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Abstract

Explanable AI (XAI) and Natural Language
Processing (NLP) researchers often rely on
humans to annotate both labels and natural
language rationales (explanations) with the
goal that models can utilize these rationales
to improve model performance, or can gener-
ate human-understandable explanations. How-
ever, human-annotated rationales are very sub-
jective and could be low-quality, as some re-
cent works discovered. The vital question
arises: how can we evaluate the quality of
the human-annotated natural language ra-
tionales? In this paper, we propose TrREU , a
trainable evaluation metric that can evaluate
the helpfulness of natural language rationales
towards models’ prediction performances for a
wide range of NLP tasks and models with the
help of a unified data structure. Our evaluation
experiment on five popular datasets with two
different model architectures demonstrates that
TrEU can coherently and faithfully evaluate the
quality of rationales among datasets while the
Simulatability metric fails. TREU score can
also reveal rationale’s quality towards specific
classes in a multi-class classification task.

1 Introduction

Despite today’s large-scale language models
(LLM) (Devlin et al., 2019; Radford et al., 2019;
Lewis et al., 2019; Raffel et al., 2020) can exhibit
close-to-human performance on many natural lan-
guage processing (NLP) tasks (e.g., Question An-
swering (Rajpurkar et al., 2016; Kocisky et al.,
2018; Mou et al., 2021), Natural Language Infer-
ence (Bowman et al., 2015; Williams et al., 2017;
Wang et al., 2018), and Text Generation (Duan
etal., 2017; Yao et al., 2022)), human are eager to
know how these State-of-the-Art (SOTA) models
arrive at a prediction. Researchers working around

natural language rationales' turned to human an-
notators for help by recruiting crowd-workers or
domain experts to annotate both the labels and cor-
responding natural language rationales as expla-
nations to their label annotation (Camburu et al.,
2018; Rajani et al., 2019; Aggarwal et al., 2021),
with which they can then leverage these human-
annotated rationales to boost up models’ perfor-
mance or train models to generate explanations
that people can understand.

However, the quality issue around such human-
annotated rationales has been under-explored. Re-
searchers intuitively leverage popular NLG metrics
such as BLEU (Papineni et al., 2002), ROUGE (Lin,
2004) and Simulatability to evaluate the coher-
ence and similarity between model-generated and
human-annotated rationales, with a strong assump-
tion that human-annotated rationales are the gold
standard. We argue that the core value of ratio-
nales is how much helpfulness they can provide
for the model’s prediction performance instead of
semantic similarity between each other.

Unlike labeling for the classification or multi-
ple choice tasks, different people may come up
with distinct and subjective natural language ratio-
nales for the same observation, and such rationales
are task-dependent. As a result, human-annotated
natural language rationales should not be simply
treated as the gold standard, and the community is
eager for a coherent metric that can automatically
and truthfully evaluate the helpfulness of rationales
towards models’ prediction performance.

To fill this gap, we propose TrREU score, a
trainable evaluation metric for rationales to eval-

'In this paper, we use “rationales” and “natural language
rationales” to refer to the collective concepts of “free-form
rationale”, “free-text explanation”, and “natural language ex-

planation”, which differs from “rule-based” or “extractive”
explanations.



INPUT

Baseline  ices <is>

Infusion Choice3 <sep> because Rationale </s>

explain: Question Content choice1: Choice1 choice2: Choice2 choice3:

explain: Question Content choice1: Choicel choice2: Choice2 choice3:

OUTPUT

Answer <[s>

Answer <Is>

explain: what is the relationship between An adult dressed in black holds

a stick. and An adult is walking away, empty-handed.? choice1: entailment

choice2: neutral choice3: contradiction <sep> because Holds a stick

contradiction <Is>

implies using hands so it is not empty-handed. </s>

CoS-E

explain: A colorful pebble falls on a goldfish, where is the pebble? choice1:
aquarium choice2: creek choice3: pet store choice4: playground choice5:

aquarium <Is>

pond <sep> because goldfish are common fish pets. </s>

ComVE

stings </s>

explain: which sentence is against commonsense? choice1: a mosquito
stings me choice2: i sting a mosquito <sep> because a human has not

i sting a
mosquito <Is>

Figure 1: Unified structure of Baseline and Infusion settings. Bold text are fixed prompts for each dataset. We
show corresponding Infusion data format of classification task like e-SNLI and multiple choice task like CoS-E
and ComVE into our unified structure. ECQA will share the same structure as CoS-E. The color schema follows:
blue denotes the question content; green denotes the choice content; orange denotes the rationales.

uate the helpfulness of rationales towards mod-
els’ performance faithfully. Furthermore, inspired
by SOTA sequence-to-sequence language models
(e.g., TS5 (Raffel et al., 2020) and BART (Lewis
etal., 2019)), we also propose a unified data format
with template-based prompts to be used together
with TrReU metric, which can convert any classifica-
tion or multiple choice tasks into a unified multiple
choice generation task format. The benefit of the
unified data format is that we can minimize the
influence of structural variations across different
tasks towards models’ prediction performance so
that TrEU score can evaluate the helpfulness of ra-
tionales faithfully. We provide two settings for the
unified data structure where researchers can decide
to include rationales (Infusion hereinafter) or not
include the rationales (Baseline hereinafter) into
the input. Details are shown in Figure 1.

We conduct an experiment to compare the pro-
posed TrREU score against the current practice of the
Simulatability score (Doshi-Velez and Kim,
2017) when evaluating the human-annotated ra-
tionale’s quality on five popular datasets. The re-
sult shows that the TrEU score can provide con-
sistent evaluation ranks of the rationale’s quality
across all five datasets on two benchmark model
architectures, while the Simulatability score
fails. Our Treu takes into account the helpful-
ness of rationales during prediction for both mod-
els fine-tuned with Baseline and Infusion ,

while the Simulatability score only reflects
the helpfulness of rationales on baseline models.
As a result, in the case of two datasets with low
Simulatability scores, our TREU metric sug-
gests that the rationales in both datasets can pro-
vide helpfulness to prediction performance when
the model is fine-tuned with these rationales un-
der the Infusion setting. Furthermore, our TREU
score can truthfully reflect quality issues with ra-
tionales for the specific class(es) in a classification
task dataset with class-level Treu scores. We spec-
ulate that SOTA models have limited capabilities
for interpreting the negation connotations that ap-
pear in large numbers in rationales of those datasets
with low TrEu scores. We conclude our paper with
limitations and future research directions.

2 Related Work

2.1 Datasets with Natural Language
Rationales

Despite the development of new model architec-
tures and potentially more significant parameters,
they still lack the ability to explain their prediction,
which leads to the whole community being eager
for human-annotated rationales to teach models ei-
ther leverage rationales during training or be able
to self-rationalize during prediction. For example,
Wiegreffe and Marasovic (2021) recently reviewed
65 datasets and provided a 3-class taxonomy of
explanations: highlights, free-text, and structured.



Data Instances Average Rationale

Dataset Task Task Format

Train  Valid Test Length (token)
CoS-E v1.0 Commonsense QA 3-choice Multiple-Choice 7610 950 - 16.148
CoS-E vl.11 Commonsense QA 5-choice Multiple-Choice 9741 1221 - 8.996
ECQA Commonsense QA 5-choice Multiple-Choice 7598 1098 2194 63.572
e-SNLI Natural Language Inference 3-label Classification 549367 9842 9824 15.977
ComVE Commonsense Validation  2-choice Multiple-Choice 10000 1000 1000 10.288

Table 1: Task description and core statistics for popular large scale datasets with human-annotated natural language
rationales that are included in the evaluation using our proposed TREU metric.

We focus on five large publicly available datasets
that have human-annotated rationales at the in-
stance level (Table 1). We double-checked these
datasets’ licenses, and there is no personally identi-
fiable information.

The most prominent dataset is CoS-E and its two
variants CoS-E v1.0 and CoS-E v1.11(Rajani et al.,
2019)). It extended the Commonsense Question-
Answering (CQA v1.0 and v1.11 versions) dataset
(Talmor et al., 2018) by adding human-annotated
rationales to the single correct answer choice. How-
ever, a few recent works suggest that the CoS-E’s
rationale quality is not good, as Narang et al. (2020)
independently hand-labeled some new rationales
for CoS-E and found a very low BLEU score be-
tween its original rationales and the new ones. To
improve the rationale’s quality, ECQA (Aggarwal
et al., 2021) recruited human annotators to add a
single-sentence explanation for every answer op-
tion, then summarized them into a natural language
rationale for every data instance in the CQA v1.11
dataset. Sun et al. (2022) proved that CoS-E ra-
tionales are not as good as ECQA rationales as
human evaluators do not believe CoS-E rationales
can provide additional information to support their
decision makings. The fourth dataset is e-SNLI
(Camburu et al., 2018), which consists with ratio-
nales for the Stanford Natural Language (SNLI)
dataset (Bowman et al., 2015). The fifth dataset is
ComVE (Wang et al., 2020) that asks which one of
two sentences is against commonsense. Later we
evaluate the proposed TrEU metric against the base-
line metric for the quality of human-annotated natu-
ral language rationales using all these five datasets.

Worth mentioning we do not include datasets
such as SBIC (Sap et al., 2019) or E-6-NLI (Brah-
man et al., 2021) because the former does not
provide rationales for all the data, while the lat-
ter approaches to generate rationales through vari-
ous sources to augment the 5-NLI (Rudinger et al.,
2020) dataset instead of human annotations.

2.2 Evaluation Metric for Rationales

Many commonly used evaluation metrics for text-
based content like BLEU (Papineni et al., 2002)
and ROUGE (Lin, 2004) treat human-annotated
answers as the absolute gold standard, which can-
not evaluate the quality of them. One established
evaluation metric called Simulatability score
derives from Human Simulatability (Doshi-Velez
and Kim, 2017) and can examine gold rationales. It
simply measures the change in a baseline model’s
prediction performance, whether the rationale is
provided as the input or not. Previous works (Chan-
drasekaran et al., 2018; Yeung et al., 2020; Hase
et al., 2020; Wiegreffe et al., 2020; Poursabzi-
Sangdeh et al., 2021; Rajagopal et al., 2021) have
demonstrated the usefulness of Simulatability
score for evaluating rationale quality. However,
this metric has a couple of inherent disadvantages.
First, it only considers the helpfulness of rationales
as input during prediction on a baseline model,
where we prove that rationales provide different
helpfulness during fine-tuning and prediction in
our preliminary experiment. Besides, a model’s
performance could also differ when we form the
original task with the same data into other tasks,
such as a classification task into a multiple-choice
task or a generation task with different input data
prompts and structures. In contrast, our proposed
TrEU evaluation metric complements both draw-
backs of the Simulatability score by consider-
ing the helpfulness of rationales both at fine-tuning
and predicting with the help of a unified structure
to minimize the impact of task differences.

2.3 Usage of Rationales for SOTA models

Existing works have been exploring circumstances
in which rationales can or cannot improve model
performance; for example, Hase and Bansal (2021)
argues that rationales are most suitable for use as
model input for predicting. Some recent works
have been trying to generate better rationales with
a self-rationalization setting (Wiegreffe et al., 2020;



Marasovi¢ et al., 2021), where a model is asked
to generate the prediction label and rationale at
the same time. We conduct a preliminary experi-
ment to find the best setting for models to leverage
rationales for better prediction performance in Sec-
tion 4.1. There also exist many recent works (Paran-
jape et al., 2021; Liu et al., 2021; Chen et al., 2022)
that explore the usage of prompts to complete ra-
tionales, generate knowledge as additional infor-
mation for the original task, or examine whether
generated rationales can provide robustness to ad-
versarial attacks. Another related line of research
focuses on extracting or generating rationales with
a unified framework (Chan et al., 2022) or with a
teachable reasoning system that generates chains
of reasoning (Dalvi et al., 2022).

3 Unified Structure

While popular metrics like BLEU and ROUGE can
evaluate text coherence and similarity, what is vi-
tal to rationales is how much helpfulness they can
provide for the model’s prediction. The desiderata
are to develop a metric that can faithfully evalu-
ate rationales’ utility towards model performance.
We expect an excellent metric can systematically
demonstrate how good or bad the rationales are, for
example, what does ‘noisy’ mean in a human study
from previous works on CoS-E rationales.

With the advantage of sequence-to-sequence
models like TS that can map different types of lan-
guage tasks into generation tasks, we can control
and minimize the influence of varying task for-
mats on model performance while evaluating the
helpfulness of rationales by leveraging a unified
data format. We realize that existing datasets with
human-annotated rationales are mostly either mul-
tiple choices tasks or classification tasks, and the
classification task could be viewed as a multiple-
choice task where the labels are indeed choices. In-
spired by several previous works that manipulated
prompts for sequence-to-sequence models (Maraso-
vic et al., 2021; Liu et al., 2021), we incorporate a
few well-defined words as a template-based prompt
for the unified data structure to indicate the task
content and corresponding rationale.

Examples are shown in Figure 1 to explain how
to map various tasks into a unified multiple choice
generation task. We propose two settings: no ra-
tionales (Baseline ) and rationales as additional
input (Infusion ). Several template-based prompt
words across all datasets infer the data’s basic struc-

Rationales as
Input vs Output

Fine-tune Setting

Baseline Self-rationalization ~Infusion
CoS-E v1.0 0.695 0.646 0.878
ECQA 0.572 0.513 0.989

Table 2: Preliminary experiment results of using ra-
tionales as part of Input(Infusion ) vs Output(Self-
rationalization) vs without rationales (Baseline ) on
CoS-E and ECQA datasets.

ture, such as 1). ‘explain’ is the leading word fol-
lowed by the question content, 2). everything after
‘choicen’ will be a candidate answer to be gen-
erated, and 3). special token ‘<sep>’ separates
the rationales from the task content, and the ra-
tionales in Infusion will be led by ‘because’ so
that the model can infer the rationales are going to
explain the task content. For datasets like CoS-E
and ECQA, we leverage the original task as the
question content. On the other hand, we define a
fixed question prompt for e-SNLI: “what is the re-
lation between [Premise] and [Hypothesis]?” and
for ComVE: “which sentence is against common-
sense?” to specify corresponding tasks to models.

4 Preliminary Experiment

4.1 Utilizing Rationales as Part of Input V.S.
Part of Output

Recent works have been exploring various circum-
stances that human-annotated rationales could help
in different aspects; for example, Hase and Bansal
(2021) argued that explanation as additional input
would best suit performance improvement. Maraso-
vic et al. (2021) proposed self-rationalize models,
which generates rationales along with prediction
label, and can generate more reasonable rationales.
However, they do not provide prediction accuracy
compared with the baseline. We hypothesize that
leveraging rationales as additional input informa-
tion with the original task input allows models to
use rationales for better prediction, while the self-
rationalization setting complicates the prediction
task for the models and may lead to a prediction
performance decrease. We conduct a preliminary
experiment on CoS-E v1.0 and ECQA datasets to
justify our hypothesis.

We fine-tune a T5-base model on each
dataset with three different settings: Baseline
, Infusion , and rationales as additional output
(Self-rationalization hereinafter) For each model,
we maintain the same setting during fine-tuning and
inference. For example, the model fine-tuned with



Infusion will also take data under Infusion dur-
ing inference. We leverage the unified structure for
Baseline and Infusion shown in Figure 1 and
make minor adjustments for the self-rationalization
setting accordingly (shown in Appendix A).

The experiment results are shown in Table 2. We
notice that the self-rationalization setting performs
worse than the Baseline , which is aligned with
our assumption. On the other hand, the Infusion
setting surprisingly achieves significant improve-
ment on CoS-E, which was considered ‘noisy’ by
previous works, demonstrating that the CoS-E ra-
tionales still provide helpfulness to the model’s per-
formance. The Infusion setting also approaches
nearly complete correctness on the ECQA dataset.

4.2 Rationales as Partial Input During
Fine-Tuning

In order to examine what is the utility of ratio-
nales to the models during fine-tuning, we perform
an in-depth experiment with the Baseline and
Infusion setting. First, we fine-tune a series of
models with gradually increased training data and
analyze the models’ prediction performance. More
specifically, we randomly shuffle and select 9 sub-
datasets of varying amounts of data ranging from
10% to 90% of the training data in each dataset
we used in the first preliminary experiment. Then,
for each sub-dataset, we fine-tune three different
models with randomly shuffled random seeds for
sampling and fine-tuning, then acquire the average
prediction performance over three models. As a
result, for each CoS-E v1.0 and ECQA dataset, we
get 60 models fine-tuned with varying amounts of
data for both the Baseline and Infusion setting,
including the models fine-tuned on full training
data, then perform prediction with the Baseline
and Infusion settings. We maintain the same
hyper-parameters across the models fine-tuned for
this experiment and report them in Appendix B.1.

From the two prediction performance diagrams
in Figure 2 (detailed results in Appendix 4), we
notice that the addition of training data does not
consistently improve the performance of models
fine-tuned with the Infusion setting (yellow and
green line), proving that the fine-tuning process is
not teaching the model with new knowledge that
was supposed to be conveyed in the rationales. Be-
sides, the models fine-tuned with Infusion setting
perform worse than baselines when no rationales
are provided during inference (yellow and blue
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Figure 2: Rationales as partial input during fine-tuning
on CoS-E v1.0 (top) and ECQA (bottom) with different
amount of training data. We perform fine-tuning and
predicting for both Baseline and Infusion settings.

line correspondingly), demonstrating that the fine-
tuning of Infusion setting teaches the models to
rely on the rationale part of the input to predict.
Additionally, we observe that the baseline models
for CoS-E perform worse while predicting with
Infusion setting than with Baseline . In con-
trast, the baseline models for ECQA consistently
exceed baseline performance by a significant mar-
gin while predicting with the Infusion setting
(the red lines). This observation is aligned with
previous works that many of the rationales in the
CoS-E dataset are low-quality, while the rationales
in ECQA have much better quality. The prelimi-
nary experiment demonstrates that the rationales
provide different helpfulness during fine-tuning and
inference. Thus, both situations should be consid-
ered while evaluating the quality of rationales.

5 Treu Evaluation Metric

5.1 Definition

From the preliminary experiment, we have ob-
served that 1) rationales provide the most help-
fulness as additional input, and 2) rationales pro-
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Figure 3: The formula of our TrReU metric. M denotes a
model and the subscript denotes (inference setting | fine-
tune setting). Our score incorporates the helpfulness of
rationales at both fine-tuning and inference.

vide different helpfulness to the model’s prediction
performance during fine-tuning and inference. As
a result, we propose TrREU score along with the
unified structure we proposed in Section 3. Fig-
ure 3 shows the formula of TrEU score. TREU score
evaluates the quality of rationales with the sum of
two parts: helpfulness at inference only, where the
model is fine-tuned with Baseline setting, and at
fine-tuning as well as inference, where the model
is fine-tuned with Infusion setting. In each part,
the helpfulness is calculated by the prediction per-
formance difference between the Infusion and
Baseline settings on the same model.

A positive score demonstrates that the rationales
provide overall helpfulness for better prediction,
while a negative score does not necessarily mean
the rationales are not helpful. Instead, a negative
score indicates the rationales lead to the model’s
prediction performance drop in at least one part
of the evaluation. By further analyzing the inter-
mediate score for each part, researchers can locate
when rationales do not help improve the model’s
performance. As a result, the TREU score ranges
theoretically from -2 to 2. In comparison, the
Simulatability score only considers the second
part within our TreU score formula and without the
control of influence from various task structures.

5.2 Experiment

We evaluate human-annotated natural language ra-
tionales across five popular datasets using our eval-
uation metric and the Simulatability score. To
justify that our TrEU score is independent of the
specific model architecture and to examine the in-
fluence of different pre-trained models over the
prediction performance, we perform experiments
with five datasets on TS5 and BART with the base
models as the backbone for fine-tuning. During
our evaluation, we also leverage the unified data
structure for the Simulatability score to make

it a much stronger baseline.

We maintain the same fine-tuning hyper-
parameter for all the models in the experiment
(details in Appendix B.2). The only exception
is the e-SNLI dataset, which has about 10x the
size (549,367 data instances) of training data com-
pared to the other datasets. Therefore, we only fine-
tune models on e-SNLI dataset with two epochs.
Furthermore, for the experiments with BART, we
leverage the special token ‘<s>’ used during the
pre-training process instead of ‘<sep>’ and ask
the BART tokenizer to add special tokens during
tokenization automatically.

Table 3 presents the evaluation results. The or-
dering of datasets in each table is based on our
TrEU score, while the inconsistent ranking of the
Simulatability score is marked red. We further
provide TrEuU score by class for the dataset of clas-
sification task, which is e-SNLI, to examine the
difference of helpfulness per class, where class! /
class2 / class3 refers to entailment / neutral / con-
tradiction correspondingly.

5.3 Observation

By first comparing the models’ prediction results
based on two architectures, we notice performance
differences among all datasets. More specifi-
cally, all models fine-tuned on T5-base outper-
form the ones fine-tuned on BART-base with the
same setting, mostly with a significant margin. De-
spite apparent performance differences between
model architectures, by looking at the orderings
of datasets in both tables, which are based on our
TrEU score, We can easily observe that TReu score
provides the same ranking result for the quality
of rationales in 5 datasets over two model archi-
tectures. Based on Trru scores in Table 3, rel-
atively speaking, rationale quality varies in the
different datasets roughly in the following order:

ECQA > CoS-E v1.11 > CoS-E v1.0 > e-SNLI > ComVE

According to TrREU score, rationales in ECQA
have the best quality among five datasets. Espe-
cially, rationales in ECQA are much better than the
ones in both CoS-E datasets, which is consistent
with previous works’ consensus that rationales in
CoS-E are much worse than ECQA. It is worth
noticing that both CoS-E datasets achieve posi-
tive TrEU scores, though significantly lower than
the ones for ECQA, demonstrating that rationales
in CoS-E datasets still have positive overall help-



Fine-tune with Baseline

Fine-tune with Infusion

TrEU score by class

T5-b Simulatability  Treu
-base predict with  predict with L . Score Score
. . predict with Infusion classl class2 class3
Baseline Infusion
ECQA 0.572 0.746 0.989 0.174 0.591
CoS-E v1.11 0.608 0.610 0.803 0.002 0.197
CoS-E v1.0 0.695 0.645 0.878 -0.05 0.133
e-SNLI 0.907 0.676 0.981 -0.231 -0.157  0.13  -0.483 0.094
ComVE 0.88 0.527 0.949 -0.353 -0.284
Fine-tune with Baseline Fine-tune with Infusion . o TrEU score by class
BART-b Simulatability  Treu
-base predict with  predict with . . . Score Score
. . predict with Infusion classl class2 class3
Baseline Infusion
ECQA 0.428 0.438 0.901 0.010 0.483
CoS-Evl.11 0.443 0.449 0.700 0.006 0.263
CoS-Ev1.0 0.512 0.486 0.790 -0.026 0.252
e-SNLI 0.888 0.658 0.978 -0.23 -0.14  0.115 -0.277 -0.271
ComVE 0.812 0.596 0.864 -0.216 -0.164

Table 3: Evaluation results of human-annotated rationales in 5 datasets with our TreU score and Simulatability
score. The tables above and below correspond to models fine-tuned on T5-base and BART-base, respectively. The
ordering of datasets is based on our TrEU score, and the inconsistent ranking of Simulatability score is marked
red. For e-SNLI which is the only classification task in the experiment, classI / class2 / class3 refers to entailment /

neutral / contradiction respectively.

fulness for models’ prediction performance even
though they are considered ‘low quality and noisy’
by human experiments in previous works.

On the other hand, the Simulatability score
cannot provide a consistent ranking of rationale
quality among five datasets on two model architec-
tures. Based on the two models, Simulatability
score provides two distinct rankings:

T5-base:
ECQA > CoS-E v1.11 >
CoS-E v1.0 > e-SNLI > ComVE
BART-base:
ECQA > CoS-E v1.11 >
CoS-E v1.0 > ComVE> e-SNLI

From Table 3, the Simulatability score ranks
e-SNLI and ComVE reversely on fine-tuned BART
models compared with fine-tuned TS models, in-
dicating Simulatability score could be more
affected by different model architectures even with
the unified data structure.

We notice that ComVE ranks worst among five
datasets in both tables, indicating the rationales
in ComVE are the least helpful for the models to
either fine-tuned or predict. Since the ComVE
task asks models to predict which sentence is more
likely against commonsense, the question itself
implies a negation connotation. Likewise, many
ComVE rationales contain negation, such as the
one in Figure 1. The concept of negation has al-

ways been a relatively complex concept for ma-
chines. Although both T5 and BART models fine-
tuned with the Baseline setting are able to per-
form relatively well on ComVE, the addition of
rationales that contain negation during inference is
likely to create more difficulties for the models to
interpret the information, which eventually leads
to a significant performance drop.

One advantage of using our TrEU score to evalu-
ate the quality of rationales is that we can further
decompose and analyze the score by class or in-
termediate results from different fine-tuning and
predicting settings. For instance, we observe that
the TrEU scores for the e-SNLI dataset with TS5 and
BART models are both negative, indicating that the
quality of rationales within e-SNLI could be poor.
By looking into the intermediate results, though the
baseline models receive significant performance
drops while predicting with Infusion compared
with the Baseline setting, the models that are fine-
tuned with Infusion still outperform the baseline
models while predicting with Infusion , justify-
ing the rationales indeed provide improvements
under this setting. Looking further into the decom-
posed Treu score of e-SNLI on class level, we
notice that rationales for the specific class(s) in the
e-SNLI dataset provide a much lower TrEU score by
class than the others, which causes the overall score
to decline. More specifically, the models fine-tuned
on T5 and BART have more than 40% prediction
accuracy drop on data with the ground-truth label



‘neutral’ when they are fine-tuned with Baseline
and predicted with Infusion . Moreover, TREU
score by class indicates that the fine-tuned BART
models have about 40% prediction accuracy drop
on data with ground-truth ‘contradiction’ labels.

We suspect human annotators behave differently
while providing rationales for data with various cat-
egories in e-SNLI. For instance, human annotators
may explain why two sentences are ‘entailment’
by describing the shared information conveyed by
both sentences. However, by inspection, we notice
humans tend to provide counter-examples to ex-
plain why two sentences are ‘neutral’ or ‘contradic-
tion’ classes. Besides, humans also like to negate
the universal correctness of the contents described
in two sentences for these classes. We provide rep-
resentative examples for each class in Appendix 5.
Such behavior’s tendency to use many negation
connotations for rationales may cause difficulty for
the baseline models to interpret the information and
falsely make predictions.

Nevertheless, these models can correctly under-
stand rationales for all categories after being fine-
tuned with rationales under the Infusion setting.
Worth pointing out that ECQA rationales are sum-
marized from positive and negative properties for
each candidate choice which also contains negation
words, but those negation words mostly appear in
negative properties for wrong choices instead of the
positive property for correct choices. As a result,
we notice the pre-trained baseline models are able
to leverage ECQA rationales with Infusion dur-
ing the predicting process and achieve performance
improvement. Since we are the first to discover
such a class-level drop on e-SNLI by using TrReU
score, we only propose our hypothetical assump-
tion and leave a definitive study for future work.

6 Limitations and Risks

Our paper shows the proposed TrEU score can be
used to measure the quality of rationales towards
the models’ prediction performance on multiple
experiment datasets. However, our evaluation are
only on the human-created natural language ratio-
nales, and it is a natural next step that the TreU
could be used for evaluating the helpfulness of
model-generated rationales. We would like to cau-
tion readers of this paper when they apply the Treu
to the model-generated rationales: This metric and
our evaluation experiment require the model to
generate rationales for the training data split in

the datasets, and then use the train split with gen-
erated rationales to fine-tune the model with the
Infusion setting. Last but not least, we acknowl-
edge the proposed TrEU is only one way of automat-
ically evaluating the natural language rationale’s
quality, and there may be many other ways; besides,
the high TrEU score may not necessarily reflect the
human-perceived quality if we ask human to rate
it, as our calculation only measure its helpfulness
from the modeling perspective.

7 Conclusion and Future Work

In this paper, we propose the TrEu score as a faith-
ful evaluation metric for human-annotated natu-
ral language rationales regarding the helpfulness
to models’ performance for a variety of nlp tasks.
We design the TrEU score to consider rationales’
helpfulness at both fine-tuning with inference and
inference-only settings which is based on the dis-
coveries of two preliminary experiments: 1). ra-
tionales provide the most helpfulness while being
used as additional input and 2). the helpfulness
of rationales differs significantly between models
fine-tuned and not fine-tuned with rationales. We
also propose a unified data structure for TrEu that
minimizes the influence of tasks’ differences by
mapping various tasks to a unified multiple choice
generation task. Finally, we perform the evalua-
tion of human-annotated rationales in 5 popular
large-scale datasets with two different sequence-to-
sequence model architectures.

Evaluation results demonstrate that TrREU score
can consistently reflect the relative rank of rationale
qualities among five datasets while an established
metric fails, and the reflected quality of rationales
by TrEu score is aligned with previous works. we
also hypothesize SOTA models have limited ability
to interpret the negation connotations or counter-
examples that appear in large numbers in rationales
with low Treu scores. To the best of our knowledge,
we are the first to propose a faithful evaluation met-
ric for human-annotated rationales, which leads
to envisioning many avenues for future work. We
would expand the evaluation on other datasets with
human-labeled rationales and suggest researchers
leverage our TREU metric as an essential quality
check while collecting rationales in the future. We
would also continue to evaluate and analyze hu-
man natural language rationales, which may lead
to other inconspicuous properties that could be ben-
eficial for developing better reasoning systems.
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Infusion Choice3 <sep> because Rationale </s>
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Answer <sep> because Rationale </s>

Figure 4: Unified structure of Baseline , Infusion, and self-rationalization settings. Bold text are fixed prompts

for each dataset.
Appendix

A Implementation of self-rationalization
format

We show the implementation of self-rationalization
setting proposed by Marasovi¢ et al. (2021) and put
it together in Figure 4 with our proposed unified
structure of the Baseline and Infusion setting.

B Experiment Hyper-Parameters

We perform all the computational experiments on a
Google Colab instance with a single Nvidia V100
GPU and 50 Gigabytes of RAM.

B.1 Hyper-parameter for Preliminary
Experiment

For the preliminary experiment of utilizing ra-
tionales as part of input V.S. part of output, we
leverage the following hyper-parameters for all
models with different data structures: max_len :
512, target_max_len : 64, train_batch_size : 1,
learning_rate : 5¢79, num_train_epochs : 12.

For the preliminary experiment of rationales as
partial input during fine-tuning, we maintain the
following hyper-parameters for all models fine-
tuned with partial/full train data of CoS-E and
ECQA datasets: max_len : 512, target_max_len :
16, train_batch_size : 1, learning_rate : le™®,
num_train_epochs : 6.

B.2 Hyper-parameter for Rationale
Evaluation with five Datasets

For the evaluation of human-annotated rationales
on 5 different datasets, we maintain the following
hyper-parameters for all the models: max_len :
512, target_max_len : 64, train_batch_size : 1,
learning_rate 5¢7, num_train_epochs 12.
The only exception is the e-SNLI dataset, which
has about 10x size (549,367 data instances) of train-
ing data compared to the other datasets. Therefore,
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we only fine-tune models on e-SNLI dataset with 2
epochs.

C Results for Preliminary Experiment -
Rationales as Partial Input During
Fine-tuning

For the preliminary experiment of rationales as par-
tial input during fine-tuning, we randomly shuffle 3
seeds to select the subset of data and fine-tune the
model. The detailed results of each experiment and
average accuracy is reported in Table 4.

D Examples of different rationales for
each category in e-SNLI dataset

From our evaluation results, we suspect human
annotators behave differently while providing ra-
tionales for data with various categories in e-SNLI.
For instance, human annotators may explain why
two sentences are ‘entailment’ by describing the
shared information or similarities conveyed by
both sentences. However, humans tend to pro-
vide counter-examples or negations to explain why
two sentences are not related (neutral) or contra-
diction. Here in Table 5, we show representative
examples of data with corresponding rationales for
each class.



Fine-tune with Baseline on CoS-E v1.0
10% 20% 30% 40% 50% 60% 70% 80% 90% 1

0.583 0.656 0.638 0.658 0.661 0.670 0.674 0.678 0.697 0.676
0.550 0.644 0.664 0.650 0.666 0.667 0.667 0.682 0.668 0.682
0.584 064 0.64 0.655 0670 0.675 0.677 0.66 0.674 0.68

Average 0.572 0.647 0.647 0.655 0.665 0.671 0.673 0.673 0.680 0.679

0.586 0.586 0.625 0.633 0.596 0.621 0.663 0.655 0.649 0.676
0.561 0.591 0.642 0.609 0.656 0.630 0.618 0.650 0.641 0.652
0525 06 0.631 062 0.631 0.614 0.658 0.595 0.647 0.665

Average 0.545 0.592 0.632 0.621 0.628 0.622 0.647 0.634 0.645 0.664

Predict
Baseline

Predict
Infusion

Fine-tune with Infusion on CoS-E v1.0
10% 20% 30% 40% 50% 60% 70% 80% 90% 1

0.588 0.622 0.617 0.613 0.635 0.616 0.615 0.625 0.652 0.629
0.592 0.614 0.573 0.610 0.650 0.592 0.632 0.64 0.610 0.64
0.601 0.609 0.615 0.618 0.631 0.629 0.641 0.635 0.652 0.634

Average 0.594 0.615 0.602 0.614 0.639 0.612 0.629 0.633 0.638 0.634

0.867 0.874 0.884 0.889 0.902 0.894 0.890 0.886 0.910 0.904
0.875 0.888 0.881 0.890 0.898 0.901 09 0901 0.896 0.895
0.877 0.885 0.887 0.887 0.903 0.907 0.898 0.910 0.894 0.908

Average 0.873 0.882 0.884 0.889 0.901 0.901 0.896 0.899 0.900 0.902

Predict
Baseline

Predict
Infusion

Fine-tune with Baseline on ECQA
10% 20% 30% 40% 50% 60% 70% 80% 90% 1

0495 0.522 0.528 0.553 0.550 0.550 0.554 0.569 0.561 0.562
0471 0.505 0.525 0.533 0.549 0.561 0.558 0.572 0.572 0.572
0.469 0.511 0.533 0.541 0.553 0.545 0.569 0.564 0.566 0.565

Average 0478 0.513 0.529 0.542 0.551 0.552 0.560 0.568 0.566 0.566

0.664 0.672 0.710 0.716 0.692 0.702 0.708 0.722 0.684 0.701
0.685 0.682 0.673 0.697 0.681 0.682 0.694 0.677 0.699 0.641
0.678 0.715 0.693 0.648 0.706 0.713 0.686 0.685 0.688 0.711

Average 0.675 0.690 0.692 0.687 0.693 0.699 0.696 0.695 0.690 0.684

Predict
Baseline

Predict
Infusion

Fine-tune with Infusion on ECQA
10% 20% 30% 40% 50% 60% 70% 80% 90% 1

0417 0406 0402 0395 0381 0379 0365 0379 0375 0.374
0.381 0.363 0.367 0.366 0.368 0.400 0.385 0.349 0.368 0.371
0.381 0.386 0.345 0.341 0.369 0.376 0.361 0.359 0.386 0.334

Average 0.393 0.385 0.371 0.367 0.373 0.385 0.370 0.362 0.376 0.360

0974 0983 0.983 0.989 0.985 0.988 0.989 0.984 0.990 0.992
0.984 0.985 0.983 0.981 0.990 0.989 0.991 0.985 0.990 0.983
0.984 0.982 0.984 0.981 0.989 0.987 0.988 0.989 0.989 0.989

Average 0.980 0.983 0.983 0.984 0.988 0.988 0.989 0.986 0.990 0.988

Predict
Baseline

Predict
Infusion

Table 4: Detailed results for the preliminary experiment of rationales as partial input during fine-tuning.
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Category Premise Hypothesis Rationale

A young family enjoys feeling

entailment . A family is at the beach. Ocean waves implies the beach.
ocean waves lap at their feet.
An old man with a package poses . The word " ad " is short for the word
S . A man poses in front of an ad. . . N
in front of an advertisement. advertisement ".
A man reads the paper in a bar L .
. > 1€ pap The man is inside. In a bar means the man could be inside.
with green lighting.
An old man with a package poses A man poses in front of .
neutral . P gep P Not all advertisements are ad for beer.
in front of an advertisement. an ad for beer.
A woman with a green headscarf, . the woman could’ve been old rather
. L The woman is young.
blue shirt and a very big grin. than young
A man reads the paper in a bar . . The man could be reading something
. L The man is reading the sportspage.
with green lighting. other than the sportspage.
. A woman with a green headscarf, There can be either a woman with a very
contradiction The woman has been shot.

blue shirt and a very big grin. big grin or a woman who has been shot.

A layi lectri i . . Th ’t pl S if he i
man playing an electric guitar A man playing banjo on the floor. e man can’t play on stage if he is
on stage. on the floor.

A couple walk hand in hand
down a street.

The couple cannot be walking and

A couple is sitting on a bench. . .
sitting a the same time.

Table 5: Representative examples of data with corresponding rationales for each class in e-SNLI.
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