p is defined as the following distribution on $\mathcal{S} \times \mathcal{A}$.

$$d_{\pi, p}(s, a) \stackrel{\text{def}}{=} (1 - \gamma) \sum_{t=0}^{\infty} \gamma^t \mathbb{P}_{\pi, p, \rho}\{s_t = s, a_t = a\}, \quad (2)$$

132 Then the state occupancy measure defined as $d_{\pi, p}(s) \stackrel{\text{def}}{=} \sum_a d_{\pi, p}(s, a)$ satisfies the following
133 well-known Bellman equation for any state $s' \in \mathcal{S}$.

$$d_{\pi, p}(s') = (1 - \gamma) \rho(s') + \gamma \sum_{s, a} d_{\pi, p}(s) \pi(a|s) p(s'|s, a). \quad (3)$$

134 The goal of performative reinforcement learning is to find the *performatively optimal (PO)* policy π
135 that maximizes the *performative value function* $V_{\lambda, \pi}^{\pi}$ (with $\pi' = \pi$ in Eq. (1)), as defined below.

136 **Definition 1** (Ultimate Goal: PO). *For any $\epsilon \geq 0$, a policy $\pi \in \Pi$ is defined as ϵ -performatively
137 optimal (ϵ -PO) if $\max_{\pi' \in \Pi} V_{\lambda, \pi'}^{\pi} - V_{\lambda, \pi}^{\pi} \leq \epsilon$. Specifically, we call a 0-PO policy as a PO policy.*

138 Conventional reinforcement learning can be seen as a special case of performative reinforcement
139 learning with fixed environmental dynamics, namely, fixed transition kernel $p_\pi \equiv p$ and fixed reward
140 function $r_\pi \equiv r$. However, this may fail on applications with policy-dependent environmental
141 dynamics, such as recommender system and autonomous driving as explained in Section 1.

142 2.2 EXISTING REPEATED RETRAINING METHODS FOR PERFORMATIVELY STABLE (PS) 143 POLICY

144 Achieving an ϵ -PO policy (defined by Definition 1) is challenging, due to the policy-dependent
145 environmental dynamics p_π and r_π . To alleviate the challenge, all the existing works (Mandal et al.,
146 2023; Rank et al., 2024; Mandal & Radanovic, 2024; Pollatos et al., 2025; Sahitaj et al., 2025) aim at
147 a *performatively stable (PS)* policy π_{PS} defined as follows, as an approximation to a *PO* policy.

$$\pi_{\text{PS}} \in \arg \max_{\pi \in \Pi} V_{\lambda, \pi_{\text{PS}}}^{\pi}. \quad (4)$$

162 In other words, a PS policy π_{PS} has the optimal value on the fixed environment $\mathcal{M}_{\pi_{\text{PS}}}$. However,
 163 Mandal et al. (2023) shows that a PS policy can be suboptimal.

164 Nevertheless, we will briefly introduce the suboptimal repeated retraining algorithms in their works,
 165 to later partially inspire our method that converges to the global optimal PO policy. All these
 166 repeated retraining algorithms share the fundamental idea that in each iteration t , the next policy
 167 $\pi_{t+1} \approx \arg \max_{\pi \in \Pi} V_{\lambda, \pi_t}^{\pi}$ is obtained by solving the conventional reinforcement learning problem
 168 under fixed dynamics p_{π_t} and r_{π_t} . This strategy highly relies on conventional reinforcement learning
 169 but fail to make full use of the policy-dependent dynamics, which leads to the suboptimal PS policy.
 170 Next, we will propose our significantly different strategies to achieve the desired PO policy.
 171

172 3 ENTROPY REGULARIZED PERFORMATIVE REINFORCEMENT LEARNING

173 In this section, we obtain critical properties of an entropy regularized performative reinforcement
 174 learning problem for achieving the desired PO policy.

177 3.1 NEGATIVE ENTROPY REGULARIZER

178 We consider the following negative entropy regularizer of the policy π , which is widely used in
 179 reinforcement learning to encourage environment exploration and accelerate convergence (Mnih
 180 et al., 2016; Mankowitz et al., 2019; Cen et al., 2022; Chen & Huang, 2024).

$$183 \mathcal{H}_{\pi'}(\pi) = \mathbb{E}_{\pi, p_{\pi'}, \rho} \left[\sum_{t=0}^{\infty} \gamma^t \log \pi(a_t | s_t) \right]. \quad (5)$$

184 In addition, this negative entropy regularizer can be seen as a strongly convex function of the
 185 occupancy measure $d_{\pi, p_{\pi'}}$ (proved in Appendix D), which is critical to develop algorithms convergent
 186 to a PO (see Theorem 1 later) or PS policy (Mandal et al., 2023). For optimization problem on a
 187 probability simplex variable (policy π or occupancy measure d), negative entropy regularizer is more
 188 natural and yields faster theoretical convergence than the quadratic regularizers used in the existing
 189 performative reinforcement learning works (Mandal et al., 2023; Rank et al., 2024; Pollatos et al.,
 190 2025) (see pages 43-45 of (Chen, 2020) for explanation).

191 Therefore, we will mainly focus on the following entropy-regularized value function, which is
 192 obtained by substituting the negative entropy regularizer (5) into the general value function (1).

$$195 V_{\lambda, \pi'}^{\pi} \stackrel{\text{def}}{=} \mathbb{E}_{\pi, p_{\pi'}, \rho} \left[\sum_{t=0}^{\infty} \gamma^t [r_{\pi'}(s_t, a_t) - \lambda \log \pi(a_t | s_t)] \right]. \quad (6)$$

196 Specifically, we will study the critical properties of the entropy-regularized value function (6) (Section
 197 4) to develop algorithm that converges to PO (Sections 4.1-4.2). Then we will briefly discuss about
 198 how to adjust these results to the existing quadratic regularizers (Appendix M).

199 We make the following standard assumptions to study the properties of the value function (6).

200 **Assumption 1** (Sensitivity). *There exist constants $\epsilon_p, \epsilon_r > 0$ such that for any $\pi, \pi' \in \Pi$,*

$$204 \|\pi' - \pi\| \leq \epsilon_p \|\pi' - \pi\|, \quad \|r_{\pi'} - r_{\pi}\| \leq \epsilon_r \|\pi' - \pi\| \quad (7)$$

205 **Assumption 2** (Smoothness). *p_{π} and r_{π} are Lipschitz smooth with modulus $S_p, S_r > 0$ respectively,
 206 that is, for any $\pi \in \Pi$, $s, s' \in \mathcal{S}$, $a \in \mathcal{A}$, we have*

$$207 \|\nabla_{\pi} p_{\pi'}(s' | s, a) - \nabla_{\pi} p_{\pi}(s' | s, a)\| \leq S_p \|\pi' - \pi\|, \quad (8)$$

$$209 \|\nabla_{\pi} r_{\pi'}(s, a) - \nabla_{\pi} r_{\pi}(s, a)\| \leq S_r \|\pi' - \pi\|. \quad (9)$$

210 **Assumption 3.** *There exists a constant $D > 0$ such that $\inf_{\pi \in \Pi, p \in \mathcal{P}, s \in \mathcal{S}} d_{\pi, p}(s) \geq D$.*

211 Assumptions 1-2 ensure that the environmental dynamics p_{π} and r_{π} adjust continuously and smoothly
 212 to policy π , and thus the *performative value function* $V_{\lambda, \pi}^{\pi}$ is differentiable with *performative policy*
 213 *gradient* $\nabla_{\pi} V_{\lambda, \pi}^{\pi}$. Similar versions of Assumption 1 on environmental sensitivity have also been used
 214 for performative reinforcement learning (Mandal et al., 2023; Rank et al., 2024; Mandal & Radanovic,
 215 2024; Pollatos et al., 2025; Sahitaj et al., 2025). Assumption 3 has been used (Zhang et al., 2021;

216 Sahitaj et al., 2025) or implied by stronger assumptions (Wei et al., 2021; Chen et al., 2022; Agarwal
 217 et al., 2021; Leonards et al., 2022; Wang et al., 2023; Chen & Huang, 2024; Bhandari & Russo,
 218 2024) in conventional reinforcement learning (see Appendix E for the proof), which guarantees that
 219 each state is visited sufficiently often.

221 3.2 GRADIENT DOMINANCE

223 For the nonconvex policy optimization problem $\max_{\pi \in \Pi} V_{\lambda, \pi}^\pi$ in Eq. (6) on the convex policy space
 224 Π , it is natural to consider its approximate stationary solution as defined below.

225 **Definition 2** (Stationary Policy). *For any $\epsilon \geq 0$, a policy $\pi \in \Pi$ is ϵ -stationary if
 226 $\max_{\tilde{\pi} \in \Pi} \langle \nabla_{\pi} V_{\lambda, \pi}^\pi, \tilde{\pi} - \pi \rangle \leq \epsilon$. We call a 0-stationary policy as a stationary policy.*

227 Note that for a policy to be the desired PO, it is necessary to be stationary, while the PS policy targeted
 228 by existing works is neither necessary nor sufficient. Furthermore, we will show that stationary policy
 229 can also be a sufficient condition of the desired PO under mild conditions. As a preliminary step, we
 230 show the important gradient dominance property of the objective function as follows.

231 **Theorem 1** (Gradient Dominance). *Under Assumptions 1-3, the entropy regularized value function
 232 (6) satisfies the following gradient dominance property for any $\pi_0, \pi_1 \in \Pi$.*

$$234 V_{\lambda, \pi_1}^{\pi_1} \leq V_{\lambda, \pi_0}^{\pi_0} + D^{-1} \max_{\pi \in \Pi} \langle \nabla_{\pi_0} V_{\lambda, \pi_0}^{\pi_0}, \pi - \pi_0 \rangle - \frac{\mu}{2} \|\pi_1 - \pi_0\|^2, \quad (10)$$

235 where

$$237 \mu \stackrel{\text{def}}{=} \frac{D\lambda}{1-\gamma} - \frac{6\gamma|\mathcal{S}|(1+\lambda \log |\mathcal{A}|)}{D(1-\gamma)^3} [\epsilon_p(\sqrt{|\mathcal{A}|} + \gamma\epsilon_p\sqrt{|\mathcal{S}|}) + S_p(1-\gamma)] \\ 238 - \frac{S_r(1-\gamma) + 4\epsilon_r(\sqrt{|\mathcal{A}|} + \epsilon_p\sqrt{|\mathcal{S}|})}{D^2(1-\gamma)^2}, \quad (11)$$

241 The gradient dominance property above generalizes that used in the conventional unregularized
 242 reinforcement learning (see Lemma 4 of (Agarwal et al., 2021)), which implies that stationary policy
 243 is close to a PO policy as shown in the corollary below.

244 **Corollary 1.** *Under Assumptions 1-3, any $D\epsilon$ -stationary policy is an $(\epsilon + |\mu||\mathcal{S}|)$ -PO policy. Furthermore, this is also the desired ϵ -PO policy if $\mu \geq 0$. The PO policy is unique if $\mu > 0$.*

247 **Remark:** Corollary 1 implies that a $D\epsilon$ -stationary policy is always $(\epsilon + |\mu||\mathcal{S}|)$ -close to the desired
 248 PO policy with $|\mu|$ proportional to the environmental sensitivity $\mathcal{O}(\epsilon_p + \epsilon_r + S_p + S_r)$. Furthermore,
 249 since $\mu = [\mathcal{O}(1) - \mathcal{O}(\epsilon_p + S_p)]\lambda - \mathcal{O}(\epsilon_p + \epsilon_r + S_p + S_r)$ by Eq. (11), when $\mathcal{O}(\epsilon_p + S_p) < \mathcal{O}(1)$ and
 250 the regularizer strength dominates the environmental shift ($\lambda \geq \frac{\mathcal{O}(\epsilon_p + \epsilon_r + S_p + S_r)}{\mathcal{O}(1) - \mathcal{O}(\epsilon_p + S_p)}$), we have $\mu \geq 0$ so
 251 that the $D\epsilon$ -stationary policy is also the desired ϵ -PO policy. Note that similar regularizer dominance
 252 condition has also been used to guarantee convergence to a suboptimal PS policy (Mandal et al.,
 253 2023; Rank et al., 2024; Mandal & Radanovic, 2024; Pollatos et al., 2025).

255 3.3 POLICY LOWER BOUND AND LIPSCHITZ PROPERTIES

257 **Policy Lower Bound:** Based on Section 3.2, we can focus on achieving an ϵ -stationary policy. A
 258 major challenge is the unbounded *performative policy gradient* $\nabla_{\pi} V_{\lambda, \pi}^\pi$ on Π . Specifically, we will
 259 show that as $\pi(a|s) \rightarrow 0$ for any state s and action a , $\|\nabla_{\pi} V_{\lambda, \pi}^\pi\| \rightarrow +\infty$. To tackle this challenge,
 260 we prove the following policy lower bound.

261 **Theorem 2.** *If Assumptions 1 and 3 hold, and p_{π}, r_{π} are differentiable functions of π , then there
 262 exists a constant $\pi_{\min} > 0$ (see its value in Eq. (96) in Appendix H) such that the following policy
 263 lower bound holds for any $\pi \in \Pi$, $s \in \mathcal{S}$, $a \in \mathcal{A}$.*

$$264 \pi(a|s) \geq \pi_{\min} \exp \left[- \frac{2|\mathcal{A}|}{\lambda} (1-\gamma) \langle \nabla_{\pi} V_{\lambda, \pi}^\pi, \pi' - \pi \rangle \right], \quad (12)$$

266 Here, the policy π' is defined as follows depending on π :

$$268 \pi'(a|s) = \begin{cases} \pi[a_{\min}(s)|s], & a = a_{\max}(s) \\ \pi[a_{\max}(s)|s], & a = a_{\min}(s) \\ \pi(a|s), & \text{Otherwise} \end{cases}, \quad (13)$$

270 where $a_{\max}(s) \in \arg \max_a \pi(a|s)$ and $a_{\min}(s) \in \arg \min_a \pi(a|s)$.
 271

272 **Implications of Theorem 2:** First, as $\pi(a|s) \rightarrow 0$, we have $\langle \nabla_\pi V_{\lambda,\pi}^\pi, \pi' - \pi \rangle \rightarrow +\infty$, so
 273 $\|\nabla_\pi V_{\lambda,\pi}^\pi\| \rightarrow +\infty$ as aforementioned. Second, any stationary policy π satisfies $\langle \nabla_\pi V_{\lambda,\pi}^\pi, \pi' - \pi \rangle \leq$
 274 0, so $\pi(a|s) \geq \pi_{\min}$. Therefore, we can search ϵ -stationary policy on the convex and compact policy
 275 subspace $\Pi_\Delta \stackrel{\text{def}}{=} \{\pi \in \Pi : \pi(a|s) \geq \Delta\}$ with lower bound $\Delta \in (0, \pi_{\min}]$.
 276

277 **Lipschitz Properties:** Theorem 2 inspires us to find an ϵ -stationary policy in the policy subspace Π_Δ ,
 278 where the *performative value function* $V_{\lambda,\pi}^\pi$ is Lipschitz continuous and Lipschitz smooth as follows.

279 **Theorem 3.** *Under Assumptions 1-2, there exist constants $L_\lambda, \ell_\lambda > 0$ (see the values in Eqs. (98) and*
 280 *(100) in Appendix I) such that the following Lipschitz properties hold for any $\Delta > 0$ and $\pi, \pi' \in \Pi_\Delta$.*
 281

$$282 |V_{\lambda,\pi'}^{\pi'} - V_{\lambda,\pi}^\pi| \leq \frac{L_\lambda}{\Delta} \|\pi' - \pi\|, \quad \|\nabla_{\pi'} V_{\lambda,\pi'}^{\pi'} - \nabla_\pi V_{\lambda,\pi}^\pi\| \leq \frac{\ell_\lambda}{\Delta} \|\pi' - \pi\|. \quad (14)$$

284 4 ZEROTH-ORDER FRANK-WOLFE (0-FW) ALGORITHM

285 4.1 PERFORMATIVE POLICY GRADIENT ESTIMATION

286 In Section 3, we have obtained important properties of the entropy regularized *performative value*
 287 *function* $V_{\lambda,\pi}^\pi$ (defined by Eq. (6)), which indicates that it suffices to find an ϵ -stationary policy in
 288 the subspace Π_Δ for $\Delta \in (0, \pi_{\min}]$. To achieve this goal, an accurate estimation of the *performative policy gradient*
 289 $\nabla_\pi V_{\lambda,\pi}^\pi$ is important but also challenging, since the performative policy gradient
 290 involves the unknown gradients $\nabla_\pi p_\pi(s'|s, a)$ and $\nabla_\pi r_\pi(s, a)$.
 291

292 Despite these challenges in estimating $\nabla_\pi V_{\lambda,\pi}^\pi$, note that $V_{\lambda,\pi}^\pi$ for any policy π can be evaluated by
 293 policy evaluation in conventional reinforcement learning under fixed environment p_π and r_π (for
 294 fixed π). Furthermore, for any $\epsilon_V > 0$ and $\eta \in (0, 1)$, many existing policy evaluation algorithms
 295 such as temporal difference (Bhandari et al., 2018; Li et al., 2023; Samsonov et al., 2023), can obtain
 296 $\hat{V}_{\lambda,\pi}^\pi \approx V_{\lambda,\pi}^\pi$ with small error bound $|\hat{V}_{\lambda,\pi}^\pi - V_{\lambda,\pi}^\pi| \leq \epsilon_V$ with probability at least $1 - \eta$.
 297

298 As a result, we will consider a zeroth-order estimation of $\nabla_\pi V_{\lambda,\pi}^\pi$ using policy evaluation. However,
 299 this has another challenge that $V_{\lambda,\pi}^\pi$ is only well-defined on $\pi \in \Pi$, so we cannot directly apply the
 300 existing zeroth-order estimation methods (Agarwal et al., 2010; Shamir, 2017; Malik et al., 2020)
 301 which require the objective function to be well-defined on a sphere. Fortunately, for any $\pi, \pi' \in \Pi$,
 302 the policy difference $\pi' - \pi$ lies in the following linear subspace of dimensionality $|\mathcal{S}|(|\mathcal{A}| - 1)$.
 303

$$304 \mathcal{L}_0 \stackrel{\text{def}}{=} \left\{ u \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}|} : \sum_a u(a|s) = 0, \forall s \in \mathcal{S} \right\}. \quad (15)$$

305 Therefore, inspired by the popular two-point zeroth-order estimations, we estimate $\nabla_\pi V_{\lambda,\pi}^\pi$ as follows.
 306

$$307 \hat{g}_{\lambda,\delta}(\pi) = \frac{|\mathcal{S}|(|\mathcal{A}| - 1)}{2N\delta} \sum_{i=1}^N (\hat{V}_{\lambda,\pi+\delta u_i}^{\pi+\delta u_i} - \hat{V}_{\lambda,\pi-\delta u_i}^{\pi-\delta u_i}) u_i, \quad (16)$$

308 where $\{u_i\}_{i=1}^N$ are i.i.d. samples uniformly from $U_1 \cap \mathcal{L}_0$ with $U_1 \stackrel{\text{def}}{=} \{u \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}|} : \|u\| = 1\}$. Our
 309 estimation (16) above is more tricky than the existing two-point zeroth-order estimations (Agarwal
 310 et al., 2010; Shamir, 2017; Malik et al., 2020) where u_i is uniformly distributed on U_1 . To elaborate,
 311 we replace their U_1 with $U_1 \cap \mathcal{L}_0$, a unit sphere on the linear subspace \mathcal{L}_0 , and further require $\pi \in \Pi_\Delta$
 312 and $\delta < \Delta$, to guarantee that $\pi + \delta u_i, \pi - \delta u_i \in \Pi$ for any $u_i \in U_1 \cap \mathcal{L}_0$ and thus the gradient
 313 estimation (16) is well-defined (see Appendix J for the proof). Moreover, we use the following three
 314 steps to obtain u_i uniformly from $U_1 \cap \mathcal{L}_0$: (1) Obtain v_i uniformly from U_1 ; (2) Project v_i onto \mathcal{L}_0
 315 as Eq. (17) below; (3) Normalize this projection by $u_i = \text{proj}_{\mathcal{L}_0}(v_i)/\|\text{proj}_{\mathcal{L}_0}(v_i)\|$.
 316

$$317 \text{proj}_{\mathcal{L}_0}(v_i)(a|s) = v_i(a|s) - \frac{1}{|\mathcal{A}|} \sum_{a'} v_i(a'|s). \quad (17)$$

318 The gradient estimation (16) has the following provable error bound.
 319

324 **Proposition 1.** For any $\Delta > \delta > 0$, $\eta \in (0, 1)$ and $\pi \in \Pi_\Delta$, the stochastic gradient (16) is
 325 well-defined (i.e., $\pi + \delta u_i$ and $\pi - \delta u_i$ therein are valid policies defined by Π) and approximates the
 326 projected performative policy gradient $\text{proj}_{\mathcal{L}_0}(\nabla_\pi V_{\lambda, \pi}^\pi)$ with the following error bound (see its full
 327 expression in Eq. (110) in Appendix J), with probability at least $1 - \eta$.
 328

$$329 \quad \|\hat{g}_{\lambda, \delta}(\pi) - \text{proj}_{\mathcal{L}_0}(\nabla_\pi V_{\lambda, \pi}^\pi)\| \leq \mathcal{O}\left(\frac{\epsilon_V}{\delta} + \frac{\log(N/\eta)}{\sqrt{N}} + \delta\right). \quad (18)$$

331 **Remark:** Proposition 1 above aims
 332 to approximate $\text{proj}_{\mathcal{L}_0}(\nabla_\pi V_{\lambda, \pi}^\pi)$
 333 instead of $\nabla_\pi V_{\lambda, \pi}^\pi$. This is
 334 sufficient to find an ϵ -stationary
 335 policy, because for any policies
 336 π, π' , the stationarity measure
 337 only involves $\langle \nabla_\pi V_{\lambda, \pi}^\pi, \pi' - \pi \rangle =$
 338 $\langle \text{proj}_{\mathcal{L}_0}(\nabla_\pi V_{\lambda, \pi}^\pi), \pi' - \pi \rangle$ as $\pi' - \pi \in$
 339 \mathcal{L}_0 . Therefore, we only care about
 340 $\text{proj}_{\mathcal{L}_0}(\nabla_\pi V_{\lambda, \pi}^\pi)$. The estimation
 341 error (18) above can be arbitrarily
 342 small with sufficiently large batch-
 343 size N (to reduce the variance),
 344 small δ (to reduce the bias), and pol-
 345 icy evaluation error $\epsilon_V \ll \delta$.
 346

349 4.2 ZEROTH-ORDER FRANK-WOLFE (0-FW) ALGORITHM

350 With the estimated gradient $\hat{g}_{\lambda, \delta}(\pi_t)$ defined by Eq. (16), we consider the following Frank-Wolfe
 351 algorithm to find an ϵ -stationary policy.
 352

$$353 \quad \tilde{\pi}_t = \arg \max_{\pi \in \Pi_\Delta} \langle \pi, \hat{g}_{\lambda, \delta}(\pi_t) \rangle, \quad (19)$$

$$354 \quad \pi_{t+1} = \pi_t + \beta(\tilde{\pi}_t - \pi_t). \quad (20)$$

356 **Lemma 1.** The step (19) has the analytical solution below.
 357

$$358 \quad \tilde{\pi}_t(a|s) = \begin{cases} \Delta; a \neq \tilde{a}_t(s) \\ 1 - \Delta(|\mathcal{A}| - 1); a = \tilde{a}_t(s) \end{cases}, \quad (21)$$

360 where $\tilde{a}_t(s) \in \arg \max_a \hat{g}_{\lambda, \delta}(\pi_t)(a|s)$.
 361

362 See the proof of Lemma 1 in Section C.1. Then combining the *performative policy gradient* estimation
 363 (see Section 3.1) with the Frank-Wolfe algorithm, we propose our zeroth-order Frank-Wolfe (0-FW)
 364 algorithm (see Algorithm 1).
 365

366 We obtain the following convergence result of Algorithm 1 in Theorem 4, the main theoretical result
 367 of this work, as follows.
 368

369 **Theorem 4.** Suppose Assumptions 1-3 hold. For any $\eta \in (0, 1)$ and precision $0 < \epsilon \leq$
 370 $\min[24\sqrt{2|\mathcal{S}|}\frac{\ell_\lambda}{D}, \frac{2\lambda}{5|\mathcal{A}|D^2(1-\gamma)}, \frac{288L_\lambda|\mathcal{S}|^{1.5}|\mathcal{A}|}{D\pi_{\min}}]$, select the following hyperparameters for Algorithm
 371 1: $\Delta = \frac{\pi_{\min}}{3}$, $\beta = \frac{D\pi_{\min}\epsilon}{36\ell_\lambda|\mathcal{S}|}$, $\delta = \mathcal{O}(\epsilon)$, $\epsilon_V = \mathcal{O}(\epsilon^2)$, $N = \mathcal{O}[\epsilon^{-2} \log(\eta^{-1}\epsilon^{-1})]$, and the number
 372 of iterations $T = \mathcal{O}(\epsilon^{-2})$ (see Eqs. (116)-(121) in Appendix L for detailed expression of these
 373 hyperparameters). Then with probability at least $1 - \eta$, the output policy $\tilde{\pi}_{\tilde{T}}$ of Algorithm 1 is a
 374 $D\epsilon$ -stationary policy. Furthermore, if $\mu \geq 0$, $\tilde{\pi}_{\tilde{T}}$ is also an ϵ -PO policy. The total number of policy
 375 evaluations is $2NT = \mathcal{O}[\epsilon^{-4} \log(\eta^{-1}\epsilon^{-1})]$.
 376

377 **Comparison with Existing Works:** Theorem 4 indicates that our 0-FW algorithm for the first
 378 time converges to the desire PO policy with arbitrarily small precision ϵ in polynomial computation
 379 complexity, under the regularizer dominance condition that $\mu \geq 0$. In contrast, existing works

378 only converge to a suboptimal PS policy under a similar regularizer dominance condition (Mandal
379 et al., 2023; Rank et al., 2024; Mandal & Radanovic, 2024; Pollatos et al., 2025). Our preferable
380 convergence result is due to the main algorithmic difference that existing works use repeated re-
381 training algorithms with iteration $\pi_{t+1} \approx \arg \max_{\pi \in \Pi} V_{\lambda, \pi}^{\pi_t}$ where the policy π is deployed in a fixed
382 environment \mathcal{M}_{π_t} with $\pi \neq \pi_t$, while our 0-FW algorithm evaluates $V_{\lambda, \pi}^{\pi}$ where π is always deployed
383 at its corresponding environment \mathcal{M}_{π} .

384 **Proposition 2.** *If $\Delta \leq \pi_{\min}/3$ and a policy π satisfies $\max_{\tilde{\pi} \in \Pi_{\Delta}} \langle \nabla_{\pi} V_{\lambda, \pi}^{\pi}, \tilde{\pi} - \pi \rangle \leq \frac{D\lambda}{5|\mathcal{A}|(1-\gamma)}$,
385 then the stationary measures on Π_{Δ} and Π bound each other as follows.*

$$387 \max_{\tilde{\pi} \in \Pi} \langle \nabla_{\pi} V_{\lambda, \pi}^{\pi}, \tilde{\pi} - \pi \rangle \leq 2 \max_{\tilde{\pi} \in \Pi_{\Delta}} \langle \nabla_{\pi} V_{\lambda, \pi}^{\pi}, \tilde{\pi} - \pi \rangle \quad (22)$$

389 To prove Proposition 2, note that π' defined by Eq. (13) also belongs to Π_{Δ} , so Theorem 2 implies
390 $\pi(a|s) \geq 2\Delta$. Then for any $\pi_2 \in \Pi$, we have $\frac{\pi_2 + \pi}{2} \in \Pi_{\Delta}$ and thus
391

$$392 \max_{\pi_2 \in \Pi} \langle \nabla_{\pi} V_{\lambda, \pi}^{\pi}, \pi_2 - \pi \rangle = 2 \max_{\pi_2 \in \Pi} \left\langle \nabla_{\pi} V_{\lambda, \pi}^{\pi}, \frac{\pi_2 + \pi}{2} - \pi \right\rangle \leq 2 \max_{\tilde{\pi} \in \Pi_{\Delta}} \langle \nabla_{\pi} V_{\lambda, \pi}^{\pi}, \tilde{\pi} - \pi \rangle.$$

395 5 PROOF SKETCH AND NOVELTY

398 **Intuition and Novelty for Proving Theorem 1:** Define the following more refined value function

$$400 J_{\lambda}(\pi, \pi', p, r) \stackrel{\text{def}}{=} \mathbb{E}_{\pi, p} \left[\sum_{t=0}^{\infty} \gamma^t [r(s_t, a_t) - \lambda \log \pi'(a_t|s_t)] \middle| s_0 \sim \rho \right]. \quad (23)$$

403 To get the intuition, we will first prove the bound (10) in the special case with fixed $p_{\pi} \equiv p$ and
404 $r_{\pi} \equiv r$. Then we allow non-constant p_{π} to inspect the perturbation on the bound (10), and finally see
405 the effect of non-constant r_{π} on the bound (10).

406 (Step 1): For conventional reinforcement learning with fixed $p_{\pi} \equiv p$ and $r_{\pi} \equiv r$, denote $d_{\alpha} =$
407 $\alpha d_{\pi_1, p} + (1 - \alpha) d_{\pi_0, p}$ ($\alpha \in [0, 1]$). Based on the Bellman equation (3), $d_{\alpha} = d_{\pi_{\alpha}, p}$ is the occupancy
408 measure of the policy $\pi_{\alpha}(a|s) = \frac{d_{\alpha}(s, a)}{d_{\alpha}(s)}$. Therefore, $V_{\lambda, \pi_{\alpha}}^{\pi_{\alpha}}$ can be rewritten as $J_{\lambda}(\pi_{\alpha}, \pi_{\alpha}, p, r) =$
409 $\sum_{s, a} d_{\alpha}(s, a) [r(s, a) - \lambda \log \pi_{\alpha}(a|s)]$, which has the following strong concavity like property by
410 Pinsker's inequality.

$$411 \begin{aligned} & J_{\lambda}(\pi_{\alpha}, \pi_{\alpha}, p, r) - \alpha J_{\lambda}(\pi_1, \pi_1, p, r) - (1 - \alpha) J_{\lambda}(\pi_0, \pi_0, p, r) \\ &= \frac{1}{1 - \gamma} \sum_s [\alpha d_1(s) \text{KL}[\pi_1(\cdot|s) \| \pi_{\alpha}(a|s)] + (1 - \alpha) d_0(s) \text{KL}[\pi_0(\cdot|s) \| \pi_{\alpha}(a|s)]] \\ &\geq \frac{D\lambda\alpha(1 - \alpha)}{2(1 - \gamma)} \|\pi_1 - \pi_0\|^2. \end{aligned} \quad (24)$$

418 (Step 2): Consider a harder case with non-constant p_{π} and constant reward $r_{\pi} \equiv r$. Similarly,
419 denote $d_{\alpha} = \alpha d_{\pi_1, p_{\pi_1}} + (1 - \alpha) d_{\pi_0, p_{\pi_0}}$ and $\pi_{\alpha}(a|s) = \frac{d_{\alpha}(s, a)}{d_{\alpha}(s)}$. The non-constant p_{π} brings a major
420 challenge that $d_{\alpha} = d_{\pi_{\alpha}, p_{\pi_{\alpha}}}$ required by Step 1 above no longer holds. To solve this challenge, we
421 need to bound the error term $e_{\alpha}(s) = d_{\pi_{\alpha}, p_{\alpha}}(s) - d_{\alpha}(s)$ which we prove to satisfy the following
422 novel recursion.

$$424 e_{\alpha}(s') = \gamma \sum_{s, a} [e_{\alpha}(s) \pi_{\alpha}(a|s) p_{\pi_{\alpha}}(s'|s, a) + h_{\alpha}(s, a, s')],$$

426 where $h_{\alpha}(s, a, s') = d_{\alpha}(s, a) p_{\pi_{\alpha}}(s'|s, a) - \alpha d_1(s, a) p_{\pi_1}(s'|s, a) - (1 - \alpha) d_0(s, a) p_{\pi_0}(s'|s, a)$.
427 Since $d_{\alpha}(s, a) p_{\pi_{\alpha}}(s'|s, a)$ is a Lipschitz smooth function of α , we can upper bound $|h_{\alpha}(s, a, s')|$
428 and substitute this bound to the recursion above, which yields the following novel error bound.

$$430 \sum_s |e_{\alpha}(s)| \leq \frac{3\gamma|\mathcal{S}|\alpha(1 - \alpha)}{D(1 - \gamma)^2} \|\pi_1 - \pi_0\|^2 [\epsilon_p(\sqrt{|\mathcal{A}|} + \gamma\epsilon_p\sqrt{|\mathcal{S}|}) + S_p(1 - \gamma)],$$

432 The bound above reflects the effect of non-constant p_π , which perturbs the bound (24) into
 433

$$434 J_\lambda(\pi_\alpha, \pi_\alpha, p_\alpha, r) - \alpha J_\lambda(\pi_1, \pi_1, p_1, r) - (1 - \alpha) J_\lambda(\pi_0, \pi_0, p_0, r) \geq \frac{\alpha(1 - \alpha)\mu_1}{2} \|\pi_1 - \pi_0\|^2, \quad (25)$$

435
 436 where $\mu_1 \stackrel{\text{def}}{=} \frac{D\lambda}{1-\gamma} - \frac{6\gamma|\mathcal{S}|(1+\lambda \log |\mathcal{A}|)}{D(1-\gamma)^3} [\epsilon_p(\sqrt{|\mathcal{A}|} + \gamma\epsilon_p\sqrt{|\mathcal{S}|}) + S_p(1-\gamma)]$ equals μ in Eq. (11) when
 437 $\epsilon_r = S_r = 0$.

438 (Step 3): Now we consider performative reinforcement learning with non-constant p_π and r_π . The
 439 policy π_α and its occupancy measure d_α are the same as in Case II above. Then the function
 440 $w(\alpha) = \alpha J_\lambda(\pi_1, \pi_1, p_1, r_\alpha) + (1 - \alpha) J_\lambda(\pi_0, \pi_0, p_0, r_\alpha)$ can be proved $\mu_2 \|\pi_1 - \pi_0\|^2$ -Lipschitz
 441 smooth with parameter $\mu_2 = \mu - \mu_1 \geq 0$. Using $r = r_\alpha$ in Eq. (25), we obtain the following strong
 442 concavity like property with $\mu = \mu_1 - \mu_2$.

$$443 V_{\lambda, \pi_\alpha}^{\pi_\alpha} - \alpha V_{\lambda, \pi_1}^{\pi_1} - (1 - \alpha) V_{\lambda, \pi_0}^{\pi_0} \\ 444 = J_\lambda(\pi_\alpha, \pi_\alpha, p_\alpha, r_\alpha) - \alpha J_\lambda(\pi_1, \pi_1, p_1, r_1) - (1 - \alpha) J_\lambda(\pi_0, \pi_0, p_0, r_0) \\ 445 \geq \frac{\alpha(1 - \alpha)\mu_1}{2} \|\pi_1 - \pi_0\|^2 + w(\alpha) - \alpha w(1) - (1 - \alpha) w(0) \geq \frac{\alpha(1 - \alpha)\mu}{2} \|\pi_1 - \pi_0\|^2.$$

446 Finally, the dominance property (10) follows from the inequality above as $\alpha \rightarrow +0$.
 447

448 **Intuition and Novelty for Proving Theorem 2:** At first, consider conventional reinforcement
 449 learning with fixed environmental dynamics $p_\pi \equiv p$ and $r_\pi \equiv r$. In this case, $\nabla_\pi V_{\lambda, \pi}^\pi$ has analytical
 450 form (see Eq. (90)), so by direct computation we obtain the following inequality with constant
 451 $C = 1 + \frac{\gamma(1 + \lambda \log |\mathcal{A}|)}{1 - \gamma}$ (see Eq. (91) for detail)

$$452 \langle \nabla_\pi J_\lambda(\pi, \pi, p, r), \pi' - \pi \rangle \geq \frac{1}{1 - \gamma} \max_s \left\{ (\pi[a_{\max}(s)|s] - \pi[a_{\min}(s)|s]) \left[\lambda \log \frac{\pi[a_{\max}(s)|s]}{\pi[a_{\min}(s)|s]} - C \right] \right\}.$$

453 To obtain a lower bound of $\pi[a_{\min}(s)|s]$, we simplify the inequality above by considering two
 454 cases, $\pi[a_{\min}(s)|s] \geq \frac{1}{2}\pi[a_{\max}(s)|s] \geq \frac{1}{2|\mathcal{A}|}$ and $\pi[a_{\min}(s)|s] < \frac{1}{2}\pi[a_{\max}(s)|s]$. In the second
 455 case, we replace $\pi[a_{\max}(s)|s]$ and $\pi[a_{\max}(s)|s] - \pi[a_{\min}(s)|s]$ above with their lower bounds $\frac{1}{|\mathcal{A}|}$
 456 and $\frac{1}{2|\mathcal{A}|}$ respectively. Then combining the two cases proves the lower bound (12) at the special
 457 case of $\epsilon_p = \epsilon_r = 0$. Then we extend from conventional reinforcement learning to performative
 458 reinforcement learning which involves a gradient perturbation with magnitude of at most $\mathcal{O}(\epsilon_p + \epsilon_r)$
 459 (see Eq. (94) for detail) based on the chain rule and leads to the lower bound (12) for any $\epsilon_p, \epsilon_r \geq 0$.
 460

461 **Intuition and Novelty for Proving Proposition 1:** Unlike existing zeroth-order estimations
 462 on the whole Euclidean space, our estimation (16) is made on the policy space Π , which lies
 463 in the linear manifold $\mathcal{L}_0 + |\mathcal{A}|^{-1} \subset \mathbb{R}^{|\mathcal{S}||\mathcal{A}|}$. The key to our proof is to find an orthogonal
 464 transformation $T : \mathbb{R}^{|\mathcal{S}||\mathcal{A}|^{-1}} \rightarrow \mathcal{L}_0$, so that the goal is simplified to analyze the gradient estimation
 465 of $f_\lambda(x) \stackrel{\text{def}}{=} V_{\lambda, T(x) + |\mathcal{A}|^{-1}}^{T(x) + |\mathcal{A}|^{-1}}$ on any $x \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}|^{-1}}$.
 466

467 **Intuition and Novelty for Proving Theorem 4:** Standard convergence analysis of Frank-Wolfe
 468 algorithm yields that $\max_{\tilde{\pi} \in \Pi_\Delta} \langle \nabla_\pi V_{\lambda, \pi_{\tilde{T}}}^{\pi_{\tilde{T}}}, \tilde{\pi} - \pi_{\tilde{T}} \rangle \leq \frac{D\epsilon}{2}$ on Π_Δ . However, it requires a trick to
 469 prove the following Proposition 2 which implies that $\pi_{\tilde{T}}$ is $D\epsilon$ -stationary on Π .
 470

471 6 EXPERIMENTS

472 We compare our Algorithm 1 with the existing repeated retraining algorithm in a simulation environment. See Appendix B for the implementation details. Then for the policies π_t obtained by each
 473 algorithm, we plot the training curves of the performative value function $V_{\lambda, \pi_t}^{\pi_t}$ ($\lambda = 0.5$) and the
 474 unregularized performative value function $V_{0, \pi_t}^{\pi_t}$ in Figure 1 in Appendix B, which show that our
 475 Algorithm 1 converges better than the existing repeated retraining algorithm on both regularized and
 476 unregularized performative value functions.
 477

478 7 CONCLUSION

479 We have studied an entropy-regularized performative reinforcement learning problem, obtained
 480 its important properties including gradient dominance, policy lower bound, Lipschitz continuity
 481

486 and smoothness. Based on these properties, we have proposed a zeroth-order Frank-Wolfe (0-
 487 FW) algorithm only using sample-based policy evaluation, which for the first time converges to
 488 a *performatively optimal (PO)* policy with polynomial number of policy evaluations under the
 489 regularizer dominance condition. These theoretical results also holds for the quadratic regularizers
 490 used in the existing works on performative reinforcement learning (see Appendix M for discussion).
 491

492 **REFERENCES**

494 Alekh Agarwal, Ofer Dekel, and Lin Xiao. Optimal algorithms for online convex optimization with
 495 multi-point bandit feedback. In *Colt*, pp. 28–40. Citeseer, 2010.

496 Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy
 497 gradient methods: Optimality, approximation, and distribution shift. *The Journal of Machine
 498 Learning Research*, 22(1):4431–4506, 2021.

500 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
 501 Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
 502 reinforcement learning from human feedback. *ArXiv:2204.05862*, 2022.

503 Jalaj Bhandari and Daniel Russo. Global optimality guarantees for policy gradient methods. *Opera-
 504 tions Research*, 2024.

505 Jalaj Bhandari, Daniel Russo, and Raghav Singal. A finite time analysis of temporal difference
 506 learning with linear function approximation. In *Proceedings of the Conference on learning theory
 507 (COLT)*, pp. 1691–1692, 2018.

509 Gavin Brown, Shlomi Hod, and Iden Kalemaj. Performative prediction in a stateful world. In
 510 *International conference on artificial intelligence and statistics*, pp. 6045–6061, 2022.

511 Noam Brown and Tuomas Sandholm. Superhuman ai for multiplayer poker. *Science*, 365(6456):
 512 885–890, 2019.

514 Shicong Cen, Chen Cheng, Yuxin Chen, Yuting Wei, and Yuejie Chi. Fast global convergence
 515 of natural policy gradient methods with entropy regularization. *Operations Research*, 70(4):
 516 2563–2578, 2022.

517 Allison JB Chaney, Brandon M Stewart, and Barbara E Engelhardt. How algorithmic confounding in
 518 recommendation systems increases homogeneity and decreases utility. In *Proceedings of the 12th
 519 ACM conference on recommender systems*, pp. 224–232, 2018.

520 Yuxin Chen. Mirror descent. https://yuxinchen2020.github.io/ele522_optimization/lectures/mirror_descent.pdf, 2020.

523 Ziyi Chen and Heng Huang. Accelerated policy gradient for s-rectangular robust mdps with large
 524 state spaces. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2024.

525 Ziyi Chen, Shaocong Ma, and Yi Zhou. Sample efficient stochastic policy extragradient algo-
 526 rithm for zero-sum markov game. In *Proceedings of the International Conference on Learning
 527 Representations (ICLR)*, 2022.

529 Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. Reinforcement learning for non-stationary
 530 markov decision processes: The blessing of (more) optimism. In *International conference on
 531 machine learning*, pp. 1843–1854, 2020.

532 Ofer Dekel and Elad Hazan. Better rates for any adversarial deterministic mdp. In *International
 533 Conference on Machine Learning*, pp. 675–683, 2013.

534 Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Emilie Kaufmann, and Michal Valko. A
 535 kernel-based approach to non-stationary reinforcement learning in metric spaces. In *International
 536 Conference on Artificial Intelligence and Statistics*, pp. 3538–3546, 2021.

538 Eyal Even-Dar and Yishay Mansour. Experts in a markov decision process. In *Proceedings of the
 539 International Conference on Neural Information Processing Systems (Neurips)*, volume 17, pp.
 401. MIT Press, 2004.

540 Yingjie Fei, Zhuoran Yang, Zhaoran Wang, and Qiaomin Xie. Dynamic regret of policy optimization
 541 in non-stationary environments. In *Proceedings of the International Conference on Neural*
 542 *Information Processing Systems (Neurips)*, pp. 6743–6754, 2020.

543 Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. Online convex optimization
 544 in the bandit setting: gradient descent without a gradient. In *Proceedings of the sixteenth annual*
 545 *ACM-SIAM symposium on Discrete algorithms*, pp. 385–394, 2005.

546 Pratik Gajane, Ronald Ortner, and Peter Auer. A sliding-window algorithm for markov decision
 547 processes with arbitrarily changing rewards and transitions. *ArXiv:1805.10066*, 2018.

548 LIU Haitong, LI Qiang, and Hoi To Wai. Two-timescale derivative free optimization for performative
 549 prediction with markovian data. In *Proceedings of the International Conference on Machine*
 550 *Learning (ICML)*, 2024.

551 Moritz Hardt and Celestine Mendler-Dünner. Performative prediction: Past and future.
 552 *ArXiv:2310.16608*, 2023.

553 Alexander Havrilla, Yuqing Du, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-
 554 Yu, Eric Hambro, Sainbayar Sukhbaatar, and Roberta Raileanu. Teaching large language models
 555 to reason with reinforcement learning. In *AI for Math Workshop@ ICML 2024*, 2024.

556 Zachary Izzo, Lexing Ying, and James Zou. How to learn when data reacts to your model: per-
 557 formative gradient descent. In *International Conference on Machine Learning*, pp. 4641–4650,
 558 2021.

559 Stefanos Leonardos, Will Overman, Ioannis Panageas, and Georgios Piliouras. Global convergence of
 560 multi-agent policy gradient in markov potential games. In *ICLR 2022 Workshop on Gamification*
 561 *and Multiagent Solutions*, 2022.

562 Gen Li, Weichen Wu, Yuejie Chi, Cong Ma, Alessandro Rinaldo, and Yuting Wei. Sharp
 563 high-probability sample complexities for policy evaluation with linear function approximation.
 564 *ArXiv:2305.19001*, 2023.

565 Qiang Li and Hoi-To Wai. State dependent performative prediction with stochastic approximation. In
 566 *International Conference on Artificial Intelligence and Statistics*, pp. 3164–3186, 2022.

567 Dhruv Malik, Ashwin Pananjady, Kush Bhatia, Koulik Khamaru, Peter L Bartlett, and Martin J
 568 Wainwright. Derivative-free methods for policy optimization: Guarantees for linear quadratic
 569 systems. *Journal of Machine Learning Research*, 21(21):1–51, 2020.

570 Debmalya Mandal and Goran Radanovic. Performative reinforcement learning with linear markov
 571 decision process. *ArXiv:2411.05234*, 2024.

572 Debmalya Mandal, Stelios Triantafyllou, and Goran Radanovic. Performative reinforcement learning.
 573 In *Proceedings of the International Conference on Machine Learning (ICML)*, pp. 23642–23680,
 574 2023.

575 Daniel J Mankowitz, Nir Levine, Rae Jeong, Abbas Abdolmaleki, Jost Tobias Springenberg, Yuanyuan
 576 Shi, Jackie Kay, Todd Hester, Timothy Mann, and Martin Riedmiller. Robust reinforcement
 577 learning for continuous control with model misspecification. In *Proceedings of the International*
 578 *Conference on Learning Representations (ICLR)*, 2019.

579 Masoud Mansouri, Himan Abdollahpouri, Mykola Pechenizkiy, Bamshad Mobasher, and Robin
 580 Burke. Feedback loop and bias amplification in recommender systems. In *Proceedings of the 29th*
 581 *ACM international conference on information & knowledge management*, pp. 2145–2148, 2020.

582 Celestine Mendler-Dünner, Juan C Perdomo, Tijana Zrnic, and Moritz Hardt. Stochastic optimization
 583 for performative prediction. In *Proceedings of the International Conference on Neural Information*
 584 *Processing Systems*, pp. 4929–4939, 2020.

585 John P Miller, Juan C Perdomo, and Tijana Zrnic. Outside the echo chamber: Optimizing the
 586 performative risk. In *International Conference on Machine Learning*, pp. 7710–7720, 2021.

594 Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
 595 Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
 596 learning. In *Proceedings of the International Conference on Machine Learning (ICML)*, volume 48,
 597 pp. 1928–1937, 2016.

598 Stefanos Nikolaidis, Swaprava Nath, Ariel D Procaccia, and Siddhartha Srinivasa. Game-theoretic
 599 modeling of human adaptation in human-robot collaboration. In *Proceedings of the 2017
 600 ACM/IEEE international conference on human-robot interaction*, pp. 323–331, 2017.

601 Juan Perdomo, Tijana Zrnic, Celestine Mendler-Dünner, and Moritz Hardt. Performative prediction.
 602 In *International Conference on Machine Learning*, pp. 7599–7609, 2020.

603 Vasilis Pollatos, Debmalya Mandal, and Goran Radanovic. On corruption-robustness in performa-
 604 tive reinforcement learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 605 volume 39, pp. 19939–19947, 2025.

606 Ben Rank, Stelios Triantafyllou, Debmalya Mandal, and Goran Radanovic. Performative reinforce-
 607 ment learning in gradually shifting environments. In *The 40th Conference on Uncertainty in
 608 Artificial Intelligence (UAI)*, 2024.

609 Mitas Ray, Lillian J Ratliff, Dmitriy Drusvyatskiy, and Maryam Fazel. Decision-dependent risk
 610 minimization in geometrically decaying dynamic environments. In *Proceedings of the AAAI
 611 Conference on Artificial Intelligence*, volume 36, pp. 8081–8088, 2022.

612 Aviv Rosenberg and Yishay Mansour. Online convex optimization in adversarial markov decision
 613 processes. In *International Conference on Machine Learning (ICML)*, pp. 5478–5486, 2019.

614 Abhishek Roy, Krishnakumar Balasubramanian, and Saeed Ghadimi. Constrained stochastic non-
 615 convex optimization with state-dependent markov data. In *Proceedings of the 36th International
 616 Conference on Neural Information Processing Systems*, pp. 23256–23270, 2022.

617 Rilind Sahitaj, Paulius Sasnauskas, Yiğit Yalın, Debmalya Mandal, and Goran Radanović. Indepen-
 618 dent learning in performative markov potential games. *ArXiv:2504.20593*, 2025.

619 Sergey Samsonov, Daniil Tiapkin, Alexey Naumov, and Eric Moulines. Finite-sample analysis of the
 620 temporal difference learning. *ArXiv:2310.14286*, 2023.

621 Ohad Shamir. An optimal algorithm for bandit and zero-order convex optimization with two-point
 622 feedback. *Journal of Machine Learning Research*, 18(52):1–11, 2017.

623 David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
 624 Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
 625 human knowledge. *nature*, 550(7676):354–359, 2017.

626 Joel A Tropp et al. An introduction to matrix concentration inequalities. *Foundations and Trends® in
 627 Machine Learning*, 8(1-2):1–230, 2015.

628 Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
 629 Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
 630 starcraft ii using multi-agent reinforcement learning. *nature*, 575(7782):350–354, 2019.

631 Qiuhan Wang, Chin Pang Ho, and Marek Petrik. Policy gradient in robust mdps with global
 632 convergence guarantee. In *Proceedings of the International Conference on Machine Learning
 633 (ICML)*, volume 202, pp. 35763–35797, 23–29 Jul 2023.

634 Chen-Yu Wei and Haipeng Luo. Non-stationary reinforcement learning without prior knowledge: An
 635 optimal black-box approach. In *Conference on learning theory (COLT)*, pp. 4300–4354, 2021.

636 Chen-Yu Wei, Chung-Wei Lee, Mengxiao Zhang, and Haipeng Luo. Last-iterate convergence of
 637 decentralized optimistic gradient descent/ascent in infinite-horizon competitive markov games. In
 638 *Proceedings of the Conference on Learning Theory (COLT)*, 2021.

639 Junyu Zhang, Amrit Singh Bedi, Mengdi Wang, and Alec Koppel. Beyond cumulative returns
 640 via reinforcement learning over state-action occupancy measures. In *2021 American Control
 641 Conference (ACC)*, pp. 894–901. IEEE, 2021.

648

649

650

651

652

653

654

Appendix

Table of Contents

655

A	Related Works	13
B	Experimental Details and Results	14
C	Supporting Lemmas	14
C.1	Frank-Wolfe Step	14
C.2	Lipschitz Property of Occupancy Measure	15
C.3	Various Value Functions	16
C.4	Zeroth-order Gradient Estimation Error	21
C.5	Orthogonal Transformation	22
C.6	Basic Inequalities	23
D	Negative Entropy Regularizer as a Strongly Convex Function of Occupancy Measure	24
E	Existing Assumptions That Implies Assumption 3	25
F	Proof of Theorem 1	26
G	Proof of Corollary 1	31
H	Proof of Theorem 2	32
I	Proof of Theorem 3	33
J	Proof of Proposition 1	35
K	Proof of Proposition 2	38
L	Proof of Theorem 4	38
M	Adjusting Our Results to the Existing Quadratic Regularizer	41
N	Use of Large Language Models (LLMs)	41

685

686

687

A RELATED WORKS

689

690

691

692

693

694

695

Non-stationary Reinforcement Learning: The performative reinforcement learning studied in this work relates to some non-stationary reinforcement learning. For example, Gajane et al. (2018); Fei et al. (2020); Cheung et al. (2020); Wei & Luo (2021); Domingues et al. (2021) provide theoretical results assuming that the non-stationary environment (rewards and transitions) change in a bounded amount or number, and Even-Dar & Mansour (2004); Dekel & Hazan (2013); Rosenberg & Mansour (2019) study reinforcement learning with adversarial reward functions.

696

697

698

699

Performative Prediction: Performative prediction proposed by (Perdomo et al., 2020) is a stochastic optimization framework where the data distribution depends on the decision policy. Compared with performative prediction, performative reinforcement learning is similar but more complex due to the policy-dependent transition dynamics.

700

701

Various algorithms have been obtained with finite-time convergence to various solutions of performative prediction. For example, Meldler-Dünner et al. (2020); Brown et al. (2022); Li & Wai (2022) converge to a performatively stable solution that approximates the performatively optimal

702 solution (the primary goal). Izzo et al. (2021); Roy et al. (2022); Haitong et al. (2024) converge to a
 703 stationary point of the nonconvex performative prediction objective. Miller et al. (2021); Ray et al.
 704 (2022) converge to the performatively optimal solution (the primary goal), which relies on the strong
 705 assumptions that the loss function is strongly convex with degree dominating the distribution shift and
 706 that the data distribution satisfies mixture dominance condition or belongs to a location-scale family,
 707 such that the objective function becomes convex as proved by (Miller et al., 2021). In contrast, we
 708 have proved an analogous result that the objective of performative reinforcement learning (harder than
 709 performative prediction) is gradient dominant (see our Theorem 1) without these strong assumptions.
 710 In particular, our condition of regularizer dominating the environmental shift is analogous to their
 711 condition of strong convexity dominating the distribution shift, but our value function still remains
 712 nonconvex which is more challenging than their strongly convex losses.

713 A survey of performative prediction can be seen in (Hardt & Mendler-Dünner, 2023).

715 B EXPERIMENTAL DETAILS AND RESULTS

717 We compare our Algorithm 1 with the existing repeated retraining algorithm in a simulation envi-
 718 ronment with 5 states, 4 actions, discount factor $\gamma = 0.95$, entropy regularizer coefficient $\lambda = 0.5$,
 719 as well as transition kernel $p_\pi(s'|s, a) = \frac{\pi(a|s) + \pi(a|s') + 1}{\sum_{s''} \pi(a|s) + \pi(a|s'') + 1}$ and reward $r_\pi(s, a) = \pi(a|s)$ that
 720 depend on the policy π . We implement our Algorithm 1 for 401 iterations with $N = 1000$, $\beta = 0.01$,
 721 $\Delta = 10^{-3}$, $\delta = 10^{-4}$, the uniform policy initialization (i.e. $\pi_0(a|s) \equiv 1/4$) and the performative
 722 value functions are evaluated by value iteration.

724 Recall that the repeated retraining algorithm is a general framework which obtains the next policy
 725 $\pi_{t+1} \approx \arg \max_{\pi \in \Pi} V_{\lambda, \pi_t}^\pi$; $t = 0, 1, \dots, T - 1$ by solving the conventional entropy-regularized
 726 reinforcement learning problem under the fixed dynamics p_{π_t} and r_{π_t} . To solve this conventional
 727 entropy-regularized reinforcement learning problem, we select the following natural policy gradient
 728 algorithm because its output $\pi_{t+1} := \pi_{t, K}$ has been proved to converge linearly to the optimal
 729 solution of $\arg \max_{\pi \in \Pi} V_{\lambda, \pi_t}^\pi$ as we increase the number K of natural policy gradient steps (Cen
 730 et al., 2022).

$$731 \pi_{t,k+1}(a|s) = \frac{1}{Z_{t,k}(s)} \pi_{t,k}(a|s)^{1 - \frac{\eta\lambda}{1-\gamma}} \exp \left[\frac{\eta Q_\lambda(s, a; \pi_{t,k})}{1 - \gamma} \right], k = 0, 1, \dots, K - 1. \quad (26)$$

733 where

$$735 Z_{t,k}(s) \stackrel{\text{def}}{=} \sum_{a' \in \mathcal{A}} \pi_{t,k}(a'|s)^{1 - \frac{\eta\lambda}{1-\gamma}} \exp \left[\frac{\eta Q_\lambda(s, a'; \pi_{t,k})}{1 - \gamma} \right],$$

$$738 Q_\lambda(s, a; \pi) \stackrel{\text{def}}{=} \mathbb{E}_{\pi, p_{\pi_t}, \rho} \left[\sum_{t=0}^{\infty} \gamma^t [r_\pi(s_t, a_t) - \lambda \log \pi(a_t|s_t)] \middle| s_0 = s, a_0 = a \right].$$

740 Here, we also implement $T = 401$ outer iterations of the repeated retraining algorithm, and for the
 741 inner loop we apply $K = 1000$ natural policy gradient steps with stepsize $\eta = 0.01$.

743 The experiment is implemented on Python 3.9, using Apple M1 Pro with 8 cores and 16 GB memory,
 744 which costs about 110 minutes in total. Then for the policies $\{\pi_t\}_{t=0}^{400}$ obtained by each algorithm,
 745 we plot the training curves of the performative value function $V_{\lambda, \pi_t}^{\pi_t}$ (defined by Eq. (6) with $\lambda = 0.5$)
 746 and the unregularized performative value function $V_{0, \pi_t}^{\pi_t}$ (defined by Eq. (6) with $\lambda = 0$) on the left
 747 and right side of Figure 1 respectively, which show that the existing repeated retraining algorithm
 748 sticks at the initial uniform policy π_0 since π_0 is a performatively stable (PS) policy, while our
 749 Algorithm 1 converges well on both regularized and unregularized performative value functions in a
 750 similar pattern.

751 C SUPPORTING LEMMAS

753 C.1 FRANK-WOLFE STEP

755 We repeat Lemma 1 as follows.

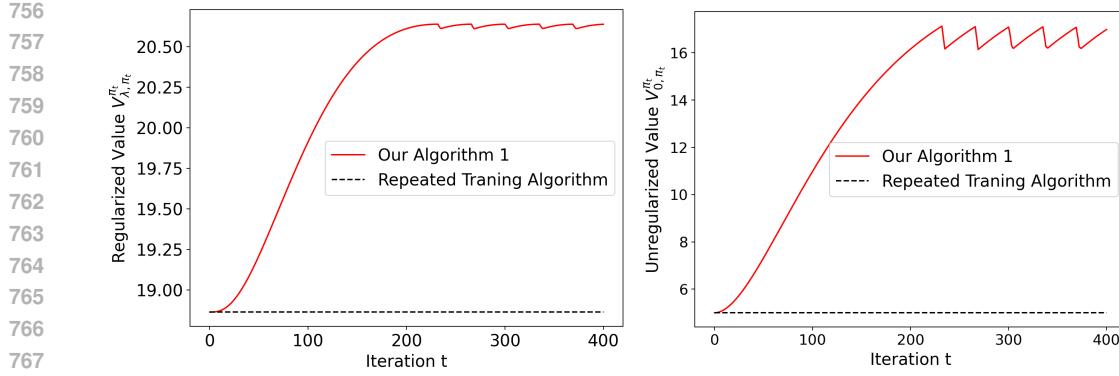


Figure 1: Experimental Results.

Lemma 2. *The step (19) has the following analytical solution.*

$$\pi_t(a|s) = \begin{cases} \Delta; a \neq \tilde{a}_t(s) \\ 1 - \Delta(|\mathcal{A}| - 1); a = \tilde{a}_t(s) \end{cases}, \quad (27)$$

where $\tilde{a}_t(s) \in \arg \max_a \hat{g}_{\lambda, \delta}(\pi_t)(a|s)$.

Proof. For $\tilde{\pi}_t$ defined by Eq. (27) and for any $\pi \in \Pi_\Delta$, we have

$$\begin{aligned} & \langle \tilde{\pi}_t - \pi, \hat{g}_{\lambda, \delta}(\pi_t) \rangle \\ &= \sum_{s, a} \hat{g}_{\lambda, \delta}(\pi_t)(a|s) [\tilde{\pi}_t(a|s) - \pi(a|s)] \\ &= \sum_s \left\{ \hat{g}_{\lambda, \delta}(\pi_t)[\tilde{a}_t(s)|s] [1 - \Delta(|\mathcal{A}| - 1) - \pi[\tilde{a}_t(s)|s]] - \sum_{a \neq \tilde{a}_t(s)} \hat{g}_{\lambda, \delta}(\pi_t)(a|s) [\pi(a|s) - \Delta] \right\} \\ &\stackrel{(a)}{\geq} \sum_s \left\{ \hat{g}_{\lambda, \delta}(\pi_t)[\tilde{a}_t(s)|s] [1 - \Delta(|\mathcal{A}| - 1) - \pi[\tilde{a}_t(s)|s]] \right. \\ &\quad \left. - \sum_{a \neq \tilde{a}_t(s)} \hat{g}_{\lambda, \delta}(\pi_t)[\tilde{a}_t(s)|s] [\pi(a|s) - \Delta] \right\} \\ &= \sum_s \left\{ \hat{g}_{\lambda, \delta}(\pi_t)[\tilde{a}_t(s)|s] [1 - \Delta(|\mathcal{A}| - 1) - \pi[\tilde{a}_t(s)|s]] \right. \\ &\quad \left. - \hat{g}_{\lambda, \delta}(\pi_t)[\tilde{a}_t(s)|s] [1 - \pi[\tilde{a}_t(s)|s] - \Delta(|\mathcal{A}| - 1)] \right\} \\ &= 0, \end{aligned}$$

where (a) uses $\pi(a|s) - \Delta \geq 0$ and $\hat{g}_{\lambda, \delta}(\pi_t)(a|s) \leq \hat{g}_{\lambda, \delta}(\pi_t)[\tilde{a}_t(s)|s]$. Therefore, Eq. (19) holds, that is, $\tilde{\pi}_t = \arg \max_{\pi \in \Pi_\Delta} \langle \pi, \hat{g}_{\lambda, \delta}(\pi_t) \rangle$. \square

C.2 LIPSCHITZ PROPERTY OF OCCUPANCY MEASURE

Lemma 3. *The occupancy measure $d_{\pi, p}$ defined by Eq. (2) has the following Lipschitz properties for any $\pi, \pi' \in \Pi$, $p, p' \in \mathcal{P}$ and $\tilde{s} \in \mathcal{S}$.*

$$\sum_s |d_{\pi', p}(s) - d_{\pi, p}(s)| \leq \frac{\gamma}{1 - \gamma} \max_s \|\pi'(\cdot|s) - \pi(\cdot|s)\|_1 \leq \frac{\gamma \sqrt{|\mathcal{A}|}}{1 - \gamma} \|\pi' - \pi\| \quad (28)$$

$$\sum_s |d_{\pi, p'}(s) - d_{\pi, p}(s)| \leq \frac{\gamma}{1 - \gamma} \max_{s, a} \|p'(\cdot|s, a) - p(\cdot|s, a)\|_1 \leq \frac{\gamma \sqrt{|\mathcal{S}|}}{1 - \gamma} \|p' - p\| \quad (29)$$

$$\sum_{s, a} |d_{\pi', p'}(s, a) - d_{\pi, p}(s, a)| \leq \frac{1}{1 - \gamma} \max_s \|\pi'(\cdot|s) - \pi(\cdot|s)\|_1 + \frac{\gamma}{1 - \gamma} \max_{s, a} \|p'(\cdot|s, a) - p(\cdot|s, a)\|_1$$

810
811
812

$$\leq \frac{\sqrt{|\mathcal{A}|}}{1-\gamma} \|\pi' - \pi\| + \frac{\gamma\sqrt{|\mathcal{S}|}}{1-\gamma} \|p' - p\| \quad (30)$$

813
814 *Proof.* The first \leq of Eqs. (28) and (29) follows from Lemma 5 of (Chen & Huang, 2024). The
815 second \leq of Eqs. (28) and (29) uses $\|x\|_1 \leq \sqrt{d}\|x\|$ for any $x \in \mathbb{R}^d$.

816 Eq. (30) can be proved as follows.

817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

$$\begin{aligned} & \sum_{s,a} |d_{\pi',p'}(s,a) - d_{\pi,p}(s,a)| \\ &= \sum_{s,a} |d_{\pi',p'}(s)\pi'(a|s) - d_{\pi,p}(s)\pi(a|s)| \\ &\leq \sum_{s,a} d_{\pi',p'}(s)|\pi'(a|s) - \pi(a|s)| + \pi(a|s)|d_{\pi',p'}(s) - d_{\pi,p}(s)| \\ &\leq \sum_s [d_{\pi',p'}(s) \max_{s'} \|\pi'(\cdot|s') - \pi(\cdot|s')\|_1] + \sum_s |d_{\pi',p'}(s) - d_{\pi,p}(s)| \\ &\stackrel{(a)}{\leq} \max_{s'} \|\pi'(\cdot|s') - \pi(\cdot|s')\|_1 + \frac{\gamma}{1-\gamma} \max_s \|\pi'(\cdot|s) - \pi(\cdot|s)\|_1 + \frac{\gamma}{1-\gamma} \max_{s,a} \|p'(\cdot|s,a) - p(\cdot|s,a)\|_1 \\ &\leq \frac{1}{1-\gamma} \max_s \|\pi'(\cdot|s) - \pi(\cdot|s)\|_1 + \frac{\gamma}{1-\gamma} \max_{s,a} \|p'(\cdot|s,a) - p(\cdot|s,a)\|_1 \\ &\leq \frac{\sqrt{|\mathcal{A}|}}{1-\gamma} \|\pi' - \pi\| + \frac{\gamma\sqrt{|\mathcal{S}|}}{1-\gamma} \|p' - p\|, \end{aligned}$$

834 where (a) uses Eqs. (28) and (29). \square

836 C.3 VARIOUS VALUE FUNCTIONS

838 Define the following value functions.

839
840
841
842
843
844

$$\begin{aligned} J_\lambda(\pi, \pi', p, r) &\stackrel{\text{def}}{=} \mathbb{E}_{\pi,p} \left[\sum_{t=0}^{\infty} \gamma^t [r(s_t, a_t) - \lambda \log \pi'(a_t|s_t)] \middle| s_0 \sim \rho \right] \\ &= \frac{1}{1-\gamma} \sum_{s,a} d_{\pi,p}(s,a) [r(s,a) - \lambda \log \pi'(a|s)], \end{aligned} \quad (31)$$

845
846
847

$$V_\lambda(\pi, \pi', p, r; s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi,p} \left[\sum_{t=0}^{\infty} \gamma^t [r(s_t, a_t) - \lambda \log \pi'(a_t|s_t)] \middle| s_0 = s \right], \quad (32)$$

848
849
850
851
852

$$\begin{aligned} Q_\lambda(\pi, \pi', p, r; s, a) &\stackrel{\text{def}}{=} \mathbb{E}_{\pi,p} \left[\sum_{t=0}^{\infty} \gamma^t [r(s_t, a_t) - \lambda \log \pi'(a_t|s_t)] \middle| s_0 = s, a_0 = a \right] \\ &= r(s,a) - \lambda \log \pi'(a|s) + \gamma \sum_{s'} p(s'|s,a) V_\lambda(\pi, \pi', p, r; s'). \end{aligned} \quad (33)$$

853 Note that the value function (6) of interest can be rewritten into the above functions as follows.

854
855
856
857
858
859
860

$$\begin{aligned} V_{\lambda, \pi'}^\pi &= J_\lambda(\pi, \pi, p_{\pi'}, r_{\pi'}) \\ &= \sum_s \rho(s) V_\lambda(\pi, \pi, p_{\pi'}, r_{\pi'}; s) \\ &= \sum_{s,a} \rho(s) \pi(a|s) Q_\lambda(\pi, \pi, p_{\pi'}, r_{\pi'}; s, a). \end{aligned}$$

861 Hence, we will investigate the properties of the value functions (31)-(33) as follows.

862 **Lemma 4.** For any $\pi \in \Pi$, $p \in \mathcal{P}$, $r \in \mathcal{R}$, we have
863 $V_{\lambda, \pi}^\pi, J_\lambda(\pi, \pi, p, r), V_\lambda(\pi, \pi, p, r; s), Q_\lambda(\pi, \pi, p, r; s, a) \in \left[0, \frac{1+\lambda \log |\mathcal{A}|}{1-\gamma}\right]$.

864 *Proof.* We will prove the range of $J_\lambda(\pi, \pi, p, r)$ as follows using $r(s, a) \in [0, 1]$. The proof for the
 865 other value functions follow the same way.
 866

$$\begin{aligned}
 867 \quad 0 \leq J_\lambda(\pi, \pi, p, r) &= \mathbb{E}_{\pi, p, \rho} \left[\sum_{t=0}^{\infty} \gamma^t [r(s_t, a_t) - \lambda \log \pi(a_t | s_t)] \right] \\
 868 \\
 869 \quad &\leq \sum_{t=0}^{\infty} \gamma^t + \lambda \mathbb{E}_{\pi, p, \rho} \left[\sum_{t=0}^{\infty} \gamma^t \sum_a [-\pi(a | s_t) \log \pi(a | s_t)] \right] \\
 870 \\
 871 \quad &\leq \frac{1}{1-\gamma} + \lambda \sum_{t=0}^{\infty} \gamma^t \log |\mathcal{A}| \\
 872 \\
 873 \quad &\leq \frac{1 + \lambda \log |\mathcal{A}|}{1-\gamma}.
 \end{aligned}$$

□

874 **Lemma 5.** *The gradients of $J_\lambda(\pi, \pi', p, r)$ defined by Eq. (31) have the following expressions.*

$$\frac{\partial J_\lambda(\pi, \pi', p, r)}{\partial \pi(a | s)} = \frac{d_{\pi, p}(s) Q_\lambda(\pi, \pi', p, r; s, a)}{1-\gamma}, \quad (34)$$

$$\frac{\partial J_\lambda(\pi, \pi', p, r)}{\partial \pi'(a | s)} = -\frac{\lambda d_{\pi, p}(s, a)}{(1-\gamma) \pi'(a | s)}, \quad (35)$$

$$\frac{\partial J_\lambda(\pi, \pi', p, r)}{\partial p(s' | s, a)} = \frac{d_{\pi, p}(s, a)}{1-\gamma} [r(s, a) - \lambda \log \pi'(a | s) + \gamma V_\lambda(\pi, \pi', p, r; s')], \quad (36)$$

$$\frac{\partial J_\lambda(\pi, \pi', p, r)}{\partial r(s, a)} = \frac{d_{\pi, p}(s, a)}{1-\gamma}, \quad (37)$$

$$\frac{\partial J_\lambda(\pi, \pi, p, r)}{\partial \pi(a | s)} = \frac{d_{\pi, p}(s) [Q_\lambda(\pi, \pi, p, r; s, a) - \lambda]}{1-\gamma}. \quad (38)$$

892 *Proof.* Eq. (34) follows from the policy gradient expression in Eq. (7) of (Agarwal et al., 2021), with
 893 reward function $r(s, a)$ replaced by $r(s, a) - \lambda \log \pi'(a | s)$.
 894

895 Eq. (36) can be proved as follows.

$$\begin{aligned}
 896 \quad p(s' | s, a) &\stackrel{(a)}{=} \frac{d_{\pi, p}(s) \pi(a | s)}{1-\gamma} [r(s, a) - \lambda \log \pi(a | s) + \gamma V_\lambda(\pi, \pi', p, r; s')] \\
 897 \\
 898 \quad &= \frac{d_{\pi, p}(s, a)}{1-\gamma} [r(s, a) - \lambda \log \pi(a | s) + \gamma V_\lambda(\pi, \pi', p, r; s')], \\
 899
 \end{aligned}$$

900 where (a) uses Eq. (9) in (Chen & Huang, 2024).

901 Eqs. (35) and (37) can be proved by taking derivatives of Eq. (31).

902 Based on the chain rule, Eq. (38) can be proved as follows by adding Eqs. (34) and (35) with $\pi' = \pi$.

$$\begin{aligned}
 903 \quad \frac{\partial J_\lambda(\pi, \pi, p, r)}{\partial \pi(a | s)} &= \left[\frac{\partial J_\lambda(\pi, \pi', p, r)}{\partial \pi(a | s)} + \frac{\partial J_\lambda(\pi, \pi', p, r)}{\partial \pi'(a | s)} \right] \Big|_{\pi'=\pi} \\
 904 \\
 905 \quad &= \frac{d_{\pi, p}(s) Q_\lambda(\pi, \pi, p, r; s, a)}{1-\gamma} - \frac{\lambda d_{\pi, p}(s, a)}{(1-\gamma) \pi(a | s)} \\
 906 \\
 907 \quad &= \frac{d_{\pi, p}(s) [Q_\lambda(\pi, \pi, p, r; s, a) - \lambda]}{1-\gamma},
 \end{aligned}$$

908 where the final = uses $d_{\pi, p}(s, a) = d_{\pi, p}(s) \pi(a | s)$. □

909 **Lemma 6.** *The function J_λ defined by Eq. (31) has the following Lipschitz properties for any
 910 $\pi, \pi' \in \Pi$, $p, p' \in \mathcal{P}$ and $r, r' \in \mathcal{R}$.*

$$|J_\lambda(\pi', \pi', p, r) - J_\lambda(\pi, \pi, p, r)| \leq L_\pi \max_s \|\log \pi'(\cdot | s) - \log \pi(\cdot | s)\| \quad (39)$$

$$|J_\lambda(\pi, \pi, p', r) - J_\lambda(\pi, \pi, p, r)| \leq L_p \|p' - p\| \quad (40)$$

$$918 \quad |J_\lambda(\pi, \pi, p, r') - J_\lambda(\pi, \pi, p, r)| \leq \frac{\|r' - r\|_\infty}{1 - \gamma} \leq \frac{\|r' - r\|}{1 - \gamma} \quad (41)$$

$$920 \quad \|\nabla_p J_\lambda(\pi', \pi', p, r) - \nabla_p J_\lambda(\pi, \pi, p, r)\| \leq \ell_\pi \max_s \|\log \pi'(\cdot|s) - \log \pi(\cdot|s)\| \quad (42)$$

$$922 \quad \|\nabla_p J_\lambda(\pi, \pi, p', r) - \nabla_p J_\lambda(\pi, \pi, p, r)\| \leq \ell_p \|p' - p\| \quad (43)$$

$$924 \quad \|\nabla_p J_\lambda(\pi', \pi', p', r') - \nabla_p J_\lambda(\pi, \pi, p, r)\| \\ 925 \quad \leq \ell_\pi \max_s \|\log \pi'(\cdot|s) - \log \pi(\cdot|s)\| + \ell_p \|p' - p\| + \frac{\sqrt{|\mathcal{S}|}}{(1 - \gamma)^2} \|r' - r\|_\infty \quad (44)$$

$$928 \quad \|\nabla_r J_\lambda(\pi', \pi', p', r') - \nabla_r J_\lambda(\pi, \pi, p, r)\| \\ 929 \quad \leq \frac{\max_s \|\pi'(\cdot|s) - \pi(\cdot|s)\|_1 + \gamma \max_{s,a} \|p'(\cdot|s, a) - p(\cdot|s, a)\|_1}{(1 - \gamma)^2} \quad (45)$$

$$931 \quad \|\nabla_\pi J_\lambda(\pi', \pi', p', r') - \nabla_\pi J_\lambda(\pi, \pi, p, r)\| \\ 932 \quad \leq \left(\frac{|\mathcal{A}|(1 + 2\lambda \log |\mathcal{A}|)}{(1 - \gamma)^2} + \gamma L_\pi \right) \max_s \|\log \pi'(\cdot|s) - \log \pi(\cdot|s)\| \\ 934 \quad + \gamma \sqrt{|\mathcal{A}|} \left[\frac{2\sqrt{|\mathcal{S}|}(1 + \lambda \log |\mathcal{A}|)}{(1 - \gamma)^2} + L_p \right] \|p' - p\| + \frac{\sqrt{|\mathcal{A}|} \|r' - r\|_\infty}{1 - \gamma}, \quad (46)$$

937 where $L_\pi := \frac{\sqrt{|\mathcal{A}|}(2 - \gamma + \gamma \lambda \log |\mathcal{A}|)}{(1 - \gamma)^2}$, $L_p := \frac{\sqrt{|\mathcal{S}|}(1 + \lambda \log |\mathcal{A}|)}{(1 - \gamma)^2}$, $\ell_\pi := \frac{\sqrt{|\mathcal{S}|}|\mathcal{A}|(2 + 3\gamma \lambda \log |\mathcal{A}|)}{(1 - \gamma)^3}$ and $\ell_p := \frac{2\gamma |\mathcal{S}|(1 + \lambda \log |\mathcal{A}|)}{(1 - \gamma)^3}$.

941 *Proof.* Eqs. (39), (40), (42) and (43) directly follow from Lemma 6 of (Chen & Huang, 2024). Eq. 942 (41) can be proved as follows.

$$944 \quad |J_\lambda(\pi, p, r') - J_\lambda(\pi, p, r)| = \left| \frac{1}{1 - \gamma} \sum_{s,a} d_{\pi,p}(s, a)[r'(s, a) - r(s, a)] \right| \\ 945 \quad \leq \frac{1}{1 - \gamma} \sum_{s,a} d_{\pi,p}(s, a) |r'(s, a) - r(s, a)| \\ 946 \quad = \frac{1}{1 - \gamma} \sum_{s,a} d_{\pi,p}(s, a) \|r' - r\|_\infty \\ 947 \quad = \frac{1}{1 - \gamma} \|r' - r\|_\infty \leq \frac{1}{1 - \gamma} \|r' - r\|.$$

954 To prove Eq. (44), note that

$$955 \quad \left| \frac{\partial J_\lambda(\pi, \pi, p, r')}{\partial p(s'|s, a)} - \frac{\partial J_\lambda(\pi, \pi, p, r)}{\partial p(s'|s, a)} \right| \\ 956 \quad \stackrel{(a)}{=} \frac{d_{\pi,p}(s, a)}{1 - \gamma} |r'(s, a) - r(s, a) + \gamma [V_\lambda(\pi, \pi', p, r'; s') - V_\lambda(\pi, \pi', p, r; s')]| \\ 957 \quad \stackrel{(b)}{\leq} \frac{d_{\pi,p}(s, a)}{1 - \gamma} \left[\|r' - r\|_\infty + \gamma \sum_{t=0}^{\infty} \gamma^t \|r' - r\|_\infty \right] \\ 958 \quad \leq \frac{d_{\pi,p}(s, a)}{(1 - \gamma)^2} \|r' - r\|_\infty \quad (47)$$

959 where (a) uses Eq. (36) and (b) uses Eq. (32). Therefore, we can prove Eq. (44) as follows.

$$960 \quad \|\nabla_p J_\lambda(\pi', \pi', p', r') - \nabla_p J_\lambda(\pi, \pi, p, r)\| \\ 961 \quad \leq \|\nabla_p J_\lambda(\pi', \pi', p', r') - \nabla_p J_\lambda(\pi, \pi, p', r')\| + \|\nabla_p J_\lambda(\pi, \pi, p', r') - \nabla_p J_\lambda(\pi, \pi, p, r')\| \\ 962 \quad + \|\nabla_p J_\lambda(\pi, \pi, p, r') - \nabla_p J_\lambda(\pi, \pi, p, r)\|$$

$$963 \quad \stackrel{(a)}{\leq} \ell_\pi \max_s \|\log \pi'(\cdot|s) - \log \pi(\cdot|s)\| + \ell_p \|p' - p\| + \sqrt{\sum_{s,a,s'} \left| \frac{\partial J_\lambda(\pi, \pi, p, r')}{\partial p(s'|s, a)} - \frac{\partial J_\lambda(\pi, \pi, p, r)}{\partial p(s'|s, a)} \right|^2}$$

$$\begin{aligned}
& \stackrel{(b)}{\leq} \ell_\pi \max_s \|\log \pi'(\cdot|s) - \log \pi(\cdot|s)\| + \ell_p \|p' - p\| + \sqrt{\frac{\|r' - r\|_\infty^2}{(1-\gamma)^4} \sum_{s,a,s'} d_{\pi,p}^2(s,a)} \\
& \leq \ell_\pi \max_s \|\log \pi'(\cdot|s) - \log \pi(\cdot|s)\| + \ell_p \|p' - p\| + \frac{\sqrt{|\mathcal{S}|}}{(1-\gamma)^2} \|r' - r\|_\infty,
\end{aligned}$$

where (a) uses Eqs. (42) and (43) and (b) uses Eq. (47).

Then, we prove Eq. (45) as follows.

$$\begin{aligned}
& \|\nabla_r J_\lambda(\pi', \pi', p', r') - \nabla_r J_\lambda(\pi, \pi, p, r)\| \\
& \stackrel{(a)}{=} \frac{\|d_{\pi',p'} - d_{\pi,p}\|}{1-\gamma} \\
& \leq \frac{\|d_{\pi',p'} - d_{\pi,p}\|_1}{1-\gamma} \\
& \stackrel{(b)}{\leq} \frac{1}{(1-\gamma)^2} \max_s \|\pi'(\cdot|s) - \pi(\cdot|s)\|_1 + \frac{\gamma}{(1-\gamma)^2} \max_{s,a} \|p'(\cdot|s,a) - p(\cdot|s,a)\|_1,
\end{aligned}$$

where (a) uses Eq. (37), (b) uses Eq. (30).

To prove Eq. (46), we will first prove the following auxiliary bounds.

$$Q_\lambda(\pi, \pi, p, r; s, a) - \lambda \stackrel{(a)}{\in} \left[-\lambda, \frac{1+\lambda \log |\mathcal{A}|}{1-\gamma} - \lambda \right] \Rightarrow |Q_\lambda(\pi, \pi, p, r; s, a) - \lambda| \leq \frac{1+\lambda \log |\mathcal{A}|}{1-\gamma}, \quad (48)$$

where (a) uses Lemma 4.

$$\begin{aligned}
& |V_\lambda(\pi', \pi', p', r'; s) - V_\lambda(\pi, \pi, p, r; s)| \\
& \leq |V_\lambda(\pi', \pi', p', r'; s) - V_\lambda(\pi, \pi, p', r'; s)| + |V_\lambda(\pi, \pi, p', r'; s) - V_\lambda(\pi, \pi, p, r'; s)| \\
& \quad + |V_\lambda(\pi, \pi, p, r'; s) - V_\lambda(\pi, \pi, p, r; s)| \\
& \stackrel{(a)}{\leq} L_\pi \max_s \|\log \pi'(\cdot|s) - \log \pi(\cdot|s)\| + L_p \|p' - p\| + \frac{\|r' - r\|_\infty}{1-\gamma},
\end{aligned} \quad (49)$$

where (a) applies Eqs. (39)-(41) to the case where the initial state distribution ρ is probability 1 at s (so $J_\lambda(\pi, \pi, p, r)$ becomes $V_\lambda(\pi, \pi, p, r; s)$).

$$\begin{aligned}
& |Q_\lambda(\pi, \pi, p, r'; s, a) - Q_\lambda(\pi, \pi, p, r; s, a)| \\
& \stackrel{(a)}{=} \left| \mathbb{E}_{\pi,p} \left[\sum_{t=0}^{\infty} \gamma^t [r'(s_t, a_t) - r(s_t, a_t)] \middle| s_0 = s, a_0 = a \right] \right| \\
& \leq \mathbb{E}_{\pi,p} \left[\sum_{t=0}^{\infty} \gamma^t |r'(s_t, a_t) - r(s_t, a_t)| \middle| s_0 = s, a_0 = a \right] \\
& \leq \mathbb{E}_{\pi,p} \left[\sum_{t=0}^{\infty} \gamma^t \|r' - r\|_\infty \middle| s_0 = s, a_0 = a \right] \\
& \leq \frac{\|r' - r\|_\infty}{1-\gamma},
\end{aligned} \quad (50)$$

where (a) uses Eq. (33).

$$\begin{aligned}
& |Q_\lambda(\pi', \pi', p', r; s, a) - Q_\lambda(\pi, \pi, p, r; s, a)| \\
& \stackrel{(a)}{\leq} \lambda |\log \pi'(a|s) - \log \pi(a|s)| + \gamma \left| \sum_{s'} [p'(s'|s, a) V_\lambda(\pi', \pi', p', r; s) - p(s'|s, a) V_\lambda(\pi, \pi, p, r; s)] \right| \\
& \leq \lambda |\log \pi'(a|s) - \log \pi(a|s)| + \gamma \sum_{s'} p'(s'|s, a) |V_\lambda(\pi', \pi', p', r; s) - V_\lambda(\pi, \pi, p, r; s)| \\
& \quad + \gamma \sum_{s'} |p'(s'|s, a) - p(s'|s, a)| |V_\lambda(\pi, \pi, p, r; s)|
\end{aligned}$$

$$\begin{aligned}
& \stackrel{(b)}{\leq} \lambda |\log \pi'(a|s) - \log \pi(a|s)| + \gamma L_\pi \max_{s'} \|\log \pi'(\cdot|s') - \log \pi(\cdot|s')\| + \gamma L_p \|p' - p\| \\
& \quad + \frac{\gamma(1 + \lambda \log |\mathcal{A}|)}{1 - \gamma} \|p'(\cdot|s, a) - p(\cdot|s, a)\|_1,
\end{aligned} \tag{51}$$

where (a) uses Eq. (33), and (b) uses Eq. (49) and Lemma 4.

Note that

$$\begin{aligned}
& (1 - \gamma) \left| \frac{\partial J_\lambda(\pi', \pi', p', r')}{\partial \pi'(a|s)} - \frac{\partial J_\lambda(\pi, \pi, p, r)}{\partial \pi(a|s)} \right| \\
& \stackrel{(a)}{=} |d_{\pi', p'}(s)[Q_\lambda(\pi', \pi', p', r'; s, a) - \lambda] - d_{\pi, p}(s)[Q_\lambda(\pi, \pi, p, r; s, a) - \lambda]| \\
& \leq |[d_{\pi', p'}(s) - d_{\pi, p}(s)][Q_\lambda(\pi', \pi', p', r'; s, a) - \lambda] \\
& \quad + d_{\pi, p}(s)[Q_\lambda(\pi', \pi', p', r'; s, a) - Q_\lambda(\pi', \pi', p', r; s, a)] \\
& \quad + d_{\pi, p}(s)[Q_\lambda(\pi', \pi', p', r; s, a) - Q_\lambda(\pi, \pi, p, r; s, a)]| \\
& \leq |d_{\pi', p'}(s) - d_{\pi, p}(s)| \cdot |Q_\lambda(\pi', \pi', p', r'; s, a) - \lambda| \\
& \quad + d_{\pi, p}(s)|Q_\lambda(\pi', \pi', p', r'; s, a) - Q_\lambda(\pi', \pi', p', r; s, a)| \\
& \quad + d_{\pi, p}(s)|Q_\lambda(\pi', \pi', p', r; s, a) - Q_\lambda(\pi, \pi, p, r; s, a)| \\
& \stackrel{(b)}{\leq} \frac{1 + \lambda \log |\mathcal{A}|}{1 - \gamma} |d_{\pi', p'}(s) - d_{\pi, p}(s)| + \frac{d_{\pi, p}(s) \|r' - r\|_\infty}{1 - \gamma} \\
& \quad + d_{\pi, p}(s) \left[\lambda |\log \pi'(a|s) - \log \pi(a|s)| + \gamma L_\pi \max_{s'} \|\log \pi'(\cdot|s') - \log \pi(\cdot|s')\| \right. \\
& \quad \left. + \gamma L_p \|p' - p\| + \frac{\gamma(1 + \lambda \log |\mathcal{A}|)}{1 - \gamma} \|p'(\cdot|s, a) - p(\cdot|s, a)\|_1 \right],
\end{aligned}$$

where (a) uses Eq. (38), (b) uses Eqs. (48), (50) and (51). Applying triangular inequality to the bound above, we can prove Eq. (46) as follows.

$$\begin{aligned}
& (1 - \gamma) \|\nabla_{\pi'} J_\lambda(\pi', \pi', p', r') - \nabla_\pi J_\lambda(\pi, \pi, p, r)\| \\
& \leq \frac{1 + \lambda \log |\mathcal{A}|}{1 - \gamma} \sqrt{\sum_{s, a} |d_{\pi', p'}(s) - d_{\pi, p}(s)|^2} + \frac{\|r' - r\|_\infty}{1 - \gamma} \sqrt{\sum_{s, a} d_{\pi, p}(s)^2} \\
& \quad + \lambda \sqrt{\sum_{s, a} d_{\pi, p}(s)^2 |\log \pi'(a|s) - \log \pi(a|s)|^2} \\
& \quad + [\gamma L_\pi \max_{s'} \|\log \pi'(\cdot|s') - \log \pi(\cdot|s')\| + \gamma L_p \|p' - p\|] \sqrt{\sum_{s, a} d_{\pi, p}(s)^2} \\
& \quad + \frac{\gamma(1 + \lambda \log |\mathcal{A}|)}{1 - \gamma} \sqrt{\sum_{s, a} d_{\pi, p}(s)^2 \|p'(\cdot|s, a) - p(\cdot|s, a)\|_1^2} \\
& \leq \frac{\sqrt{|\mathcal{A}|}(1 + \lambda \log |\mathcal{A}|)}{1 - \gamma} \sum_s |d_{\pi', p'}(s) - d_{\pi, p}(s)| + \frac{\sqrt{|\mathcal{A}|} \|r' - r\|_\infty}{1 - \gamma} \\
& \quad + \lambda \sqrt{\sum_s d_{\pi, p}(s) \|\log \pi'(\cdot|s) - \log \pi(\cdot|s)\|^2} \\
& \quad + [\gamma L_\pi \max_{s'} \|\log \pi'(\cdot|s') - \log \pi(\cdot|s')\| + \gamma L_p \|p' - p\|] \sqrt{|\mathcal{A}|} \\
& \quad + \frac{\gamma(1 + \lambda \log |\mathcal{A}|)}{1 - \gamma} \sqrt{|\mathcal{S}| \sum_{s, a} \|p'(\cdot|s, a) - p(\cdot|s, a)\|^2} \\
& \stackrel{(a)}{\leq} \frac{\gamma \sqrt{|\mathcal{A}|}(1 + \lambda \log |\mathcal{A}|)}{(1 - \gamma)^2} \left[\max_s \|\pi'(\cdot|s) - \pi(\cdot|s)\|_1 + \max_{s, a} \|p'(\cdot|s, a) - p(\cdot|s, a)\|_1 \right] \\
& \quad + \frac{\sqrt{|\mathcal{A}|} \|r' - r\|_\infty}{1 - \gamma} + \lambda \max_{s'} \|\log \pi'(\cdot|s') - \log \pi(\cdot|s')\|
\end{aligned}$$

$$\begin{aligned}
& + \sqrt{|\mathcal{A}|} [\gamma L_\pi \max_{s'} \|\log \pi'(\cdot|s') - \log \pi(\cdot|s')\| + \gamma L_p \|p' - p\|] \\
& + \frac{\gamma \sqrt{|\mathcal{S}|} (1 + \lambda \log |\mathcal{A}|)}{1 - \gamma} \|p' - p\| \\
& \stackrel{(b)}{\leq} \left[\frac{|\mathcal{A}|(\gamma + 2\lambda \log |\mathcal{A}|)}{(1 - \gamma)^2} + \gamma L_\pi \right] \max_{s'} \|\log \pi'(\cdot|s') - \log \pi(\cdot|s')\| \\
& + \gamma \sqrt{|\mathcal{A}|} \left[\frac{2\sqrt{|\mathcal{S}|} (1 + \lambda \log |\mathcal{A}|)}{(1 - \gamma)^2} + L_p \right] \|p' - p\| + \frac{\sqrt{|\mathcal{A}|} \|r' - r\|_\infty}{1 - \gamma},
\end{aligned}$$

where (a) uses Lemma 3, (b) uses $\|\pi'(\cdot|s) - \pi(\cdot|s)\|_1 \leq \|\log \pi'(\cdot|s) - \log \pi(\cdot|s)\|_1$,
 $\|p'(\cdot|s, a) - p(\cdot|s, a)\|_1 \leq \sqrt{|\mathcal{S}|} \|p'(\cdot|s, a) - p(\cdot|s, a)\| \leq \sqrt{|\mathcal{S}|} \|p' - p\|, \frac{\gamma \sqrt{|\mathcal{S}|} (1 + \lambda \log |\mathcal{A}|)}{1 - \gamma} \leq \frac{\sqrt{|\mathcal{S}|} |\mathcal{A}| (1 + \lambda \log |\mathcal{A}|)}{(1 - \gamma)^2}$ and $\lambda \leq \frac{\lambda |\mathcal{A}| \log |\mathcal{A}|}{(1 - \gamma)^2}$. \square

C.4 ZEROETH-ORDER GRADIENT ESTIMATION ERROR

We import Theorem 1.6.2 of (Tropp et al., 2015) as follows.

Lemma 7 (Matrix Bernstein Inequality). *Suppose complex-valued matrices $S_1, \dots, S_N \in \mathbb{C}^{d_1 \times d_2}$ are independently distributed with $\mathbb{E} S_k = 0$ and $\|S_k\| \leq C$ for each $k = 1, \dots, N$. Denote the sum $Z_N = \sum_{k=1}^N S_k$ its variance statistic as follows*

$$v(Z_N) = \max \left[\left\| \sum_{k=1}^N \mathbb{E}(S_k S_k^*) \right\|, \left\| \sum_{k=1}^N \mathbb{E}(S_k^* S_k) \right\| \right], \quad (52)$$

where S_k^* denotes the conjugate transpose of S_k . Then for any $\epsilon \geq 0$, we have

$$\mathbb{P}\{\|Z_N\| \geq \epsilon\} \leq (d_1 + d_2) \exp \left[\frac{-\epsilon^2/2}{v(Z_N) + C\epsilon/3} \right]. \quad (53)$$

Applying the above lemma to vectors, we obtain the following vector Bernstein inequality.

Lemma 8 (Vector Bernstein Inequality). *Suppose independently distributed vectors $x_1, \dots, x_N \in \mathbb{C}^d$ satisfies $\|x_k\| \leq c$ for each $k = 1, \dots, N$. Then for any $\eta \in (0, 1)$, with probability at least $1 - \eta$, we have*

$$\left\| \frac{1}{N} \sum_{k=1}^N (x_k - \mathbb{E} x_k) \right\| < \frac{4c}{3N} \log \left(\frac{d+1}{\eta} \right) + 2c \sqrt{\frac{2}{N} \log \left(\frac{d+1}{\eta} \right)}. \quad (54)$$

Proof. Note that $S_k = x_k - \mathbb{E} x_k$ satisfies the conditions of Lemma 7 with $d_1 = d$, $d_2 = 1$ and C replaced by $2c$. In addition, $v(Z_N)$ defined by Eq. (52) satisfies $v(Z_N) \leq 4Nc^2$ since

$$\max[\|S_k S_k^*\|, \|S_k^* S_k\|^2] \leq \|S_k\|^2 \|S_k\|^2 \leq 4c^2.$$

For any $\eta \in (0, 1)$, let

$$\epsilon = \frac{4c}{3} \log \left(\frac{d+1}{\eta} \right) + c \sqrt{2N \log \left(\frac{d+1}{\eta} \right)}.$$

Therefore, Lemma 7 implies that

$$\mathbb{P} \left\{ \frac{1}{N} \left\| \sum_{k=1}^N (x_k - \mathbb{E} x_k) \right\| \geq \frac{\epsilon}{N} \right\} \leq (d+1) \exp \left[\frac{-\epsilon^2/2}{4Nc^2 + 2c\epsilon/3} \right] \leq \eta,$$

which implies that with probability at least $1 - \eta$, we have

$$\frac{1}{N} \left\| \sum_{k=1}^N (x_k - \mathbb{E} x_k) \right\| < \frac{\epsilon}{N} = \frac{4c}{3N} \log \left(\frac{d+1}{\eta} \right) + 2c \sqrt{\frac{2}{N} \log \left(\frac{d+1}{\eta} \right)}.$$

\square

1134 For any function $f : \mathbb{R}^d \rightarrow \mathbb{R}$, obtain the following zeroth-order stochastic estimator of the gradient
 1135 ∇f .
 1136

$$1137 \quad g_\delta(x) = \frac{d}{2N\delta} \sum_{i=1}^N [f(x + \delta u_i) - f(x - \delta u_i)] u_i \approx \nabla f(x) \quad (55)$$

1140 where $\delta > 0$ and $\{u_i\}_{i=1}^N$ are i.i.d. samples of the uniform distribution on the sphere $\mathbb{S}_d = \{u \in \mathbb{R}^d : \|u\| = 1\}$.
 1141

1142 **Lemma 9.** Suppose $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is an L_f -Lipschitz continuous and ℓ_f -smooth function. Then for
 1143 any $\eta \in (0, 1)$, with probability at least $1 - \eta$, the gradient estimator g_δ defined by Eq. (55) has the
 1144 following error bound.

$$1145 \quad \|g_\delta(x) - \nabla f(x)\| \leq \frac{4L_f d}{3N} \log\left(\frac{d+1}{\eta}\right) + 2L_f d \sqrt{\frac{2}{N} \log\left(\frac{d+1}{\eta}\right)} + \delta \ell_f. \quad (56)$$

1149 *Proof.* Note that $g_{\delta,i}(x) \stackrel{\text{def}}{=} \frac{d}{2\delta} [f(x + \delta u_i) - f(x - \delta u_i)] u_i$ has the following norm bound
 1150

$$1151 \quad \|g_{\delta,i}(x)\| \leq \frac{d}{2\delta} |f(x + \delta u_i) - f(x - \delta u_i)| \cdot \|u_i\| \leq \frac{d}{2\delta} \cdot L_f \|2\delta u_i\| = L_f d. \quad (57)$$

1153 Define the following smoothed approximation of f as follows.
 1154

$$1155 \quad f_\delta(x) \stackrel{\text{def}}{=} \mathbb{E}_{v \sim \text{Unif}(\mathbb{B}_d)} [f(x + \delta v)], \quad (58)$$

1157 where $\text{Unif}(\mathbb{B}_d)$ denotes the uniform distribution on the ball $\mathbb{B}_d \stackrel{\text{def}}{=} \{u \in \mathbb{R}^d : \|u\| \leq 1\}$. Then
 1158 based on Lemma 1 of (Flaxman et al., 2005), we have

$$1159 \quad \mathbb{E}[g_{\delta,i}(x)] = \nabla f_\delta(x) = \mathbb{E}_{v \sim \text{Unif}(\mathbb{B}_d)} [\nabla f(x + \delta v)]. \quad (59)$$

1161 Therefore, applying Lemma 8 to $g_{\delta,i}(x)$, the following bound holds with probability at least $1 - \eta$.
 1162

$$1163 \quad \frac{1}{N} \left\| \sum_{i=1}^N [g_{\delta,i}(x) - \nabla f_\delta(x)] \right\| < \frac{4L_f d}{3N} \log\left(\frac{d+1}{\eta}\right) + 2L_f d \sqrt{\frac{2}{N} \log\left(\frac{d+1}{\eta}\right)}. \quad (60)$$

1166 Note that

$$1167 \quad \|\nabla f_\delta(x) - \nabla f(x)\| = \left\| \mathbb{E}_{v \sim \text{Unif}(\mathbb{B}_d)} [\nabla f(x + \delta v) - \nabla f(x)] \right\| \leq \delta \ell_f. \quad (61)$$

1169 As a result, we can prove the conclusion as follows by using Eqs. (60) and (61) above.

$$1170 \quad \begin{aligned} \|g_\delta(x) - \nabla f(x)\| &= \left\| \left[\frac{1}{N} \sum_{i=1}^N g_{\delta,i}(x) \right] - \nabla f(x) \right\| \\ 1171 &\leq \left\| \left[\frac{1}{N} \sum_{i=1}^N g_{\delta,i}(x) \right] - \nabla f_\delta(x) \right\| + \|\nabla f_\delta(x) - \nabla f(x)\| \\ 1172 &< \frac{4L_f d}{3N} \log\left(\frac{d+1}{\eta}\right) + 2L_f d \sqrt{\frac{2}{N} \log\left(\frac{d+1}{\eta}\right)} + \delta \ell_f. \end{aligned}$$

1179 □
 1180

1181 C.5 ORTHOGONAL TRANSFORMATION 1182

1183 **Lemma 10.** There exists an orthogonal transformation \mathcal{T} from the space \mathbb{R}^{d-1} to $\mathcal{Z}_d = \{z =$
 1184 $[z_1, \dots, z_d] \in \mathbb{R}^d : \sum_i z_i = 0\}$, that is, \mathcal{T} is invertible and satisfies the following properties for any
 1185 $x, y \in \mathcal{Z}_d$ and $\alpha, \beta \in \mathbb{R}$.

$$1186 \quad \mathcal{T}(\alpha x + \beta y) = \alpha \mathcal{T}(x) + \beta \mathcal{T}(y), \quad (62)$$

$$1187 \quad \langle \mathcal{T}(x), \mathcal{T}(y) \rangle = \langle x, y \rangle. \quad (63)$$

1188 *Proof.* It can be verified that \mathbb{R}^d admits the following orthonormal basis with $\langle e_i, e_j \rangle = 0$ for any
 1189 $i \neq j$ and $\|e_i\| = 1$.

1190

$$1191 e_k = \frac{1}{\sqrt{k(k+1)}} \underbrace{[1, 1, \dots, 1]}_{k \text{ 1's}}, \underbrace{-k, 0, 0, \dots, 0}_{(d-k-1) \text{ 0's}} \in \mathbb{R}^d; k = 1, 2, \dots, d-1.$$

1192

$$1193 e_d = \frac{1}{\sqrt{d}} \underbrace{[1, 1, \dots, 1]}_{d \text{ 1's}} \in \mathbb{R}^d.$$

1194

1195 Define the transformation \mathcal{T} at $x = [x_1, x_2, \dots, x_{d-1}] \in \mathbb{R}^{d-1}$ as follows.

1196

$$1197 \mathcal{T}(x) = \sum_{i=1}^{d-1} x_i e_i. \quad (64)$$

1200

1201 Since \mathcal{Z}_d is a linear subspace of \mathbb{R}^d orthogonal to e_d , \mathcal{Z}_d admits the orthonormal basis $\{e_i\}_{i=1}^{d-1}$. Hence,
 1202 $\mathcal{T}(x) \in \mathcal{Z}_d$. Conversely, for any $y \in \mathcal{Z}_d$, there exists unique $x \in \mathbb{R}^{d-1}$ such that $y = \sum_{i=1}^{d-1} x_i e_i$.
 1203 Hence, $\mathcal{T} : \mathbb{R}^{d-1} \rightarrow \mathcal{Z}_d$ is invertible.

1204 For any $x = [x_1, \dots, x_{d-1}]$, $y = [y_1, \dots, y_{d-1}] \in \mathbb{R}^{d-1}$ and $\alpha, \beta \in \mathbb{R}$, we can prove Eqs. (62) and
 1205 (63) respectively as follows.

1206

$$1207 \mathcal{T}(\alpha x + \beta y) = \sum_{i=1}^{d-1} (\alpha x_i + \beta y_i) e_i$$

1208

$$1209 = \alpha \sum_{i=1}^{d-1} x_i e_i + \beta \sum_{i=1}^{d-1} y_i e_i$$

1210

$$1211 = \alpha \mathcal{T}(x) + \beta \mathcal{T}(y).$$

1212

1213

$$1214 \langle \mathcal{T}(x), \mathcal{T}(y) \rangle = \left\langle \sum_{i=1}^{d-1} x_i e_i, \sum_{j=1}^{d-1} y_j e_j \right\rangle$$

1215

$$1216 = \sum_{i=1}^{d-1} \sum_{j=1}^{d-1} x_i y_j \langle e_i, e_j \rangle$$

1217

$$1218 = \sum_{i=1}^{d-1} x_i y_i = \langle x, y \rangle.$$

1219

□

C.6 BASIC INEQUALITIES

1225 **Lemma 11.** For any $\epsilon \in (0, 0.5]$ and $x \geq 4\epsilon^{-1} \log(\epsilon^{-1})$, the following inequality holds.

1226

$$1227 0 < \frac{\log x}{x} \leq \epsilon \quad (65)$$

1228

1229 Specifically, any $x \geq 3$ satisfies $\frac{\log x}{x} \leq \frac{1}{2}$.

1230 *Proof.* As $\epsilon^{-1} \geq 2$, we have $x \geq 4\epsilon^{-1} \log(\epsilon^{-1}) \geq (4)(2) \log(2) > 5.54$, so $\log x > \log 5.54 >$
 1231 1.71, which proves the first $<$ of Eq. (65).

1232 Note that the function $f(x) = \frac{\log x}{x}$ has the following derivative

1233

$$1234 f'(x) = \frac{1 - \log x}{x^2} < 0,$$

1235

1236 where $<$ uses $\log x > 1.71$. Hence, f is monotonic decreasing in $x \geq 4\epsilon^{-1} \log(\epsilon^{-1}) > 5.54$,
 1237 Therefore, we prove the second \leq of Eq. (65) as follows.

1238

$$1239 \frac{\log x}{x\epsilon} \leq \frac{\log[4\epsilon^{-1} \log(\epsilon^{-1})]}{\epsilon[4\epsilon^{-1} \log(\epsilon^{-1})]}$$

1240

$$\begin{aligned}
&= \frac{\log 4 + \log(\epsilon^{-1}) + \log[\log(\epsilon^{-1})]}{4 \log(\epsilon^{-1})} \\
&\stackrel{(a)}{\leq} \frac{\log 4}{4 \log(2)} + \frac{\log(\epsilon^{-1}) + \log(\epsilon^{-1})}{4 \log(\epsilon^{-1})} = 1,
\end{aligned} \tag{66}$$

where (a) uses $\epsilon^{-1} \geq 2$ and $\log u \leq u$ for $u = \log(\epsilon^{-1})$.

When $x \geq 3$, $f'(x) = \frac{1-\log x}{x^2} < 0$, so $f(x) \leq f(3) = \frac{\log 3}{3} < \frac{1}{2}$. \square

Lemma 12. For any $\pi, \pi' \in \Pi$, we have $\|\pi' - \pi\| \leq \sqrt{2|\mathcal{S}|}$.

Proof.

$$\|\pi' - \pi\|^2 = \sum_{s,a} |\pi'(a|s) - \pi(a|s)|^2 \leq \sum_{s,a} [\pi'^2(a|s) + \pi^2(a|s)] \leq \sum_{s,a} [\pi'(a|s) + \pi(a|s)] = 2|\mathcal{S}|.$$

\square

D NEGATIVE ENTROPY REGULARIZER AS A STRONGLY CONVEX FUNCTION OF OCCUPANCY MEASURE

The negative entropy regularizer (5) can be rewritten as follows

$$\mathcal{H}_{\pi'}(\pi) = \mathbb{E}_{\pi, p_{\pi'}, \rho} \left[\sum_{t=0}^{\infty} \gamma^t \log \pi(a_t|s_t) \right] = \frac{1}{1-\gamma} \sum_{s,a} d_{\pi, p_{\pi'}}(s,a) \log \frac{d_{\pi, p_{\pi'}}(s,a)}{d_{\pi, p_{\pi'}}(s)}, \tag{67}$$

where $d_{\pi, p_{\pi'}}(s) = \sum_{a'} d_{\pi, p_{\pi'}}(s, a')$. Hence, it suffices to prove that the following function of occupancy measure d is strongly convex.

$$H(d) = \sum_{s,a} d(s,a) \log \frac{d(s,a)}{d(s)}, \tag{68}$$

where $d(s) = \sum_{a'} d(s, a')$. For any $\alpha \in [0, 1]$ and occupancy measures d_1, d_0 , denote $d_\alpha = \alpha d_1 + (1 - \alpha) d_0$ and the corresponding policy as $\pi_\alpha(a|s) = \frac{d_\alpha(s,a)}{d_\alpha(s)}$. Then we have

$$\begin{aligned}
&\alpha H(d_1) + (1 - \alpha) H(d_0) - H(d_\alpha) \\
&= \sum_{s,a} \left[\alpha d_1(s,a) \log \pi_1(a|s) + (1 - \alpha) d_0(s,a) \log \pi_0(a|s) \right. \\
&\quad \left. - [\alpha d_1(s,a) + (1 - \alpha) d_0(s,a)] \log \pi_\alpha(a|s) \right] \\
&= \sum_{s,a} \left[\alpha d_1(s,a) \log \frac{\pi_1(a|s)}{\pi_\alpha(a|s)} + (1 - \alpha) d_0(s,a) \log \frac{\pi_0(a|s)}{\pi_\alpha(a|s)} \right] \\
&= \sum_{s,a} \left[\alpha d_1(s,a) \log \frac{\pi_1(a|s)}{\pi_\alpha(a|s)} + (1 - \alpha) d_0(s,a) \log \frac{\pi_0(a|s)}{\pi_\alpha(a|s)} \right] \\
&= \sum_s \left[\alpha d_1(s) \text{KL}[\pi_1(\cdot|s) \parallel \pi_\alpha(\cdot|s)] + (1 - \alpha) d_0(s) \text{KL}[\pi_0(\cdot|s) \parallel \pi_\alpha(\cdot|s)] \right] \\
&\stackrel{(a)}{\geq} \frac{1}{2} \sum_s \left[\alpha d_1(s) \|\pi_1(\cdot|s) - \pi_\alpha(\cdot|s)\|_1^2 + (1 - \alpha) d_0(s) \|\pi_0(\cdot|s) - \pi_\alpha(\cdot|s)\|_1^2 \right] \\
&\stackrel{(b)}{\geq} \frac{D}{2} \sum_s \left[\alpha \|\pi_1(\cdot|s) - \pi_\alpha(\cdot|s)\|_1^2 + (1 - \alpha) \|\pi_0(\cdot|s) - \pi_\alpha(\cdot|s)\|_1^2 \right] \\
&\geq \frac{D}{2} \left[\alpha \max_s \|\pi_1(\cdot|s) - \pi_\alpha(\cdot|s)\|_1^2 + (1 - \alpha) \max_s \|\pi_0(\cdot|s) - \pi_\alpha(\cdot|s)\|_1^2 \right] \\
&\stackrel{(c)}{\geq} \frac{D(1 - \gamma)}{2} \left[\alpha \|d_1 - d_\alpha\|_1^2 + (1 - \alpha) \max_s \|d_0 - d_\alpha\|_1^2 \right]
\end{aligned}$$

$$\begin{aligned}
1296 &= \frac{D(1-\gamma)}{2} \left[\alpha(1-\alpha)^2 \|d_1 - d_0\|_1^2 + (1-\alpha)\alpha^2 \|d_1 - d_0\|_1^2 \right] \\
1297 &= \frac{\alpha(1-\alpha)}{2} \cdot D(1-\gamma) \|d_1 - d_0\|_1^2. \\
1298 & \\
1299 & \\
1300 & \text{where (a) uses Pinsker's inequality, (b) uses Assumption 3, (c) uses Eq. (30) with } p' = p. \text{ The} \\
1301 & \text{inequality above implies that } H(d) \text{ is } D(1-\gamma)\text{-strongly convex, so the negative entropy regularizer} \\
1302 & \text{ (67) can be seen as a } D\text{-strongly convex function of the occupancy measure } d_{\pi,p_{\pi'}}. \\
1303 & \\
1304 & \text{E EXISTING ASSUMPTIONS THAT IMPLIES ASSUMPTION 3} \\
1305 & \\
1306 & \text{The following assumptions have been used in the reinforcement learning literature. We will show} \\
1307 & \text{that each of these assumptions implies Assumption 3.} \\
1308 & \\
1309 & \text{Assumption 4. (Bhandari \& Russo, 2024) } \rho(s) > 0 \text{ for any } s \in \mathcal{S}. \\
1310 & \\
1311 & \text{Assumption 5. (Agarwal et al., 2021; Leonardos et al., 2022; Wang et al., 2023; Chen \& Huang,} \\
1312 & \text{2024) } D_\rho := \sup_{\pi \in \Pi, p \in \mathcal{P}} \|d_{\pi,p}/\rho\|_\infty < \infty. \\
1313 & \\
1314 & \text{Assumption 6. (Wei et al., 2021; Chen et al., 2022) There exists a constant } \mu_{\min} > 0 \text{ and mixing} \\
1315 & \text{time } t_{\text{mix}} \in \mathbb{N} \text{ such that under any policy } \pi \in \Pi \text{ and transition kernel } p \in \mathcal{P}, \text{ the stationary state} \\
1316 & \text{distribution } \mu_{\pi,p}(s) \text{ has uniform lower bound } \min_{s \in \mathcal{S}} \mu_{\pi,p}(s) \geq \mu_{\min}, \text{ and} \\
1317 & \\
1318 & \text{where } \mathbb{P}_{\pi,p,\rho}(s_{t_{\text{mix}}} = \cdot) \text{ denotes the state distribution at time } t_{\text{mix}}, \text{ under the policy } \pi, \text{ transition kernel} \\
1319 & \text{p and initial state distribution } \rho, \text{ and } d_{\text{TV}} \text{ denotes the total variation distance between two probability} \\
1320 & \text{distributions.} \\
1321 & \\
1322 & \text{Proof of Assumption 4} \Rightarrow \text{Assumption 3: For any policy } \pi \in \Pi, \text{ transition kernel } p \in \mathcal{P} \text{ and state} \\
1323 & s \in \mathcal{S}, \text{ we have} \\
1324 & \\
1325 & d_{\pi,p}(s) = \sum_a d_{\pi,p}(s, a) \\
1326 & \stackrel{(a)}{=} \sum_a (1-\gamma) \sum_{t=0}^{\infty} \gamma^t \mathbb{P}_{\pi,p,\rho}\{s_t = s, a_t = a\} \\
1327 & \\
1328 & = (1-\gamma) \sum_{t=0}^{\infty} \gamma^t \mathbb{P}_{\pi,p,\rho}\{s_t = s\} \\
1329 & \\
1330 & \geq (1-\gamma) \mathbb{P}_{\pi,p,\rho}\{s_0 = s\} \\
1331 & \\
1332 & = (1-\gamma) \rho(s) \\
1333 & \\
1334 & \geq (1-\gamma) \min_{s \in \mathcal{S}} \rho(s). \\
1335 & \\
1336 & \text{As } \mathcal{S} \text{ is a finite state space, } \rho(s) > 0, \forall s \in \mathcal{S} \text{ implies that } \min_{s \in \mathcal{S}} \rho(s) > 0. \text{ Hence, Assumption 3} \\
1337 & \text{holds with } D = (1-\gamma) \min_{s \in \mathcal{S}} \rho(s) > 0. \\
1338 & \\
1339 & \text{Proof of Assumption 5} \Rightarrow \text{Assumption 3: If } \rho(s) = 0 \text{ for a state } s, \text{ then Assumption 5 implies that} \\
1340 & d_{\pi,p}(s) = (1-\gamma) \sum_{t=0}^{\infty} \gamma^t \mathbb{P}_{\pi,p,\rho}\{s_t = s\} = 0 \text{ for any } \pi \in \Pi \text{ and } p \in \mathcal{P}, \text{ which means the state } s \\
1341 & \text{will never be visited. Therefore, we can exclude all such states } s \text{ from } \mathcal{S} \text{ such that Assumption 4} \\
1342 & \text{holds, which implies Assumption 3 as proved above.} \\
1343 & \\
1344 & \text{Proof of Assumption 6} \Rightarrow \text{Assumption 3: Eq. (70) implies that for any } n \in \mathbb{N}_+, \text{ we have} \\
1345 & \\
1346 & d_{\text{TV}}[\mathbb{P}_{\pi,p,\rho}(s_{nt_{\text{mix}}} = \cdot), \mu_{\pi,p}] = \frac{1}{2} \sum_s |\mathbb{P}_{\pi,p,\rho}\{s_{nt_{\text{mix}}} = s\} - \mu_{\pi,p}(s)| \leq \frac{1}{4^n}. \\
1347 & \\
1348 & \text{Select } n = \lceil \log(\mu_{\min}^{-1}) / \log 4 \rceil. \text{ Then the bound above implies } |\mathbb{P}_{\pi,p,\rho}\{s_{nt_{\text{mix}}} = s\} - \mu_{\pi,p}(s)| \leq \\
1349 & \mu_{\min}/2 \text{ for any state } s, \text{ which along with } \mu_{\pi,p}(s) \geq \mu_{\min} \text{ implies that } \mathbb{P}_{\pi,p,\rho}\{s_{nt_{\text{mix}}} = s\} \geq \mu_{\min}/2. \\
1350 & \text{Therefore, we can prove Assumption 3 as follows.} \\
1351 & \\
1352 & d_{\pi,p}(s) = (1-\gamma) \sum_{t=0}^{\infty} \gamma^t \mathbb{P}_{\pi,p,\rho}\{s_t = s\} \geq (1-\gamma) \gamma^{nt_{\text{mix}}} \mathbb{P}_{\pi,p,\rho}\{s_{nt_{\text{mix}}} = s\} \geq \frac{\mu_{\min}}{2} \gamma^{nt_{\text{mix}}} (1-\gamma). \\
1353 & \\
1354 & \text{25}
\end{aligned} \tag{69}$$

1350 **F PROOF OF THEOREM 1**

1352 Fix any $\pi_0, \pi_1 \in \Pi$. For any $\alpha \in [0, 1]$, denote $d_\alpha = \alpha d_{\pi_1, p_{\pi_1}} + (1 - \alpha) d_{\pi_0, p_{\pi_0}}$, $\pi_\alpha(a|s) = \frac{d_\alpha(s, a)}{d_\alpha(s)}$
 1353 where $d_\alpha(s) = \sum_{a'} d_\alpha(s, a')$, and $p_\alpha = p_{\pi_\alpha}$. It can be easily verified that $d_0 = d_{\pi_0, p_0}$, $d_1 = d_{\pi_1, p_1}$
 1354 and $d_\alpha = \alpha d_1 + (1 - \alpha) d_0$. Then we can obtain the following derivatives and their bounds about
 1355 π_α, d_α in Eqs. (71)-(77).

$$\begin{aligned}
 & \frac{d_\alpha(s)[d_1(s, a) - d_0(s, a)] - d_\alpha(s, a)[d_1(s) - d_0(s)]}{d_\alpha^2(s)} \\
 &= \frac{[\alpha d_1(s) + (1 - \alpha) d_0(s)][d_1(s, a) - d_0(s, a)] - [\alpha d_1(s, a) + (1 - \alpha) d_0(s, a)][d_1(s) - d_0(s)]}{d_\alpha^2(s)} \\
 &= \frac{d_0(s)d_1(s, a) - d_0(s, a)d_1(s)}{d_\alpha^2(s)} \\
 &= \frac{d_0(s)d_1(s)[\pi_1(a|s) - \pi_0(a|s)]}{d_\alpha^2(s)}. \tag{71}
 \end{aligned}$$

1366 Hence,

$$\begin{aligned}
 \left\| \frac{d\pi_\alpha}{d\alpha} \right\|^2 &= \sum_{s, a} \left| \frac{d_0(s)d_1(s)[\pi_1(a|s) - \pi_0(a|s)]}{d_\alpha^2(s)} \right|^2 \\
 &\stackrel{(a)}{\leq} \sum_{s, a} \left[\frac{\max[d_0(s), d_1(s)] \min[d_0(s), d_1(s)]}{\min^2[d_0(s), d_1(s)]} \right]^2 [\pi_1(a|s) - \pi_0(a|s)]^2 \\
 &\stackrel{(b)}{\leq} D^{-2} \sum_{s, a} [\pi_1(a|s) - \pi_0(a|s)]^2 \leq D^{-2} \|\pi_1 - \pi_0\|^2, \tag{72}
 \end{aligned}$$

1376 where (a) uses $d_\alpha(s) = \alpha d_1(s) + (1 - \alpha) d_0(s) \geq \min[d_0(s), d_1(s)]$ and (b) uses Assumption 3.
 1377 Then by taking derivative of Eq. (71), we have

$$\frac{d^2}{d\alpha^2} \pi_\alpha(a|s) = -\frac{2d_0(s)d_1(s)[\pi_1(a|s) - \pi_0(a|s)][d_1(s) - d_0(s)]}{d_\alpha^3(s)}. \tag{73}$$

1381 Hence,

$$\begin{aligned}
 \left\| \frac{d^2\pi_\alpha}{d\alpha^2} \right\|^2 &= \sum_{s, a} \left| \frac{2d_0(s)d_1(s)[\pi_1(a|s) - \pi_0(a|s)][d_1(s) - d_0(s)]}{[\alpha d_1(s) + (1 - \alpha) d_0(s)]^3} \right|^2 \\
 &\stackrel{(a)}{\leq} \sum_{s, a} \left[\frac{2 \max[d_0(s), d_1(s)] \min[d_0(s), d_1(s)] |d_1(s) - d_0(s)|}{D^2 \min[d_0(s), d_1(s)]} \right]^2 [\pi_1(a|s) - \pi_0(a|s)]^2 \\
 &\leq (2D^{-2})^2 \max_s [|d_1(s) - d_0(s)|^2] \sum_{s, a} [\pi_1(a|s) - \pi_0(a|s)]^2 \\
 &\leq (2D^{-2})^2 \|\pi_1 - \pi_0\|^2 \left[\sum_s |d_1(s) - d_0(s)| \right]^2 \\
 &\stackrel{(b)}{\leq} (2D^{-2})^2 \|\pi_1 - \pi_0\|^2 \left[\frac{\gamma\sqrt{|\mathcal{A}|}}{1 - \gamma} \|\pi_1 - \pi_0\| + \frac{\gamma\sqrt{|\mathcal{S}|}}{1 - \gamma} \|p_{\pi_1} - p_{\pi_0}\| \right]^2 \\
 &\stackrel{(c)}{\leq} (2D^{-2})^2 \|\pi_1 - \pi_0\|^2 \left[\frac{\gamma\sqrt{|\mathcal{A}|}}{1 - \gamma} \|\pi_1 - \pi_0\| + \frac{\gamma\epsilon_p\sqrt{|\mathcal{S}|}}{1 - \gamma} \|\pi_1 - \pi_0\| \right]^2 \\
 &\leq (2D^{-2})^2 \|\pi_1 - \pi_0\|^4 \left[\frac{\gamma(\epsilon_p\sqrt{|\mathcal{S}|} + \sqrt{|\mathcal{A}|})}{1 - \gamma} \right]^2, \tag{74}
 \end{aligned}$$

1400 where (a) uses $d_\alpha(s) = \alpha d_1(s) + (1 - \alpha) d_0(s) \geq \min[d_0(s), d_1(s)] \geq D$, (b) uses Lemma 3, and
 1401 (c) uses Assumption 1.

$$d_0(s)d_1(s) \left| \frac{d}{d\alpha} \left[\frac{d_\alpha(s, a)}{d_\alpha^2(s)} \right] \right|$$

$$\begin{aligned}
& \left| \frac{d_0(s)d_1(s)}{d_\alpha^2(s)} [d_1(s, a) - d_0(s, a)] - \frac{2d_0(s)d_1(s)d_\alpha(s, a)}{d_\alpha^3(s)} [d_1(s) - d_0(s)] \right| \\
& \leq \frac{d_0(s)d_1(s)}{d_\alpha^2(s)} \left[|d_1(s, a) - d_0(s, a)| + \frac{2d_\alpha(s, a)}{d_\alpha(s)} |d_1(s) - d_0(s)| \right] \\
& \leq \frac{\max[d_0(s), d_1(s)] \min[d_0(s), d_1(s)]}{\min^2[d_0(s), d_1(s)]} [|d_1(s, a) - d_0(s, a)| + 2\pi_\alpha(a|s)|d_1(s) - d_0(s)|] \\
& \leq D^{-1} [|d_1(s, a) - d_0(s, a)| + 2\pi_\alpha(a|s)|d_1(s) - d_0(s)|]. \tag{75}
\end{aligned}$$

$$\begin{aligned}
& \frac{d}{d\alpha} [d_\alpha(s, a)p_\alpha(s'|s, a)] \\
& = p_\alpha(s'|s, a)[d_1(s, a) - d_0(s, a)] + d_\alpha(s, a) \cdot \frac{d}{d\alpha} \pi_\alpha(a|s) \cdot \nabla_\pi p_{\pi_\alpha}(s'|s, a) \\
& = p_\alpha(s'|s, a)[d_1(s, a) - d_0(s, a)] + \frac{d_\alpha(s, a)d_0(s)d_1(s)[\pi_1(a|s) - \pi_0(a|s)]}{d_\alpha^2(s)} \cdot \nabla_\pi p_{\pi_\alpha}(s'|s, a) \tag{76}
\end{aligned}$$

Then for any $\alpha, \alpha' \in [0, 1]$, we have

$$\begin{aligned}
& \left| \frac{d}{d\alpha} [d_{\alpha'}(s, a)p_{\alpha'}(s'|s, a)] - \frac{d}{d\alpha} [d_\alpha(s, a)p_\alpha(s'|s, a)] \right| \\
& \stackrel{(a)}{\leq} |p_{\alpha'}(s'|s, a) - p_\alpha(s'|s, a)| \cdot |d_1(s, a) - d_0(s, a)| + d_0(s)d_1(s)|\pi_1(a|s) - \pi_0(a|s)| \cdot \\
& \quad \left[\left| \frac{d_{\alpha'}(s, a)}{d_{\alpha'}^2(s)} \right| \|\nabla_\pi p_{\pi_{\alpha'}}(s'|s, a) - \nabla_\pi p_{\pi_\alpha}(s'|s, a)\| + \left| \frac{d_{\alpha'}(s, a)}{d_{\alpha'}^2(s)} - \frac{d_\alpha(s, a)}{d_\alpha^2(s)} \right| \|\nabla_\pi p_{\pi_\alpha}(s'|s, a)\| \right] \\
& \stackrel{(b)}{\leq} \epsilon_p \|\pi_{\alpha'} - \pi_\alpha\| |d_1(s, a) - d_0(s, a)| \\
& \quad + \pi_{\alpha'}(a|s)|\pi_1(a|s) - \pi_0(a|s)| \cdot \frac{\max[d_0(s), d_1(s)] \min[d_0(s), d_1(s)]}{\min[d_0(s), d_1(s)]} \cdot S_p \|\pi_{\alpha'} - \pi_\alpha\| \\
& \quad + D^{-1} \epsilon_p |\pi_1(a|s) - \pi_0(a|s)| \cdot [|d_1(s, a) - d_0(s, a)| + 2\pi_\alpha(a|s)|d_1(s) - d_0(s)|] \cdot |\alpha' - \alpha| \\
& \stackrel{(c)}{\leq} \epsilon_p D^{-1} \|\pi_1 - \pi_0\| \cdot |\alpha' - \alpha| \cdot |d_1(s, a) - d_0(s, a)| \\
& \quad + S_p \pi_{\alpha'}(a|s) \cdot |\pi_1(a|s) - \pi_0(a|s)| \cdot [d_0(s) + d_1(s)] \cdot D^{-1} \|\pi_1 - \pi_0\| \cdot |\alpha' - \alpha| \\
& \quad + D^{-1} \epsilon_p |\pi_1(a|s) - \pi_0(a|s)| \cdot [|d_1(s, a) - d_0(s, a)| + 2\pi_\alpha(a|s)|d_1(s) - d_0(s)|] \cdot |\alpha' - \alpha| \\
& \stackrel{(d)}{\leq} \ell_{dp}(s, a) |\alpha' - \alpha|, \tag{77}
\end{aligned}$$

where (a) uses Eq. (76), (b) uses Assumptions 1-2, $d_{\alpha'}(s, a) = d_{\alpha'}(s)\pi_{\alpha'}(a|s)$, $d_{\alpha'}(s) = \alpha' d_1(s) + (1 - \alpha')d_0(s) \geq \min[d_0(s), d_1(s)]$ and Eq. (75), (c) uses Assumption 3 as well as Eq. (72), (d) defines $\ell_{dp}(s, a)$ as the following Eq. (78) and uses $\pi_\alpha(a|s) = \frac{\alpha d_1(s)\pi_1(a|s) + (1 - \alpha)d_0(s)\pi_0(a|s)}{\alpha d_1(s) + (1 - \alpha)d_0(s)} \leq \pi_0(a|s) + \pi_1(a|s)$.

$$\begin{aligned}
\ell_{dp}(s, a) & = 2D^{-1} \epsilon_p \|\pi_1 - \pi_0\| |d_1(s, a) - d_0(s, a)| \\
& \quad + 2D^{-1} \epsilon_p [\pi_1(a|s) + \pi_0(a|s)] \cdot |\pi_1(a|s) - \pi_0(a|s)| \cdot |d_1(s) - d_0(s)| \\
& \quad + D^{-1} S_p [\pi_1(a|s) + \pi_0(a|s)] \cdot |\pi_1(a|s) - \pi_0(a|s)| \cdot \|\pi_1 - \pi_0\| \cdot [d_0(s) + d_1(s)]. \tag{78}
\end{aligned}$$

Denote $e_\alpha(s) = d_{\pi_\alpha, p_\alpha}(s) - d_\alpha(s)$ as the error term due to the policy-dependent transition kernel $p_\alpha = p_{\pi_\alpha}$ ¹. Note that the occupancy measure (2) satisfies that the Bellman equation (3) repeated as follows.

$$d_{\pi, p}(s') = (1 - \gamma)\rho(s') + \gamma \sum_{s, a} d_{\pi, p}(s)\pi(a|s)p(s'|s, a), \quad s' \in \mathcal{S}. \tag{79}$$

Therefore, the error term $e_\alpha(s)$ satisfies the following recursion.

$$e_\alpha(s')$$

¹If $p_{\pi_\alpha} \equiv p$ does not depend on the policy π_α , it can be easily verified that $e_\alpha(s) = 0$ for all $s \in \mathcal{S}$.

$$\begin{aligned}
&= d_{\pi_\alpha, p_\alpha}(s') - \alpha d_1(s') - (1 - \alpha) d_0(s') \\
&= \gamma \sum_{s,a} [d_{\pi_\alpha, p_\alpha}(s) \pi_\alpha(a|s) p_\alpha(s'|s, a) - \alpha d_{\pi_1, p_1}(s) \pi_1(a|s) p_1(s'|s, a) \\
&\quad - (1 - \alpha) d_{\pi_0, p_0}(s) \pi_0(a|s) p_0(s'|s, a)] \\
&= \gamma \sum_{s,a} [e_\alpha(s) \pi_\alpha(a|s) p_\alpha(s'|s, a) + d_\alpha(s, a) p_\alpha(s'|s, a) - \alpha d_1(s, a) p_1(s'|s, a) \\
&\quad - (1 - \alpha) d_0(s, a) p_0(s'|s, a)]. \tag{80}
\end{aligned}$$

The above inequality implies that

$$\begin{aligned}
&\sum_{s'} |e_\alpha(s')| \\
&\leq \gamma \sum_{s,a,s'} [|e_\alpha(s)| \pi_\alpha(a|s) p_\alpha(s'|s, a) \\
&\quad + |d_\alpha(s, a) p_\alpha(s'|s, a) - \alpha d_1(s, a) p_1(s'|s, a) - (1 - \alpha) d_0(s, a) p_0(s'|s, a)|] \\
&\stackrel{(a)}{\leq} \gamma \sum_s |e_\alpha(s)| + \frac{\gamma \alpha (1 - \alpha)}{2} \sum_{s,a,s'} \ell_{dp}(s, a) \\
&\stackrel{(b)}{\leq} \gamma \sum_s |e_\alpha(s)| + \frac{\gamma |\mathcal{S}| \alpha (1 - \alpha)}{2} \left[2D^{-1} \epsilon_p \|\pi_1 - \pi_0\| \sum_{s,a} |d_1(s, a) - d_0(s, a)| \right. \\
&\quad \left. + 4D^{-1} \epsilon_p \|\pi_1 - \pi_0\|_\infty \sum_s |d_1(s) - d_0(s)| + 4D^{-1} S_p \|\pi_1 - \pi_0\|_\infty \cdot \|\pi_1 - \pi_0\| \right] \\
&\stackrel{(c)}{\leq} \gamma \sum_s |e_\alpha(s)| + \frac{\gamma |\mathcal{S}| \alpha (1 - \alpha)}{2} \left[6D^{-1} \epsilon_p \|\pi_1 - \pi_0\| \cdot \frac{1}{1 - \gamma} \left(\sqrt{|\mathcal{A}|} \|\pi_1 - \pi_0\| + \gamma \sqrt{|\mathcal{S}|} \|p_{\pi_1} - p_{\pi_0}\| \right) \right. \\
&\quad \left. + 4D^{-1} S_p \|\pi_1 - \pi_0\|^2 \right] \\
&\stackrel{(d)}{\leq} \gamma \sum_s |e_\alpha(s)| + 3D^{-1} \gamma |\mathcal{S}| \alpha (1 - \alpha) \|\pi_1 - \pi_0\|^2 \left[\frac{\epsilon_p}{1 - \gamma} (\sqrt{|\mathcal{A}|} + \gamma \epsilon_p \sqrt{|\mathcal{S}|}) + S_p \right],
\end{aligned}$$

where (a) uses Eq. (77) which implies that $d_\alpha(s, a) p_\alpha(s'|s, a)$ is a Lipschitz smooth function with Lipschitz constant $\ell_{dp}(s, a)$ defined by Eq. (78), (b) uses Eq. (78), (c) uses $\|\pi_1 - \pi_0\|_\infty \leq \|\pi_1 - \pi_0\|$ and Lemma 3, and (d) uses Assumption 1. Rearranging the above inequality, we get

$$\sum_s |e_\alpha(s)| \leq \frac{3\gamma |\mathcal{S}| \alpha (1 - \alpha)}{D(1 - \gamma)^2} \|\pi_1 - \pi_0\|^2 [\epsilon_p (\sqrt{|\mathcal{A}|} + \gamma \epsilon_p \sqrt{|\mathcal{S}|}) + S_p (1 - \gamma)]. \tag{81}$$

Therefore, for any reward function r , we have

$$\begin{aligned}
&J_\lambda(\pi_\alpha, \pi_\alpha, p_\alpha, r) - \alpha J_\lambda(\pi_1, \pi_1, p_1, r) - (1 - \alpha) J_\lambda(\pi_0, \pi_0, p_0, r) \\
&\stackrel{(a)}{=} \frac{1}{1 - \gamma} \sum_{s,a} \left[d_{\pi_\alpha, p_\alpha}(s, a) [r(s, a) - \lambda \log \pi_\alpha(a|s)] - \alpha d_1(s, a) [r(s, a) - \lambda \log \pi_1(a|s)] \right. \\
&\quad \left. - (1 - \alpha) d_0(s, a) [r(s, a) - \lambda \log \pi_0(a|s)] \right] \\
&= \frac{1}{1 - \gamma} \sum_{s,a} \left[[d_{\pi_\alpha, p_\alpha}(s, a) - d_\alpha(s, a)] [r(s, a) - \lambda \log \pi_\alpha(a|s)] + d_\alpha(s, a) [r(s, a) - \lambda \log \pi_\alpha(a|s)] \right. \\
&\quad \left. - \alpha d_1(s, a) [r(s, a) - \lambda \log \pi_1(a|s)] - (1 - \alpha) d_0(s, a) [r(s, a) - \lambda \log \pi_0(a|s)] \right] \\
&\stackrel{(b)}{=} \frac{1}{1 - \gamma} \sum_{s,a} [d_{\pi_\alpha, p_\alpha}(s) - d_\alpha(s)] \pi_\alpha(a|s) [r(s, a) - \lambda \log \pi_\alpha(a|s)] \\
&\quad + \frac{\lambda}{1 - \gamma} \sum_{s,a} \left[\alpha d_1(s, a) \log \frac{\pi_1(a|s)}{\pi_\alpha(a|s)} + (1 - \alpha) d_0(s, a) \log \frac{\pi_0(a|s)}{\pi_\alpha(a|s)} \right]
\end{aligned}$$

$$\begin{aligned}
& \stackrel{(c)}{\geq} -\frac{1+\lambda \log |\mathcal{A}|}{1-\gamma} \sum_s |e_\alpha(s)| \\
& + \frac{\lambda}{1-\gamma} \sum_s \left[\alpha d_1(s) \sum_a \left(\pi_1(a|s) \log \frac{\pi_1(a|s)}{\pi_\alpha(a|s)} \right) + (1-\alpha) d_0(s) \sum_a \left(\pi_0(a|s) \log \frac{\pi_0(a|s)}{\pi_\alpha(a|s)} \right) \right] \\
& \stackrel{(d)}{\geq} -\frac{1+\lambda \log |\mathcal{A}|}{1-\gamma} \frac{3\gamma|\mathcal{S}|\alpha(1-\alpha)}{D(1-\gamma)^2} \|\pi_1 - \pi_0\|^2 [\epsilon_p(\sqrt{|\mathcal{A}|} + \gamma\epsilon_p\sqrt{|\mathcal{S}|}) + S_p(1-\gamma)] \\
& + \frac{\lambda}{1-\gamma} \sum_s \left[\alpha d_1(s) \text{KL}[\pi_1(\cdot|s) \|\pi_\alpha(\cdot|s)] + (1-\alpha) d_0(s) \text{KL}[\pi_0(\cdot|s) \|\pi_\alpha(\cdot|s)] \right] \\
& \stackrel{(e)}{\geq} -\frac{3\gamma|\mathcal{S}|\alpha(1-\alpha)(1+\lambda \log |\mathcal{A}|)}{D(1-\gamma)^3} \|\pi_1 - \pi_0\|^2 [\epsilon_p(\sqrt{|\mathcal{A}|} + \gamma\epsilon_p\sqrt{|\mathcal{S}|}) + S_p(1-\gamma)] \\
& + \frac{\lambda}{2(1-\gamma)} \sum_s \left[\alpha d_1(s) \|\pi_1(\cdot|s) - \pi_\alpha(\cdot|s)\|_1^2 + (1-\alpha) d_0(s) \|\pi_0(\cdot|s) - \pi_\alpha(\cdot|s)\|_1^2 \right] \\
& \stackrel{(f)}{=} -\frac{3\gamma|\mathcal{S}|\alpha(1-\alpha)(1+\lambda \log |\mathcal{A}|)}{D(1-\gamma)^3} \|\pi_1 - \pi_0\|^2 [\epsilon_p(\sqrt{|\mathcal{A}|} + \gamma\epsilon_p\sqrt{|\mathcal{S}|}) + S_p(1-\gamma)] \\
& + \frac{\lambda}{2(1-\gamma)} \sum_s \left[\alpha d_1(s) \left\| \frac{(1-\alpha)d_0(s)}{d_\alpha(s)} [\pi_1(\cdot|s) - \pi_0(\cdot|s)] \right\|_1^2 \right. \\
& \left. + (1-\alpha)d_0(s) \left\| \frac{\alpha d_1(s)}{d_\alpha(s)} [\pi_1(\cdot|s) - \pi_0(\cdot|s)] \right\|_1^2 \right] \\
& \stackrel{(g)}{=} \frac{\lambda\alpha(1-\alpha)}{2(1-\gamma)} \sum_s \frac{d_0(s)d_1(s)}{d_\alpha(s)} \|\pi_1(\cdot|s) - \pi_0(\cdot|s)\|_1^2 \\
& - \frac{3\gamma|\mathcal{S}|\alpha(1-\alpha)(1+\lambda \log |\mathcal{A}|)}{D(1-\gamma)^3} \|\pi_1 - \pi_0\|^2 [\epsilon_p(\sqrt{|\mathcal{A}|} + \gamma\epsilon_p\sqrt{|\mathcal{S}|}) + S_p(1-\gamma)] \\
& \stackrel{(h)}{\geq} \frac{D\lambda\alpha(1-\alpha)}{2(1-\gamma)} \|\pi_1 - \pi_0\|^2 \\
& - \frac{3\gamma|\mathcal{S}|\alpha(1-\alpha)(1+\lambda \log |\mathcal{A}|)}{D(1-\gamma)^3} \|\pi_1 - \pi_0\|^2 [\epsilon_p(\sqrt{|\mathcal{A}|} + \gamma\epsilon_p\sqrt{|\mathcal{S}|}) + S_p(1-\gamma)] \\
& \stackrel{(i)}{=} \frac{\mu_1\alpha(1-\alpha)}{2} \|\pi_1 - \pi_0\|^2, \tag{82}
\end{aligned}$$

where (a) uses Eq. (31), (b) uses $d_{\pi_\alpha, p_\alpha}(s, a) = d_{\pi_\alpha, p_\alpha}(s)\pi_\alpha(a|s)$, $d_\alpha(s, a) = d_\alpha(s)\pi_\alpha(a|s)$ and $d_\alpha = \alpha d_1 + (1-\alpha)d_0$, (c) uses $r(s, a) \in [0, 1]$, $-\sum_a \pi_\alpha(a|s) \log \pi_\alpha(a|s) \in [0, \log |\mathcal{A}|]$ and $e_\alpha(s) = d_{\pi_\alpha, p_\alpha}(s) - d_\alpha(s)$, (d) uses Eq. (22), (e) uses Pinsker's inequality, (f) uses $\pi_\alpha(a|s) = \frac{d_\alpha(s, a)}{d_\alpha(s)} = \frac{\alpha d_1(s)}{d_\alpha(s)} \pi_1(a|s) + \frac{(1-\alpha)d_0(s)}{d_\alpha(s)} \pi_0(a|s)$, (g) uses $d_\alpha(s) = \alpha d_1(s) + (1-\alpha)d_0(s)$, (h) uses Assumption 3 and $d_\alpha(s) \leq \max[d_0(s), d_1(s)]$, and (i) defines the constant μ_1 below.

$$\mu_1 \stackrel{\text{def}}{=} \frac{D\lambda}{1-\gamma} - \frac{6\gamma|\mathcal{S}|(1+\lambda \log |\mathcal{A}|)}{D(1-\gamma)^3} [\epsilon_p(\sqrt{|\mathcal{A}|} + \gamma\epsilon_p\sqrt{|\mathcal{S}|}) + S_p(1-\gamma)]. \tag{83}$$

Next, we begin to consider the policy-dependent reward $r_\alpha = r_{\pi_\alpha}$. Define the function $w(\alpha) = \alpha J_\lambda(\pi_1, \pi_1, p_1, r_\alpha) + (1-\alpha)J_\lambda(\pi_0, \pi_0, p_0, r_\alpha)$, which has the following derivative

$$\begin{aligned}
w'(\alpha) &= J_\lambda(\pi_1, \pi_1, p_1, r_\alpha) - J_\lambda(\pi_0, \pi_0, p_0, r_\alpha) \\
&+ [\alpha \nabla_r J_\lambda(\pi_1, \pi_1, p_1, r_\alpha) + (1-\alpha) \nabla_r J_\lambda(\pi_0, \pi_0, p_0, r_\alpha)] (\nabla_\pi r_{\pi_\alpha}) \frac{d\pi_\alpha}{d\alpha} \tag{84}
\end{aligned}$$

For any $0 \leq \alpha \leq \alpha' \leq 1$, we prove the smoothness of $w(\alpha)$ as follows.

$$\begin{aligned}
& |w'(\alpha') - w'(\alpha)| \\
&= \left| \int_\alpha^{\alpha'} \nabla_r [J_\lambda(\pi_1, \pi_1, p_1, r_{\tilde{\alpha}}) - J_\lambda(\pi_0, \pi_0, p_0, r_{\tilde{\alpha}})] (\nabla_\pi r_{\pi_{\tilde{\alpha}}}) \frac{d\pi_{\tilde{\alpha}}}{d\tilde{\alpha}} d\tilde{\alpha} \right. \\
&\left. + [\alpha' \nabla_r J_\lambda(\pi_1, \pi_1, p_1, r_{\alpha'}) + (1-\alpha') \nabla_r J_\lambda(\pi_0, \pi_0, p_0, r_{\alpha'})] (\nabla_\pi r_{\pi_{\alpha'}}) \left(\frac{d\pi_{\alpha'}}{d\alpha'} - \frac{d\pi_\alpha}{d\alpha} \right) \right|
\end{aligned}$$

$$\begin{aligned}
& + [\alpha' \nabla_r J_\lambda(\pi_1, \pi_1, p_1, r_{\alpha'}) + (1 - \alpha') \nabla_r J_\lambda(\pi_0, \pi_0, p_0, r_{\alpha'})] (\nabla_\pi r_{\pi_{\alpha'}} - \nabla_\pi r_{\pi_\alpha}) \frac{d\pi_\alpha}{d\alpha} \\
& + \{\alpha' [\nabla_r J_\lambda(\pi_1, \pi_1, p_1, r_{\alpha'}) - \nabla_r J_\lambda(\pi_1, \pi_1, p_1, r_\alpha)] \\
& + (1 - \alpha') [\nabla_r J_\lambda(\pi_0, \pi_0, p_0, r_{\alpha'}) - \nabla_r J_\lambda(\pi_0, \pi_0, p_0, r_\alpha)]\} (\nabla_\pi r_{\pi_\alpha}) \frac{d\pi_\alpha}{d\alpha} \\
& + (\alpha' - \alpha) [\nabla_r J_\lambda(\pi_1, \pi_1, p_1, r_\alpha) - \nabla_r J_\lambda(\pi_0, \pi_0, p_0, r_\alpha)] (\nabla_\pi r_{\pi_\alpha}) \frac{d\pi_\alpha}{d\alpha} \\
& \stackrel{(a)}{\leq} \int_\alpha^{\alpha'} \frac{\epsilon_r \|\pi_1 - \pi_0\|}{D(1 - \gamma)^2} \left(\max_s \|\pi_1(\cdot|s) - \pi_0(\cdot|s)\|_1 + \gamma \max_{s,a} \|p_1(\cdot|s, a) - p_0(\cdot|s, a)\|_1 \right) d\tilde{\alpha} \\
& + \frac{\epsilon_r}{1 - \gamma} \cdot 2D^{-2} \|\pi_1 - \pi_0\|^2 \left[\frac{\gamma(\epsilon_p \sqrt{|\mathcal{S}|} + \sqrt{|\mathcal{A}|})}{1 - \gamma} \right] |\alpha' - \alpha| + \frac{S_r \|\pi_{\alpha'} - \pi_\alpha\|}{1 - \gamma} \cdot D^{-1} \|\pi_1 - \pi_0\| \\
& + 0 + |\alpha' - \alpha| \cdot \frac{\epsilon_r \|\pi_1 - \pi_0\|}{D(1 - \gamma)^2} \left(\max_s \|\pi_1(\cdot|s) - \pi_0(\cdot|s)\|_1 + \gamma \max_{s,a} \|p_1(\cdot|s, a) - p_0(\cdot|s, a)\|_1 \right) \\
& \stackrel{(b)}{\leq} 2|\alpha' - \alpha| \cdot \frac{\epsilon_r \|\pi_1 - \pi_0\|}{D(1 - \gamma)^2} (\sqrt{|\mathcal{A}|} \|\pi_1 - \pi_0\| + \gamma \sqrt{|\mathcal{S}|} \|p_1 - p_0\|) \\
& + \frac{2\epsilon_r \|\pi_1 - \pi_0\|^2}{D^2(1 - \gamma)} \left[\frac{\gamma(\epsilon_p \sqrt{|\mathcal{S}|} + \sqrt{|\mathcal{A}|})}{1 - \gamma} \right] |\alpha' - \alpha| + \frac{S_r \|\pi_1 - \pi_0\|^2}{D^2(1 - \gamma)} |\alpha' - \alpha| \\
& \stackrel{(c)}{\leq} \frac{2\epsilon_r \|\pi_1 - \pi_0\|}{D(1 - \gamma)^2} (\sqrt{|\mathcal{A}|} \|\pi_1 - \pi_0\| + \gamma \epsilon_p \sqrt{|\mathcal{S}|} \|\pi_1 - \pi_0\|) |\alpha' - \alpha| \\
& + \frac{2\gamma \epsilon_r \|\pi_1 - \pi_0\|^2}{D^2(1 - \gamma)^2} (\sqrt{|\mathcal{A}|} + \epsilon_p \sqrt{|\mathcal{S}|}) |\alpha' - \alpha| + \frac{S_r(1 - \gamma) \|\pi_1 - \pi_0\|^2}{D^2(1 - \gamma)^2} |\alpha' - \alpha| \\
& \stackrel{(d)}{\leq} \frac{4\epsilon_r (\sqrt{|\mathcal{A}|} + \gamma \epsilon_p \sqrt{|\mathcal{S}|}) + S_r(1 - \gamma)}{D^2(1 - \gamma)^2} \|\pi_1 - \pi_0\|^2 |\alpha' - \alpha|,
\end{aligned}$$

where (a) uses Assumptions 1-2, $\|\nabla_r J_\lambda(\cdot, \cdot, \cdot, \cdot)\| \leq \frac{1}{1-\gamma}$ (implied by Eq. (41)) as well as Eqs. (45), (72) and (74), (b) uses Eq. (72) and $\|x\|_1 \leq \sqrt{d}\|x\|$ for any $x \in \mathbb{R}^d$, (c) uses Assumption 1, and (d) uses $D, \gamma \in [0, 1]$. The inequality above implies that $w(\alpha)$ is $\mu_2 \|\pi_1 - \pi_0\|^2$ -Lipschitz smooth with the constant μ_2 defined as follows.

$$\mu_2 = \frac{4\epsilon_r (\sqrt{|\mathcal{A}|} + \epsilon_p \sqrt{|\mathcal{S}|}) + S_r(1 - \gamma)}{D^2(1 - \gamma)^2} \quad (85)$$

Therefore,

$$\begin{aligned}
& V_{\lambda, \pi_\alpha}^{\pi_\alpha} - \alpha V_{\lambda, \pi_1}^{\pi_1} - (1 - \alpha) V_{\lambda, \pi_0}^{\pi_0} \\
& = J_\lambda(\pi_\alpha, \pi_\alpha, p_\alpha, r_\alpha) - \alpha J_\lambda(\pi_1, \pi_1, p_1, r_1) - (1 - \alpha) J_\lambda(\pi_0, \pi_0, p_0, r_0) \\
& \stackrel{(a)}{\geq} \alpha J_\lambda(\pi_1, \pi_1, p_1, r_\alpha) + (1 - \alpha) J_\lambda(\pi_0, \pi_0, p_0, r_\alpha) + \frac{\mu_1 \alpha (1 - \alpha)}{2} \|\pi_1 - \pi_0\|^2 \\
& \quad - \alpha J_\lambda(\pi_1, \pi_1, p_1, r_1) - (1 - \alpha) J_\lambda(\pi_0, \pi_0, p_0, r_0) \\
& = w(\alpha) - \alpha w(1) - (1 - \alpha) w(0) + \frac{\mu_1 \alpha (1 - \alpha)}{2} \|\pi_1 - \pi_0\|^2 \\
& \stackrel{(b)}{\geq} \frac{(\mu_1 - \mu_2) \alpha (1 - \alpha)}{2} \|\pi_1 - \pi_0\|^2 \\
& \stackrel{(c)}{=} \frac{\mu \alpha (1 - \alpha)}{2} \|\pi_1 - \pi_0\|^2,
\end{aligned} \quad (86)$$

where (a) uses Eq. (82) with r replaced by r_α , (b) uses the fact proved above that $w(\alpha)$ is $\mu_2 \|\pi_1 - \pi_0\|^2$ -Lipschitz smooth, and (c) defines the following constant μ .

$$\begin{aligned}
\mu & \stackrel{\text{def}}{=} \mu_1 - \mu_2 \\
& \stackrel{(a)}{=} \frac{D\lambda}{1 - \gamma} - \frac{6\gamma |\mathcal{S}|(1 + \lambda \log |\mathcal{A}|)}{D(1 - \gamma)^3} [\epsilon_p (\sqrt{|\mathcal{A}|} + \gamma \epsilon_p \sqrt{|\mathcal{S}|}) + S_r(1 - \gamma)]
\end{aligned}$$

$$-\frac{S_r(1-\gamma) + 4\epsilon_r(\sqrt{|\mathcal{A}|} + \epsilon_p\sqrt{|\mathcal{S}|})}{D^2(1-\gamma)^2}, \quad (87)$$

where (a) uses Eqs. (83) and (85). Rearranging Eq. (86), we obtain that

$$\frac{V_{\lambda,\pi_\alpha}^{\pi_\alpha} - V_{\lambda,\pi_0}^{\pi_0}}{\alpha} \geq V_{\lambda,\pi_1}^{\pi_1} - V_{\lambda,\pi_0}^{\pi_0} + \frac{\mu(1-\alpha)}{2} \|\pi_1 - \pi_0\|^2.$$

Letting $\alpha \rightarrow +0$ above, we can prove the conclusion as follows.

$$\begin{aligned} & V_{\lambda,\pi_1}^{\pi_1} - V_{\lambda,\pi_0}^{\pi_0} + \frac{\mu}{2} \|\pi_1 - \pi_0\|^2 \\ & \leq \left[\frac{d}{d\alpha} V_{\lambda,\pi_\alpha}^{\pi_\alpha} \right] \Big|_{\alpha=0} \\ & \leq \sum_{s,a} \frac{\partial V_{\lambda,\pi_0}^{\pi_0}}{\partial \pi_0(s,a)} \left[\frac{d}{d\alpha} \pi_\alpha(a|s) \right] \Big|_{\alpha=0} \\ & \stackrel{(a)}{=} \sum_s \frac{d_1(s)}{d_0(s)} \sum_a \frac{\partial V_{\lambda,\pi_0}^{\pi_0}}{\partial \pi_0(s,a)} [\pi_1(a|s) - \pi_0(a|s)] \\ & \leq \sum_s \frac{d_1(s)}{d_0(s)} \left[\max_{a'} \frac{\partial V_{\lambda,\pi_0}^{\pi_0}}{\partial \pi_0(s,a')} - \sum_a \pi_0(a|s) \frac{\partial V_{\lambda,\pi_0}^{\pi_0}}{\partial \pi_0(s,a)} \right] \\ & \stackrel{(b)}{\leq} D^{-1} \sum_{s,a} \frac{\partial V_{\lambda,\pi_0}^{\pi_0}}{\partial \pi_0(s,a)} [\pi_0^*(a|s) - \pi_0(a|s)] \\ & \leq D^{-1} \max_{\pi \in \Pi} \langle \nabla_{\pi_0} V_{\lambda,\pi_0}^{\pi_0}, \pi - \pi_0 \rangle, \end{aligned}$$

where (a) uses Eq. (71), and (b) uses Assumption 3 as well as the following Eq. (88) where $\pi_0^* \in \Pi$ is defined as $\pi_0^*(a^*|s) = 1$ for a certain $a^* \in \arg \max_{a'} \frac{\partial V_{\lambda,\pi_0}^{\pi_0}}{\partial \pi_0(s,a')}$ and $\pi_0^*(a'|s) = 0$ for $a' \neq a^*$.

$$\sum_a \pi_0^*(a|s) \frac{\partial V_{\lambda,\pi_0}^{\pi_0}}{\partial \pi_0(s,a)} = \max_{a'} \frac{\partial V_{\lambda,\pi_0}^{\pi_0}}{\partial \pi_0(s,a')} \geq \sum_a \pi_0(a|s) \frac{\partial V_{\lambda,\pi_0}^{\pi_0}}{\partial \pi_0(s,a)}. \quad (88)$$

G PROOF OF COROLLARY 1

Based on Theorem 1, Eq. (87) holds for any $\pi_0, \pi_1 \in \Pi$ as repeated below.

$$V_{\lambda,\pi_1}^{\pi_1} \leq V_{\lambda,\pi_0}^{\pi_0} + D^{-1} \max_{\pi \in \Pi} \langle \nabla_{\pi_0} V_{\lambda,\pi_0}^{\pi_0}, \pi - \pi_0 \rangle - \frac{\mu}{2} \|\pi_1 - \pi_0\|^2, \quad (89)$$

In the above inequality, let $\pi_1 \in \arg \max_{\pi \in \Pi} V_{\lambda,\pi}^{\pi}$ and $\pi_0 = \pi$ is any a $D\epsilon$ -stationary policy of interest. Then the inequality above becomes

$$\max_{\tilde{\pi} \in \Pi} V_{\lambda,\tilde{\pi}}^{\tilde{\pi}} \leq V_{\lambda,\pi}^{\pi} + D^{-1} \cdot D\epsilon - \frac{\mu}{2} \|\pi_1 - \pi\|^2 \stackrel{(a)}{\leq} V_{\lambda,\pi}^{\pi} + \epsilon + |\mu||\mathcal{S}|,$$

where (a) uses Lemma 12. This implies that $\max_{\tilde{\pi} \in \Pi} V_{\lambda,\tilde{\pi}}^{\tilde{\pi}} - V_{\lambda,\pi}^{\pi} \leq \epsilon + |\mu||\mathcal{S}|$, that is, the $D\epsilon$ -stationary policy π is also an $(\epsilon + |\mu||\mathcal{S}|)$ -PO policy.

If $\mu \geq 0$, the inequality above further implies that $\max_{\tilde{\pi} \in \Pi} V_{\lambda,\tilde{\pi}}^{\tilde{\pi}} - V_{\lambda,\pi}^{\pi} \leq \epsilon$, that is, the $D\epsilon$ -stationary policy π is also an ϵ -PO policy.

Furthermore, suppose $\mu > 0$ and there are two PO policies $\pi_0, \pi_1 \in \Pi$, which should satisfy

$$\begin{aligned} V_{\lambda,\pi_1}^{\pi_1} &= V_{\lambda,\pi_0}^{\pi_0} = \max_{\pi \in \Pi} V_{\lambda,\pi}^{\pi}, \\ \max_{\pi \in \Pi} \langle \nabla_{\pi_0} V_{\lambda,\pi_0}^{\pi_0}, \pi - \pi_0 \rangle &= 0. \end{aligned}$$

Substituting the two equalities above into Eq. (10), we obtain that $\frac{\mu}{2} \|\pi_1 - \pi_0\|^2 \leq 0$, which along with $\mu > 0$ implies $\pi_1 = \pi_0$, that is, the PO policy is unique.

1674 H PROOF OF THEOREM 2

1675 For any $\pi \in \Pi, p \in \mathcal{P}, r \in \mathcal{R}$, we have

$$\begin{aligned} \frac{\partial J_\lambda(\pi, \pi, p, r)}{\partial \pi(a|s)} &\stackrel{(a)}{=} \frac{d_{\pi, p}(s)[Q_\lambda(\pi, \pi, p, r; s, a) - \lambda]}{1 - \gamma} \\ &\stackrel{(b)}{=} \frac{d_{\pi, p}(s)}{1 - \gamma} \left[r(s, a) - \lambda - \lambda \log \pi(a|s) + \gamma \sum_{s'} p(s'|s, a) V_\lambda(\pi, p, r; s') \right], \end{aligned} \quad (90)$$

1682 where (a) uses Eqs. (38), and (b) uses Eq. (33).

1683 Then we have

$$\begin{aligned} &\nabla_\pi J_\lambda(\pi, \pi, p, r)^\top (\pi' - \pi) \\ &= \sum_s \left[\frac{\partial J_\lambda(\pi, \pi, p, r)}{\partial \pi[a_{\max}(s)|s]} (\pi'[a_{\max}(s)|s] - \pi[a_{\max}(s)|s]) \right. \\ &\quad \left. + \frac{\partial J_\lambda(\pi, \pi, p, r)}{\partial \pi[a_{\min}(s)|s]} (\pi'[a_{\min}(s)|s] - \pi[a_{\min}(s)|s]) \right] \\ &= \sum_s \left\{ \frac{d_{\pi, p}(s)}{1 - \gamma} (\pi[a_{\max}(s)|s] - \pi[a_{\min}(s)|s]) \left[r[s, a_{\min}(s)] - r[s, a_{\max}(s)] \right. \right. \\ &\quad \left. \left. + \lambda \log \frac{\pi[a_{\max}(s)|s]}{\pi[a_{\min}(s)|s]} + \gamma \sum_{s'} [p(s'|s, a_{\min}(s)) - p(s'|s, a_{\max}(s))] V_\lambda(\pi, p, r; s') \right] \right\} \\ &\stackrel{(a)}{\geq} \frac{1}{1 - \gamma} \max_s \left\{ (\pi[a_{\max}(s)|s] - \pi[a_{\min}(s)|s]) \left[\lambda \log \frac{\pi[a_{\max}(s)|s]}{\pi[a_{\min}(s)|s]} - 1 - \frac{\gamma(1 + \lambda \log |\mathcal{A}|)}{1 - \gamma} \right] \right\}, \end{aligned} \quad (91)$$

1694 where (a) uses $\pi[a_{\max}(s)|s] - \pi[a_{\min}(s)|s] \geq 0, r(a|s) \in [0, 1], p(s'|s, a) \in [0, 1]$ for any s, a, s' and Lemma 4.

1701 Consider the following two cases.

1703 (Case I) If $\pi[a_{\min}(s)|s] \geq \frac{1}{2}\pi[a_{\max}(s)|s]$, then as $\pi[a_{\max}(s)|s] \geq \frac{1}{|\mathcal{A}|}$, we have $\pi[a_{\min}(s)|s] \geq \frac{1}{2|\mathcal{A}|}$.

1705 (Case II) $\pi[a_{\min}(s)|s] < \frac{1}{2}\pi[a_{\max}(s)|s]$, then as $\pi[a_{\max}(s)|s] \geq \frac{1}{|\mathcal{A}|}$, Eq. (91) implies that

$$\begin{aligned} &\nabla_\pi J_\lambda(\pi, \pi, p, r)^\top (\pi' - \pi) \\ &\geq \max_s \left\{ \frac{\pi[a_{\max}(s)|s]}{2(1 - \gamma)} \left[\lambda \log \frac{1}{|\mathcal{A}| \pi[a_{\min}(s)|s]} - \frac{1 + \gamma \lambda \log |\mathcal{A}|}{1 - \gamma} \right] \right\} \\ &\geq -\frac{1}{2|\mathcal{A}|(1 - \gamma)} \left[\lambda \log (|\mathcal{A}| \min_s \pi[a_{\min}(s)|s]) + \frac{1 + \gamma \lambda \log |\mathcal{A}|}{1 - \gamma} \right], \end{aligned} \quad (92)$$

1712 which further implies that for any $s \in \mathcal{S}$ and $a \in \mathcal{A}$, we have

$$\begin{aligned} \pi(a|s) &\geq \pi[a_{\min}(s)|s] \\ &\geq \frac{1}{|\mathcal{A}|} \exp \left[-\frac{1/\lambda + \gamma \log |\mathcal{A}|}{1 - \gamma} - \frac{2|\mathcal{A}|}{\lambda} (1 - \gamma) \nabla_\pi J_\lambda(\pi, \pi, p, r)^\top (\pi' - \pi) \right] \\ &\geq \frac{1}{2|\mathcal{A}|^{1/(1-\gamma)}} \exp \left[-\frac{1}{\lambda(1 - \gamma)} - \frac{2|\mathcal{A}|}{\lambda} (1 - \gamma) \nabla_\pi J_\lambda(\pi, \pi, p, r)^\top (\pi' - \pi) \right], \end{aligned} \quad (93)$$

1720 Note that in the two cases above, Eq. (93) always holds.

1721 Furthermore, if Assumption 1 holds and p_π, r_π are differentiable functions of π , then we have

$$\begin{aligned} &\|\nabla_\pi J_\lambda(\pi, \pi, p_\pi, r_\pi) - \nabla_\pi J_\lambda(\pi, \pi, p_{\bar{\pi}}, r_{\bar{\pi}})|_{\bar{\pi}=\pi}\| \\ &= \|\nabla_p J_\lambda(\pi, \pi, p_\pi, r_\pi) \nabla_\pi p_\pi + \nabla_r J_\lambda(\pi, \pi, p_\pi, r_\pi) \nabla_\pi r_\pi\| \\ &\leq \|\nabla_p J_\lambda(\pi, \pi, p_\pi, r_\pi)\| \|\nabla_\pi p_\pi\| + \|\nabla_r J_\lambda(\pi, \pi, p_\pi, r_\pi)\| \|\nabla_\pi r_\pi\| \\ &\stackrel{(a)}{\leq} \frac{\epsilon_p \sqrt{|\mathcal{S}|}(1 + \lambda \log |\mathcal{A}|)}{(1 - \gamma)^2} + \frac{\epsilon_r}{1 - \gamma}, \end{aligned} \quad (94)$$

1728 where (a) uses Assumption 1 as well as Eqs. (40) and (41). Therefore,
1729

$$\begin{aligned}
 1730 & [\nabla_{\pi} J_{\lambda}(\pi, \pi, p_{\tilde{\pi}}, r_{\tilde{\pi}})|_{\tilde{\pi}=\pi}]^{\top}(\pi' - \pi) \\
 1731 & = \nabla_{\pi} J_{\lambda}(\pi, \pi, p_{\pi}, r_{\pi})^{\top}(\pi' - \pi) - [\nabla_{\pi} J_{\lambda}(\pi, \pi, p_{\pi}, r_{\pi}) - \nabla_{\pi} J_{\lambda}(\pi, \pi, p_{\tilde{\pi}}, r_{\tilde{\pi}})|_{\tilde{\pi}=\pi}]^{\top}(\pi' - \pi) \\
 1732 & \leq \nabla_{\pi} J_{\lambda}(\pi, \pi, p_{\pi}, r_{\pi})^{\top}(\pi' - \pi) + \|\nabla_{\pi} J_{\lambda}(\pi, \pi, p_{\pi}, r_{\pi}) - \nabla_{\pi} J_{\lambda}(\pi, \pi, p_{\tilde{\pi}}, r_{\tilde{\pi}})|_{\tilde{\pi}=\pi}\| \|\pi' - \pi\| \\
 1733 & \stackrel{(a)}{\leq} \nabla_{\pi} J_{\lambda}(\pi, \pi, p_{\pi}, r_{\pi})^{\top}(\pi' - \pi) + \sqrt{2|\mathcal{S}|} \left(\frac{\epsilon_p \sqrt{|\mathcal{S}|} (1 + \lambda \log |\mathcal{A}|)}{(1 - \gamma)^2} + \frac{\epsilon_r}{1 - \gamma} \right), \tag{95}
 \end{aligned}$$

1737 where (a) uses Eq. (94) and Lemma 12. Substituting $p = p_{\pi}$, $r = r_{\pi}$ and then Eq. (95) into Eq. (93),
1738 we can prove Eq. (12) as follows.

$$\begin{aligned}
 1739 \pi(a|s) & \geq \frac{1}{2|\mathcal{A}|^{1/(1-\gamma)}} \exp \left\{ -\frac{1}{\lambda(1-\gamma)} - \frac{2|\mathcal{A}|}{\lambda}(1-\gamma) \cdot \right. \\
 1740 & \quad \left. [\nabla_{\pi} J_{\lambda}(\pi, \pi, p_{\pi}, r_{\pi})^{\top}(\pi' - \pi) + \sqrt{2|\mathcal{S}|} \left(\frac{\epsilon_p \sqrt{|\mathcal{S}|} (1 + \lambda \log |\mathcal{A}|)}{(1 - \gamma)^2} + \frac{\epsilon_r}{1 - \gamma} \right)] \right\} \\
 1741 & = \pi_{\min} \exp \left[-\frac{2|\mathcal{A}|}{\lambda}(1-\gamma) \langle \nabla_{\pi} V_{\lambda, \pi}^{\pi}, \pi' - \pi \rangle \right], \tag{96}
 \end{aligned}$$

1746 where the $=$ uses $V_{\lambda, \pi}^{\pi} = J_{\lambda}(\pi, \pi, p_{\pi}, r_{\pi})$ and π_{\min} defined as follows.
1747

$$\pi_{\min} \stackrel{\text{def}}{=} \frac{1}{2|\mathcal{A}|^{1/(1-\gamma)}} \exp \left\{ -\frac{1}{\lambda(1-\gamma)} - \frac{2|\mathcal{A}| \sqrt{2|\mathcal{S}|}}{\lambda} \left[\frac{\epsilon_p \sqrt{|\mathcal{S}|} (1 + \lambda \log |\mathcal{A}|)}{1 - \gamma} + \epsilon_r \right] \right\}, \tag{96}$$

I PROOF OF THEOREM 3

1753 For any policies π, π' , we have

$$\begin{aligned}
 1754 & |V_{\lambda, \pi'}^{\pi'} - V_{\lambda, \pi}^{\pi}| \\
 1755 & \leq |J_{\lambda}(\pi', p_{\pi'}, r_{\pi'}) - J_{\lambda}(\pi, p_{\pi}, r_{\pi})| \\
 1756 & \leq |J_{\lambda}(\pi', p_{\pi'}, r_{\pi'}) - J_{\lambda}(\pi', p_{\pi'}, r_{\pi})| + |J_{\lambda}(\pi', p_{\pi'}, r_{\pi}) - J_{\lambda}(\pi', p_{\pi}, r_{\pi})| \\
 1757 & \quad + |J_{\lambda}(\pi', p_{\pi}, r_{\pi}) - J_{\lambda}(\pi, p_{\pi}, r_{\pi})| \\
 1758 & \stackrel{(a)}{\leq} \frac{\|r_{\pi'} - r_{\pi}\|}{1 - \gamma} + L_p \|p_{\pi'} - p_{\pi}\| + L_{\pi} \max_s \|\log \pi'(\cdot|s) - \log \pi(\cdot|s)\| \\
 1759 & \stackrel{(b)}{\leq} \left(L_p \epsilon_p + \frac{\epsilon_r}{1 - \gamma} \right) \|\pi' - \pi\| + L_{\pi} \sqrt{\sum_s \|\log \pi'(\cdot|s) - \log \pi(\cdot|s)\|^2} \\
 1760 & \stackrel{(c)}{\leq} \left(L_p \epsilon_p + \frac{\epsilon_r}{1 - \gamma} \right) \|\log \pi' - \log \pi\| + L_{\pi} \|\log \pi' - \log \pi\| \\
 1761 & \stackrel{(d)}{=} L_{\lambda} \|\log \pi' - \log \pi\|, \tag{97}
 \end{aligned}$$

1769 where (a) uses Eqs. (39), (40) and (41), (b) uses Assumption 7, (c) uses $|\log y - \log x| \leq |y - x|$ for
1770 any $x, y \in \mathbb{R}$, and (d) defines the following constant.

$$\begin{aligned}
 1771 L_{\lambda} & = L_p \epsilon_p + \frac{\epsilon_r}{1 - \gamma} + L_{\pi} = \frac{\sqrt{|\mathcal{A}|} (2 - \gamma + \gamma \lambda \log |\mathcal{A}|) + \epsilon_p \sqrt{|\mathcal{S}|} (1 + \lambda \log |\mathcal{A}|) + \epsilon_r (1 - \gamma)}{(1 - \gamma)^2}. \\
 1772 L_{\lambda} & \stackrel{\text{def}}{=} L_p \epsilon_p + \frac{\epsilon_r}{1 - \gamma} + L_{\pi} = \frac{\sqrt{|\mathcal{A}|} (2 - \gamma + \gamma \lambda \log |\mathcal{A}|) + \epsilon_p \sqrt{|\mathcal{S}|} (1 + \lambda \log |\mathcal{A}|)}{(1 - \gamma)^2} + \frac{\epsilon_r}{1 - \gamma} \tag{98}
 \end{aligned}$$

1778 Note that for any $u, v \geq \Delta > 0$,

$$\begin{aligned}
 1779 |\log u - \log v| & = \log \max(u, v) - \log \min(u, v) \\
 1780 & = \int_{\min(u, v)}^{\max(u, v)} \frac{1}{x} dx \leq \frac{1}{\Delta} [\max(u, v) - \min(u, v)] = \frac{|u - v|}{\Delta}.
 \end{aligned}$$

1782 Therefore, for any $\pi, \pi' \in \Pi_\Delta \stackrel{\text{def}}{=} \{\pi \in \Pi : \pi(a|s) \geq \Delta\}$, we have
 1783

$$\begin{aligned} 1784 \|\log \pi' - \log \pi\|^2 &= \sum_{s,a} |\log \pi'(a|s) - \log \pi(a|s)|^2 \\ 1785 \\ 1786 &\leq \Delta^{-2} \sum_{s,a} |\pi'(a|s) - \pi(a|s)|^2 = \Delta^{-2} \|\pi' - \pi\|^2. \\ 1787 \\ 1788 \end{aligned}$$

1789 Substituting the above inequality into Eq. (97) proves the first inequality of Eq. (97).
 1790

1791 Next, we will prove the second inequality of Eq. (97) about the Lipschitz continuity of the following
 1792 performative policy gradient.

$$\begin{aligned} 1793 \nabla_\pi V_{\lambda, \pi}^\pi &= \nabla_\pi J_\lambda(\pi, \pi, p_\pi, r_\pi) \\ 1794 &= \nabla_\pi J_\lambda(\pi, \pi, p_{\tilde{\pi}}, r_{\tilde{\pi}})|_{\tilde{\pi}=\pi} + (\nabla_\pi p_\pi) \nabla_{p_\pi} J_\lambda(\pi, \pi, p_\pi, r_\pi) + (\nabla_\pi r_\pi) \nabla_{r_\pi} J_\lambda(\pi, \pi, p_\pi, r_\pi). \\ 1795 \end{aligned}$$

1796 For any $\pi, \pi' \in \Pi_\Delta$, we have
 1797

$$\begin{aligned} 1798 \|\nabla_{\pi'} V_{\lambda, \pi'}^{\pi'} - \nabla_\pi V_{\lambda, \pi}^\pi\| &\leq \|\nabla_{\pi'} J_\lambda(\pi', \pi', p_{\tilde{\pi}}, r_{\tilde{\pi}})|_{\tilde{\pi}=\pi'} - \nabla_\pi J_\lambda(\pi, \pi, p_{\tilde{\pi}}, r_{\tilde{\pi}})|_{\tilde{\pi}=\pi}\| \\ 1799 &\quad + \|\nabla_{\pi'} p_{\pi'}\| \cdot \|\nabla_{p_\pi} J_\lambda(\pi', \pi', p_{\pi'}, r_{\pi'}) - \nabla_{p_\pi} J_\lambda(\pi, \pi, p_\pi, r_\pi)\| \\ 1800 &\quad + \|\nabla_{p_\pi} J_\lambda(\pi, \pi, p_\pi, r_\pi)\| \cdot \|\nabla_{\pi'} p_{\pi'} - \nabla_\pi p_\pi\| \\ 1801 &\quad + \|\nabla_{\pi'} r_{\pi'}\| \cdot \|\nabla_{r_\pi} J_\lambda(\pi', \pi', p_{\pi'}, r_{\pi'}) - \nabla_{r_\pi} J_\lambda(\pi, \pi, p_\pi, r_\pi)\| \\ 1802 &\quad + \|\nabla_{r_\pi} J_\lambda(\pi, \pi, p_\pi, r_\pi)\| \cdot \|\nabla_{\pi'} r_{\pi'} - \nabla_\pi r_\pi\| \\ 1803 &\stackrel{(a)}{\leq} \left(\frac{|\mathcal{A}|(1 + 2\lambda \log |\mathcal{A}|)}{(1 - \gamma)^2} + \gamma L_\pi \right) \max_s \|\log \pi'(\cdot|s) - \log \pi(\cdot|s)\| \\ 1804 &\quad + \left[\frac{2(1 + \lambda \log |\mathcal{A}|)}{(1 - \gamma)^2} + \gamma L_p \right] \sqrt{|\mathcal{S}||\mathcal{A}|} \|p_{\pi'} - p_\pi\| + \frac{\sqrt{|\mathcal{A}|} \|r_{\pi'} - r_\pi\|_\infty}{1 - \gamma} \\ 1805 &\quad + \epsilon_p \left[\ell_\pi \max_s \|\log \pi'(\cdot|s) - \log \pi(\cdot|s)\| + \ell_p \|p_{\pi'} - p_\pi\| + \frac{2 - \gamma}{1 - \gamma} \sqrt{|\mathcal{S}|} \|r_{\pi'} - r_\pi\|_\infty \right] \\ 1806 &\quad + L_p S_p \|\pi' - \pi\| + \frac{\gamma \epsilon_r}{(1 - \gamma)^2} \left(\max_s \|\pi'(\cdot|s) - \pi(\cdot|s)\|_1 + \max_{s,a} \|p_{\pi'}(\cdot|s, a) - p_\pi(\cdot|s, a)\|_1 \right) \\ 1807 &\quad + \frac{S_r}{1 - \gamma} \|\pi' - \pi\| \\ 1808 &\stackrel{(b)}{\leq} \left(\frac{|\mathcal{A}|(1 + 2\lambda \log |\mathcal{A}|)}{\Delta(1 - \gamma)^2} + \frac{\gamma L_\pi}{\Delta} \right) \|\pi' - \pi\| + \epsilon_p \sqrt{|\mathcal{S}||\mathcal{A}|} \left[\frac{2(1 + \lambda \log |\mathcal{A}|)}{(1 - \gamma)^2} + \gamma L_p \right] \|\pi' - \pi\| \\ 1809 &\quad + \frac{\epsilon_r \sqrt{|\mathcal{A}|} \|\pi' - \pi\|}{1 - \gamma} + \epsilon_p \left[\frac{\ell_\pi}{\Delta} \|\pi' - \pi\| + \ell_p \epsilon_p \|\pi' - \pi\| + \frac{2 - \gamma}{1 - \gamma} \epsilon_r \sqrt{|\mathcal{S}|} \|\pi' - \pi\| \right] \\ 1810 &\quad + L_p S_p \|\pi' - \pi\| + \frac{\gamma \epsilon_r}{(1 - \gamma)^2} (\sqrt{|\mathcal{S}|} \|\pi' - \pi\| + \epsilon_p \sqrt{|\mathcal{S}|} \|\pi' - \pi\|) + \frac{S_r}{1 - \gamma} \|\pi' - \pi\| \\ 1811 &\stackrel{(c)}{\leq} \left(\frac{|\mathcal{A}|(1 + 2\lambda \log |\mathcal{A}|)}{\Delta(1 - \gamma)^2} + \frac{\gamma L_\pi}{\Delta} \right) \|\pi' - \pi\| + \frac{\epsilon_p}{\Delta} \sqrt{\frac{|\mathcal{S}|}{|\mathcal{A}|}} \left[\frac{2(1 + \lambda \log |\mathcal{A}|)}{(1 - \gamma)^2} + \gamma L_p \right] \|\pi' - \pi\| \\ 1812 &\quad + \frac{\epsilon_r \|\pi' - \pi\|}{\Delta \sqrt{|\mathcal{A}|(1 - \gamma)}} + \frac{\epsilon_p}{\Delta} \left[\ell_\pi + \frac{\ell_p \epsilon_p}{|\mathcal{A}|} + \frac{2 - \gamma}{|\mathcal{A}|(1 - \gamma)} \epsilon_r \sqrt{|\mathcal{S}|} \right] \|\pi' - \pi\| \\ 1813 &\quad + \frac{\gamma \epsilon_r \sqrt{|\mathcal{S}|(1 + \epsilon_p)}}{\Delta |\mathcal{A}|(1 - \gamma)^2} \|\pi' - \pi\| + \frac{L_p S_p + S_r/(1 - \gamma)}{\Delta |\mathcal{A}|} \|\pi' - \pi\| \\ 1814 &\stackrel{(d)}{\leq} \left(\frac{|\mathcal{A}|(1 + 2\lambda \log |\mathcal{A}|)}{\Delta(1 - \gamma)^2} + \frac{\gamma \sqrt{|\mathcal{A}|(2 - \gamma + \gamma \lambda \log |\mathcal{A}|)}}{\Delta(1 - \gamma)^2} \right) \|\pi' - \pi\| \\ 1815 &\quad + \frac{\epsilon_p}{\Delta} \sqrt{\frac{|\mathcal{S}|}{|\mathcal{A}|}} \left[\frac{2(1 + \lambda \log |\mathcal{A}|)}{(1 - \gamma)^2} + \frac{\gamma \sqrt{|\mathcal{S}|(1 + \lambda \log |\mathcal{A}|)}}{(1 - \gamma)^2} \right] \|\pi' - \pi\| \\ 1816 \\ 1817 \end{aligned}$$

$$\begin{aligned}
& + \frac{\epsilon_p}{\Delta} \left[\frac{\sqrt{|\mathcal{S}||\mathcal{A}|}(2 + 3\gamma\lambda \log |\mathcal{A}|)}{(1-\gamma)^3} + \frac{2\epsilon_p\gamma|\mathcal{S}|(1 + \lambda \log |\mathcal{A}|)}{|\mathcal{A}|(1-\gamma)^3} + \frac{2-\gamma}{|\mathcal{A}|(1-\gamma)}\epsilon_r\sqrt{|\mathcal{S}|} \right] \|\pi' - \pi\| \\
& + \frac{\epsilon_r\sqrt{|\mathcal{A}|}(1-\gamma) + \gamma\epsilon_r\sqrt{|\mathcal{S}|}(1+\epsilon_p)}{\Delta|\mathcal{A}|(1-\gamma)^2} \|\pi' - \pi\| \\
& + \frac{S_p\sqrt{|\mathcal{S}|}(1 + \lambda \log |\mathcal{A}|) + S_r(1-\gamma)}{\Delta|\mathcal{A}|(1-\gamma)^2} \|\pi' - \pi\| \\
& \leq \frac{3|\mathcal{A}|(1 + \lambda \log |\mathcal{A}|)}{\Delta(1-\gamma)^2} \|\pi' - \pi\| + \frac{\epsilon_p\sqrt{|\mathcal{S}||\mathcal{A}|}(5 + 6\lambda \log |\mathcal{A}|)}{\Delta(1-\gamma)^3} \|\pi' - \pi\| \\
& + \frac{\epsilon_r[\sqrt{|\mathcal{A}|}(1-\gamma) + \sqrt{|\mathcal{S}|}(\gamma + 2\epsilon_p)] + S_p\sqrt{|\mathcal{S}|}(1 + \lambda \log |\mathcal{A}|) + S_r(1-\gamma)}{\Delta|\mathcal{A}|(1-\gamma)^2} \|\pi' - \pi\|, \quad (99)
\end{aligned}$$

where (a) uses Eqs. (40), (41) and (44)-(46) as well as Assumptions 1-2, and (b) uses the following bounds for any $\pi, \pi' \in \Delta$, (c) uses $\Delta \leq |\mathcal{A}|^{-1}$ (since for any $\pi \in \Pi_\Delta$, $1 = \sum_a \pi(a|s) \geq \Delta|\mathcal{A}|$), (d) uses $L_\pi := \frac{\sqrt{|\mathcal{A}|}(2-\gamma+\gamma\lambda \log |\mathcal{A}|)}{(1-\gamma)^2}$, $L_p := \frac{\sqrt{|\mathcal{S}|}(1+\lambda \log |\mathcal{A}|)}{(1-\gamma)^2}$, $\ell_\pi := \frac{\sqrt{|\mathcal{S}||\mathcal{A}|}(2+3\gamma\lambda \log |\mathcal{A}|)}{(1-\gamma)^3}$ and $\ell_p := \frac{2\gamma|\mathcal{S}|(1+\lambda \log |\mathcal{A}|)}{(1-\gamma)^3}$ defined in Lemma 6, (e) uses ℓ_λ defined by Eq. (100).

$$\begin{aligned}
\max_s \|\log \pi'(\cdot|s) - \log \pi(\cdot|s)\| & \leq \Delta^{-1} \max_s \|\pi'(\cdot|s) - \pi(\cdot|s)\| \leq \Delta^{-1} \|\pi' - \pi\|, \\
\|p_{\pi'} - p_\pi\| & \stackrel{(a)}{\leq} \epsilon_p \|\pi' - \pi\|, \\
\|r_{\pi'} - r_\pi\|_\infty & \leq \|r_{\pi'} - r_\pi\| \stackrel{(a)}{\leq} \epsilon_r \|\pi' - \pi\|, \\
\max_s \|\pi'(\cdot|s) - \pi(\cdot|s)\|_1 & \leq \sqrt{|\mathcal{S}|} \max_s \|\pi'(\cdot|s) - \pi(\cdot|s)\| \leq \sqrt{|\mathcal{S}|} \|\pi' - \pi\|, \\
\max_{s,a} \|p_{\pi'}(\cdot|s, a) - p_\pi(\cdot|s, a)\|_1 & \leq \sqrt{|\mathcal{S}|} \max_{s,a} \|p_{\pi'}(\cdot|s, a) - p_\pi(\cdot|s, a)\| \\
& \leq \sqrt{|\mathcal{S}|} \|p_{\pi'} - p_\pi\| \stackrel{(a)}{\leq} \epsilon_p \sqrt{|\mathcal{S}|} \|\pi' - \pi\|.
\end{aligned}$$

Here, (a) uses Assumption 1. Finally, define the Lipschitz constant ℓ_λ as follows and thus Eq. (99) implies the second inequality of Eq. (97) that $\|\nabla_{\pi'} V_{\lambda, \pi'}^{\pi'} - \nabla_\pi V_{\lambda, \pi}^\pi\| \leq \frac{\ell_\lambda}{\Delta} \|\pi' - \pi\|$.

$$\begin{aligned}
\ell_\lambda & \stackrel{\text{def}}{=} \frac{3|\mathcal{A}|(1 + \lambda \log |\mathcal{A}|)}{(1-\gamma)^2} + \frac{\epsilon_p\sqrt{|\mathcal{S}||\mathcal{A}|}(5 + 6\lambda \log |\mathcal{A}|)}{(1-\gamma)^3} \\
& + \frac{\epsilon_r[\sqrt{|\mathcal{A}|}(1-\gamma) + \sqrt{|\mathcal{S}|}(\gamma + 2\epsilon_p)]}{|\mathcal{A}|(1-\gamma)^2} + \frac{S_p\sqrt{|\mathcal{S}|}(1 + \lambda \log |\mathcal{A}|) + S_r(1-\gamma)}{|\mathcal{A}|(1-\gamma)^2}. \quad (100)
\end{aligned}$$

J PROOF OF PROPOSITION 1

We prove the validity of the stochastic gradient (16) first. For any $\pi \in \Pi_\Delta$, $s \in \mathcal{S}$ and $a \in \mathcal{A}$, we have $\pi(a|s) \geq \Delta$, so $\pi(a|s) \leq 1 - \Delta$ (since $\sum_{a'} \pi(a'|s) = 1$). For any $u_i \in U_1$, we have $|u_i(a|s)| \leq 1$. Therefore,

$$(\pi \pm \delta u_i)(a|s) \geq \pi(a|s) - \delta|u_i(a|s)| \geq \Delta - \delta > 0, \quad (101)$$

which means $\pi \pm \delta u_i \in \Pi$. Hence, $V_{\lambda, \pi'}^{\pi'}$ is well defined for $\pi' \in \{\pi + \delta u_i, \pi - \delta u_i\}$.

Then we will prove the estimation error bound (18). Based on Lemma 10, there exists an orthogonal transformation $\mathcal{T} : \mathbb{R}^{|\mathcal{A}|} \rightarrow \mathcal{Z}_{|\mathcal{A}|-1} = \{z = [z_1, \dots, z_{|\mathcal{A}|}] \in \mathbb{R}^{|\mathcal{A}|} : \sum_i z_i = 0\}$.

Note that any $x \in \mathbb{R}^{|\mathcal{S}|(|\mathcal{A}|-1)}$ can be written as $x = [x_s]_{s \in \mathcal{S}}$, a concatenation of $|\mathcal{S}|$ vectors $x_s \in \mathbb{R}^{|\mathcal{A}|}$. Therefore, we can define the transformation $T : \mathbb{R}^{|\mathcal{S}|(|\mathcal{A}|-1)} \rightarrow \mathcal{L}_0 \stackrel{\text{def}}{=} \{u \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}|} : u(\cdot|s) \in \mathcal{Z}_{|\mathcal{A}|-1}, \forall s \in \mathcal{S}\}$ as follows

$$[T(x)](\cdot|s) = \mathcal{T}(x_s), \forall s \in \mathcal{S} \quad (102)$$

1890 where $x_s \in \mathbb{R}^{|\mathcal{A}|}$ are extracted from $|\mathcal{A}|$ entries of $x = [x_s]_{s \in \mathcal{S}}$. For any $x = [x_s]_{s \in \mathcal{S}}, y = [y_s]_{s \in \mathcal{S}} \in \mathbb{R}^{|\mathcal{S}|(|\mathcal{A}|-1)}$ and $\alpha, \beta \in \mathbb{R}$, we can prove that T is an orthogonal transformation as follows.

$$1893 [T(\alpha x + \beta y)](\cdot|s) = \mathcal{T}(\alpha x_s + \beta y_s) = \alpha \mathcal{T}(x_s) + \beta \mathcal{T}(y_s) = \alpha [T(x)](\cdot|s) + \beta [T(y)](\cdot|s) \\ 1894 \Rightarrow T(\alpha x + \beta y) = \alpha T(x) + \beta T(y).$$

$$1896 \langle T(x), T(y) \rangle = \sum_s \langle [T(x)](\cdot|s), [T(y)](\cdot|s) \rangle = \sum_s \langle \mathcal{T}(x_s), \mathcal{T}(y_s) \rangle = \sum_s \langle x_s, y_s \rangle = \langle x, y \rangle.$$

1899 Define the following set.

$$1900 T^{-1}(\Pi_\Delta - |\mathcal{A}|^{-1}) \stackrel{\text{def}}{=} \{\pi \in \Pi_\Delta : T^{-1}(\pi - |\mathcal{A}|^{-1})\}, \quad (103)$$

1902 where $\pi - |\mathcal{A}|^{-1} \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}|}$ has entries $(\pi - |\mathcal{A}|^{-1})(a|s) = \pi(a|s) - |\mathcal{A}|^{-1}$, so $\pi - |\mathcal{A}|^{-1} \in \mathcal{L}_0$.
1903 Furthermore, since Π_Δ is a convex and compact set and T^{-1} is an orthogonal transformation,
1904 $T^{-1}(\Pi_\Delta - |\mathcal{A}|^{-1})$ is a convex and compact subset of \mathcal{L}_0 .

1905 Then for any $x \in T^{-1}(\Pi_\Delta - |\mathcal{A}|^{-1})$, we have $T(x) + |\mathcal{A}|^{-1} \in \Pi_\Delta$, so we can define the function
1906 $f_\lambda(x) \stackrel{\text{def}}{=} V_{\lambda, T(x) + |\mathcal{A}|^{-1}}^{T(x) + |\mathcal{A}|^{-1}}$.

1908 Note that as $V_{\lambda, \pi}^\pi$ is a differentiable function of π , so for any $\pi' \in \Pi$ and fixed $\pi \in \Pi$ we have

$$1910 \frac{V_{\lambda, \pi'}^{\pi'} - V_{\lambda, \pi}^\pi - \langle \nabla_\pi V_{\lambda, \pi}^\pi, \pi' - \pi \rangle}{\|\pi' - \pi\|} = \frac{V_{\lambda, \pi'}^{\pi'} - V_{\lambda, \pi}^\pi - \langle \text{proj}_{\mathcal{L}_0}(\nabla_\pi V_{\lambda, \pi}^\pi), \pi' - \pi \rangle}{\|\pi' - \pi\|} \\ 1911 \rightarrow 0 \quad (\text{as } \pi' \in \Pi \text{ and } \pi' \rightarrow \pi), \quad (104)$$

1914 where the above = uses $\pi' - \pi \in \mathcal{L}_0$. Then, we can prove that f_λ is differentiable with gradient
1915 $\nabla f_\lambda(x) = T^{-1}(\text{proj}_{\mathcal{L}_0} \nabla_\pi V_{\lambda, \pi}^\pi |_{\pi=T(x)+|\mathcal{A}|^{-1}})$, since for any $x' \in T^{-1}(\Pi_\Delta - |\mathcal{A}|^{-1})$ and fixed
1916 $x \in T^{-1}(\Pi_\Delta - |\mathcal{A}|^{-1})$ we have

$$1918 \frac{f_\lambda(x') - f_\lambda(x) - \langle T^{-1}[\text{proj}_{\mathcal{L}_0}(\nabla_\pi V_{\lambda, \pi}^\pi |_{\pi=T(x)+|\mathcal{A}|^{-1}})], x' - x \rangle}{\|x' - x\|} \\ 1919 \stackrel{(a)}{=} \frac{1}{\|[T(x') + |\mathcal{A}|^{-1}] - [T(x) + |\mathcal{A}|^{-1}]\|} \left[V_{\lambda, T(x') + |\mathcal{A}|^{-1}}^{T(x') + |\mathcal{A}|^{-1}} - V_{\lambda, T(x) + |\mathcal{A}|^{-1}}^{T(x) + |\mathcal{A}|^{-1}} \right. \\ 1920 \left. - \langle \text{proj}_{\mathcal{L}_0}(\nabla_\pi V_{\lambda, \pi}^\pi |_{\pi=T(x)+|\mathcal{A}|^{-1}}), [T(x') + |\mathcal{A}|^{-1}] - [T(x) + |\mathcal{A}|^{-1}] \rangle \right] \\ 1921 \stackrel{(b)}{\rightarrow} 0 \text{ as } x' \in T^{-1}(\Pi_\Delta - |\mathcal{A}|^{-1}) \text{ and } x' \rightarrow x, \quad (105)$$

1926 where (a) uses the property of the orthogonal transformation T , and (b) uses Eq. (104) and the fact
1927 that $x' \rightarrow x$ means $\|[T(x') + |\mathcal{A}|^{-1}] - [T(x) + |\mathcal{A}|^{-1}]\| = \|x' - x\| \rightarrow 0$.

1929 Furthermore, we will show that $f_\lambda(x)$ is a Lipschitz continuous and Lipschitz smooth function of
1930 $x \in \Pi_\Delta$. For any $x, x' \in T^{-1}(\Pi_\Delta - |\mathcal{A}|^{-1})$, we have

$$1931 |f_\lambda(x') - f_\lambda(x)| = |V_{\lambda, T(x') + |\mathcal{A}|^{-1}}^{T(x') + |\mathcal{A}|^{-1}} - V_{\lambda, T(x) + |\mathcal{A}|^{-1}}^{T(x) + |\mathcal{A}|^{-1}}| \stackrel{(a)}{\leq} \frac{L_\lambda}{\Delta} \|T(x') - T(x)\| \stackrel{(b)}{=} \frac{L_\lambda}{\Delta} \|x' - x\|, \\ 1932 \\ 1933 \|\nabla f_\lambda(x') - \nabla f_\lambda(x)\| = \|T^{-1}[\text{proj}_{\mathcal{L}_0}(\nabla_\pi V_{\lambda, \pi}^\pi |_{\pi=T(x')})] - T^{-1}[\text{proj}_{\mathcal{L}_0}(\nabla_\pi V_{\lambda, \pi}^\pi |_{\pi=T(x)})]\| \\ 1934 \stackrel{(b)}{=} \|\text{proj}_{\mathcal{L}_0}(\nabla_\pi V_{\lambda, \pi}^\pi |_{\pi=T(x') + |\mathcal{A}|^{-1}}) - \text{proj}_{\mathcal{L}_0}(\nabla_\pi V_{\lambda, \pi}^\pi |_{\pi=T(x) + |\mathcal{A}|^{-1}})\| \\ 1935 \leq \|(\nabla_\pi V_{\lambda, \pi}^\pi |_{\pi=T(x') + |\mathcal{A}|^{-1}}) - (\nabla_\pi V_{\lambda, \pi}^\pi |_{\pi=T(x) + |\mathcal{A}|^{-1}})\| \\ 1936 \stackrel{(a)}{\leq} \frac{\ell_\lambda}{\Delta} \|T(x') - T(x)\| \stackrel{(b)}{=} \frac{\ell_\lambda}{\Delta} \|x' - x\|,$$

1942 In both the inequalities above, (a) applies Theorem 3 to $T(x) + |\mathcal{A}|^{-1}, T(x') + |\mathcal{A}|^{-1} \in \Pi_\Delta$ and (b)
1943 uses the property of the orthogonal transformation T . The two inequalities above implies that f_λ is
an $\frac{L_\lambda}{\Delta}$ -Lipschitz continuous and $\frac{\ell_\lambda}{\Delta}$ -Lipschitz smooth function on $T^{-1}(\Pi_\Delta - |\mathcal{A}|^{-1})$.

1944 Denote

$$1946 \quad g_{\lambda,\delta}(\pi) = \frac{|\mathcal{S}|(|\mathcal{A}|-1)}{2N\delta} \sum_{i=1}^N (V_{\lambda,\pi+\delta u_i}^{\pi+\delta u_i} - V_{\lambda,\pi-\delta u_i}^{\pi-\delta u_i}) u_i, \quad (106)$$

1949 which replaces $\hat{V}_{\lambda,\pi'}^{\pi'}$ with $V_{\lambda,\pi'}^{\pi'}$ in Eq. (16). The estimation error of the performatice policy gradient
1950 estimator above can be rewritten as follows for any $\pi \in \Pi_{\Delta}$.

$$\begin{aligned} 1951 \quad & g_{\lambda,\delta}(\pi) - \text{proj}_{\mathcal{L}_0}(\nabla_{\pi} V_{\lambda,\pi}^{\pi}) \\ 1952 \quad & \stackrel{(a)}{=} \left(\frac{|\mathcal{S}|(|\mathcal{A}|-1)}{2N\delta} \sum_{i=1}^N (V_{\lambda,\pi+\delta u_i}^{\pi+\delta u_i} - V_{\lambda,\pi-\delta u_i}^{\pi-\delta u_i}) u_i \right) - \text{proj}_{\mathcal{L}_0}(\nabla_{\pi} V_{\lambda,\pi}^{\pi}) \\ 1953 \quad & \stackrel{(b)}{=} \left(\frac{|\mathcal{S}|(|\mathcal{A}|-1)}{2N\delta} \sum_{i=1}^N (f_{\lambda}[T^{-1}(\pi - |\mathcal{A}|^{-1}) + \delta T^{-1}(u_i)] - f_{\lambda}[T^{-1}(\pi - |\mathcal{A}|^{-1}) - \delta T^{-1}(u_i)]) \cdot \right. \\ 1954 \quad & \quad \left. T^{-1}(u_i) \right) - T^{-1}[\text{proj}_{\mathcal{L}_0}(\nabla_{\pi} V_{\lambda,\pi}^{\pi})] \\ 1955 \quad & \stackrel{(c)}{=} \left(\frac{|\mathcal{S}|(|\mathcal{A}|-1)}{2N\delta} \sum_{i=1}^N (f_{\lambda}[T^{-1}(\pi - |\mathcal{A}|^{-1}) + \delta T^{-1}(u_i)] - f_{\lambda}[T^{-1}(\pi - |\mathcal{A}|^{-1}) - \delta T^{-1}(u_i)]) \cdot \right. \\ 1956 \quad & \quad \left. T^{-1}(u_i) \right) - \nabla f_{\lambda}[T^{-1}(\pi - |\mathcal{A}|^{-1})], \end{aligned} \quad (107)$$

1966 where (a) uses Eq. (16), (b) uses $f_{\lambda}(x) \stackrel{\text{def}}{=} V_{\lambda,T(x)+|\mathcal{A}|-1}^{T(x)+|\mathcal{A}|-1}$ and the property of the orthogonal
1967 transformation T^{-1} , (c) uses $\nabla f_{\lambda}(x) = T^{-1}(\text{proj}_{\mathcal{L}_0} \nabla_{\pi} V_{\lambda,\pi}^{\pi} \big|_{\pi=T(x)+|\mathcal{A}|-1})$. Note that in the above
1968 Eq. (107), $\pi \in \Pi_{\Delta}$ and u_i is uniformly distributed on the sphere $U_1 \cap \mathcal{L}_0$ with $U_1 \stackrel{\text{def}}{=} \{u \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}|} : \|u\|=1\}$.
1969

1971 Hence, $\pi \pm \delta u_i \in \Pi_{\Delta-\delta}$ which implies $T^{-1}(\pi - |\mathcal{A}|^{-1}) \pm \delta T^{-1}(u_i) = T^{-1}(\pi \pm \delta u_i - |\mathcal{A}|^{-1}) \in$
1972 $T^{-1}(\Pi_{\Delta-\delta} - |\mathcal{A}|^{-1})$. Also, $T^{-1}(u_i)$ is uniformly distributed on the sphere $T^{-1}(U_{1,0}) =$
1973 $\mathbb{S}_{|\mathcal{S}||\mathcal{A}|-1} = \{u \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}|-1} : \|u\|=1\}$. Therefore, we can apply Lemma 9 to the above
1974 Eq. (107) where the function f_{λ} is an $\frac{L_{\lambda}}{\Delta-\delta}$ -Lipschitz continuous and $\frac{\delta\ell_{\lambda}}{\Delta-\delta}$ -Lipschitz smooth function
1975 on $T^{-1}(\Pi_{\Delta-\delta} - |\mathcal{A}|^{-1})$, and obtain the following bound which holds with probability at least $1 - \eta$.
1976

$$\begin{aligned} 1977 \quad & \|g_{\lambda,\delta}(\pi) - \text{proj}_{\mathcal{L}_0}(\nabla_{\pi} V_{\lambda,\pi}^{\pi})\| \\ 1978 \quad & \leq \frac{4L_{\lambda}|\mathcal{S}|(|\mathcal{A}|-1)}{3N(\Delta-\delta)} \log\left(\frac{|\mathcal{S}|(|\mathcal{A}|-1)+1}{\eta}\right) + \frac{L_{\lambda}|\mathcal{S}|(|\mathcal{A}|-1)}{\Delta-\delta} \sqrt{\frac{2}{N} \log\left(\frac{|\mathcal{S}|(|\mathcal{A}|-1)+1}{\eta}\right)} + \frac{\delta\ell_{\lambda}}{\Delta-\delta} \\ 1979 \quad & \leq \frac{4L_{\lambda}|\mathcal{S}||\mathcal{A}|}{3N(\Delta-\delta)} \log\left(\frac{|\mathcal{S}||\mathcal{A}|}{\eta}\right) + \frac{L_{\lambda}|\mathcal{S}||\mathcal{A}|}{\Delta-\delta} \sqrt{\frac{2}{N} \log\left(\frac{|\mathcal{S}||\mathcal{A}|}{\eta}\right)} + \frac{\delta\ell_{\lambda}}{\Delta-\delta}. \end{aligned} \quad (108)$$

1984 Note that $|\hat{V}_{\lambda,\pi}^{\pi} - V_{\lambda,\pi}^{\pi}| \leq \epsilon_V$ holds for any a certain policy π with probability at least $1 - \eta$. Therefore,
1985 with probability at least $1 - 2N\eta$, we have
1986

$$1987 \quad |\hat{V}_{\lambda,\pi'}^{\pi'} - V_{\lambda,\pi'}^{\pi'}| \leq \epsilon_V, \forall \pi' \in \{\pi \pm \delta u_i\}_{i=1}^N \quad (109)$$

1989 Therefore, with probability at least $1 - (2N+1)\eta$, Eqs. (108) and (109) hold and thus we have
1990

$$\begin{aligned} 1991 \quad & \|\hat{g}_{\lambda,\delta}(\pi) - \text{proj}_{\mathcal{L}_0}(\nabla_{\pi} V_{\lambda,\pi}^{\pi})\| \\ 1992 \quad & \leq \|\hat{g}_{\lambda,\delta}(\pi) - g_{\lambda,\delta}(\pi)\| + \|g_{\lambda,\delta}(\pi) - \text{proj}_{\mathcal{L}_0}(\nabla_{\pi} V_{\lambda,\pi}^{\pi})\| \\ 1993 \quad & \stackrel{(a)}{\leq} \left\| \frac{|\mathcal{S}|(|\mathcal{A}|-1)}{2N\delta} \sum_{i=1}^N (\hat{V}_{\lambda,\pi+\delta u_i}^{\pi+\delta u_i} - V_{\lambda,\pi+\delta u_i}^{\pi+\delta u_i} - \hat{V}_{\lambda,\pi-\delta u_i}^{\pi-\delta u_i} + V_{\lambda,\pi-\delta u_i}^{\pi-\delta u_i}) u_i \right\| \\ 1994 \quad & \quad + \frac{4L_{\lambda}|\mathcal{S}||\mathcal{A}|}{3N(\Delta-\delta)} \log\left(\frac{|\mathcal{S}||\mathcal{A}|}{\eta}\right) + \frac{L_{\lambda}|\mathcal{S}||\mathcal{A}|}{\Delta-\delta} \sqrt{\frac{2}{N} \log\left(\frac{|\mathcal{S}||\mathcal{A}|}{\eta}\right)} + \frac{\delta\ell_{\lambda}}{\Delta-\delta} \end{aligned}$$

$$\begin{aligned}
& \stackrel{(b)}{\leq} \frac{|\mathcal{S}||\mathcal{A}|}{N\delta} \sum_{i=1}^N \|(\hat{V}_{\lambda,\pi+\delta u_i}^{\pi+\delta u_i} - V_{\lambda,\pi+\delta u_i}^{\pi+\delta u_i} - \hat{V}_{\lambda,\pi-\delta u_i}^{\pi-\delta u_i} + V_{\lambda,\pi-\delta u_i}^{\pi-\delta u_i})u_i\| \\
& + \frac{4L_\lambda|\mathcal{S}||\mathcal{A}|}{3N(\Delta-\delta)} \log\left(\frac{|\mathcal{S}||\mathcal{A}|}{\eta}\right) + \frac{L_\lambda|\mathcal{S}||\mathcal{A}|}{\Delta-\delta} \sqrt{\frac{2}{N} \log\left(\frac{|\mathcal{S}||\mathcal{A}|}{\eta}\right)} + \frac{\delta\ell_\lambda}{\Delta-\delta} \\
& \leq \frac{|\mathcal{S}||\mathcal{A}|}{N\delta} \sum_{i=1}^N (|\hat{V}_{\lambda,\pi+\delta u_i}^{\pi+\delta u_i} - V_{\lambda,\pi+\delta u_i}^{\pi+\delta u_i}| + |\hat{V}_{\lambda,\pi-\delta u_i}^{\pi-\delta u_i} + V_{\lambda,\pi-\delta u_i}^{\pi-\delta u_i}|) \\
& + \frac{4L_\lambda|\mathcal{S}||\mathcal{A}|}{3N(\Delta-\delta)} \log\left(\frac{|\mathcal{S}||\mathcal{A}|}{\eta}\right) + \frac{L_\lambda|\mathcal{S}||\mathcal{A}|}{\Delta-\delta} \sqrt{\frac{2}{N} \log\left(\frac{|\mathcal{S}||\mathcal{A}|}{\eta}\right)} + \frac{\delta\ell_\lambda}{\Delta-\delta} \\
& \stackrel{(c)}{\leq} \frac{2|\mathcal{S}||\mathcal{A}|\epsilon_V}{\delta} + \frac{4L_\lambda|\mathcal{S}||\mathcal{A}|}{3N(\Delta-\delta)} \log\left(\frac{|\mathcal{S}||\mathcal{A}|}{\eta}\right) + \frac{L_\lambda|\mathcal{S}||\mathcal{A}|}{\Delta-\delta} \sqrt{\frac{2}{N} \log\left(\frac{|\mathcal{S}||\mathcal{A}|}{\eta}\right)} + \frac{\delta\ell_\lambda}{\Delta-\delta},
\end{aligned}$$

where (a) uses Eqs. (16), (55) and (108), (b) uses Jensen's inequality that $\|\frac{1}{N} \sum_{i=1}^N x_i\|^2 \leq \frac{1}{N} \sum_{i=1}^N \|x_i\|^2$ for any vectors $\{x_i\}_{i=1}^N$ of the same dimensionality, (c) uses $|\hat{V}_{\lambda,\pi'}^{\pi'} - V_{\lambda,\pi'}^{\pi'}| \leq \epsilon_V$ for any policy π' . By replacing η with $\frac{\eta}{3N}$ in the inequality above, we prove the error bound (18) as follows which holds with probability at least $1 - \eta$.

$$\begin{aligned}
& \|\hat{g}_{\lambda,\delta}(\pi) - \text{proj}_{\mathcal{L}_0}(\nabla_\pi V_{\lambda,\pi}^\pi)\| \\
& \leq \frac{2|\mathcal{S}||\mathcal{A}|\epsilon_V}{\delta} + \frac{4L_\lambda|\mathcal{S}||\mathcal{A}|}{3N(\Delta-\delta)} \log\left(\frac{3N|\mathcal{S}||\mathcal{A}|}{\eta}\right) + \frac{L_\lambda|\mathcal{S}||\mathcal{A}|}{\Delta-\delta} \sqrt{\frac{2}{N} \log\left(\frac{3N|\mathcal{S}||\mathcal{A}|}{\eta}\right)} + \frac{\delta\ell_\lambda}{\Delta-\delta} \\
& = \mathcal{O}\left(\frac{\epsilon_V}{\delta} + \frac{\log(N/\eta)}{\sqrt{N}} + \delta\right)
\end{aligned} \tag{110}$$

K PROOF OF PROPOSITION 2

For any $\pi \in \Pi_\Delta$, it is easily seen that the corresponding π' defined by Eq. (13) also belongs to Π_Δ . Therefore,

$$\langle \nabla_\pi V_{\lambda,\pi}^\pi, \pi' - \pi \rangle \leq \max_{\tilde{\pi} \in \Pi_\Delta} \langle \nabla_\pi V_{\lambda,\pi}^\pi, \tilde{\pi} - \pi \rangle \leq \frac{D\lambda}{5|\mathcal{A}|(1-\gamma)}.$$

Substituting the above inequality into Eq. (12), we obtain that

$$\pi(a|s) \geq \pi_{\min} \exp\left[-\frac{2|\mathcal{A}|}{D\lambda}(1-\gamma)\langle \nabla_\pi V_{\lambda,\pi}^\pi, \pi' - \pi \rangle\right] \geq \frac{2\pi_{\min}}{3} \geq 2\Delta.$$

Therefore, for any $\pi_2 \in \Pi$, we can prove that $\frac{\pi_2 + \pi}{2} \in \Pi_\Delta$ as follows.

$$\frac{\pi_2(a|s) + \pi(a|s)}{2} \geq \frac{0 + 2\Delta}{2} = \Delta.$$

Therefore, we can prove Eq. (22) as follows.

$$\max_{\pi_2 \in \Pi} \langle \nabla_\pi V_{\lambda,\pi}^\pi, \pi_2 - \pi \rangle = 2 \max_{\pi_2 \in \Pi} \left\langle \nabla_\pi V_{\lambda,\pi}^\pi, \frac{\pi_2 + \pi}{2} - \pi \right\rangle \stackrel{(a)}{\leq} 2 \max_{\tilde{\pi} \in \Pi_\Delta} \langle \nabla_\pi V_{\lambda,\pi}^\pi, \tilde{\pi} - \pi \rangle.$$

where (a) uses $\frac{\pi_2 + \pi}{2} \in \Pi_\Delta$.

L PROOF OF THEOREM 4

If $\pi_t \in \Pi_\Delta$, then $\pi_{t+1} \in \Pi_\Delta$, since Π_Δ is a convex set and π_{t+1} obtained by Eq. (20) is a convex combination of $\pi_t, \tilde{\pi}_t \in \Pi_\Delta$. Since $\pi_0 \in \Pi_\Delta$, we have $\pi_t \in \Pi_\Delta$ for all t by induction. Therefore, Proposition 1 implies that the following bound holds simultaneously for all $\{\pi_t\}_{t=1}^T \subseteq \Pi_\Delta$ with probability at least $1 - \eta$.

$$\|\hat{g}_{\lambda,\delta}(\pi_t) - \text{proj}_{\mathcal{L}_0}(\nabla_\pi V_{\lambda,\pi_t}^{\pi_t})\|$$

$$\begin{aligned}
 & \leq \frac{2|\mathcal{S}||\mathcal{A}|\epsilon_V}{\delta} + \frac{4L_\lambda|\mathcal{S}||\mathcal{A}|}{3TN(\Delta-\delta)} \log\left(\frac{3TN|\mathcal{S}||\mathcal{A}|}{\eta}\right) + \frac{L_\lambda|\mathcal{S}||\mathcal{A}|}{\Delta-\delta} \sqrt{\frac{2}{N} \log\left(\frac{3TN|\mathcal{S}||\mathcal{A}|}{\eta}\right)} + \frac{\delta\ell_\lambda}{\Delta-\delta}.
 \end{aligned} \tag{111}$$

The bound above further implies that for any $\pi \in \Pi$, we have

$$\begin{aligned}
 & |\langle \hat{g}_{\lambda,\delta}(\pi_t) - \nabla_\pi V_{\lambda,\pi_t}^{\pi_t}, \pi - \pi_t \rangle| \\
 & \stackrel{(a)}{=} |\langle \hat{g}_{\lambda,\delta}(\pi_t) - \text{proj}_{\mathcal{L}_0}(\nabla_\pi V_{\lambda,\pi_t}^{\pi_t}), \pi - \pi_t \rangle| \\
 & \leq \|\hat{g}_{\lambda,\delta}(\pi_t) - \text{proj}_{\mathcal{L}_0}(\nabla_\pi V_{\lambda,\pi_t}^{\pi_t})\| \cdot \|\pi - \pi_t\| \\
 & \stackrel{(b)}{\leq} \sqrt{2|\mathcal{S}|} \left[\frac{2|\mathcal{S}||\mathcal{A}|\epsilon_V}{\delta} + \frac{4L_\lambda|\mathcal{S}||\mathcal{A}|}{3TN(\Delta-\delta)} \log\left(\frac{3TN|\mathcal{S}||\mathcal{A}|}{\eta}\right) \right. \\
 & \quad \left. + \frac{L_\lambda|\mathcal{S}||\mathcal{A}|}{\Delta-\delta} \sqrt{\frac{2}{N} \log\left(\frac{3TN|\mathcal{S}||\mathcal{A}|}{\eta}\right)} + \frac{\delta\ell_\lambda}{\Delta-\delta} \right], \tag{112}
 \end{aligned}$$

where (a) uses $\tilde{\pi}_t - \pi_t, \tilde{\pi} - \pi_t \in \mathcal{L}_0$ for $\tilde{\pi}_t, \tilde{\pi} \in \Pi_\Delta$, and (b) uses Eq. (111) and Lemma 12.

Under the conditions above, we have

$$\begin{aligned}
 & V_{\lambda,\pi_{t+1}}^{\pi_{t+1}} \\
 & \stackrel{(a)}{\geq} V_{\lambda,\pi_t}^{\pi_t} + \langle \nabla_\pi V_{\lambda,\pi_t}^{\pi_t}, \pi_{t+1} - \pi_t \rangle - \frac{\ell_\lambda}{2\Delta} \|\pi_{t+1} - \pi_t\|^2 \\
 & \stackrel{(b)}{=} V_{\lambda,\pi_t}^{\pi_t} + \beta \langle \nabla_\pi V_{\lambda,\pi_t}^{\pi_t}, \tilde{\pi}_t - \pi_t \rangle - \frac{\ell_\lambda\beta^2}{2\Delta} \|\tilde{\pi}_t - \pi_t\|^2 \\
 & = V_{\lambda,\pi_t}^{\pi_t} + \beta \langle \hat{g}_{\lambda,\delta}(\pi_t), \tilde{\pi}_t - \pi_t \rangle + \beta \langle \nabla_\pi V_{\lambda,\pi_t}^{\pi_t} - \hat{g}_{\lambda,\delta}(\pi_t), \tilde{\pi}_t - \pi_t \rangle - \frac{\ell_\lambda\beta^2}{2\Delta} \|\tilde{\pi}_t - \pi_t\|^2 \\
 & \stackrel{(c)}{\geq} V_{\lambda,\pi_t}^{\pi_t} + \beta \langle \hat{g}_{\lambda,\delta}(\pi_t), \tilde{\pi}_t - \pi_t \rangle - \frac{\ell_\lambda|\mathcal{S}|\beta^2}{\Delta} - \beta \sqrt{2|\mathcal{S}|} \left[\frac{2|\mathcal{S}||\mathcal{A}|\epsilon_V}{\delta} \right. \\
 & \quad \left. + \frac{4L_\lambda|\mathcal{S}||\mathcal{A}|}{3TN(\Delta-\delta)} \log\left(\frac{3TN|\mathcal{S}||\mathcal{A}|}{\eta}\right) + \frac{L_\lambda|\mathcal{S}||\mathcal{A}|}{\Delta-\delta} \sqrt{\frac{2}{N} \log\left(\frac{3TN|\mathcal{S}||\mathcal{A}|}{\eta}\right)} + \frac{\delta\ell_\lambda}{\Delta-\delta} \right], \tag{113}
 \end{aligned}$$

where (a) uses the $\frac{\ell_\lambda}{\Delta}$ -Lipschitz smoothness of $V_{\lambda,\pi}^{\pi_t}$ on Π_Δ , (b) uses Eq. (20), (c) uses Eq. (112) and Lemma 12.

Rearranging and averaging Eq. (113) over $t = 0, 1, \dots, T-1$, we obtain that

$$\begin{aligned}
 & \max_{\tilde{\pi} \in \Pi_\Delta} \langle \hat{g}_{\lambda,\delta}(\pi_{\tilde{T}}), \tilde{\pi} - \pi_{\tilde{T}} \rangle \\
 & \stackrel{(a)}{=} \langle \hat{g}_{\lambda,\delta}(\pi_{\tilde{T}}), \tilde{\pi}_{\tilde{T}} - \pi_{\tilde{T}} \rangle \\
 & \stackrel{(b)}{\leq} \frac{1}{T} \sum_{t=0}^{T-1} \langle \hat{g}_{\lambda,\delta}(\pi_t), \tilde{\pi}_t - \pi_t \rangle \\
 & \leq \frac{V_{\lambda,\pi_T}^{\pi_T} - V_{\lambda,\pi_0}^{\pi_0}}{T\beta} + \frac{\ell_\lambda|\mathcal{S}|\beta}{\Delta} + \sqrt{2|\mathcal{S}|} \left[\frac{2|\mathcal{S}||\mathcal{A}|\epsilon_V}{\delta} \right. \\
 & \quad \left. + \frac{4L_\lambda|\mathcal{S}||\mathcal{A}|}{3TN(\Delta-\delta)} \log\left(\frac{3TN|\mathcal{S}||\mathcal{A}|}{\eta}\right) + \frac{L_\lambda|\mathcal{S}||\mathcal{A}|}{\Delta-\delta} \sqrt{\frac{2}{N} \log\left(\frac{3TN|\mathcal{S}||\mathcal{A}|}{\eta}\right)} + \frac{\delta\ell_\lambda}{\Delta-\delta} \right] \\
 & \leq \frac{1 + \lambda \log |\mathcal{A}|}{T\beta(1-\gamma)} + \frac{\ell_\lambda|\mathcal{S}|\beta}{\Delta} + \sqrt{2|\mathcal{S}|} \left[\frac{2|\mathcal{S}||\mathcal{A}|\epsilon_V}{\delta} \right. \\
 & \quad \left. + \frac{4L_\lambda|\mathcal{S}||\mathcal{A}|}{3TN(\Delta-\delta)} \log\left(\frac{3TN|\mathcal{S}||\mathcal{A}|}{\eta}\right) + \frac{L_\lambda|\mathcal{S}||\mathcal{A}|}{\Delta-\delta} \sqrt{\frac{2}{N} \log\left(\frac{3TN|\mathcal{S}||\mathcal{A}|}{\eta}\right)} + \frac{\delta\ell_\lambda}{\Delta-\delta} \right], \tag{114}
 \end{aligned}$$

where (a) uses Lemma 1 which means $\tilde{\pi}_t$ satisfies Eq. (19) and (b) uses the output rule of Algorithm 1 that $\tilde{T} \in \arg \min_{0 \leq t \leq T-1} \langle \hat{g}_{\lambda,\delta}(\pi_t), \tilde{\pi}_t - \pi_t \rangle$. Therefore,

$$\max_{\tilde{\pi} \in \Pi_\Delta} \langle \nabla_\pi V_{\lambda,\pi_{\tilde{T}}}^{\pi_{\tilde{T}}}, \tilde{\pi} - \pi_{\tilde{T}} \rangle$$

$$\begin{aligned}
&= \max_{\tilde{\pi} \in \Pi_{\Delta}} [\langle \nabla_{\pi} V_{\lambda, \pi_{\tilde{T}}}^{\pi_{\tilde{T}}} - \hat{g}_{\lambda, \delta}(\pi_{\pi_{\tilde{T}}}), \tilde{\pi} - \pi_{\tilde{T}} \rangle + \langle \hat{g}_{\lambda, \delta}(\pi_{\pi_{\tilde{T}}}), \tilde{\pi} - \pi_{\tilde{T}} \rangle] \\
&\stackrel{(a)}{\leq} \frac{1 + \lambda \log |\mathcal{A}|}{T\beta(1 - \gamma)} + \frac{\ell_{\lambda}|\mathcal{S}|\beta}{\Delta} + 2\sqrt{2|\mathcal{S}|} \left[\frac{2|\mathcal{S}||\mathcal{A}|\epsilon_V}{\delta} \right. \\
&\quad \left. + \frac{4L_{\lambda}|\mathcal{S}||\mathcal{A}|}{3TN(\Delta - \delta)} \log \left(\frac{3TN|\mathcal{S}||\mathcal{A}|}{\eta} \right) + \frac{L_{\lambda}|\mathcal{S}||\mathcal{A}|}{\Delta - \delta} \sqrt{\frac{2}{N} \log \left(\frac{3TN|\mathcal{S}||\mathcal{A}|}{\eta} \right) + \frac{\delta\ell_{\lambda}}{\Delta - \delta}} \right], \quad (115)
\end{aligned}$$

where (a) uses Eqs. (112) and (114).

Use the following hyperparameter choices for Algorithm 1.

$$\Delta = \frac{\pi_{\min}}{3}, \quad (116)$$

$$\beta = \frac{D\Delta\epsilon}{12\ell_{\lambda}|\mathcal{S}|} = \frac{D\pi_{\min}\epsilon}{36\ell_{\lambda}|\mathcal{S}|} = \mathcal{O}(\epsilon), \quad (117)$$

$$T = \frac{12(1 + \lambda \log |\mathcal{A}|)}{D\epsilon\beta(1 - \gamma)} = \frac{432\ell_{\lambda}|\mathcal{S}|(1 + \lambda \log |\mathcal{A}|)}{\pi_{\min}D^2(1 - \gamma)\epsilon^2} = \mathcal{O}(\epsilon^{-2}) \quad (118)$$

$$\delta = \frac{D\Delta\epsilon}{48\sqrt{2|\mathcal{S}|}\ell_{\lambda}} = \frac{D\pi_{\min}\epsilon}{144\sqrt{2|\mathcal{S}|}\ell_{\lambda}} = \mathcal{O}(\epsilon) \stackrel{(a)}{\leq} \frac{\Delta}{2}, \quad (119)$$

$$\epsilon_V = \frac{D\delta\epsilon}{48|\mathcal{S}||\mathcal{A}|\sqrt{2|\mathcal{S}|}} = \frac{\pi_{\min}D^2\epsilon^2}{13824\ell_{\lambda}|\mathcal{S}|^2|\mathcal{A}|} = \mathcal{O}(\epsilon^2) \quad (120)$$

$$\begin{aligned}
N &= \frac{663552L_{\lambda}^2|\mathcal{S}|^3|\mathcal{A}|^2}{D^2\pi_{\min}^2\epsilon^2} \log \max \left(\frac{165888L_{\lambda}^2|\mathcal{S}|^3|\mathcal{A}|^2}{D^2\pi_{\min}^2\epsilon^2}, \frac{1296\ell_{\lambda}|\mathcal{S}|^2|\mathcal{A}|(1 + \lambda \log |\mathcal{A}|)}{D^2\eta\pi_{\min}(1 - \gamma)\epsilon^2} \right) \\
&\quad + 2 \log \left(\frac{3|\mathcal{S}||\mathcal{A}|}{\eta} \right) + 3 \\
&= \mathcal{O}[\epsilon^{-2} \log(\eta^{-1}\epsilon^{-1})] \quad (121)
\end{aligned}$$

where (a) uses $\epsilon \leq 24\sqrt{2|\mathcal{S}|}\ell_{\lambda}/D$. With the hyperparameter choices above, we obtain the following inequalities (122)-(124).

$$\begin{aligned}
&2\sqrt{2|\mathcal{S}|} \cdot \frac{L_{\lambda}|\mathcal{S}||\mathcal{A}|}{\Delta - \delta} \sqrt{\frac{2}{N} \log \left(\frac{3TN|\mathcal{S}||\mathcal{A}|}{\eta} \right)} \\
&\stackrel{(a)}{\leq} \frac{24L_{\lambda}|\mathcal{S}|^{1.5}|\mathcal{A}|}{\pi_{\min}} \sqrt{\frac{\log N}{N} + \frac{1}{N} \log \left(\frac{1296\ell_{\lambda}|\mathcal{S}|^2|\mathcal{A}|(1 + \lambda \log |\mathcal{A}|)}{\eta\pi_{\min}D^2(1 - \gamma)\epsilon^2} \right)} \\
&\stackrel{(b)}{\leq} \frac{24L_{\lambda}|\mathcal{S}|^{1.5}|\mathcal{A}|}{\pi_{\min}} \sqrt{\tilde{\epsilon} + \frac{\tilde{\epsilon}}{4}} \\
&= \frac{12\sqrt{5}L_{\lambda}|\mathcal{S}|^{1.5}|\mathcal{A}|}{\pi_{\min}} \cdot \frac{D\pi_{\min}\epsilon}{\sqrt{165888L_{\lambda}|\mathcal{S}|^{1.5}|\mathcal{A}|}} \leq \frac{D\epsilon}{12}, \quad (122)
\end{aligned}$$

where (a) uses Eq. (118) and $\delta \leq \Delta/2 = \pi_{\min}/6$ implied by Eqs. (116) and (119), (b) uses Eq. (121) and its implication that $N \geq 4\tilde{\epsilon}^{-1} \log(\tilde{\epsilon}^{-1})$ with $\tilde{\epsilon} = \frac{\pi_{\min}^2\epsilon^2}{165888D^2L_{\lambda}^2|\mathcal{S}|^3|\mathcal{A}|^2} \leq 0.5$ (since $\epsilon \leq \frac{288DL_{\lambda}|\mathcal{S}|^{1.5}|\mathcal{A}|}{\pi_{\min}}$), which implies $\frac{\log N}{N} \leq \tilde{\epsilon}$ based on Lemma 11.

$$\frac{1}{TN} \log \left(\frac{3TN|\mathcal{S}||\mathcal{A}|}{\eta} \right) = \frac{\log(TN)}{TN} + \frac{1}{TN} \log \left(\frac{3|\mathcal{S}||\mathcal{A}|}{\eta} \right) \stackrel{(a)}{\leq} \frac{1}{2} + \frac{1}{2} = 1, \quad (123)$$

where (a) uses $NT \geq N \geq \max \left[3, 2 \log \left(\frac{3|\mathcal{S}||\mathcal{A}|}{\eta} \right) \right]$ and Lemma 11.

$$\begin{aligned}
&2\sqrt{2|\mathcal{S}|} \cdot \frac{4L_{\lambda}|\mathcal{S}||\mathcal{A}|}{3TN(\Delta - \delta)} \log \left(\frac{3TN|\mathcal{S}||\mathcal{A}|}{\eta} \right) \stackrel{(a)}{\leq} 2\sqrt{2|\mathcal{S}|} \cdot \frac{\sqrt{2}L_{\lambda}|\mathcal{S}||\mathcal{A}|}{\Delta - \delta} \sqrt{\frac{1}{TN} \log \left(\frac{3TN|\mathcal{S}||\mathcal{A}|}{\eta} \right)} \\
&\stackrel{(b)}{\leq} \frac{D\epsilon}{12} \quad (124)
\end{aligned}$$

2160 where (a) uses $\frac{4}{3} < \sqrt{2}$ and $y \leq \sqrt{y}$ for $y = \frac{1}{TN} \log \left(\frac{3TN|\mathcal{S}||\mathcal{A}|}{\eta} \right) \leq 1$ (Eq. (123)), and (b) uses
 2161 $T \geq 1$ and Eq. (122). By substituting the hyperparameter choices (116)-(121) as well as Eqs. (122)
 2162 and (124) into Eq. (115), we have
 2163

$$\begin{aligned}
 & \max_{\tilde{\pi} \in \Pi_{\Delta}} \langle \nabla_{\pi} V_{\lambda, \pi_{\tilde{T}}}^{\pi_{\tilde{T}}}, \tilde{\pi} - \pi_{\tilde{T}} \rangle \\
 & \leq \frac{1 + \lambda \log |\mathcal{A}|}{T\beta(1 - \gamma)} + \frac{\ell_{\lambda}|\mathcal{S}|\beta}{\Delta} + 2\sqrt{2|\mathcal{S}|} \left[\frac{2|\mathcal{S}||\mathcal{A}|\epsilon_V}{\delta} \right. \\
 & \quad \left. + \frac{4L_{\lambda}|\mathcal{S}||\mathcal{A}|}{3TN(\Delta - \delta)} \log \left(\frac{3TN|\mathcal{S}||\mathcal{A}|}{\eta} \right) + \frac{L_{\lambda}|\mathcal{S}||\mathcal{A}|}{\Delta - \delta} \sqrt{\frac{2}{N} \log \left(\frac{3TN|\mathcal{S}||\mathcal{A}|}{\eta} \right)} + \frac{\delta\ell_{\lambda}}{\Delta - \delta} \right] \\
 & \leq \frac{1 + \lambda \log |\mathcal{A}|}{\beta(1 - \gamma)} \frac{\epsilon\beta(1 - \gamma)}{12D(1 + \lambda \log |\mathcal{A}|)} + \frac{\ell_{\lambda}|\mathcal{S}|}{\Delta} \cdot \frac{\Delta\epsilon}{12D\ell_{\lambda}|\mathcal{S}|} \\
 & \quad + \frac{4\sqrt{2|\mathcal{S}||\mathcal{S}||\mathcal{A}|}}{\delta} \cdot \frac{\delta\epsilon}{48D|\mathcal{S}||\mathcal{A}|\sqrt{2|\mathcal{S}|}} + \frac{\epsilon}{12D} + \frac{\epsilon}{12D} + \frac{2\sqrt{2|\mathcal{S}|\ell_{\lambda}}}{\Delta/2} \cdot \frac{\Delta\epsilon}{48\sqrt{2|\mathcal{S}|}D\ell_{\lambda}} \\
 & = \frac{D\epsilon}{2} \stackrel{(a)}{\leq} \frac{D\lambda}{5|\mathcal{A}|(1 - \gamma)},
 \end{aligned}$$

2179 where (a) uses $\epsilon \leq \frac{2\lambda D^2}{5|\mathcal{A}|(1 - \gamma)}$. Then based on Proposition 2, the inequality above implies that
 2180

$$\max_{\pi \in \Pi} \langle \nabla_{\pi} V_{\lambda, \pi_{\tilde{T}}}^{\pi_{\tilde{T}}}, \tilde{\pi} - \pi_{\tilde{T}} \rangle \leq D\epsilon,$$

2182 which means $\pi_{\tilde{T}}$ is a $D\epsilon$ -stationary policy. Then if $\mu \geq 0$, Corollary 1 implies that $\pi_{\tilde{T}}$ is also an
 2183 ϵ -PO policy.
 2184

2185 M ADJUSTING OUR RESULTS TO THE EXISTING QUADRATIC REGULARIZER

2188 In Section 4, we have proposed a 0-FW algorithm and obtain its finite-time convergence result to the
 2189 desired PO policy for our entropy-regularized value function (6). We will briefly show that 0-FW
 2190 algorithm can also converge to PO for the existing performative reinforcement learning defined by
 2191 the value function (1) with quadratic regularizer $\mathcal{H}_{\pi'}(\pi) = \frac{1}{2} \|d_{\pi, p_{\pi'}}\|^2$ (Mandal et al., 2023; Rank
 2192 et al., 2024; Pollatos et al., 2025). The *performative value function* can be rewritten as the following
 2193 λ -strongly concave function of $d_{\pi, p_{\pi'}}$.
 2194

$$V_{\lambda, \pi}^{\pi} = \langle d_{\pi, p_{\pi}}, r_{\pi} \rangle - \lambda \|d_{\pi, p_{\pi}}\|^2. \quad (125)$$

2196 We can prove the *performative value function* above also satisfies Theorem 1 (gradient dominance)
 2197 with a different μ , following the same proof logic, since both regularizers $\mathcal{H}_{\pi}(\pi)$ are strongly convex
 2198 functions of $d_{\pi, p_{\pi'}}$ which implies that $V_{\lambda, \pi_{\alpha}}^{\pi_{\alpha}}$ is a μ -strongly concave function of α as shown in the
 2199 proof of Theorem 1 in Appendix F. By direct calculation, we can also show that $V_{\lambda, \pi}^{\pi}$ above is a
 2200 Lipschitz continuous and Lipschitz smooth function of $\pi \in \Pi$. With these two properties, we can
 2201 follow the proof logic of Theorem 4 to show that the 0-FW algorithm (with the same procedure as
 2202 that of Algorithm 1 except the different values of $V_{\lambda, \pi_{\alpha}}^{\pi_{\alpha}}$ in the policy evaluation step) converges to
 2203 a stationary policy of the *performative value function* (125), which by gradient dominance is a PO
 2204 policy when the new value of μ satisfies $\mu \geq 0$.
 2205

2206 N USE OF LARGE LANGUAGE MODELS (LLMs)

2207 We used LLMs to generate some functions in the experimental code, and then checked and edited the
 2208 code to ensure that it exactly implements the algorithms.
 2209

2210
 2211
 2212
 2213