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Abstract

Explanable AI (XAI) and Natural Language001
Processing (NLP) researchers often rely on002
humans to annotate both labels and natural003
language rationales (explanations) with the004
goal that models can utilize these rationales005
to improve model performance, or can gener-006
ate human-understandable explanations. How-007
ever, human-annotated rationales are very sub-008
jective and could be low-quality, as some re-009
cent works discovered. The vital question010
arises: how can we evaluate the quality of011
the human-annotated natural language ra-012
tionales? In this paper, we propose Treu , a013
trainable evaluation metric that can evaluate014
the helpfulness of natural language rationales015
towards models’ prediction performances for a016
wide range of NLP tasks and models with the017
help of a unified data structure. Our evaluation018
experiment on five popular datasets with two019
different model architectures demonstrates that020
Treu can coherently and faithfully evaluate the021
quality of rationales among datasets while the022
Simulatability metric fails. Treu score can023
also reveal rationale’s quality towards specific024
classes in a multi-class classification task.025

1 Introduction026

Despite today’s large-scale language models027

(LLM) (Devlin et al., 2019; Radford et al., 2019;028

Lewis et al., 2019; Raffel et al., 2020) can exhibit029

close-to-human performance on many natural lan-030

guage processing (NLP) tasks (e.g., Question An-031

swering (Rajpurkar et al., 2016; Kočiskỳ et al.,032

2018; Mou et al., 2021), Natural Language Infer-033

ence (Bowman et al., 2015; Williams et al., 2017;034

Wang et al., 2018), and Text Generation (Duan035

et al., 2017; Yao et al., 2022)), human are eager to036

know how these State-of-the-Art (SOTA) models037

arrive at a prediction. Researchers working around038

natural language rationales1 turned to human an- 039

notators for help by recruiting crowd-workers or 040

domain experts to annotate both the labels and cor- 041

responding natural language rationales as expla- 042

nations to their label annotation (Camburu et al., 043

2018; Rajani et al., 2019; Aggarwal et al., 2021), 044

with which they can then leverage these human- 045

annotated rationales to boost up models’ perfor- 046

mance or train models to generate explanations 047

that people can understand. 048

However, the quality issue around such human- 049

annotated rationales has been under-explored. Re- 050

searchers intuitively leverage popular NLG metrics 051

such as BLEU (Papineni et al., 2002), ROUGE (Lin, 052

2004) and Simulatability to evaluate the coher- 053

ence and similarity between model-generated and 054

human-annotated rationales, with a strong assump- 055

tion that human-annotated rationales are the gold 056

standard. We argue that the core value of ratio- 057

nales is how much helpfulness they can provide 058

for the model’s prediction performance instead of 059

semantic similarity between each other. 060

Unlike labeling for the classification or multi- 061

ple choice tasks, different people may come up 062

with distinct and subjective natural language ratio- 063

nales for the same observation, and such rationales 064

are task-dependent. As a result, human-annotated 065

natural language rationales should not be simply 066

treated as the gold standard, and the community is 067

eager for a coherent metric that can automatically 068

and truthfully evaluate the helpfulness of rationales 069

towards models’ prediction performance. 070

To fill this gap, we propose Treu score, a 071

trainable evaluation metric for rationales to eval- 072

1In this paper, we use “rationales” and “natural language
rationales” to refer to the collective concepts of “free-form
rationale”, “free-text explanation”, and “natural language ex-
planation”, which differs from “rule-based” or “extractive”
explanations.
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Figure 1: Unified structure of Baseline and Infusion settings. Bold text are fixed prompts for each dataset. We
show corresponding Infusion data format of classification task like e-SNLI and multiple choice task like CoS-E
and ComVE into our unified structure. ECQA will share the same structure as CoS-E. The color schema follows:
blue denotes the question content; green denotes the choice content; orange denotes the rationales.

uate the helpfulness of rationales towards mod-073

els’ performance faithfully. Furthermore, inspired074

by SOTA sequence-to-sequence language models075

(e.g., T5 (Raffel et al., 2020) and BART (Lewis076

et al., 2019)), we also propose a unified data format077

with template-based prompts to be used together078

with Treu metric, which can convert any classifica-079

tion or multiple choice tasks into a unified multiple080

choice generation task format. The benefit of the081

unified data format is that we can minimize the082

influence of structural variations across different083

tasks towards models’ prediction performance so084

that Treu score can evaluate the helpfulness of ra-085

tionales faithfully. We provide two settings for the086

unified data structure where researchers can decide087

to include rationales (Infusion hereinafter) or not088

include the rationales (Baseline hereinafter) into089

the input. Details are shown in Figure 1.090

We conduct an experiment to compare the pro-091

posed Treu score against the current practice of the092

Simulatability score (Doshi-Velez and Kim,093

2017) when evaluating the human-annotated ra-094

tionale’s quality on five popular datasets. The re-095

sult shows that the Treu score can provide con-096

sistent evaluation ranks of the rationale’s quality097

across all five datasets on two benchmark model098

architectures, while the Simulatability score099

fails. Our Treu takes into account the helpful-100

ness of rationales during prediction for both mod-101

els fine-tuned with Baseline and Infusion ,102

while the Simulatability score only reflects 103

the helpfulness of rationales on baseline models. 104

As a result, in the case of two datasets with low 105

Simulatability scores, our Treu metric sug- 106

gests that the rationales in both datasets can pro- 107

vide helpfulness to prediction performance when 108

the model is fine-tuned with these rationales un- 109

der the Infusion setting. Furthermore, our Treu 110

score can truthfully reflect quality issues with ra- 111

tionales for the specific class(es) in a classification 112

task dataset with class-level Treu scores. We spec- 113

ulate that SOTA models have limited capabilities 114

for interpreting the negation connotations that ap- 115

pear in large numbers in rationales of those datasets 116

with low Treu scores. We conclude our paper with 117

limitations and future research directions. 118

2 Related Work 119

2.1 Datasets with Natural Language 120

Rationales 121

Despite the development of new model architec- 122

tures and potentially more significant parameters, 123

they still lack the ability to explain their prediction, 124

which leads to the whole community being eager 125

for human-annotated rationales to teach models ei- 126

ther leverage rationales during training or be able 127

to self-rationalize during prediction. For example, 128

Wiegreffe and Marasovic (2021) recently reviewed 129

65 datasets and provided a 3-class taxonomy of 130

explanations: highlights, free-text, and structured. 131
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Dataset Task Task Format
Data Instances Average Rationale

Length (token)Train Valid Test

CoS-E v1.0 Commonsense QA 3-choice Multiple-Choice 7610 950 - 16.148
CoS-E v1.11 Commonsense QA 5-choice Multiple-Choice 9741 1221 - 8.996
ECQA Commonsense QA 5-choice Multiple-Choice 7598 1098 2194 63.572
e-SNLI Natural Language Inference 3-label Classification 549367 9842 9824 15.977
ComVE Commonsense Validation 2-choice Multiple-Choice 10000 1000 1000 10.288

Table 1: Task description and core statistics for popular large scale datasets with human-annotated natural language
rationales that are included in the evaluation using our proposed Treu metric.

We focus on five large publicly available datasets132

that have human-annotated rationales at the in-133

stance level (Table 1). We double-checked these134

datasets’ licenses, and there is no personally identi-135

fiable information.136

The most prominent dataset is CoS-E and its two137

variants CoS-E v1.0 and CoS-E v1.11(Rajani et al.,138

2019)). It extended the Commonsense Question-139

Answering (CQA v1.0 and v1.11 versions) dataset140

(Talmor et al., 2018) by adding human-annotated141

rationales to the single correct answer choice. How-142

ever, a few recent works suggest that the CoS-E’s143

rationale quality is not good, as Narang et al. (2020)144

independently hand-labeled some new rationales145

for CoS-E and found a very low BLEU score be-146

tween its original rationales and the new ones. To147

improve the rationale’s quality, ECQA (Aggarwal148

et al., 2021) recruited human annotators to add a149

single-sentence explanation for every answer op-150

tion, then summarized them into a natural language151

rationale for every data instance in the CQA v1.11152

dataset. Sun et al. (2022) proved that CoS-E ra-153

tionales are not as good as ECQA rationales as154

human evaluators do not believe CoS-E rationales155

can provide additional information to support their156

decision makings. The fourth dataset is e-SNLI157

(Camburu et al., 2018), which consists with ratio-158

nales for the Stanford Natural Language (SNLI)159

dataset (Bowman et al., 2015). The fifth dataset is160

ComVE (Wang et al., 2020) that asks which one of161

two sentences is against commonsense. Later we162

evaluate the proposed Treu metric against the base-163

line metric for the quality of human-annotated natu-164

ral language rationales using all these five datasets.165

Worth mentioning we do not include datasets166

such as SBIC (Sap et al., 2019) or E-δ-NLI (Brah-167

man et al., 2021) because the former does not168

provide rationales for all the data, while the lat-169

ter approaches to generate rationales through vari-170

ous sources to augment the δ-NLI (Rudinger et al.,171

2020) dataset instead of human annotations.172

2.2 Evaluation Metric for Rationales 173

Many commonly used evaluation metrics for text- 174

based content like BLEU (Papineni et al., 2002) 175

and ROUGE (Lin, 2004) treat human-annotated 176

answers as the absolute gold standard, which can- 177

not evaluate the quality of them. One established 178

evaluation metric called Simulatability score 179

derives from Human Simulatability (Doshi-Velez 180

and Kim, 2017) and can examine gold rationales. It 181

simply measures the change in a baseline model’s 182

prediction performance, whether the rationale is 183

provided as the input or not. Previous works (Chan- 184

drasekaran et al., 2018; Yeung et al., 2020; Hase 185

et al., 2020; Wiegreffe et al., 2020; Poursabzi- 186

Sangdeh et al., 2021; Rajagopal et al., 2021) have 187

demonstrated the usefulness of Simulatability 188

score for evaluating rationale quality. However, 189

this metric has a couple of inherent disadvantages. 190

First, it only considers the helpfulness of rationales 191

as input during prediction on a baseline model, 192

where we prove that rationales provide different 193

helpfulness during fine-tuning and prediction in 194

our preliminary experiment. Besides, a model’s 195

performance could also differ when we form the 196

original task with the same data into other tasks, 197

such as a classification task into a multiple-choice 198

task or a generation task with different input data 199

prompts and structures. In contrast, our proposed 200

Treu evaluation metric complements both draw- 201

backs of the Simulatability score by consider- 202

ing the helpfulness of rationales both at fine-tuning 203

and predicting with the help of a unified structure 204

to minimize the impact of task differences. 205

2.3 Usage of Rationales for SOTA models 206

Existing works have been exploring circumstances 207

in which rationales can or cannot improve model 208

performance; for example, Hase and Bansal (2021) 209

argues that rationales are most suitable for use as 210

model input for predicting. Some recent works 211

have been trying to generate better rationales with 212

a self-rationalization setting (Wiegreffe et al., 2020; 213
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Marasović et al., 2021), where a model is asked214

to generate the prediction label and rationale at215

the same time. We conduct a preliminary experi-216

ment to find the best setting for models to leverage217

rationales for better prediction performance in Sec-218

tion 4.1. There also exist many recent works (Paran-219

jape et al., 2021; Liu et al., 2021; Chen et al., 2022)220

that explore the usage of prompts to complete ra-221

tionales, generate knowledge as additional infor-222

mation for the original task, or examine whether223

generated rationales can provide robustness to ad-224

versarial attacks. Another related line of research225

focuses on extracting or generating rationales with226

a unified framework (Chan et al., 2022) or with a227

teachable reasoning system that generates chains228

of reasoning (Dalvi et al., 2022).229

3 Unified Structure230

While popular metrics like BLEU and ROUGE can231

evaluate text coherence and similarity, what is vi-232

tal to rationales is how much helpfulness they can233

provide for the model’s prediction. The desiderata234

are to develop a metric that can faithfully evalu-235

ate rationales’ utility towards model performance.236

We expect an excellent metric can systematically237

demonstrate how good or bad the rationales are, for238

example, what does ‘noisy’ mean in a human study239

from previous works on CoS-E rationales.240

With the advantage of sequence-to-sequence241

models like T5 that can map different types of lan-242

guage tasks into generation tasks, we can control243

and minimize the influence of varying task for-244

mats on model performance while evaluating the245

helpfulness of rationales by leveraging a unified246

data format. We realize that existing datasets with247

human-annotated rationales are mostly either mul-248

tiple choices tasks or classification tasks, and the249

classification task could be viewed as a multiple-250

choice task where the labels are indeed choices. In-251

spired by several previous works that manipulated252

prompts for sequence-to-sequence models (Maraso-253

vić et al., 2021; Liu et al., 2021), we incorporate a254

few well-defined words as a template-based prompt255

for the unified data structure to indicate the task256

content and corresponding rationale.257

Examples are shown in Figure 1 to explain how258

to map various tasks into a unified multiple choice259

generation task. We propose two settings: no ra-260

tionales (Baseline ) and rationales as additional261

input (Infusion ). Several template-based prompt262

words across all datasets infer the data’s basic struc-263

Rationales as
Input vs Output

Fine-tune Setting

Baseline Self-rationalization Infusion

CoS-E v1.0 0.695 0.646 0.878
ECQA 0.572 0.513 0.989

Table 2: Preliminary experiment results of using ra-
tionales as part of Input(Infusion ) vs Output(Self-
rationalization) vs without rationales (Baseline ) on
CoS-E and ECQA datasets.

ture, such as 1). ‘explain’ is the leading word fol- 264

lowed by the question content, 2). everything after 265

‘choicen’ will be a candidate answer to be gen- 266

erated, and 3). special token ‘<sep>’ separates 267

the rationales from the task content, and the ra- 268

tionales in Infusion will be led by ‘because’ so 269

that the model can infer the rationales are going to 270

explain the task content. For datasets like CoS-E 271

and ECQA, we leverage the original task as the 272

question content. On the other hand, we define a 273

fixed question prompt for e-SNLI: “what is the re- 274

lation between [Premise] and [Hypothesis]?” and 275

for ComVE: “which sentence is against common- 276

sense?” to specify corresponding tasks to models. 277

4 Preliminary Experiment 278

4.1 Utilizing Rationales as Part of Input V.S. 279

Part of Output 280

Recent works have been exploring various circum- 281

stances that human-annotated rationales could help 282

in different aspects; for example, Hase and Bansal 283

(2021) argued that explanation as additional input 284

would best suit performance improvement. Maraso- 285

vić et al. (2021) proposed self-rationalize models, 286

which generates rationales along with prediction 287

label, and can generate more reasonable rationales. 288

However, they do not provide prediction accuracy 289

compared with the baseline. We hypothesize that 290

leveraging rationales as additional input informa- 291

tion with the original task input allows models to 292

use rationales for better prediction, while the self- 293

rationalization setting complicates the prediction 294

task for the models and may lead to a prediction 295

performance decrease. We conduct a preliminary 296

experiment on CoS-E v1.0 and ECQA datasets to 297

justify our hypothesis. 298

We fine-tune a T5-base model on each 299

dataset with three different settings: Baseline 300

, Infusion , and rationales as additional output 301

(Self-rationalization hereinafter) For each model, 302

we maintain the same setting during fine-tuning and 303

inference. For example, the model fine-tuned with 304

4



Infusion will also take data under Infusion dur-305

ing inference. We leverage the unified structure for306

Baseline and Infusion shown in Figure 1 and307

make minor adjustments for the self-rationalization308

setting accordingly (shown in Appendix A).309

The experiment results are shown in Table 2. We310

notice that the self-rationalization setting performs311

worse than the Baseline , which is aligned with312

our assumption. On the other hand, the Infusion313

setting surprisingly achieves significant improve-314

ment on CoS-E, which was considered ‘noisy’ by315

previous works, demonstrating that the CoS-E ra-316

tionales still provide helpfulness to the model’s per-317

formance. The Infusion setting also approaches318

nearly complete correctness on the ECQA dataset.319

4.2 Rationales as Partial Input During320

Fine-Tuning321

In order to examine what is the utility of ratio-322

nales to the models during fine-tuning, we perform323

an in-depth experiment with the Baseline and324

Infusion setting. First, we fine-tune a series of325

models with gradually increased training data and326

analyze the models’ prediction performance. More327

specifically, we randomly shuffle and select 9 sub-328

datasets of varying amounts of data ranging from329

10% to 90% of the training data in each dataset330

we used in the first preliminary experiment. Then,331

for each sub-dataset, we fine-tune three different332

models with randomly shuffled random seeds for333

sampling and fine-tuning, then acquire the average334

prediction performance over three models. As a335

result, for each CoS-E v1.0 and ECQA dataset, we336

get 60 models fine-tuned with varying amounts of337

data for both the Baseline and Infusion setting,338

including the models fine-tuned on full training339

data, then perform prediction with the Baseline340

and Infusion settings. We maintain the same341

hyper-parameters across the models fine-tuned for342

this experiment and report them in Appendix B.1.343

From the two prediction performance diagrams344

in Figure 2 (detailed results in Appendix 4), we345

notice that the addition of training data does not346

consistently improve the performance of models347

fine-tuned with the Infusion setting (yellow and348

green line), proving that the fine-tuning process is349

not teaching the model with new knowledge that350

was supposed to be conveyed in the rationales. Be-351

sides, the models fine-tuned with Infusion setting352

perform worse than baselines when no rationales353

are provided during inference (yellow and blue354

(a) CoS-E v1.0

(b) ECQA

Figure 2: Rationales as partial input during fine-tuning
on CoS-E v1.0 (top) and ECQA (bottom) with different
amount of training data. We perform fine-tuning and
predicting for both Baseline and Infusion settings.

line correspondingly), demonstrating that the fine- 355

tuning of Infusion setting teaches the models to 356

rely on the rationale part of the input to predict. 357

Additionally, we observe that the baseline models 358

for CoS-E perform worse while predicting with 359

Infusion setting than with Baseline . In con- 360

trast, the baseline models for ECQA consistently 361

exceed baseline performance by a significant mar- 362

gin while predicting with the Infusion setting 363

(the red lines). This observation is aligned with 364

previous works that many of the rationales in the 365

CoS-E dataset are low-quality, while the rationales 366

in ECQA have much better quality. The prelimi- 367

nary experiment demonstrates that the rationales 368

provide different helpfulness during fine-tuning and 369

inference. Thus, both situations should be consid- 370

ered while evaluating the quality of rationales. 371

5 Treu Evaluation Metric 372

5.1 Definition 373

From the preliminary experiment, we have ob- 374

served that 1) rationales provide the most help- 375

fulness as additional input, and 2) rationales pro- 376
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Figure 3: The formula of our Treu metric. M denotes a
model and the subscript denotes (inference setting | fine-
tune setting). Our score incorporates the helpfulness of
rationales at both fine-tuning and inference.

vide different helpfulness to the model’s prediction377

performance during fine-tuning and inference. As378

a result, we propose Treu score along with the379

unified structure we proposed in Section 3. Fig-380

ure 3 shows the formula of Treu score. Treu score381

evaluates the quality of rationales with the sum of382

two parts: helpfulness at inference only, where the383

model is fine-tuned with Baseline setting, and at384

fine-tuning as well as inference, where the model385

is fine-tuned with Infusion setting. In each part,386

the helpfulness is calculated by the prediction per-387

formance difference between the Infusion and388

Baseline settings on the same model.389

A positive score demonstrates that the rationales390

provide overall helpfulness for better prediction,391

while a negative score does not necessarily mean392

the rationales are not helpful. Instead, a negative393

score indicates the rationales lead to the model’s394

prediction performance drop in at least one part395

of the evaluation. By further analyzing the inter-396

mediate score for each part, researchers can locate397

when rationales do not help improve the model’s398

performance. As a result, the Treu score ranges399

theoretically from -2 to 2. In comparison, the400

Simulatability score only considers the second401

part within our Treu score formula and without the402

control of influence from various task structures.403

5.2 Experiment404

We evaluate human-annotated natural language ra-405

tionales across five popular datasets using our eval-406

uation metric and the Simulatability score. To407

justify that our Treu score is independent of the408

specific model architecture and to examine the in-409

fluence of different pre-trained models over the410

prediction performance, we perform experiments411

with five datasets on T5 and BART with the base412

models as the backbone for fine-tuning. During413

our evaluation, we also leverage the unified data414

structure for the Simulatability score to make415

it a much stronger baseline. 416

We maintain the same fine-tuning hyper- 417

parameter for all the models in the experiment 418

(details in Appendix B.2). The only exception 419

is the e-SNLI dataset, which has about 10x the 420

size (549,367 data instances) of training data com- 421

pared to the other datasets. Therefore, we only fine- 422

tune models on e-SNLI dataset with two epochs. 423

Furthermore, for the experiments with BART, we 424

leverage the special token ‘<s>’ used during the 425

pre-training process instead of ‘<sep>’ and ask 426

the BART tokenizer to add special tokens during 427

tokenization automatically. 428

Table 3 presents the evaluation results. The or- 429

dering of datasets in each table is based on our 430

Treu score, while the inconsistent ranking of the 431

Simulatability score is marked red. We further 432

provide Treu score by class for the dataset of clas- 433

sification task, which is e-SNLI, to examine the 434

difference of helpfulness per class, where class1 / 435

class2 / class3 refers to entailment / neutral / con- 436

tradiction correspondingly. 437

5.3 Observation 438

By first comparing the models’ prediction results 439

based on two architectures, we notice performance 440

differences among all datasets. More specifi- 441

cally, all models fine-tuned on T5-base outper- 442

form the ones fine-tuned on BART-base with the 443

same setting, mostly with a significant margin. De- 444

spite apparent performance differences between 445

model architectures, by looking at the orderings 446

of datasets in both tables, which are based on our 447

Treu score, We can easily observe that Treu score 448

provides the same ranking result for the quality 449

of rationales in 5 datasets over two model archi- 450

tectures. Based on Treu scores in Table 3, rel- 451

atively speaking, rationale quality varies in the 452

different datasets roughly in the following order: 453

ECQA > CoS-E v1.11 > CoS-E v1.0 > e-SNLI > ComVE 454

According to Treu score, rationales in ECQA 455

have the best quality among five datasets. Espe- 456

cially, rationales in ECQA are much better than the 457

ones in both CoS-E datasets, which is consistent 458

with previous works’ consensus that rationales in 459

CoS-E are much worse than ECQA. It is worth 460

noticing that both CoS-E datasets achieve posi- 461

tive Treu scores, though significantly lower than 462

the ones for ECQA, demonstrating that rationales 463

in CoS-E datasets still have positive overall help- 464
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T5-base
Fine-tune with Baseline Fine-tune with Infusion

Simulatability
Score

Treu
Score

Treu score by class

predict with
Baseline

predict with
Infusion

predict with Infusion class1 class2 class3

ECQA 0.572 0.746 0.989 0.174 0.591
CoS-E v1.11 0.608 0.610 0.803 0.002 0.197
CoS-E v1.0 0.695 0.645 0.878 -0.05 0.133
e-SNLI 0.907 0.676 0.981 -0.231 -0.157 0.13 -0.483 0.094
ComVE 0.88 0.527 0.949 -0.353 -0.284

BART-base
Fine-tune with Baseline Fine-tune with Infusion

Simulatability
Score

Treu
Score

Treu score by class

predict with
Baseline

predict with
Infusion

predict with Infusion class1 class2 class3

ECQA 0.428 0.438 0.901 0.010 0.483
CoS-E v1.11 0.443 0.449 0.700 0.006 0.263
CoS-E v1.0 0.512 0.486 0.790 -0.026 0.252
e-SNLI 0.888 0.658 0.978 -0.23 -0.14 0.115 -0.277 -0.271
ComVE 0.812 0.596 0.864 -0.216 -0.164

Table 3: Evaluation results of human-annotated rationales in 5 datasets with our Treu score and Simulatability
score. The tables above and below correspond to models fine-tuned on T5-base and BART-base, respectively. The
ordering of datasets is based on our Treu score, and the inconsistent ranking of Simulatability score is marked
red. For e-SNLI which is the only classification task in the experiment, class1 / class2 / class3 refers to entailment /
neutral / contradiction respectively.

fulness for models’ prediction performance even465

though they are considered ‘low quality and noisy’466

by human experiments in previous works.467

On the other hand, the Simulatability score468

cannot provide a consistent ranking of rationale469

quality among five datasets on two model architec-470

tures. Based on the two models, Simulatability471

score provides two distinct rankings:472

T5-base:473

ECQA > CoS-E v1.11 >474

CoS-E v1.0 > e-SNLI > ComVE475

BART-base:476

ECQA > CoS-E v1.11 >477

CoS-E v1.0 > ComVE> e-SNLI478

From Table 3, the Simulatability score ranks479

e-SNLI and ComVE reversely on fine-tuned BART480

models compared with fine-tuned T5 models, in-481

dicating Simulatability score could be more482

affected by different model architectures even with483

the unified data structure.484

We notice that ComVE ranks worst among five485

datasets in both tables, indicating the rationales486

in ComVE are the least helpful for the models to487

either fine-tuned or predict. Since the ComVE488

task asks models to predict which sentence is more489

likely against commonsense, the question itself490

implies a negation connotation. Likewise, many491

ComVE rationales contain negation, such as the492

one in Figure 1. The concept of negation has al-493

ways been a relatively complex concept for ma- 494

chines. Although both T5 and BART models fine- 495

tuned with the Baseline setting are able to per- 496

form relatively well on ComVE, the addition of 497

rationales that contain negation during inference is 498

likely to create more difficulties for the models to 499

interpret the information, which eventually leads 500

to a significant performance drop. 501

One advantage of using our Treu score to evalu- 502

ate the quality of rationales is that we can further 503

decompose and analyze the score by class or in- 504

termediate results from different fine-tuning and 505

predicting settings. For instance, we observe that 506

the Treu scores for the e-SNLI dataset with T5 and 507

BART models are both negative, indicating that the 508

quality of rationales within e-SNLI could be poor. 509

By looking into the intermediate results, though the 510

baseline models receive significant performance 511

drops while predicting with Infusion compared 512

with the Baseline setting, the models that are fine- 513

tuned with Infusion still outperform the baseline 514

models while predicting with Infusion , justify- 515

ing the rationales indeed provide improvements 516

under this setting. Looking further into the decom- 517

posed Treu score of e-SNLI on class level, we 518

notice that rationales for the specific class(s) in the 519

e-SNLI dataset provide a much lower Treu score by 520

class than the others, which causes the overall score 521

to decline. More specifically, the models fine-tuned 522

on T5 and BART have more than 40% prediction 523

accuracy drop on data with the ground-truth label 524

7



‘neutral’ when they are fine-tuned with Baseline525

and predicted with Infusion . Moreover, Treu526

score by class indicates that the fine-tuned BART527

models have about 40% prediction accuracy drop528

on data with ground-truth ‘contradiction’ labels.529

We suspect human annotators behave differently530

while providing rationales for data with various cat-531

egories in e-SNLI. For instance, human annotators532

may explain why two sentences are ‘entailment’533

by describing the shared information conveyed by534

both sentences. However, by inspection, we notice535

humans tend to provide counter-examples to ex-536

plain why two sentences are ‘neutral’ or ‘contradic-537

tion’ classes. Besides, humans also like to negate538

the universal correctness of the contents described539

in two sentences for these classes. We provide rep-540

resentative examples for each class in Appendix 5.541

Such behavior’s tendency to use many negation542

connotations for rationales may cause difficulty for543

the baseline models to interpret the information and544

falsely make predictions.545

Nevertheless, these models can correctly under-546

stand rationales for all categories after being fine-547

tuned with rationales under the Infusion setting.548

Worth pointing out that ECQA rationales are sum-549

marized from positive and negative properties for550

each candidate choice which also contains negation551

words, but those negation words mostly appear in552

negative properties for wrong choices instead of the553

positive property for correct choices. As a result,554

we notice the pre-trained baseline models are able555

to leverage ECQA rationales with Infusion dur-556

ing the predicting process and achieve performance557

improvement. Since we are the first to discover558

such a class-level drop on e-SNLI by using Treu559

score, we only propose our hypothetical assump-560

tion and leave a definitive study for future work.561

6 Limitations and Risks562

Our paper shows the proposed Treu score can be563

used to measure the quality of rationales towards564

the models’ prediction performance on multiple565

experiment datasets. However, our evaluation are566

only on the human-created natural language ratio-567

nales, and it is a natural next step that the Treu568

could be used for evaluating the helpfulness of569

model-generated rationales. We would like to cau-570

tion readers of this paper when they apply the Treu571

to the model-generated rationales: This metric and572

our evaluation experiment require the model to573

generate rationales for the training data split in574

the datasets, and then use the train split with gen- 575

erated rationales to fine-tune the model with the 576

Infusion setting. Last but not least, we acknowl- 577

edge the proposed Treu is only one way of automat- 578

ically evaluating the natural language rationale’s 579

quality, and there may be many other ways; besides, 580

the high Treu score may not necessarily reflect the 581

human-perceived quality if we ask human to rate 582

it, as our calculation only measure its helpfulness 583

from the modeling perspective. 584

7 Conclusion and Future Work 585

In this paper, we propose the Treu score as a faith- 586

ful evaluation metric for human-annotated natu- 587

ral language rationales regarding the helpfulness 588

to models’ performance for a variety of nlp tasks. 589

We design the Treu score to consider rationales’ 590

helpfulness at both fine-tuning with inference and 591

inference-only settings which is based on the dis- 592

coveries of two preliminary experiments: 1). ra- 593

tionales provide the most helpfulness while being 594

used as additional input and 2). the helpfulness 595

of rationales differs significantly between models 596

fine-tuned and not fine-tuned with rationales. We 597

also propose a unified data structure for Treu that 598

minimizes the influence of tasks’ differences by 599

mapping various tasks to a unified multiple choice 600

generation task. Finally, we perform the evalua- 601

tion of human-annotated rationales in 5 popular 602

large-scale datasets with two different sequence-to- 603

sequence model architectures. 604

Evaluation results demonstrate that Treu score 605

can consistently reflect the relative rank of rationale 606

qualities among five datasets while an established 607

metric fails, and the reflected quality of rationales 608

by Treu score is aligned with previous works. we 609

also hypothesize SOTA models have limited ability 610

to interpret the negation connotations or counter- 611

examples that appear in large numbers in rationales 612

with low Treu scores. To the best of our knowledge, 613

we are the first to propose a faithful evaluation met- 614

ric for human-annotated rationales, which leads 615

to envisioning many avenues for future work. We 616

would expand the evaluation on other datasets with 617

human-labeled rationales and suggest researchers 618

leverage our Treu metric as an essential quality 619

check while collecting rationales in the future. We 620

would also continue to evaluate and analyze hu- 621

man natural language rationales, which may lead 622

to other inconspicuous properties that could be ben- 623

eficial for developing better reasoning systems. 624
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Figure 4: Unified structure of Baseline , Infusion , and self-rationalization settings. Bold text are fixed prompts
for each dataset.

Appendix806

A Implementation of self-rationalization807

format808

We show the implementation of self-rationalization809

setting proposed by Marasović et al. (2021) and put810

it together in Figure 4 with our proposed unified811

structure of the Baseline and Infusion setting.812

B Experiment Hyper-Parameters813

We perform all the computational experiments on a814

Google Colab instance with a single Nvidia V100815

GPU and 50 Gigabytes of RAM.816

B.1 Hyper-parameter for Preliminary817

Experiment818

For the preliminary experiment of utilizing ra-819

tionales as part of input V.S. part of output, we820

leverage the following hyper-parameters for all821

models with different data structures: max_len :822

512, target_max_len : 64, train_batch_size : 1,823

learning_rate : 5e−5, num_train_epochs : 12.824

For the preliminary experiment of rationales as825

partial input during fine-tuning, we maintain the826

following hyper-parameters for all models fine-827

tuned with partial/full train data of CoS-E and828

ECQA datasets: max_len : 512, target_max_len :829

16, train_batch_size : 1, learning_rate : 1e−4,830

num_train_epochs : 6.831

B.2 Hyper-parameter for Rationale832

Evaluation with five Datasets833

For the evaluation of human-annotated rationales834

on 5 different datasets, we maintain the following835

hyper-parameters for all the models: max_len :836

512, target_max_len : 64, train_batch_size : 1,837

learning_rate : 5e−5, num_train_epochs : 12.838

The only exception is the e-SNLI dataset, which839

has about 10x size (549,367 data instances) of train-840

ing data compared to the other datasets. Therefore,841

we only fine-tune models on e-SNLI dataset with 2 842

epochs. 843

C Results for Preliminary Experiment - 844

Rationales as Partial Input During 845

Fine-tuning 846

For the preliminary experiment of rationales as par- 847

tial input during fine-tuning, we randomly shuffle 3 848

seeds to select the subset of data and fine-tune the 849

model. The detailed results of each experiment and 850

average accuracy is reported in Table 4. 851

D Examples of different rationales for 852

each category in e-SNLI dataset 853

From our evaluation results, we suspect human 854

annotators behave differently while providing ra- 855

tionales for data with various categories in e-SNLI. 856

For instance, human annotators may explain why 857

two sentences are ‘entailment’ by describing the 858

shared information or similarities conveyed by 859

both sentences. However, humans tend to pro- 860

vide counter-examples or negations to explain why 861

two sentences are not related (neutral) or contra- 862

diction. Here in Table 5, we show representative 863

examples of data with corresponding rationales for 864

each class. 865
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Fine-tune with Baseline on CoS-E v1.0

10% 20% 30% 40% 50% 60% 70% 80% 90% 1

Predict
Baseline

0.583 0.656 0.638 0.658 0.661 0.670 0.674 0.678 0.697 0.676
0.550 0.644 0.664 0.650 0.666 0.667 0.667 0.682 0.668 0.682
0.584 0.64 0.64 0.655 0.670 0.675 0.677 0.66 0.674 0.68

Average 0.572 0.647 0.647 0.655 0.665 0.671 0.673 0.673 0.680 0.679

Predict
Infusion

0.586 0.586 0.625 0.633 0.596 0.621 0.663 0.655 0.649 0.676
0.561 0.591 0.642 0.609 0.656 0.630 0.618 0.650 0.641 0.652
0.525 0.6 0.631 0.62 0.631 0.614 0.658 0.595 0.647 0.665

Average 0.545 0.592 0.632 0.621 0.628 0.622 0.647 0.634 0.645 0.664

Fine-tune with Infusion on CoS-E v1.0

10% 20% 30% 40% 50% 60% 70% 80% 90% 1

Predict
Baseline

0.588 0.622 0.617 0.613 0.635 0.616 0.615 0.625 0.652 0.629
0.592 0.614 0.573 0.610 0.650 0.592 0.632 0.64 0.610 0.64
0.601 0.609 0.615 0.618 0.631 0.629 0.641 0.635 0.652 0.634

Average 0.594 0.615 0.602 0.614 0.639 0.612 0.629 0.633 0.638 0.634

Predict
Infusion

0.867 0.874 0.884 0.889 0.902 0.894 0.890 0.886 0.910 0.904
0.875 0.888 0.881 0.890 0.898 0.901 0.9 0.901 0.896 0.895
0.877 0.885 0.887 0.887 0.903 0.907 0.898 0.910 0.894 0.908

Average 0.873 0.882 0.884 0.889 0.901 0.901 0.896 0.899 0.900 0.902

Fine-tune with Baseline on ECQA

10% 20% 30% 40% 50% 60% 70% 80% 90% 1

Predict
Baseline

0.495 0.522 0.528 0.553 0.550 0.550 0.554 0.569 0.561 0.562
0.471 0.505 0.525 0.533 0.549 0.561 0.558 0.572 0.572 0.572
0.469 0.511 0.533 0.541 0.553 0.545 0.569 0.564 0.566 0.565

Average 0.478 0.513 0.529 0.542 0.551 0.552 0.560 0.568 0.566 0.566

Predict
Infusion

0.664 0.672 0.710 0.716 0.692 0.702 0.708 0.722 0.684 0.701
0.685 0.682 0.673 0.697 0.681 0.682 0.694 0.677 0.699 0.641
0.678 0.715 0.693 0.648 0.706 0.713 0.686 0.685 0.688 0.711

Average 0.675 0.690 0.692 0.687 0.693 0.699 0.696 0.695 0.690 0.684

Fine-tune with Infusion on ECQA

10% 20% 30% 40% 50% 60% 70% 80% 90% 1

Predict
Baseline

0.417 0.406 0.402 0.395 0.381 0.379 0.365 0.379 0.375 0.374
0.381 0.363 0.367 0.366 0.368 0.400 0.385 0.349 0.368 0.371
0.381 0.386 0.345 0.341 0.369 0.376 0.361 0.359 0.386 0.334

Average 0.393 0.385 0.371 0.367 0.373 0.385 0.370 0.362 0.376 0.360

Predict
Infusion

0.974 0.983 0.983 0.989 0.985 0.988 0.989 0.984 0.990 0.992
0.984 0.985 0.983 0.981 0.990 0.989 0.991 0.985 0.990 0.983
0.984 0.982 0.984 0.981 0.989 0.987 0.988 0.989 0.989 0.989

Average 0.980 0.983 0.983 0.984 0.988 0.988 0.989 0.986 0.990 0.988

Table 4: Detailed results for the preliminary experiment of rationales as partial input during fine-tuning.
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Category Premise Hypothesis Rationale

entailment
A young family enjoys feeling
ocean waves lap at their feet.

A family is at the beach. Ocean waves implies the beach.

An old man with a package poses
in front of an advertisement.

A man poses in front of an ad.
The word " ad " is short for the word
" advertisement ".

A man reads the paper in a bar
with green lighting.

The man is inside. In a bar means the man could be inside.

neutral
An old man with a package poses
in front of an advertisement.

A man poses in front of
an ad for beer.

Not all advertisements are ad for beer.

A woman with a green headscarf,
blue shirt and a very big grin.

The woman is young.
the woman could’ve been old rather
than young

A man reads the paper in a bar
with green lighting.

The man is reading the sportspage.
The man could be reading something
other than the sportspage.

contradiction
A woman with a green headscarf,
blue shirt and a very big grin.

The woman has been shot.
There can be either a woman with a very
big grin or a woman who has been shot.

A man playing an electric guitar
on stage.

A man playing banjo on the floor.
The man can’t play on stage if he is
on the floor.

A couple walk hand in hand
down a street.

A couple is sitting on a bench.
The couple cannot be walking and
sitting a the same time.

Table 5: Representative examples of data with corresponding rationales for each class in e-SNLI.
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