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Figure 1. This figure illustrates the four modules of the proposed framework: (a) Refractive Field: Estimates surface normals and ray-to-
cover distances, using Snell’s Law to calculate ray offsets. (b) Ray Sampling: Follows refracted paths, calculating positional offsets for
rays. (c) Radiance Field Rendering: Renders the scene using the sampled points.

Abstract

Recent extended reality headsets and field robots have
adopted covers to protect the front-facing cameras from en-
vironmental hazards and falls. The surface irregularities
on the cover can lead to optical aberrations like blurring
and non-parametric distortions. Novel view synthesis meth-
ods like NeRF and 3D Gaussian Splatting are ill-equipped
to synthesize from sequences with optical aberrations. To
address this challenge, we introduce SynthCover to enable
novel view synthesis through protective covers for down-
stream extended reality applications. SynthCover employs
a Refractive Field that estimates the cover’s geometry, en-
abling precise analytical calculation of refracted rays. Ex-
periments on synthetic and real-world scenes demonstrate
our method’s ability to accurately model scenes viewed
through protective covers, achieving a significant improve-
ment in rendering quality compared to prior methods. We
also show that the model can adjust well to various cover

geometries with synthetic sequences captured with covers
of different surface curvatures. To motivate further studies
on this problem, we provide the benchmarked dataset con-
taining real and synthetic walkable scenes captured with
protective cover optical aberrations.

1. Introduction
The deployment of extended reality (XR) devices in

commercial settings depends on their ability to perceive
their surroundings accurately and reliably. Recently, XR
headsets have been equipped with translucent covers over
their front-facing cameras to enhance durability and safety.
However, these protective covers present challenges for
novel view synthesis due to surface irregularities that can
cause image aberrations, leading to degraded synthesis
quality. We propose SynthCover, a novel framework for
neural view synthesis through refractive surfaces, which
addresses this challenge by providing a geometric estima-
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tion of surface irregularities that is jointly optimized with
the synthesis process, enabling high-quality rendering even
from cover-aberrated captures.

Image aberration has been a persistent issue in photogra-
phy and imaging, particularly for 3D reconstruction. Com-
mon optical aberrations, such as blurring and distortions,
occur even with monochromatic light sources. To mitigate
these effects, specialized blind deblurring algorithms are of-
ten used to preprocess and restore image quality, while dis-
tortion correction typically relies on physical camera model
approximations [1,12,13,17,25,30], using parametric mod-
els to realign distorted pixels. Photogrammetry and novel
view synthesis frameworks usually derive these parameters
using Structure-from-Motion (SfM). However, these meth-
ods often struggle to generalize across the non-symmetrical
distortions introduced by curved covers [23, 27, 40], a de-
sign feature increasingly common in modern XR headsets
and dome cameras used in field robotics.

Surface irregularities from the polishing process of these
covers can deviate from the intended geometry, causing
irregular distortions and image blurring. While high-
precision interferometers can measure these irregularities
in a lab environment before deployment, scaling this mea-
surement process for mass production and after deployment
remains a major hurdle. Synthesizing novel viewpoints
from aberrated image sequences is therefore non-trivial, as
the surface irregularities introduce non-radially symmetric
distortions and optical artifacts that conventional calibra-
tion techniques struggle to handle [10, 15, 23, 29, 35, 36].
These distorted features cannot be reliably matched to
their warped counterparts, especially in complex scenes
[15, 17, 21, 25, 39]. Recent advancements have explored
embedding camera parameter tuning within reconstruction
objectives, allowing for synthesis with noisy calibration pa-
rameters [18, 35] and reducing dependency on precise ini-
tializations. However, these methods struggle when camera
rays deviate significantly from the assumed camera model,
which is often the case with curved covers.

To address these limitations, we introduce SynthCover,
an innovative framework that explicitly models the cover’s
geometry and adjusts the camera rays accordingly to ac-
count for optical aberrations. SynthCover effectively han-
dles the complex distortions introduced by curved covers,
surpassing the limitations of conventional camera model-
based methods. By learning the cover geometry, our frame-
work adds an additional degree of freedom for ray propaga-
tion, enabling an accurate representation of cover-induced
distortions while adhering to physical refractive laws.

Our framework demonstrates superior performance
compared to state-of-the-art methods, including camera-
calibrating novel view synthesis frameworks, in rendering
cover-aberrated sequences from real-world and simulated
captures. We demonstrate that our cover geometry model-

ing approach effectively handles ray distortions in complex
scenes, producing results superior to existing novel view
synthesis frameworks [18, 19, 37] for modeling camera-
aberrated sequences. Our contributions can be summarized
as follows:

• End-to-end novel view synthesis for cover-protected
cameras.

• Estimating protective-cover’s surface figure geome-
tries through ray tracing.

• Protective cover aberrated walkable scene captures for
indoor and outdoor environments.

We note several assumptions in our work for estimat-
ing the surface geometries. Surface geometry estimation
in optics usually involves considering spherical aberration,
coma, astigmatism, curvature of field, and distortion. Since
images, once captured, contain compressed light informa-
tion and thus incomplete ray characteristics, we here sim-
plify the modeling to handle two general categories of
aberration: image blurring and distortions. We assume
a monochromatic incoming light compatible with the ray
tracing representation in the novel view synthesis methods.
The material dispersion model is assumed to be constant
with wavelength.

2. Related Works
Camera distortion modeling and optical aberrations.

The protective covers result in geometric optic aberration
in the form of distortion, and visual aberration perceived
as image blurring. In the past, camera distortion has been
addressed in computer vision through the use of parameter-
ized models tailored to specific camera types, as evidenced
by a range of studies [7, 12, 16, 20, 21, 24, 28, 29, 33, 40].
These models have shown good generalization across var-
ious capturing devices. However, they fall short in accu-
rately representing per-pixel distortions, especially with im-
age blurring, leading to the exploration of more flexible cal-
ibration methods that can accommodate these nuances for
novel view synthesis, which relies on accurate ray-to-pixel
associations [14, 18, 35].

Recent advances in camera modeling have focused on
estimating per-pixel distortions, addressing the limitations
of traditional camera models, and accommodating sensors
that deviate from conventional models [5, 25, 32, 36]. Sub-
sequent research has extended these concepts, proposing
advanced optimization strategies for imaging models that
transform 3D rays into pixels and exploring the impact of
different perspective distortion effects on the image plane
[6, 11, 14, 33]. While these per-pixel calibration methods
offer promising flexibility and generality, they introduce a
significant number of parameters, often relying on sensor-
specific knowledge [8, 9, 16, 20, 29, 32], which complicates
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Figure 2. (a) Refraction from curved cover distorts light paths and causes rendering artifacts. (b) Our method addresses this by modeling
the cover geometry and analytically bending the rays conforming to Snell’s physical refraction law.

the optimization process and makes them less suitable for
integration into novel view synthesis pipelines. In contrast
to these approaches, our method departs from hand-crafted
parameterization of camera models, focusing instead on
per-ray estimation across generic captures.

Self-calibrating novel-view synthesis. Neural Radi-
ance Fields (NeRF) have revolutionized the synthesis of
novel views by leveraging a coordinate network to implic-
itly learn a volumetric scene function [23]. Subsequent en-
hancements to NeRF have been proposed, focusing on var-
ious aspects of volumetric rendering and scene reconstruc-
tion for more accurate surface and scene geometry represen-
tations [2, 3, 37, 38]. Gaussian Splatting was subsequently
proposed to provide an explicit alternative to modeling the
scenes with an improved rendering speed and training effi-
ciency.

While initially focused on perspective image sequences,
recent works have extended NeRF to distorted image cap-
tures [18, 35]. These approaches introduce an optimizable
camera model that learns parameter offsets to the initialized
parameters, enabling the rendering when SfM techniques
like COLMAP [31] fail to accurately initialize camera pa-
rameters. However, these models do not specifically ac-
count for refractive mediums, which limits their effective-
ness in rendering scenes looking through covers. 3DGS, on
another hand, does not propagate gradients to camera intrin-
sic parameters as it relies on perspective rasterization. In the
context of extended reality, device captures, we propose to
embed cover-aberrated refraction modeling to achieve end-
to-end learning on real-world captures, enabling both NeRF
and 3DGS to account for the complex distortions introduced
by the curved cover, leading to more flexible synthesis for
challenging mobile captures.

3. Preliminary on Novel View Synthesis

Neural Radiance Field (NeRF) [23] and 3D Gaussian
Splatting (3D-GS) [19] are distinct 3D scene synthesis tech-
niques from 2D images. NeRF’s implicit volumetric render-
ing Gaussian Splatting’s explicit α-blending operate on a
similar principle. For NeRF, with color C, density σ, trans-
mittance T , and point sampling interval δ, the color is pro-
duced with volumetric rendering along a ray as:

C =

N∑
i=1

Ti(1−exp(−σiδi))ci, with Ti = exp(−Σi−1
j=1σjδj).

(1)
As an explicit approach, Gaussian Splatting instead com-
putes the color blending from N ordered points overlapping
each pixel with their respective α values as:

C = Σi∈Nciαi

i−1∏
j=1

(1− αj). (2)

For both approaches, the obtained color is contrasted
against the corresponding color in the target image to re-
fine the model’s parameters. Both techniques are adept at
synthesizing three-dimensional scenes, offering compara-
ble degrees of signal supervision to fine-tune ray deforma-
tions [19, 23]. Pose matrices M = [R, T ] and projection
matrix P governing the outward ray directions are required
to project a learned 3D canonical volume to the 2D image
plane for rendering the colors. SfM methods have previ-
ously been used to provide camera estimates, but they fall
short with aberrated captures. We address this by learning
the protective cover geometries and accordingly correcting
the outward rays. This ensures that the outward camera rays
adhere to the aberrated renders, mitigating the issues of in-
accurate canonical space to camera plane projections.
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Figure 3. Sample images from the CurvedCover dataset and the capturing rig.

4. Modeling Optical Aberrations from Cover
Geometry

We study the problem of novel view synthesis from a
monocular cover-aberrated video sequence. The surface fig-
ure of the translucent protective cover induces image blur-
ring and distortions, we model these optical irregularities
explicitly with a Refractive Field such that the rays com-
ing out from the camera assembly reflect the optical sur-
face geometry. Using the Structure-from-Motion method
COLMAP, we obtain an initial estimation of camera poses,
intrinsic parameters, and distortion coefficients. The cam-
era intrinsics establish the basic geometric properties of the
camera, determining the overall projection behavior of the
rays, while the distortion parameters introduce non-linear
modifications to the rays, bending them in a way that de-
viates from ideal pinhole projection. Lifting the plane co-
ordinates x to the corresponding ray r, the rays originating
from each camera’s viewpoint can be expressed as:

r = f−1(x) = r(d) = ro + d · rd, (3)

where f(r) derived from the camera intrinsic and distortion
parameters denotes the mapping of a 3D ray r to a 2D image
plane coordinate x. ro ∈ Rn and rd ∈ Rn respectively
denote the ray’s origin and direction, and d is the ray’s travel
distance. Assuming that the ray’s origin is provided by SfM
initialization as the camera’s world coordinate at a given
frame, we seek the optimal outward ray directions rd such
that the rendered image Î(r) matches the input image I(r).

Recognizing the potential inaccuracy of SfM-derived
camera intrinsic and distortion parameters, we employ a
differential fine-tuning strategy. This process optimizes the
parametric camera model until the remaining optical aber-
rations are solely attributed to the curved cover.

The curved cover optical aberrations are usually caused
by a thick cover’s refractions and surface shape irregulari-
ties. When the cover surfaces depart from flatness, a colli-
mated beam would expand or focus and lead to deviations
from rectilinear projections. While intuitively, the non-
parametric per-ray aberrations can be modeled by learning
ray offsets with a ray Refractive Field, directly predicting
the distortions with each individual ray is inherently ill-

posed since it essentially demands the network to implicitly
understand both the geometry of the medium and the physi-
cal behavior of Snell’s refractive law. In our proposed Syn-
thCover model, we instead decouple the learning objective
of the Refractive Field by modeling the physical geometry
of the refractive medium with a network and then analyti-
cally bending the lights according to the learned geometry
through Snell’s Law.

Decoupling the Refractive Field objective alleviates the
network’s learning demand and adds transparency to the op-
timization. The mathematical formulations of the differen-
tiable parametric camera model, Refractive Field network,
ray sampling, and regularizations are detailed in the follow-
ing sections. The implementation details are provided in
Appendix Sec. ??.

4.1. Differentiable Parametric Camera Model

We adopt a differentiable Brown-Conrady model to de-
scribe the camera without protective cover aberrations. We
note that when the optical power induced by the protective
cover is zero, the capturing system would resort to Brown’s
camera model. The camera model consists of intrinsic pa-
rameters describing the optical center and focal lengths,
as well as distortion parameters describing the deviations
from an ideal pinhole camera. Directly learning the cam-
era intrinsics K leads to a highly non-convex optimization
problem [18]. We instead decompose the camera intrinsics
into an initialized Ko matrix and learnable offset param-
eter matrix ∆K such that the initialized intrinsics reduce
the local minima that can compromise the learning pro-
cess. The revised intrinsic matrix can thus be expressed as
K ∈ R3×3 = Ko+∆K where the norm of ∆K would be
bounded. Similarly, the distortion model D consists of the
initial parameter estimates and offsets to be refined through
optimization.

The camera model describes the mapping between points
on the camera sensor x ∈ R2×2 to their 3D locations X ∈
R3×3. To express a camera with a ray bundle, we define the
ray origins as the camera’s location in the world, and we lift
the points from the camera sensor to their locations in the
world coordinate, then subtract the camera centers to get
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the ray directions. Deriving the lifting from pixels to rays,
the rays in the camera coordinate system are expressed as
rd(p) = D(K−1p) with ro = 0 as rays originating from
the camera’s position. The extrinsic R and T can be used to
transform the rays from the local camera coordinate to the
world coordinate as: rd = R · D(K−1p) + T ; ro = T .
Detailed formulation of the differentiable camera model can
be found in Appendix Sec. ??.

4.2. Refractive Medium Estimation

We design a network to model the refractive medium
ΦR(ro, rd) = (d,n) to estimate the cover surface geome-
tries. The Refractive Field network takes ray direction vec-
tors, ro and rd, as inputs and then predicts the distance
to the two incident surfaces as well as the incident normal.
The predicted distances describe the travel distance of each
ray to both the cover surfaces. This is estimated to track the
incident locations of the rays when the placement of the pro-
tective cover and thickness of the cover are both unknown.
The outputs from the distortion network are used to analyt-
ically compute ray offsets, which are subsequently added
to the corresponding rays before they are projected to the
world space for rendering. These offsets implicitly account
for the distortions introduced by the refractive medium. We
leverage an invertible neural network (INN) architecture for
this network since it can effectively compute both the for-
ward transformation (distortion) and its inverse (undistor-
tion). This invertibility allows the network to model the
complex, two-way relationship between the undistorted and
distorted rays.

Since a lens generally has two refractive surfaces, we as-
sume that the rays refract exactly twice, with the first refrac-
tion passing the rays from the air to the covered inner sur-
face, and the second refraction passing the rays through the
outer surface back to the air. We neglect considerations of
self-occlusions on the refractive path to constrain the prob-
lem. The estimation of outward rays is detailed as follows.

For each time step in the sequence, the previously de-
rived rays from the camera are sent to the Refractive Field
network ΦR. The network outputs the travel distance d ∈
Rn×2 of each ray to two surfaces S1 and S2 and the corre-
sponding incident normal vectors n ∈ Rn×2. With the esti-
mated geometry, a ray r refracts through the first surface
at Xs1 with the estimated incident normal using Snell’s
Law which governs the angle of light bending when pass-
ing across two mediums with different indexes of refraction
(z1, z2).

We use a vector form of Snell’s Law for the refraction
computation. In the vector form notation, r ∈ R3 denotes
the incident ray, n ∈ R3 denotes the normal vector, and
r′ ∈ R3 is the transmitted ray. The Snell’s Law can then be
expressed as:

r′ = η(r + c1n)− c2n, (4)

where c1 =< n, r >, c2 =
√

1− η2(1− c21) are two com-
pressed terms, and η = z1

z2
denotes the ratio between two

medium’s refractive indices. The refracted ray directions
through the first stage can thus be computed accordingly,
with the rays originating from the cameras defining the in-
cident rays. Similarly, the ray passing through the second
surface S2 of the curved cover to exit the refractive medium
can be computed again using Snell’s Law. The resultant
rays outward from the second surface are then used for sub-
sequent rendering.

Directly estimating the distances and normal vectors
from an unconstrained network is ill-posed, since the pre-
dicted cover geometry through distance estimation may de-
viate from the surface geometry described by the normal
predictions. To ensure that the network embeds the correct
geometry of the cover, we regularize the distance and nor-
mal estimations with a consistency loss detailed in Section
4.4.

4.3. Sampling and Rendering Through Refractive
Cover

The captured scene is distributed along the direction out-
ward from the cover’s outer surface. With the surface ap-
proximated with the estimated intersection Xs2, the ray
r′(d) beyond the outer refractive surface can be expressed
as:

r′(t) = Xs2 + d · r′d. (5)

For each ray in NeRF synthesis, we sample points x along
r′(d) then feed the sampled 3D points to the Radiance Field
for further prediction of the volumetric scene. With the rays
accounting for the refracted offsets, the modified NeRF can
now be optimized directly through the aberrated captures.

Synthesizing 3D Gaussian Splatting (3DGS) scenes re-
quires slight modifications to the optimization as a rasteri-
zation method. 3DGS is initialized with a sparse point cloud
from SfM, and it necessitates rectifying the training views
to align with the perspective projection in the rasterization
process. To adapt our approach to 3DGS’s formulation, we
rectify the training views, modify the training objective to
correct residual optical aberrations, and include parameter
estimates in addition to the ray offsets. The Gaussians are
represented by parameters (µ,R,S, sh), which denote the
Gaussian’s mean, rotation, scale, and ray-dependent spheri-
cal harmonics, respectively. Since the Gaussian parameters,
excluding the Spherical Harmonics terms, are not directly
associated with the camera ray directions, we introduce two
additional layers to capture Gaussian deformations caused
by distorted rays. The parameter offsets (∆µ,∆R,∆S)
are estimated by the deformation network, while ∆sh is
derived from the ray offsets. These offsets are applied to
the canonical Gaussians before rendering, and the rendered
results are compared with the rectified image.
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Figure 4. (a) Surface reconstruction of the curved cover. (b) Simulation setup for recreating the distortion induced by the curved cover.

Table 1. Quantitative comparison on the FisheyeNeRF dataset and EyefulTower dataset. See Sec 5.1 for an analysis of the perfor-
mance.

method globe cube table sofa area
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NeRF 19.3 0.472 0.731 18.5 0.534 0.672 21.5 0.788 0.333 21.7 0.672 0.364
SCNeRF 23.8 0.598 0.633 23.2 0.605 0.616 22.9 0.728 0.275 25.1 0.769 0.348

NeuroLens 24.5 0.724 0.148 25.3 0.716 0.163 23.4 0.817 0.260 27.8 0.837 0.189
Ours 28.4 0.730 0.124 27.3 0.728 0.147 27.2 0.833 0.189 29.2 0.859 0.136

Table 2. Quantitative comparison on the CurvedCover dataset. See Sec 5.1 for an analysis of the performance.

method robot arm scotty statue coffee table
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NeRF 16.1 0.711 0.8176 16.9 0.7346 0.8682 22.1 0.6082 0.6177 23.4 0.7678 0.5977
SCNeRF 25.9 0.8761 0.2664 25.4 0.6065 0.5890 26.8 0.7187 0.3197 29.5 0.8473 0.4103

NeuroLens 26.5 0.7799 0.3138 25.6 0.6463 0.4455 26.6 0.7897 0.2483 32.6 0.8926 0.3280
Ours 28.8 0.9287 0.1564 26.8 0.8972 0.2649 27.3 0.8137 0.2121 32.9 0.9048 0.2873

4.4. Regularization

We optimize the differentiable camera parameters and
distortion field with photometric loss and normal consis-
tency loss. The photometric loss compares the 2D image
observations and the rendered results. It builds on the intu-
ition that if the camera forms the images correctly, the color
of the rendered pixels from each ray r modeled by the learn-
able terms should match its projected 3D counterpart in the
reference image as:

Lphotometric = Σr∈N ||Î(r)− I(r)||22 (6)

Besides the photometric differences between the ren-
dered image and the captured image, we also minimize the
difference between the predicted normals ni from the Re-
fractive Field and the fitted local normals from the predicted
distances ndi . The normal consistency loss is defined as
follows:

Lnormals = Σr∈N ||ndr − nr||22, (7)

where N denotes the collection of ray paths that cross the
refractive medium. We fit the local normals in (3×3) neigh-
borhoods from the predicted distances to surfaces d as nd

then regularize the network’s direct normal estimations n
with the fitted normals.

5. Experiments

In this section, we validate our proposed method on four
static scene datasets captured with different levels of cam-
era distortions. We demonstrate the quantitative and qual-
itative results achieved on the LLFF dataset [22], Eyeful-
Tower dataset [37], FisheyeNeRF dataset [18], and our own
CurvedCover dataset. Notably, our method achieves state-
of-the-art performance across both cameras without covers
and those equipped with curved covers.

5.1. Evaluation

This section presents a quantitative and qualitative anal-
ysis of our method’s performance. Our aim is to investi-
gate whether explicit cover modeling helps disambiguate
ray bending paths and enhance the reconstruction of dis-
torted scenes. We also explore whether the proposed camera
model potentially hinders the reconstruction of scenes cap-
tured without a cover. For implementation details, please
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Figure 5. This figure compares NeRF variants, including ours. Ground truth images are shown in the first column. All methods use
RealityCepture for initial calibration. Our approach shows consistent accuracy across datasets.

see Appendix Sec. ??.

Benchmarked datasets. We evaluate our method us-
ing both real-world and synthetic monocular datasets with
varying camera distortions. The real-world datasets include
LLFF [22] with minimal distortion, EyefulTower [37] cap-
tured with fish-eye camera in office scenes, FisheyeNeRF
[18] with wide-angle outdoor scenes, and our CurvedCover
dataset captured by dual fish-eye cameras with a curved
Apple Vision Pro front-facing cover as shown in Fig. 3.
We also include synthetic scenes with varying cover curva-
tures to study the extent of our proposed cover modeling
approach. Detailed explanations of the dataset can be found
in Appendix Sec. ??.

Quantitative baseline comparisons. We evaluate
our method’s novel-view synthesis capabilities on LLFF,
FisheyeNeRF, EyefulTower, and CurvedCover datasets,
ordered by ascending camera distortion levels. These
datasets present increasing challenges, with the Curved-
Cover dataset posing the greatest difficulties due to its exter-
nal cover and scene complexities. We assess visual quality
using LPIPS [41], SSIM [34], and PSNR [26], comparing
our method to NeRF, SCNeRF, NeuroLens, as shown in Ta-
ble 1 and 2.

Our method consistently outperforms these baselines on
scenes with greater distortions (FisheyeNeRF, EyefulTower,
and CurvedCover). These comparisons highlight the effec-
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Figure 6. This figure compares NeRF variants, including ours. Ground truth images are shown in the first column. All methods use
RealityCepture for initial calibration. Our approach shows consistent accuracy across datasets.

Table 3. Quantitative comparison on the LLFF dataset. See
Sec 5.1 for an analysis of the performance.

Scene Model PSNR ↑ SSIM ↑ LPIPS ↓

Flower NeRF 32.2 0.937 0.067
Ours 33.1 0.951 0.062

Trex NeRF 31.4 0.955 0.099
Ours 32.3 0.963 0.094

tiveness of our holistic camera distortion modeling com-
pared to other camera-calibrating synthesis frameworks. To
further assess and ensure that our method does not hin-
der novel-view synthesis quality with sufficiently calibrated
datasets, we compare its results with the baselines on the
LLFF dataset, as shown in Table 3. Notably, our method
does not hinder the innate novel view synthesis capability as
the cover geometry essentially resorts back to a flat surface
when the camera does not have a curved cover and is suf-
ficiently calibrated. Finally, we support the aforementioned
decomposed geometric Refractive Field learning objective
as in Table 4. For more details on the implementation and
experiments on the 3DGS model, see Appendix Sec. ?? and
Sec. ??.

Qualitative evaluations on distorted captures. We
compared our method with NeRF, SCNeRF and NeuroLens
on both synthetic and real curved cover datasets as shown in
Fig. 5. The vanilla NeRF was unable to synthesize distorted
captures, as consistent with previous findings in the litera-
ture [18]. Our approach achieves superior rendering quality
due to its ability to explicitly model the curved cover geom-
etry. This is particularly evident in scenes with significant
refractive distortions, where the baseline methods struggle
to accurately capture the light behavior, as shown in Fig. 6.
With the modeled Refractive Field, the cover geometry can
be recovered as visualized in Fig. 4.

Refractive Field representations. We conduct abla-
tion studies on the synthetic “Coffee Table” sequence in the
CurvedCover dataset to dissect the impact of the warm-up
phase and Refractive Field, as detailed in Table 4. End-to-
end training solely on distortion parameters highlighted the
need for a warm-up phase of 6000 iterations, to avoid nu-
merical instabilities. To probe the necessity for explicit geo-

Table 4. Ablation studies on the warmup process, Refractive Field,
deformation field, and generalizability to the 3D-GS model.

Model PSNR ↑ SSIM ↑ LPIPS ↓
ours-NeRF 32.9 0.904 0.287

ours-GS 33.4 0.896 0.262
− warm up 25.3 0.786 0.442

− Refractive Field 29.4 0.861 0.307

metric estimation of the Refractive Field, we directly output
the ray offsets by modifying the Refractive Field’s output
layer to produce ∆r. Our findings confirm that the geomet-
ric Refractive Field is crucial for accurate light modeling.
It alleviates the network’s burden of simultaneously learn-
ing both the cover geometry and the physics of refraction,
leading to more efficient and effective scene reconstruction.

6. Limitations and Future Work

Our method is primarily limited in its ability to handle
specular effects from the protective cover since the Refrac-
tion Field only accounts for the primary refracted path for
each ray. The specular reflections are present when ambi-
ent lights are reflected on the covers. Scenes with strong
specular effects are generally not well-captured by NeRF
frameworks without explicitly extending its ray tracing to
capture higher-order light paths from the ambient environ-
ment, as discussed in Eikonal Field [4]. For enabling spec-
ular reflections in splatting methods, additional attributes to
handle specular surfaces could be amended to the 3D Gaus-
sian color parameterization.

7. Conclusion

In this study, we introduce SynthCover to enable novel
view synthesis with sequences aberrated by protective cov-
ers, a common design choice adopted by extended reality
headsets and field robots for durability. Our approach fits
into existing novel view synthesis pipelines, enabling them
to model sequences with cover-induced optical aberrations.
Alongside this, we present a new dataset featuring both syn-
thetic and real captures with aberrative covers to facilitate
further research on this topic. Our evaluations, utilizing
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our dataset and existing novel view synthesis datasets, val-
idate our model’s broad applicability across various cover
geometries. This underscores its potential as a distortion
rendering tool for future robotic novel view synthesis ap-
plications. SynthCover is currently limited to handle con-
stant material dispersion with monochromatic lights, with-
out consideration of specular effects from the cover. For
future work, we plan on extending our work to handle other
optic effects caused by the cover such as specular reflections
and scattering for more general applications.
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