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ABSTRACT

The Generative Flow Network (Bengio et al., 2021b, GFlowNet) is a probabilis-
tic framework where an agent learns a stochastic policy for object generation,
such that the probability of generating an object is proportional to a given re-
ward function. Its effectiveness has been shown in discovering high-quality and
diverse solutions, compared to reward-maximizing reinforcement learning-based
methods. Nonetheless, GFlowNets only learn from rewards of the terminal states,
which can limit its applicability. Indeed, intermediate rewards play a critical role
in learning, for example from intrinsic motivation to provide intermediate feed-
back even in particularly challenging sparse reward tasks. Inspired by this, we
propose Generative Augmented Flow Networks (GAFlowNets), a novel learning
framework to incorporate intermediate rewards into GFlowNets. We specify inter-
mediate rewards by intrinsic motivation to tackle the exploration problem in sparse
reward environments. GAFlowNets can leverage edge-based and state-based in-
trinsic rewards in a joint way to improve exploration. Based on extensive exper-
iments on the GridWorld task, we demonstrate the effectiveness and efficiency
of GAFlowNet in terms of convergence, performance, and diversity of solutions.
We further show that GAFlowNet is scalable to a more complex and large-scale
molecule generation domain, where it achieves consistent and significant perfor-
mance improvement.

1 INTRODUCTION

Deep reinforcement learning (RL) has achieved significant progress in recent years with particular
success in games (Mnih et al., 2015; Silver et al., 2016; Vinyals et al., 2019). RL methods applied to
the setting where a reward is only given at the end (i.e., terminal states) typically aim at maximizing
that reward function for learning the optimal policy. However, diversity of the generated states is
desirable in a wide range of practical scenarios including molecule generation (Bengio et al., 2021a),
biological sequence design (Jain et al., 2022b), recommender systems (Kunaver & Požrl, 2017),
dialogue systems (Zhang et al., 2020), etc. For example, in molecule generation, the reward function
used in in-silico simulations can be uncertain and imperfect itself (compared to the more expensive
in-vivo experiments). Therefore, it is not sufficient to only search the solution that maximizes the
return. Instead, it is desired that we sample many high-reward candidates, which can be achieved by
sampling them proportionally to the reward of each terminal state.

Interestingly, GFlowNets (Bengio et al., 2021a;b) learn a stochastic policy to sample composite ob-
jects x ∈ X with probability proportional to the return R(x). The learning paradigm of GFlowNets
is different from other RL methods, as it is explicitly aiming at modeling the diversity in the target
distribution, i.e., all the modes of the reward function. This makes it natural for practical applica-
tions where the model should discover objects that are both interesting and diverse, which is a focus
of previous GFlowNet works (Bengio et al., 2021a;b; Malkin et al., 2022; Jain et al., 2022b).

Yet, GFlowNets only learn from the reward of the terminal state, and do not consider intermediate
rewards, which can limit its applicability, especially in more general RL settings. Rewards play a
critical role in learning (Silver et al., 2021). The tremendous success of RL largely depends on the
reward signals that provide intermediate feedback. Even in environments with sparse rewards, RL
agents can motivate themselves for efficient exploration by intrinsic motivation, which augments the
sparse extrinsic learning signal with a dense intrinsic reward at each step. Our focus in this paper is
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precisely on introducing such intermediate intrinsic rewards in GFlowNets, since they can be applied
even in settings where the extrinsic reward is sparse (say non-zero only on a few terminal states).

Inspired by this missing element of GFlowNets, we propose a new GFlowNet learning framework
that takes intermediate feedback signals into account to provide an exploration incentive during
training. The notion of flow in GFlowNets (Bengio et al., 2021a;b) refers to a marginalized quantity
that sums rewards over all downstream terminal states following a given state, while sharing that
reward with other states leading to the same terminal states. Apart from the existing flows in the net-
work, we introduce augmented flows as intermediate rewards. Our new framework is well-suited for
sparse reward tasks by considering intrinsic motivation as intermediate rewards, where the training
of GFlowNet can get trapped in a few modes, since it may be difficult for it to discover new modes
based on those it visited (Bengio et al., 2021b).

We first propose an edge-based augmented flow, based on the incorporation of an intrinsic reward at
each transition. However, we find that although it improves learning efficiency, it only performs local
exploration and still lacks sufficient exploration ability to drive the agent to visit solutions with zero
rewards. On the other hand, we find that incorporating intermediate rewards in a state-based man-
ner (Bengio et al., 2021b) can result in slower convergence and large bias empirically, although it can
explore more broadly. Therefore, we propose a joint way to take both edge-based and state-based
augmented flows into account. Our method can improve the diversity of solutions and learning effi-
ciency by reaping the best from both worlds. Extensive experiments on the GridWorld and molecule
domains that are already used to benchmark GFlowNets corroborate the effectiveness of our pro-
posed framework. The code is publicly available at https://github.com/ling-pan/GAFN.

The main contributions of this paper are summarized as follows:

• We propose a novel GFlowNet learning framework, dubbed Generative Augmented Flow
Networks (GAFlowNet), to incorporate intermediate rewards, which are represented by
augmented flows in the flow network.

• We specify intermediate rewards by intrinsic motivation to deal with the exploration of state
space for GFlowNets in sparse reward tasks. We theoretically prove that our augmented
objective asymptotically yields an unbiased solution to the original formulation.

• We conduct extensive experiments on the GridWorld domain, demonstrating the effective-
ness of our method in terms of convergence, diversity, and performance. Our method is also
general, being applicable to different types of GFlowNets. We further extend our method to
the larger-scale and more challenging molecule generation task, where our method achieves
consistent and substantial improvements over strong baselines.

2 BACKGROUND

Consider a directed acyclic graph (DAG) G = (S,A), where S denotes the state space, and A
represents the action space, which is a subset of S × S . We denote the vertex s0 ∈ S to be the
initial state with no incoming edges, while the vertex sf without outgoing edges is called the sink
state, and state-action pairs correspond to edges. The goal for GFlowNets is to learn a stochastic
policy π that can construct discrete objects x ∈ X with probability proportional to the reward
function R : X → R≥0, i.e., π(x) ∝ R(x). GFlowNets construct objects sequentially, where
each step adds an element to the construction. We call the resulting sequence of state transitions
from the initial state to a terminal state τ = (s0 → · · · → sn) a trajectory, where τ ∈ T with T
denoting the set of trajectories. Bengio et al. (2021a) define a trajectory flow F : T → R≥0. Let
F (s) =

∑
τ∋s F (τ) define a state flow for any state s, and F (s → s′) =

∑
τ∋s→s′ F (τ) defines

the edge flow for any edge s → s′. The trajectory flow induces a probability measure P (τ) = F (τ)
Z ,

where Z =
∑

τ∈T F (τ) denotes the total flow. We then define the corresponding forward policy

PF (s
′|s) = F (s→s′)

F (s) and the backward policy PB(s|s′) = F (s→s′)
F (s′) . The flows can be considered as

the amount of water flowing through edges (like pipes) or states (like tees connecting pipes) (Malkin
et al., 2022), with R(x) the amount of water through terminal state x, and PF (s

′|s) the relative
amount of water flowing in edges outgoing from s.
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2.1 GFLOWNETS TRAINING CRITERION

We call a flow consistent if it satisfies the flow matching constraint for all internal states s, i.e.,∑
s′′→s F (s′′ → s) = F (s) =

∑
s→s′ F (s → s′), which means that the incoming flows equal the

outgoing flows. Bengio et al. (2021a) prove that for a consistent flow F where the terminal flow is
set to be the reward, the forward policy can sample objects x with probability proportional to R(x).

Flow matching (FM). Bengio et al. (2021a) propose to approximate the edge flow by
a model Fθ(s, s

′) parameterized by θ following the FM objective, i.e., LFM(s) =
(log

∑
(s′′→s)∈A Fθ(s

′′, s)− log
∑

(s→s′)∈A Fθ(s, s
′))2 for non-terminal states. At terminal states,

a similar objective encourages the incoming flow to match the corresponding reward. The objective
is optimized using trajectories sampled from a training policy π with full support such as a tempered
version of PFθ

or a mixture of PFθ
with a uniform policy U , i.e., πθ = (1 − ϵ)PFθ

+ ϵ · U , This is
similar to ϵ-greedy and entropy-regularized strategies in RL to improve exploration. Bengio et al.
(2021a) prove that if we reach a global minimum of the expected loss function and the training
policy πθ has full support, then GFlowNet samples from the target distribution.

Detailed balance (DB). Bengio et al. (2021b) propose the DB objective to avoid the computa-
tionally expensive summing operation over the parents or children of states. For learning based
on DB, we train a neural network with a state flow model Fθ, a forward policy model PFθ

(·|s),
and a backward policy model PBθ

(·|s) parameterized by θ. The optimization objective is to mini-
mize LDB(s, s

′) = (log(Fθ(s)PFθ
(s′|s))− log(Fθ(s

′)PBθ
(s|s′)))2. It also samples from the target

distribution if a global minimum of the expected loss is reached and πθ has full support.

Trajectory balance (TB). Malkin et al. (2022) propose the TB objective for faster credit
assignment and learning over longer trajectories. The loss function for TB is LTB(τ) =

(log(Zθ

∏n−1
t=0 PFθ

(st+1|st))− log(R(x)
∏n−1

t=0 PBθ
(st|st+1)))

2, where Zθ is a learnable scalar.

3 RELATED WORK

GFlowNets. Since the proposal of GFlowNets (Bengio et al., 2021a), there has been an increasing
interest in improving (Bengio et al., 2021b; Malkin et al., 2022), understanding, and applying this
framework to practical scenarios. It is a general-purpose high-level probabilistic inference frame-
work, and induces fruitful applications (Zhang et al., 2022a;c; Deleu et al., 2022; Jain et al., 2022a).
Pan et al. (2023a) propose Forward-Looking GFlowNets by incorporating local credits, and makes
it possible to be trained with incomplete trajectories (which is a requirement for previous GFlowNet
methods). Pan et al. (2023b) and Zhang et al. (2023) recently generalize GFlowNets to the more
general stochastic environments with stochastic transition dynamics or rewards. However, previous
works only consider learning based on the terminal reward, which can make it difficult to provide a
good training signal for intermediate states, especially when the reward is sparse (i.e., significantly
non-zero in only a tiny fraction of the terminal states).

Reinforcement learning (RL). Different from GFlowNets that aim to sample proportionally to the
reward function, RL learns a reward-maximization policy. Entropy-regularized RL (Attias, 2003;
Ziebart, 2010; Haarnoja et al., 2017; 2018; Zhang et al., 2022b) introduces entropy regularization
in the learning objectives, which learns with the Boltzmann softmax policy and the log-sum-exp
operator in value function updates (Schulman et al., 2017a; Asadi & Littman, 2017; Pan et al.,
2020). Although it can improve diversity, this is limited to tree-structured DAGs. This is because it
could only sample a terminal state x in proportion to the sum of rewards over all trajectories leading
to x. It can fail on general (non-tree) DAGs (Bengio et al., 2021a) for which the same terminal state
x can be obtained with a potentially large number of trajectories (and a very different number of
trajectories for different x’s).

Intrinsic motivation. There has been a line of research to incorporate intrinsic motivation (Pathak
et al., 2017; Burda et al., 2018; Zhang et al., 2021) for improving exploration in RL. Yet, such ideas
have not been explored with GFlowNets because the current mathematical framework of GFlowNets
only allows for terminal rewards, unlike the standard RL frameworks. This deficiency as well as the
potential of introducing intrinsic intermediate rewards motivates this paper.
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4 GENERATIVE AUGMENTED FLOW NETWORKS

The potential difficulty in learning only from the terminal reward is related to the challenge of
sparse rewards in RL, where most states do not provide an informative reward. We demonstrate
the sparse reward problem for GFlowNets and reveal interesting findings based on the GridWorld
task (as shown in Figure 4) with sparse rewards. Specifically, the agent only receives a reward of
+1 only when it reaches one of the 3 goals located around the corners of the world (except the
starting state corner) with size H × H (with H ∈ {64, 128}), and the reward is 0 otherwise. A
more detailed description of the task can be found in Section 5.1. We evaluate the number of modes
discovered by the GFlowNet trained with TB, following Bengio et al. (2021a). As summarized
in Figure 1, GFlowNet training can get trapped in a subset of the modes. Therefore, it remains
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Figure 1: Comparison
of GFlowNet and our
augmented (GAFlowNet)
method in Gridworld with
sparse rewards .

a critical challenge for GFlowNets to efficiently learn when the reward
signal is sparse and non-informative.

On the other hand, there has been recent progress with intrinsic moti-
vation methods (Pathak et al., 2017; Burda et al., 2018) to improve ex-
ploration of RL algorithms, where the agent learns from both a sparse
extrinsic reward and a dense intrinsic bonus at each step. Building on
this, we aim to address the exploration challenge of GFlowNets by en-
abling intermediate rewards in GFlowNets and thus intrinsic rewards.

We now propose our learning framework, which is dubbed Generative
Augmented Flow Network (GAFlowNet), to take intermediate rewards
into consideration.

4.1 EDGE-BASED INTERMEDIATE REWARD AUGMENTATION

We start our derivation from the flow matching consistency constraint, to take advantage of the
insights brought by the water flow metaphor as discussed in Section 2. By incorporating intermediate
rewards r(st → st+1) for transitions from states st to st+1 into the flow matching constraint, we
obtain ∑

st−1

F (st−1 → st) = F (st) =
∑
st+1

[F (st → st+1) + r(st → st+1)] (1)

by considering an extra flow r(st → st+1) going out of the transition st → st+1. Based on Eq. (1),
we define the corresponding forward and backward policies

PF (st|st−1) =
F (st−1 → st) + r(st−1 → st)

F (st−1)
, PB(st−1|st) =

F (st−1 → st)

F (st)
. (2)

Combining these, we obtain the detailed balance objective with the incorporation of intermediate
rewards as

F (st−1)PF (st|st−1) = PB(st−1|st)F (st) + r(st−1 → st). (3)
Finally, we have our resulting edge-based reward augmented learning objective for trajectory balance
as in Eq. (4) via a telescoping calculation upon Eq. (3), where x = sn, and Z =

∑
st−1→st

r(st−1 →
st) +

∑
x R(x) is the augmented total flow. Detailed derivation can be found in Appendix A.

Z

n−1∏
t=0

PF (st+1|st) = R(x)

n−1∏
t=0

[
PB(st|st+1) +

r(st → st+1)

F (st+1)

]
. (4)

We explain the semantics of Eq. (4) in Figure 2(a). For the transition from an internal state (yel-
low circles) st to the i-th next state sit+1, we associate sit+1 with a special state ŝit+1 (red circle)
with pseudo-exit. Specifically, from the state st, we choose associated next states ŝt+1 with prob-
ability (F (st → st+1) + r(st → st+1)) /F (st) according to the forward policy in Eq. (2). At the
associated next state ŝt+1, we “virtually” choose the sink state (purple circles) sf with probabil-
ity r(st → st+1)/F (st), or we choose the next state st+1 with probability F (st → st+1)/F (st).
Adding them together and multiplying these probabilities by the incoming flow F (st), we have
F (st → st+1) + r(st → st+1). Therefore, considering all possible next states, we have the aug-
mented flow consistency equation (incoming flow = outgoing flow) as in Eq. (1). The intermediate
rewards r(st → st+1) are similar to transitions into a pseudo-exit that is never taken but still attracts

4



Published as a conference paper at ICLR 2023

(a) (b)

Figure 2: (a) Edge-based reward augmentation can be seen as introducing an augmented flow of
amount r(st → st+1) towards a pseudo-exit to the sink state (that we never actually take) at every
transition step. (b) For tasks with sparse rewards, agents can easily get stuck at a few modes (e.g.,
x8). Our proposed method motivates the agent to discover unexplored states and trajectories to
find diverse sets of modes (i.e., x12) by increasing the probability of visiting alternative transitions
in proportion to all the transitions reachable from there. Note that we omit the sink state from
terminating edges for simplicity.

larger probabilities into its ancestors in the DAG. From the water analogy, it can be considered that
the flow from st to st+1 (and thus the probability of choosing that transition) is augmented by all
the intermediate rewards due to pseudo-exits in all the accessible downstream transitions.

In contrast to simply adding a constant uniform probability to every action (which is commonly
used for exploration with GFlowNets), the pseudo-exit intermediate rewards have an effect that is
not local. In addition, we can specify non-uniform intermediate rewards as intrinsic motivation
r(st → st+1) with novelty-based methods (Pathak et al., 2017; Burda et al., 2018) to better tackle
exploration in sparse reward tasks. Although how to accurately measure the novelty degree remains
an open problem, it has been shown that random network distillation (RND) (Burda et al., 2018)
is a simple yet effective method for encouraging the agent to visit states of interest. We use the
scaled difference between the predicted features by a trainable state encoder and a random fixed
state encoder as the intrinsic rewards based on RND, i.e., α||ϕ(s) − ϕ̄random(s)||2, where α is a
reward scaling parameter that controls the degree of exploration. The random distillation network
is trained by minimizing such differences. Therefore, the novelty measure is generally smaller for
more often seen states or similar states. The overall training procedure is shown in Algorithm 1 by
substituting the augmented trajectory balance loss according to Eq. (4).

We now demonstrate the conceptual advantage of edge-based reward augmentation which specifies
intermediate rewards by intrinsic motivation in a sparse reward task for exploration in Figure 2(b). It
depicts a flow network Markov decision process (MDP) with sparse rewards, where only R(x8) and
R(x12) are 1 and other terminal rewards are all 0. Consider the case where the agent had already
discovered solution x8 with the red flow A. Since the rewards of most other solutions are 0, it
can easily get trapped in the mode of x8, and thus fails to discover other solutions. Nonetheless, our
edge-based reward augmentation could motivate the agent to discover other paths (e.g., the blue flow
B) to x8, which can be beneficial for the agent to discover other solutions (e.g., x12) subsequently.
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Figure 3: Different reward augmentations pro-
posed in Sections 4.1-4.3. (a) Diversity metric:
the number of modes found. (b) Distribution fit-
ness metric: empirical L1 error.

Following the evaluation scheme in (Bengio
et al., 2021a), we summarize the number of dis-
covered modes and the empirical L1 error for
GFlowNet and GAFlowNet with edge-based
reward augmentation in Figure 3. The figure
also includes the state-based and joint objec-
tives introduced in later sections (Sections 4.2
and 4.3) for completeness. The L1 error is
defined as E [|p(x)− π(x)|], where p(x) =
R(x)/Z denotes the true reward distribution,
and we estimate π by repeated sampling and
summarizing frequencies for visitation of each
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possible state x. As shown, GAFlowNet (edge) is able to discover more modes as opposed to a stan-
dard GFlowNet and improves diversity. In addition, it learns more efficiently and leads to a smaller
level of L1 error.

4.2 STATE-BASED INTERMEDIATE REWARD AUGMENTATION

Although the learning framework of edge-based reward augmentation is able to improve the diversity
of solutions found, it still fails to discover all of the modes as shown in Figure 3. We hypothesize that
this is due to its “local” exploration ability, where it is able to consider different paths to solution
xi with non-zero rewards. However, it fails to sufficiently motivate the agent to globally explore
solutions whose rewards may be zero. Therefore, it can still get trapped in a few modes, lacking
sufficient exploration ability to discover other modes.

Different from the edge-based reward augmentation, Bengio et al. (2021b) defines a trajectory
return as the sum of intermediate rewards in a state-based reward augmentation manner. Specifically,
state-based reward augmentation for trajectory balance yields the following criterion

Z

n−1∏
t=0

PF (st+1|st) =

[
R(x) +

n−1∑
t=0

r(st → st+1)

]
n−1∏
t=0

PB(st|st+1), (5)

and we also use RND for intrinsic rewards. Such an objective directly motivates the agent to explore
different terminate states in a more global way (e.g., x2, x5, x7, x9 in Figure 2(b), which are bene-
ficial for discovering x12). As shown in Figure 3(a), it is able to discover all the modes, exhibiting
great diversity. However, it explicitly changes the underlying target probability distribution, and is
directly and highly affected by the length of the trajectory. Therefore, this leads to much slower
convergence as demonstrated in Figure 3(b).

4.3 JOINT INTERMEDIATE REWARD AUGMENTATION

As discussed above, the state-based reward augmentation is effective in improving diversity but fails
to fit the target distribution efficiently. On the other hand, edge-based reward augmentation performs
more efficiently, but lacks sufficient exploration ability which cannot discover all the modes.

Therefore, we propose a joint method to take both state and edge-based intermediate reward aug-
mentation into account to reap the best from both worlds. Specifically, we redefine the trajectory
return as the sum of the terminal reward and the intrinsic reward for the terminal state only. This can
be considered as we augment the extrinsic terminal reward with its curiosity degree. On the other
hand, we include intrinsic rewards for internal states according to the edge-based reward augmenta-
tion. This integration inherits the merits of both state and edge-based reward augmentation, which
makes it possible to improve exploration in a more global way while learning more efficiently.

Z

n−1∏
t=0

PF (st+1|st) = [R(x) + r(sn)]

n−1∏
t=0

[
PB(st|st+1) +

r(st → st+1)

F (st+1)

]
. (6)

Our resulting flow consistency constraint is shown in Eq. (6) where Z is the augmented total flow∑
x R(x) +

∑
st−1→st

r(st−1 → st). Our new optimization objective LGAFlowNet(τ) is Eq. (7)
which is trained by Algorithm 1.(

log

(
Z

n−1∏
t=0

PF (st+1|st)

)
− log

(
[R(x) + r(sn)]

n−1∏
t=0

[
PB(st|st+1) +

r(st → st+1)

F (st+1)

]))2

(7)

In Theorem 1, we theoretically justify that the resulting joint augmentation method leads to an
unbiased solution to the original formulation asymptotically. The proof can be found in Appendix B.
Note that we employ RND (Burda et al., 2018) for the intrinsic rewards, which decrease as the agent
has more knowledge about the state.
Theorem 1. Suppose that ∀τ,LGAFlowNet(τ) = 0, and ∀x, R(x) + r(x) > 0. When edge-based
intrinsic rewards converge to 0, we have that (1) P (x) = R(x)+r(x)∑

x[R(x)+r(x)] ; (2) If state-based intrinsic
rewards converge to 0, then P (x) is an unbiased sample distribution.
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Algorithm 1 Generative Augmented Flow Networks.

1: Initialize the forward and backward policies PF , PB , learnable parameter Z, and state flow F
2: Initialize the random fixed target network ϕ̄ and the predictor network ϕ
3: for each training step t = 1 to T do
4: Collect a batch of B trajectories τ = {s0 → · · · → sn} based on the forward policy PF

5: Compute intrinsic rewards r for each sample in the batch of trajectories based on the random
target network ϕ̄ and the predictor network ϕ

6: Update the GAFlowNet model according to the augmented trajectory balance loss in Eq. (7)
7: Update the predictor network ϕ by minimizing ||ϕ̄(s)− ϕ(s)||2

As shown in Figure 3, the joint method is able to discover all of the modes. In addition, it converges
to the smallest level of L1 error, and is more efficient than state-based and edge-based formulations,
which validates its effectiveness in practice.

5 EXPERIMENTS

We conduct comprehensive experiments to understand the effectiveness of our method and inves-
tigate the following key questions: i) How does GAFlowNet compare against previous baselines?
ii) What are the effects of state and edge-based flow augmentation, the form of the intrinsic reward
mechanism, and critical hyperparameters? iii) Can it scale to larger-scale and more complex tasks?

5.1 GRIDWORLD

Figure 4: The
GridWorld task.

We first conduct a series of experiments based on GridWorld with sparse re-
wards (Figure 4). The task is the same as introduced in (Bengio et al., 2021a),
except that the reward function is sparse as described in Section 4, which makes
it much harder due to the challenge of exploration. With a larger value of the
size H , it requires the agent to plan in a longer horizon and learn from sparse re-
ward signals. Actions include operations to increase one coordinate as in (Ben-
gio et al., 2021a), and a stop operation indicating termination to guarantee that
the underlying MDP is a directed acyclic graph. We compare GAFlowNet
against strong baselines including Metropolis-Hastings-MCMC (Dai et al.,
2020), PPO (Schulman et al., 2017b), and a GFlowNet (Malkin et al., 2022).
We also include a variant of PPO with intrinsic rewards based on the same intrinsic motivation
mechanism using RND (Burda et al., 2018). All baselines are implemented based on the open-
source code1. Each algorithm is run for five random seeds, and we report their mean and standard
deviation. A detailed description of the hyperparameters and setup can be found in Appendix C.1.

5.1.1 PERFORMANCE COMPARISON

We conduct experiments on small, medium, and large GridWorlds with increasing sizes H . Full
results of other values of H can be found in Appendix C.3. To investigate the effectiveness of
GAFlowNet, we first compare it against baselines in terms of the empirical L1 error as computed
in Section 4. As shown in the first row in Figure 5, MCMC and PPO fail to converge due to
the particularly sparse rewards. Although PPO-RND has a smaller L1 error, it still underperforms
GFlowNets by a large margin. GAFlowNet converges fastest and to the smallest level of L1 error,
which shows that our method is effective to both explore efficiently and converge to sampling goals
with probability proportional to the extrinsic reward function even if the reward signals are sparse.

The number of modes that each method discovers during the course of training is shown in the
second row in Figure 5. Although incorporating PPO with intrinsic rewards improves the number
of discovered modes compared to that of PPO in larger-scale tasks, it still plateaus quickly. On
the other hand, GFlowNets can get trapped in a few modes, while GAFlowNet is able to discover
all of the modes efficiently. A detailed comparison in terms of performance can be found in Ap-
pendix C.4. Visualization of the learned structures can be found in Appendix C.2. Besides the

1https://github.com/GFNOrg/gflownet
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Small Medium Large

Figure 5: Comparison of GAFlowNets and baselines in GridWorld with increasing sizes correspond-
ing to each column (left: small, middle: medium, right: large). The first and second rows correspond
to empirical L1 error and the number of discovered modes, respectively.

particularly challenging sparse reward tasks, we show that GAFlowNets also provide consistent per-
formance improvement in tasks with dense reward functions as in (Bengio et al., 2021a; Malkin
et al., 2022). Results and discussions can be found in Appendix C.5 due to space limitations.

5.1.2 ABLATION STUDY

We now provide an in-depth ablation study on the important components and hyperparameters of
GAFlowNet in the large GridWorld task. We also study the effect of different mechanisms of intrin-
sic rewards besides RND, where results can be found in Appendix C.6.

The effect of state-based and edge-based flow augmentation. In Figure 6(a), we investigate the ef-
fect of edge-based, state-based, and joint intrinsic rewards. As discussed in Section 4, incorporating
intrinsic rewards for the trajectory in a state-based manner can result in slower convergence, which
has a large L1 error. On the other hand, augmenting the TB objective with intrinsic rewards in an
edge-based way still fails to motivate the agent to visit states with zero rewards. In contrast, the joint
augmentation mechanism is effective in both diversity and performance, achieving the smallest level
of L1 error in our experiments. It is also worth noting that only incorporating the intrinsic reward
for the terminal state using state-based augmentation is less efficient, which implies the importance
of both edge-based and terminal state-based intrinsic rewards.

The effect of the coefficient of intrinsic rewards. In practice, we scale intrinsic rewards by a
coefficient. Figure 6(b) illustrates the effect of the coefficient of the intrinsic rewards. A too small
coefficient does not improve the performance, while a too large coefficient converges slower. There
exists an intermediate value that provides the best trade off.
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Figure 6: Ablation study. (a) The effect of state-
and edge-based intrinsic rewards. (b) The effect
of the coefficient of intrinsic rewards.
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Figure 7: Empirical L1 error of GFlowNet and
GAFlowNet based on (a) DB and (b) FM.

5.1.3 VERSATILITY

We now demonstrate that our proposed framework is versatile by building it upon the other two
GFlowNet objectives based on the detailed balance (DB) (Bengio et al., 2021b) and flow matching
(FM) (Bengio et al., 2021a) criteria. Comparison of empirical L1 error averaged over increasing
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sizes H are summarized in Figure 7. As demonstrated, GAFlowNet also significantly improves
training convergence of DB and FM, which provides consistent improvement gains.

5.2 MOLECULE GENERATION

5.2.1 EXPERIMENTAL SETUP

We now investigate the effectiveness of our method in larger-scale tasks, by evaluating it on the more
challenging molecule generation task (Bengio et al., 2021a) as depicted in Figure 8(a). A molecule
is represented by a graph, which consists of a vocabulary of building blocks. The agent sequentially
generates the molecule by choosing where to attach a block and also which block to attach at each
step considering chemical validity constraints. There is also an exit action indicating whether the
agent decides to stop the generation process. This problem is challenging with large state (about
1016) and action (around 100 to 2000) spaces. The agent aims to discover diverse molecules with
high rewards, i.e., low binding energy to the soluble epoxide hydrolase (sEH) protein. We use
a pretrained proxy model to compute this binding energy. We consider a sparse reward function
here, where the agent only obtains a non-zero reward if the corresponding molecule succeeds to
meet a target score, and the reward is 0 otherwise. A detailed description of the environment is in
Appendix C.1.1. We compare our method with previous GFlowNet results (Bengio et al., 2021a),
PPO (Schulman et al., 2017b), PPO with intrinsic rewards based on RND, and MARS (Xie et al.,
2020). All baselines are run with three random seeds as in (Bengio et al., 2021a). More details for
the setup can be found in Appendix C.1.2.

5.2.2 PERFORMANCE COMPARISON

We follow the evaluation metric in (Bengio et al., 2021a) and investigate our method in both perfor-
mance and diversity. Figure 8(b) demonstrates the average reward of the top-10 unique molecules
generated by each method. The number of modes discovered by each method with rewards above
7.5 is summarized in Figure 8(c). We compute the average pairwise Tanimoto similarities for the
top-10 samples in Figure 8(d). Additional comparison results can be found in Appendix C.7.

(a)

0 1 2 3 4 5

States visited (×105)
6.0

6.5

7.0

7.5

8.0

Av
er

ag
e 

R 
of

 u
ni

qu
e 

to
p 

10

MARS
PPO
PPO-RND
GFlowNet
GAFlowNet

(b)

0 1 2 3 4 5

States visited (×105)

0

50

100

150

200

250

300

# 
of

 m
od

es
 w

ith
 R

>
7.

5

MARS
PPO
PPO-RND
GFlowNet
GAFlowNet

(c)

0 1 2 3 4 5

States visited (×105)
0.25

0.30

0.35

0.40

0.45

0.50

0.55

Ta
ni

m
ot

o 
sim

ila
rit

ie
s

MARS
PPO
PPO-RND
GFlowNet
GAFlowNet

(d)

Figure 8: Molecule generation task. (a) The environment. (b) Average reward of the top-10
molecules. (c) The number of modes with R > 7.5. (d) Tanimoto similarity (lower is better).

As shown, MARS fails to perform well given sparse rewards since most of the reward signals are
non-informative. On the other hand, PPO and its variant with intrinsic rewards are better at finding
higher-quality solutions than MARS, but suffer both from high similarities of the samples. The
unaugmented GFlowNet is better at discovering more diverse molecules, but does not perform well
in terms of solution quality. GAFlowNet significantly outperforms baseline methods in performance
and diversity. We also visualize the top-10 molecules generated by GFlowNet and GAFlowNet in a
run in Appendix C.8. As shown, GAFlowNet is able to generate diverse and high-quality molecules
efficiently, which demonstrates consistent and significant performance improvement.

6 CONCLUSION

In this paper, we propose a new learning framework, GAFlowNet, for GFlowNet to incorporate
intermediate rewards. We specify intermediate rewards by intrinsic motivation to tackle the explo-
ration problem of GFlowNets in sparse reward tasks, where it can get trapped in a few modes. We
conduct extensive experiments to evaluate the effectiveness of GAFlowNets, which significantly
outperforms strong baselines in terms of diversity, convergence, and performance when the rewards
are very sparse. GAFlowNet is also scalable to complex tasks like molecular graph generation.
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A DERIVATION OF EDGE-BASED, STATE-BASED, AND JOINT INTERMEDIATE
REWARD AUGMENTATION

For the edge-based intermediate reward augmentation, we can obtain the detailed balance objective
with the incorporation of intermediate rewards as in Eq. (8) following Section 4.1.

F (st−1)PF (st|st−1) = F (st)PB(st−1|st) + r(st−1 → st). (8)

Therefore, we have that
t = 1 F (s0)PF (s1|s0) = F (s1)PB(s0|s1) + r(s0 → s1)

...
...

t = n F (sn−1)PF (sn|sn−1) = F (sn)PB(sn|sn−1) + r(sn−1 → sn)

(9)

By accumulative multiplication on both sides, we get that

F (s0) · · ·F (sn−1)

n−1∏
t=0

PF (st+1|st) = F (s1) · · ·F (sn)

n−1∏
t=0

[
PB(st|st+1) +

r(st → st+1)

F (st+1)

]
.

(10)

Therefore, we obtain the corresponding edge-based reward augmented formulation for trajectory
balance as

F (s0)

n−1∏
t=0

PF (st+1|st) = F (sn)

n−1∏
t=0

[
PB(st|st+1) +

r(st → st+1)

F (st+1)

]
, (11)

where F (s0) = Z =
∑

x R(x) +
∑

st−1→st
r(st−1 → st), and F (sn) = R(x).

The state-based reward augmented formulation can be obtained similarly by following Appendix
D in (Bengio et al., 2021b). The joint reward augmented formulation is obtained by combining
edge-based and state-based reward augmentation.

B PROOF OF THEOREM 1

Theorem 1. Suppose that ∀τ,LGAFlowNet(τ) = 0, and ∀x, R(x) + r(x) > 0. When edge-based
intrinsic rewards converge to 0, we have that (1) P (x) = R(x)+r(x)∑

x[R(x)+r(x)] ; (2) If state-based intrinsic
rewards converge to 0, then P (x) is an unbiased sample distribution.

Proof. By definition, we have that

Fθ(τ) = Z

n−1∏
t=0

PF (st+1|st). (12)

Since ∀τ,LGAFlowNet(τ) = 0, we have that

Z

n−1∏
t=0

PF (st+1|st) = (R(x) + r(x))

n−1∏
t=0

[
PB(st|st+1) +

r(st → st+1)

F (st+1)

]
(13)

Therefore, we obtain that

Pθ(τ) =
Fθ(τ)

Z
=

R(x) + r(x)

Z

n−1∏
t=0

[
PB(st|st+1) +

r(st → st+1)

F (st+1)

]
. (14)

When edge-based intrinsic rewards converge to 0 and F does not vanish, we have that

Pθ(x) =
∑

τ=(s0→···→sn=x)

Pθ(τ) =
R(x) + r(x)

Z

∑
τ=(s0→···→sn=x)

n−1∏
t=0

PB(st|st+1). (15)
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Due to the law of total probability, we have that

∑
τ=(s0→···→sn=x)

n−1∏
t=0

PB(st|st+1) = 1. (16)

Therefore, Pθ(x) =
R(x)+r(x)

Z . As
∑

x Pθ(x) = 1, we also get that Z =
∑

x (R(x) + r(x)).

Therefore, we have Part (1) that

Pθ(x) =
R(x) + r(x)∑
x [R(x) + r(x)]

(17)

Based on the above analysis, P (x) is an unbiased estimation when state-based intrinsic rewards
converge to 0, and we have Part (2).

C EXPERIMENTAL DETAILS

C.1 EXPERIMENTAL SETUP

C.1.1 TASK

The molecule generation task We adopt a pretrained proxy model for the reward, which is trained
on a dataset of 300, 000 molecules that are randomly generated as provided in (Bengio et al., 2021a).
For the original dense reward function, the agent receives a reward based on the normalized score.
Here, we use a sparse reward function, where the agent only obtains the original non-zero reward
if the normalized score succeeds to meet a target score (7.0), and the reward is 0 otherwise. As
described in Section 5.2.1, the agent can choose one of the blocks to attach from the basic building
blocks vocabulary (with a size of 105).

C.1.2 BASELINE

All baseline methods are implemented based on the open-source implementation as described in the
main text, where we follow the default hyperparameters and setup as in (Bengio et al., 2021a). The
code will be released upon publication of the paper.

GridWorld Specifically, in GridWorld, the GFlowNet model is a feedforward network consisting
of two hidden layers with 256 hidden units per layer using LeakyReLU activation. We train all
models based on samples from a parallel of 16 rollouts in the environment. We leverage random
network distillation (RND) (Burda et al., 2018) as the intrinsic reward mechanism, where the random
target network and the predictor network are both feedforward networks consisting of two hidden
layers with 256 hidden units per layer using LeakyReLU activation. We train the GFlowNet model
and RND jointly based on the Adam (Kingma & Ba, 2014) optimizer with a learning rate of 0.001
for the policy models (PF and PB) and 0.1 for Z.

Molecule generation For the molecule generation task, we use a reward proxy provided in (Ben-
gio et al., 2021a). As the molecule is represented as an atom graph, we use Message Passing Neural
Networks (MPNN) (Gilmer et al., 2017) as the network architecture for all models. Note that we
build our method upon GFlowNet based on the flow matching criterion in the molecule generation
task, since it is the most competitive version in this task in terms of finding high-quality and diverse
candidates.

For GAFlowNet, the only hyperparameter that requires tuning is the coefficient α of intrinsic re-
wards, where we use a same value for state-based and edge-based augmentation. We tune α in
{0.001, 0.005, 0.01, 0.05, 0.1, 0.5} with grid search. Specifically, α = 0.001 for GridWorld with all
values of horizon except for H ∈ {16, 64}, where we set α to be 0.005. For the molecule generation
task, α is set to be 0.1.
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C.2 VISUALIZATION OF THE LEARNED STRUCTURES

In this section, we visualize the learned forward policies of GFlowNets and GAFlowNets. The
results are demonstrated in Figure 9 in the small GridWorld, and the borders (the last column and
the last row) of the grid are omitted in the figure for better readability. The length of the arrows is
proportional to the likelihood of the corresponding actions under the forward policy PF , while the
size of the gray circle is proportional to the probability of the termination action (stop). As shown,
GFlowNet can get trapped in a few modes, while GAFlowNets is able to discover all the modes.

(a) (b)

Figure 9: Visualization of the learned forward policies of (a) GFlowNets and (b) GAFlowNets in
GridWorld (horizon H = 8).

The corresponding distribution of the samples collected by GFlowNets and GAFlowNets during
the course of training in the small GridWorld task is shown in Figure 10, where GAFlowNets
leads to more diverse solutions. Visualization of the top molecules discovered by GFlowNets and
GAFlowNets can be found in Appendix C.8.

(a) (b)

Figure 10: Distribution of the samples during the course of training from (a) GFlowNets and (b)
GAFlowNets in GridWorld (horizon H = 8).

C.3 FULL RESULTS IN GRIDWORLD

We show in Figure 11 the full comparison results in GridWorld with increasing sizes
H{8, 16, 32, 64, 128}. As shown, GAFlowNet significantly outperforms baselines in empirical L1

error and the number of modes found.

C.4 PERFORMANCE COMPARISON

Apart from evaluating our method based on the metrics (the number of modes discovered by each
method and empirical L1 error) as in (Bengio et al., 2021a), we are also interested in its perfor-
mance after each update. Here, we evaluate the performance of baselines after each update (instead
of throughout the training process) as in the evaluation scheme of RL algorithms. Figure 12 demon-
strates the performance for the top-5 solutions among a batch of 16 parallel rollouts of each method
after each update for GridWorld with sizes H ∈ {8, 16, 32, 64, 128}. As shown, although PPO is
more efficient than PPO, both of them underperform GFlowNet by a large margin (especially with
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Figure 11: Comparison of GAFlowNets and baselines in GridWorld with increasing sizes H ∈
{8, 16, 32, 64, 128}. (a), (c), (e), (g), (i) correspond to the empirical L1 error. (b), (d), (f), (h), (j)
correspond to the number of modes discovered by each method.

a larger value of H). We find that GAFlowNet significantly outperforms baseline methods, and also
performs more efficiently than GFlowNet.
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Figure 12: Top-K performance of baselines after each update for horizon H ∈ {8, 16, 32, 64, 128}.
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C.5 ADDITIONAL RESULTS ON GRIDWORLDS WITH DENSE REWARDS

In this section, we evaluate the performance of GAFlowNets in a variant of GridWorld with dense
reward functions. We employ the same reward function (Eq. (18)) as in (Bengio et al., 2021a;
Malkin et al., 2022) with R0 = 1e − 3 (the hardest variant of the grid considered in (Bengio et al.,
2021a; Malkin et al., 2022)), which is shown in Figure 13(a). Note that when R0 is closer to 0,
the problem becomes more difficult as it results in a region of the state space that is undesirable to
explore (Bengio et al., 2021a).

R(x) = R0 +
1

2

∏
i

I (0.25 < |xi/H − 0.5|) + 2
∏
i

I (0.3 < |xi/H − 0.5| < 0.4) (18)

Comparison results of GAFlowNets and GFlowNets in empirical L1 error in GridWorlds with differ-
ent sizes H ∈ {8, 16, 32, 64, 128} are shown in Figures 13(b)-(f). As demonstrated, GAFlowNets
also greatly improve the learning efficiency of GFlowNets. This is because GAFlowNets exhibit
greater exploration ability, and are more efficient in choosing training trajectories that the agent is
not very familiar with yet and may have a high reward (Bengio et al., 2021b). Therefore, it achieves
consistent performance improvement.
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Figure 13: (a) The dense reward function. (b)-(f) Empirical L1 error of GAFlowNets and GFlowNets
in GridWorld with dense reward functions for horizon H ∈ {8, 16, 32, 64, 128}.

C.6 ADDITIONAL ABLATION STUDY OF GAFLOWNET
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Figure 14: Ablation study on
different types of intrinsic re-
wards.

We investigate the effect of different types of intrinsic rewards in-
cluding Intrinsic Curiosity Module (ICM) (Pathak et al., 2017),
Novelty Difference (NovelD) (Zhang et al., 2021), and Random
Network Distillation (RND) (Burda et al., 2018) in Figure 14, with
fine-tuned coefficients for intrinsic rewards. We also include a base-
line with constant intrinsic rewards in GAFlowNet, which mimics
the behavior of ϵ-greedy exploration typically used in reinforcement
learning algorithms. As demonstrated, GAFlowNet is not sensi-
tive to the forms of intrinsic rewards, but RND enables the fastest
convergence in our simulations. It also validates the effectiveness
of the novelty-based methods from the comparison of GAFlowNet
and GAFlowNet with constant intrinsic rewards. This is because
novelty-based methods are more efficient than blindly wandering in
the maze.
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C.7 ADDITIONAL PERFORMANCE COMPARISON ON THE MOLECULE GENERATION TASK

Following the evaluation metrics in (Bengio et al., 2021a), besides the results in Figure 8 in the
main text, we also evaluate the average reward of the top-100 molecules and the number of modes
with R > 8.0 discovered by each method. As demonstrated in Figure 15, GAFlowNet achieves
consistent and significant performance improvement over previous baselines.
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Figure 15: Molecule generation task. (a) The average reward of the top-100 molecules. (b) The
number of modes with R > 8.0.

C.8 FULL VISUALIZATION OF TOP-10 MOLECULES

Figure 16 demonstrates the top-10 molecules generated by GFlowNet and GAFlowNet, where
GAFlowNet discovers more diverse and higher-quality solutions.

(a) GFlowNet. Tanimoto similarity is 0.410 and the average reward is 7.747.

(b) GAFlowNet. Tanimoto similarity is 0.356 and the average reward is 8.120.

Figure 16: Full visualization of top-10 molecules generated by GFlowNet and GAFlowNet.
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