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Abstract
In density functional theory, the charge density is
the core attribute of atomic systems from which
all chemical properties can be derived. Machine
learning methods are promising as a means of
significantly accelerating charge density predic-
tions, yet existing approaches either lack accu-
racy or scalability. We propose a recipe that can
achieve both. In particular, we identify three key
ingredients: (1) representing the charge density
with atomic and virtual orbitals (spherical fields
centered at atom/virtual coordinates); (2) using
expressive and learnable orbital basis sets (ba-
sis function for the spherical fields); and (3) us-
ing a high-capacity equivariant neural network
architecture. Our method achieves state-of-the-art
accuracy while being more than an order of mag-
nitude faster than existing methods. Furthermore,
our method enables flexible efficiency–accuracy
trade-offs by adjusting the model and/or basis set
sizes.

1. Introduction
Density functional theory (DFT) is a computational quantum
chemistry method that has enabled countless advancements
in the chemical sciences by providing a tractable means to
calculate the electronic structure of molecules and materi-
als (Jain et al., 2016). The central concept in DFT is the
charge density, a fundamental quantity from which all deriv-
able ground-state physicochemical properties of a system,
such as energy and forces, can, in principle, be derived. The
most widely used Kohn–Sham formalism (Kohn & Sham,
1965) of DFT offers a reasonable balance between accu-
racy and computational efficiency among conventional DFT
workflows. However, it still scales with a complexity of
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roughly O(N3
e ) where Ne is the number of electrons, ren-

dering it computationally expensive and limiting its viability
for both large-scale systems and long-timescale ab initio
molecular dynamics simulations.

In DFT, the solution to the Kohn–Sham equations are reliant
on an iterative calculation to identify the charge density that
minimizes the potential energy functional for a given atomic
configuration. This process, known as converging the self-
consistent field, is the main computational expense within
DFT. With a machine learning (ML) model that can effec-
tively bypass the Kohn–Sham equations by accurately and
efficiently predicting the charge density, the number of steps
required to converge the ground-state electron density can be
drastically reduced or potentially eliminated altogether by
using the predicted charge density as the initial guess. If ac-
curate enough, a machine-learned charge density could also
be used to directly predict electronic structure properties,
such as the band gap, band structure, and electronic density
of states of a material. Furthermore, the charge density itself
can provide an enormous amount of insight into a molecule
or material. From the charge density, partial atomic charges,
dipole moments, atomic spin densities, and effective bond
orders can all be directly computed through one of several
population analysis methods (Fonseca Guerra et al., 2004;
Limas & Manz, 2018). For some materials discovery tasks,
the charge density can also be a crucial descriptor depend-
ing on the application area (Shen et al., 2023; Yao et al.,
2024). Therefore, efficient and accurate representations and
ML models for charge density prediction are highly desir-
able as a means of accelerating the discovery of promising
molecules and materials.

In machine learning workflows, the charge density is a volu-
metric, data-rich object, usually represented as voxels with
a grid resolution of around 0.1 Å (Jørgensen & Bhowmik,
2022; Shen et al., 2022). This poses a challenge, as even
relatively small molecules and materials can require hun-
dreds of thousands to millions of grid points to represent the
charge density at this (relatively coarse) resolution. At the
same time, small deviations in the charge density that result
from too coarse of a representation can have a substantial
impact on the energy and other derivable properties. This
need for both efficiency and accuracy creates a significant
challenge for ML methods.
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Figure 1. (a) Illustration of the orbital-based method for charge density representation for an example molecule (indole, C8H7N). The
overall charge density is represented as a sum over spherical-harmonics-based atomic orbital basis functions (spherical fields) centered at
each atom. (b) Left: Illustration of the probe-based method for charge density representation. The charge density is represented as a
voxel where each grid point (probe node) represents a scalar density at that coordinate. The voxel for the example molecule is of size
108× 96× 40. Grid points with very small charge densities (< 0.05) are not visualized. Right: For a probe-based machine learning
prediction model, the voxel contains too many grid points to be processed simultaneously. Sampling of the voxel points is needed during
training and inference. All charge densities use the same colormap scale at the right-most side of the figure. Atom color code: H (white),
C (gray), N (blue). The charge density is from the QM9 charge density dataset (Jørgensen & Bhowmik, 2022).

Existing literature has mainly focused on two approaches
for learning to predict the charge density. The first ap-
proach (orbital-based), illustrated in Figure 1 (a), is to pre-
dict atomic orbital basis set coefficients by regressing over
coefficients extracted from DFT data (Fabrizio et al., 2019;
Qiao et al., 2022; Rackers et al., 2023; Cheng & Peng, 2023;
del Rio et al., 2023). The atomic orbital basis functions are
based on the composition of radial functions and spherical
harmonics. Under this scheme, the charge density is repre-
sented as a set of spherical fields centered around each atom.
The real space charge density voxel can be constructed by
overlaying the spherical fields and evaluating at each grid
point. For orbital-based ML models, both the prediction of
the basis set coefficients and the evaluation of the spheri-
cal fields are relatively scalable, making this approach effi-
cient at inference time. However, this approach can suffer
from sub-optimal accuracy due to the limited representation
power of the chosen basis set. In particular, it is challenging
for the atom-centered atomic orbitals to complex electronic
structures between atoms.

The second approach (probe-based) (Gong et al., 2019;
Jørgensen & Bhowmik, 2022; Koker et al., 2023; Pope &
Jacobs, 2023), illustrated in Figure 1 (b), is to predict the
charge density by inserting “probe nodes” at all grid co-
ordinates of the charge density voxel and applying graph
message passing between the atoms and these probe nodes.
Finally, the scalar charge density at each grid coordinate is
predicted through node-wise readout over the probe nodes.
This approach, while expressive and accurate, is compu-
tationally expensive. To see why, recall that the number
of grid points in the charge density voxel is usually very
large for even a small atomic system. Conducting neural
message passing over millions of nodes is both computa-
tionally and memory intensive. The large number of nodes
usually requires sampling a subset of grid points from the
charge density voxel (Figure 1 (b), right) in each training or

inference step (Jørgensen & Bhowmik, 2022).

This paper aims to address this accuracy–efficiency dilemma
with a new recipe for building representations and ML mod-
els for charge density prediction. We identify three key
ingredients:

1. We represent the charge density using an atomic orbital
basis set (spherical fields centered at each atom) to
leverage its efficiency and equivariant properties. Be-
yond orbitals placed at the atomic coordinates, we fur-
ther introduce virtual orbitals to improve expressivity.
In other words, we also place spherical fields centered
at coordinates other than the atomic centers, while en-
suring the placement algorithm is SE(3)-equivariant.

2. We use domain-informed and expressive basis sets. In
particular, we construct an even-tempered Gaussian
basis from an atomic orbital basis set. This allows
us to smoothly control the expressivity of the atomic
orbitals and enable flexible accuracy–efficiency trade-
offs. We make the basis set exponents learnable to
further improve expressivity.

3. We use a high-capacity equivariant neural network ar-
chitecture (eSCN (Passaro & Zitnick, 2023)), which
enables efficient training and inference with features
of high tensor order for a large dataset.

We apply our recipe to the widely used QM9 charge density
benchmark (Ruddigkeit et al., 2012; Ramakrishnan et al.,
2014; Jørgensen & Bhowmik, 2022). Our method outper-
forms existing state-of-the-art methods while being around
30× faster. Furthermore, we can flexibly trade off accu-
racy and efficiency by adjusting the model/basis size; in
doing so, we achieve up to 171× efficiency compared to
state-of-the-art methods with only a slight degradation in
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Table 1. QM9 charge density prediction error and efficiency on the test set. Metrics for baseline models are from previous papers whenever
possible and skipped (-) when unavailable. The metrics (↓ means lower the better, ↑ means higher the better) of the best-performing model
are bold. The metrics are reported with corresponding standard errors when available. For SCDP models, K is the number of interaction
layers in the eSCN backbone, L is the tensor order of the feature representation in the eSCN backbone, and β controls the expressiveness
of the even-tempered Gaussian basis set. A higher K, higher L, or lower β indicates a more expressive model. eSCN + VO indicates that
virtual orbitals are used. NMAE stands for normalized mean absolute error. Efficiency is measured by molecule per minute (mol. per
min.).

NMAE [%] ↓ NMAE, Split 2 [%] ↓ Mol. per min. [min−1] ↑
i-DeepDFT (Jørgensen & Bhowmik, 2022) 0.357± 0.001 - -
e-DeepDFT (Jørgensen & Bhowmik, 2022) 0.284± 0.001 - -
ChargE3Net (Koker et al., 2023) 0.196± 0.001 0.203± 0.003 3.95
InfGCN (Cheng & Peng, 2023) 0.869± 0.002 0.93 72.00
InfGCN, GTO only (Cheng & Peng, 2023) - 3.72 -
GPWNO (Kim & Ahn, 2024) - 0.73 -

SCDP models (Ours)

eSCN, K = 4, L = 3, β = 2.0 0.504± 0.001 0.514± 0.003 675.47
eSCN, K = 8, L = 6, β = 2.0 0.434± 0.006 0.452± 0.017 567.19
eSCN, K = 8, L = 6, β = 1.5 0.381± 0.001 0.391± 0.002 442.25
eSCN + VO, K = 8, L = 6, β = 2.0 0.237± 0.001 0.250± 0.002 231.21
eSCN + VO, K = 8, L = 6, β = 1.5 0.206± 0.001 0.220± 0.002 177.14
eSCN + VO, K = 8, L = 6, β = 1.3 0.196± 0.001 0.209± 0.002 136.92

SCDP models fine-tuned with scaling factors (Ours)

eSCN, K = 4, L = 3, β = 2.0 0.432± 0.001 0.438± 0.003 644.00
eSCN, K = 8, L = 6, β = 2.0 0.369± 0.007 0.386± 0.018 544.56
eSCN, K = 8, L = 6, β = 1.5 0.346± 0.001 0.354± 0.002 419.57
eSCN + VO, K = 8, L = 6, β = 2.0 0.207± 0.001 0.220± 0.002 221.19
eSCN + VO, K = 8, L = 6, β = 1.5 0.187± 0.001 0.200± 0.002 164.94
eSCN + VO, K = 8, L = 6, β = 1.3 0.178± 0.001 0.191± 0.002 125.29

accuracy. This tunability is valuable, as different applica-
tions, material classes, and available computing resources
may require drastically different levels of accuracy in the
charge density prediction. We conduct an ablation study to
justify the significance of each proposed ingredient.

2. Results
We highlight the experimental results of our proposed
method in the main paper and defer the related works and
method sections to the appendix. Our experiments on the
QM9 charge density benchmark aim to validate the effective-
ness of our proposed recipe in both accuracy and efficiency.
We refer to our method as SCDP models, which stands for
Scalable Charge Density Prediction models.

Dataset and metrics. The QM9 charge density
dataset (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014;
Jørgensen & Bhowmik, 2022) contains charge density cal-
culations for 133,845 small organic molecules using the
Vienna Ab initio Simulation Package (VASP). We adopt the
original split, where 123,835, 50, and 10,000 data points are
used for training, validation, and testing, respectively. There

are on average 18 atoms in each molecule and 666,462 grid
points in each charge density voxel. The entire dataset takes
1.1 TB of disk space. Following previous works (Jørgensen
& Bhowmik, 2022; Koker et al., 2023), we benchmark the
prediction accuracy with the normalized mean absolute er-
ror, defined as:

NMAE(ρ̂) =

∫
R3 |ρ(r)− ρ̂(r)|dV∫

R3 |ρ(r)|dV
, (1)

where the integration is approximated by summing over the
full charge density voxel. We benchmark the efficiency of
different methods by the number of molecules predicted per
minute (Mol. per min.) on a single NVIDIA A100-80GB-
PCIe GPU for the QM9 test split.

Baseline Models. We compare SCDP to several
previous works on the QM9 charge density predic-
tion benchmark (Ruddigkeit et al., 2012; Ramakrish-
nan et al., 2014; Jørgensen & Bhowmik, 2022). i-
DeepDFT, e-DeepDFT (Jørgensen & Bhowmik, 2022), and
ChargE3Net (Koker et al., 2023) are probe-based meth-
ods with different backbone architectures: i-DeepDFT
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Figure 2. Visualization of the reference charge density and prediction errors for select SCDP models with two representative test molecules
(top: C2H3NO2 and bottom: C8H18O). The first column is the ground truth charge density with the corresponding color scale. The next
five columns are prediction errors from various models which all use the same color scale in the rightmost for error magnitude. The
prediction errors significantly reduce with larger model size, virtual orbitals, orbital exponent scaling, and a larger basis set. VO stands for
virtual orbitals. Scaling stands for scaling factor fine-tuning. The virtual orbitals significantly reduce errors around chemical bonds. Atom
color code: H (white), C (gray), N (blue), O (red), virtual nodes (small, black).
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Figure 3. Efficiency–accuracy trade-off for SCDP models. The
models with scaling factor fine-tuning form the Pareto front.

uses SchNet (Schütt et al., 2021), e-DeepDFT uses
PaiNN (Schütt et al., 2021), while ChargE3Net uses higher-
order equivariant features under the tensor field network
framework (Thomas et al., 2018; Geiger & Smidt, 2022).
InfGCN (Cheng & Peng, 2023) combines GTOs and a shal-
low network for probe-based inference. It also has a more
efficient but less accurate GTO-only variant. GPWNO (Kim
& Ahn, 2024) combines GTOs and plane-wave basis sets
but still requires a large number (64,000) of probe nodes for
constructing the plane wave prediction. NMAE results for
i-DeepDFT, e-DeepDFT, and ChargE3Net are from (Koker
et al., 2023). NMAE results for InfGC and GPWNO are
also from the original papers, which uses a different test
split from the default QM9 test split (last 1,600 molecules
from the QM9 test split). We benchmark the efficiency of
baseline models on our hardware when the source code and
pretrained model are publicly available (ChargE3Net and
InfGCN). We do not apply any modification to the original
code but use optimized configurations for inference to better
utilize our GPU: for ChargE3Net, we process 20,000 probes

in each batch instead of the default setting of 2,500 probes
per batch, and for InfGCN, we process 40,000 probes in
each batch with a batch size of 4.

A significant advance in both accuracy and efficiency.
The metrics for all methods are presented in Table 1. We
have a series of SCDP models with different model sizes,
basis set sizes, as well as options on the inclusion of vir-
tual orbitals and scaling factors. Our best-performing model
uses the virtual orbitals described in Appendix B.1, an eSCN
of 8 layers and feature representation of order L = 6, an
even-tempered Gaussian basis with β = 1.3, and scaling
factor fine-tuning. This model achieves an NMAE of 0.178
on the QM9 charge density test set, outperforming the state-
of-the-art method ChargE3Net (Koker et al., 2023) — a
probe-based method. While being more accurate, our best
model also significantly outperforms ChargE3Net by 31.7×
in efficiency. Other configurations of our model with smaller
model sizes, basis set sizes, and models without virtual or-
bitals can trade off accuracy for further gains in efficiency.
The trade-off curves are visualized in Figure 3. Compared to
a more efficient baseline model, InfGCN, all benchmarked
configurations of our method are more efficient and signifi-
cantly outperform in accuracy. These results convincingly
demonstrate a significant advance in the accuracy–efficiency
trade-off in ML methods for charge density prediction. Fig-
ure 5 in Appendix C shows the convergence of validation
NMAE during pretraining and fine-tuning of SCDP models.
More details on the hyperparameters for model construction
and training are included in Appendix C, Table 3.

Ablation Analysis. We discuss the effectiveness of all in-
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gredients through an ablation analysis of the performance of
different SCDP models. Starting from the most lightweight
model with K = 4, L = 3, β = 2.0 and no virtual or-
bitals, we first observe that increasing the model size to
K = 8, L = 6 significantly improves the performance,
reducing the NMAE from 0.504% to 0.434%. Next, we
increase the basis set size by adjusting β from 2.0 to 1.5,
which further reduces the NMAE to 0.381%. The intro-
duction of the virtual orbitals renders a significant gain in
accuracy by reducing the error from 0.434% to 0.237% for
β = 2.0 and from 0.381% to 0.196% for β = 1.5. In partic-
ular, the charge density near chemical bonds is significantly
more accurate after introducing the virtual orbitals, as vi-
sualized in Figure 2. On the other hand, for models with
higher capacity, the improved accuracy comes at the cost
of efficiency. As shown in Table 1 and Figure 3, higher
capacity consistently improves performance while sacrific-
ing efficiency. At the same time, all SCDP models remain
highly efficient compared to baseline models. When the
scaling factors are introduced, accuracy further improves
at a slight cost on efficiency for all models. As shown in
Figure 3, models with scaling factors from the Pareto front
of all SCDP models benchmarked.

3. Discussion
Charge density is a fundamental quantity for atomic sys-
tems and is central to DFT. ML methods for charge density
prediction are promising as a means of greatly accelerating
DFT by circumventing the iterative procedure used to find
the ground-state charge density given a set of atomic coor-
dinates. In this paper, we propose a recipe that combines
three ingredients: (1) virtual nodes; (2) expressive basis sets;
and (3) high-capacity equivariant networks that collectively
outperform state-of-the-art methods in accuracy while being
more than an order of magnitude faster. Nevertheless, there
are still many directions for further improving the perfor-
mance of our proposed model. First, the simple heuristic of
assigning virtual node coordinates to bond centers may not
be optimal. With recent advances in auto-regressive (Daiga-
vane et al., 2023) and diffusion-based (Hoogeboom et al.,
2022; Xu et al., 2022) equivariant generative models for
3D atomic structures, learning to insert the virtual orbitals
may be a promising avenue for optimizing the placement
of virtual nodes, thus improving charge density prediction.
Due to the “nearsighted” nature of electronic matter (Prodan
& Kohn, 2005), an automated method for placing a higher
density of virtual nodes near sites of chemical relevance
may also be worthwhile to pursue. Second, we can use basis
functions beyond Gaussian-type orbitals (e.g., Slater-type
orbitals (Slater, 1930; Chong et al., 2004) or non-decay
radial basis functions (Jing et al., 2024)) that may require
fewer functions to achieve the same level of accuracy.

There are several limitations of the current paper that we aim
to address in future work: (1) Despite substantial improve-
ments in efficiency, the computational cost for training the
current model is still significant: our best-performing model
was pretrained for six days and fine-tuned for six days over
four NVIDIA A100 GPUs for the QM9 charge density pre-
diction task. The scaling factor fine-tuning stage requires a
small learning rate, which prolongs training. The prediction
model can benefit from resolving the training instability is-
sues with the scaling factors as well as further improvement
on the model architecture (Liao et al., 2023). (2) While our
approach achieves state-of-the-art performance on the QM9
charge density prediction benchmark, its effectiveness in
crystalline materials (Jain et al., 2013; Shen et al., 2022) has
yet to be validated. The GTOs and the equivariant network
can be applied to materials without modification. The bond-
midpoint-based virtual node assignment for molecules can
be generalized to crystals through a crystal graph construc-
tion algorithm, such as CrystalNN (Zimmermann & Jain,
2020). Alternatively, virtual nodes can be iteratively added
to occupy void space inside the unit cell of the material
using an algorithm based on the Voronoi diagram (Alexa
et al., 2003). The virtual nodes are expected to play an
even more important role in prediction accuracy — this is
because the diverse atomic species in materials and their
complex interactions induce even more complex charge den-
sity patterns. (3) To better validate the practical utility of
the predicted charge density, evaluation on the reduction
of self-consistent field calculations, or on recovering phys-
ical observables, such as energy and forces (Jørgensen &
Bhowmik, 2022; Sunshine et al., 2023; Koker et al., 2023),
will be highly valuable.
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A. Related Works
ML methods for charge density prediction. Orbital-based
methods predict coefficients for the orbital basis set func-
tions to recover the target charge density. Past works have
explored Gaussian processes (Fabrizio et al., 2019) and
graph neural networks (Qiao et al., 2022; Rackers et al.,
2023; Cheng & Peng, 2023; del Rio et al., 2023) in small
molecules, water, and materials systems. (Focassio et al.,
2023) used Jacobi-Legendre expansion — a many-body ex-
tension of atomic orbitals — for representing and predicting
the charge density. These approaches, while efficient, suffer
from lower accuracy in benchmarks such as QM9 (Rud-
digkeit et al., 2012; Ramakrishnan et al., 2014; Jørgensen
& Bhowmik, 2022) and the Materials Project (Jain et al.,
2013; Shen et al., 2022) charge density datasets. Probe-
based methods, on the other hand, predict the charge density
by neural message passing between the atoms and probe
nodes at all grid points. These methods (Gong et al., 2019;
Jørgensen & Bhowmik, 2022; Koker et al., 2023; Pope
& Jacobs, 2023) have shown superior accuracy in both
molecules and materials but suffer from poor scalability,
as they require neural processing of millions of probe nodes
for molecule/material structures of tens of atoms. Recent
works also explored a combination of atomic orbitals and
probe-based methods (Cheng & Peng, 2023) or plane-wave
basis sets (Kim & Ahn, 2024). However, both methods
still require neural message passing with a large number of
probe nodes, which limits their scalability. In the present
work, we combine virtual nodes, even-tempered Gaussian
basis, and trainable basis functions to greatly improve the
expressivity of orbital basis functions.

Equivariant neural networks. Equivariant neural net-
works (Thomas et al., 2018; Anderson et al., 2019; Weiler
et al., 2018; Gasteiger et al., 2021; Schütt et al., 2021; Geiger
& Smidt, 2022; Liao & Smidt, 2022; Passaro & Zitnick,
2023) use equivariant representations and processing lay-
ers that can preserve roto-translational symmetries that are
critical to atomistic modeling tasks. Equivariant models
have shown advantages in ML potentials with respect to the
accuracy, sample complexity, and molecular dynamics simu-
lation capabilities (Unke et al., 2021; Batzner et al., 2022; Fu
et al., 2023; Bihani et al., 2024) in addition to charge density
prediction tasks (Jørgensen & Bhowmik, 2022; Koker et al.,
2023). This is because atomic forces and charge densities
are indeed SE(3)-equivariant with regard to the input atomic
coordinates. In this work, we leverage recent advances in
methods for building more expressive and scalable equivari-
ant architectures (Passaro & Zitnick, 2023) to improve the
accuracy and scalability of charge density prediction.

B. Methods
Our recipe for building ML charge density prediction ca-
pabilities involves two complementary aspects: the charge
density representation and the prediction model.

B.1. Charge Density Representation

Gaussian-type orbitals (GTOs) are widely used as basis
sets for representing electron configurations in quantum
chemistry (Eichkorn et al., 1995). They are spherical Gaus-
sian functions centered at atomic coordinates. For an atom i
at coordinate ri, a GTO basis function with exponent α, an-
gular momentum quantum number (also called tensor order
or degree) l, and magnetic quantum number m is given by
the following expression:

Φα,l,m,ri(r) ≡ Rl(r)Yl,m

(
r − ri

r

)
= zα,l exp(−αr2)rlYl,m

(
r − ri

r

)
, (2)

where r = ||r − ri|| is the distance from a query coordi-
nate r to the atom coordinate ri and Yl,m are real spher-
ical harmonics. zα,l is a normalizing constant, such that∫
R3 ||Φ||22 dV = 1. For the purpose of developing a machine

learning model based on GTOs, we choose to represent the
charge density, ρ, of an atomic system via a linear combina-
tion of many basis functions:

ρ(r) =

N∑
i

Ni
b∑
j

li,j∑
m=−li,j

ci,j,mΦαi,j ,li,j ,m,ri
(r), (3)

where N is the number of atoms (including virtual ones
when applicable), N i

b is the number of l values (α values)
for atom i. It should be noted that the charge density in
Kohn–Sham DFT is not computed in this way; rather, Equa-
tion (3) is an artificial representation for the sake of training
a machine learning model that is inspired by the orbital-like
character of GTOs. The basis functions Φαi,j ,li,j ,m,ri

are
chosen first as the basis set, with a fixed set of l and α val-
ues for each element. For example, the values for l and
α for hydrogen in the def2-QZVPPD basis set (Weigend
& Ahlrichs, 2005) are presented in Appendix C, Table 2.
The number of basis functions for an atom i can be derived
as

∑Ni
b

j=1(2 · li,j + 1), because m can be an integer from
−l to l. A higher l value corresponds to a more complex
angular part of the basis function and allows the correspond-
ing spherical field to be more anisotropic. The number of
orbital basis functions for elements H, C, N, O, and F of
the def2-QZVPPD basis set (and its even-tempered vari-
ant, detailed later in this section) is included in Figure 4.
Atoms with more complex electronic structures are often
represented with more basis functions. The number of basis
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Figure 4. (a) Two example molecules (left: indole, C8H7N; right: methanol CH3OH), before and after the bond-midpoint-based virtual
coordinates (small black points) are inserted. Atom color code: H (white), C (gray), N (blue), O (red), virtual nodes (small, black). (b)
The number of Gaussian-type orbital basis functions for selected elements in the def2-QZVPPD basis set and even-tempered Gaussian
basis sets derived from it under different β, which controls the number of basis functions as described in Equation (4).

functions, ls, and α values are carefully chosen in exist-
ing basis sets such as def2-QZVPPD. We refer interested
readers to the original papers (Weigend & Ahlrichs, 2005;
Schuchardt et al., 2007; Pritchard et al., 2019) for more
details regarding the construction of atomic orbital basis
sets.

In training the machine learning model, after the basis set
is determined, the coefficients ci,j,m are then fit such that
Equation (3) best represent the charge density. GTOs have
been studied in several previous works (Fabrizio et al., 2019;
Rackers et al., 2023; Cheng & Peng, 2023) as a means of
representing the charge density with promising results. How-
ever, their accuracy still bears significant room for improve-
ment. We next introduce virtual orbitals, even-tempered
Gaussian basis, and scaling factors for orbital exponents that
greatly improve the expressive power of GTOs for charge
density representation.

Virtual orbitals. The atom-centered spherical fields often
struggle to capture non-local electronic structures, which
induces representation errors. This limitation is effectively
addressed with the introduction of virtual orbitals, which
define sets of spherical fields located in a position other
than the atomic centers. Due to the critical importance of
chemical bonds in defining the overall electronic structure,
we insert virtual nodes into the midpoint of all chemical
bonds for a given molecule (illustrated in Figure 4 (a)).
With this method, the coordinates to insert the virtual nodes
are SE(3)-equivariant with regard to the input atom coor-
dinates. Therefore, as long as the prediction of the basis
set coefficients is SE(3)-equivariant, the overall charge den-
sity prediction will still be equivariant after the introduction
of the virtual orbitals. We discuss potential extensions to
virtual orbital assignments in Section 3. After the virtual
nodes are created, one must decide which basis functions to
use for the virtual orbitals. In this work, we use the basis
functions of element O for the virtual nodes, which offers
a balance in accuracy and efficiency based on preliminary
experiments.

Even-tempered Gaussian basis. The number of basis func-

tions in existing basis sets, such as def2-QZVPPD, may be
insufficient for representing complex charge densities. At
the same time, expanding the number of basis functions re-
quires care in choosing the values of l and α that improve ex-
pressivity effectively. As an example, the def2-QZVPPD
basis set for hydrogen already contains basis functions with
l = 1 and α = 2.292. Extending this basis set with basis
functions with l = 1 and α = 2.0 will not significantly im-
prove its expressivity because the spherical pattern will be
similar to existing basis functions. A general methodology
for controlling the basis set size is to use an even-tempered
Gaussian basis set (Bardo & Ruedenberg, 1974). Based on
a reference atomic orbital basis set (e.g., def2-QZVPPD),
the even-tempered basis set constructs a series of GTOs with
a set of angular momentum quantum numbers l determined
by the atomic number and exponents α given by:

αk = α · βk for k = 0, 1, 2, . . . , Nl. (4)

For each spherical harmonics degree l, α and Nl are cho-
sen such that the exponents in the reference atomic orbital
basis set are well-covered1. β controls the number of basis
functions — a smaller β creates a more expressive basis
set with denser exponents. The use of an even-tempered
basis set allows us to smoothly control the number of basis
functions N i

b effectively. Figure 4 (b) shows how the num-
ber of orbital basis functions for elements H, C, N, O, and
F grows with a smaller β for the even-tempered Gaussian
basis derived from the def2-QZVPPD basis set.

Scaling factors for orbital exponents. In existing orbital-
based models (Fabrizio et al., 2019; Qiao et al., 2022; Rack-
ers et al., 2023; Cheng & Peng, 2023; del Rio et al., 2023),
while the coefficients for the basis functions are predicted by
the ML model, the exponents are fixed for each atom type
and not trainable. However, atoms in different local atomic
environments can exhibit significantly different charge den-

1We adopt the implementation of PySCF (Sun et al., 2020) and
refer interested readers to the original paper/code for more details
on the construction of even-tempered Gaussian basis.
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sity patterns around them, especially for the virtual orbitals
that aim at capturing interatomic interactions. To further
improve the expressivity of the basis set, we make the expo-
nents trainable by learning a positive scaling factor s > 0,
such that Equation (2) becomes:

Φα,l,m,ri(r, s) = zα,l,s exp(−s · αr2)rlYl,m

(
r − ri

r

)
.

(5)
The charge density is now represented with coefficients
ci,j,m and scaling factors si,j as:

ρ(r) =

N∑
i

Ni
b∑
j

li,j∑
m=−li,j

ci,j,mΦαi,j ,li,j ,m,ri(r, si,j), (6)

where zα,l,s is a normalizing constant such that∫
R3 ||Φ||22 dV = 1. The introduction of the learnable scal-

ing factors for the exponents significantly improves the ex-
pressive power of our charge density representation but is
also prone to instability during training. We resolve the
instability issue with a fine-tuning approach detailed in Ap-
pendix B.2.

B.2. Prediction Model

Using the atomic orbital basis set representation of charge
density, the prediction model aims to predict the basis set
coefficients ci,j,m and the scaling factors si,j for each real
and virtual node such that the predicted charge density
matches the ground truth density obtained from DFT calcu-
lations. The model F takes as input the types A = {ai |i =
1, . . . , N} and coordinates R = {ri|i = 1, . . . , N} of all
real and virtual nodes:

{ci,j,m, si,j |i = 1, . . . , N ; j = 1, . . . , N i
b ;

m = −li,j , . . . , li,j} = F (A,R). (7)

Backbone architecture. Our construction of the ML pre-
diction model is motivated by the following:

• Charge density is SE(3)-equivariant with regard to the
input atom coordinates. An equivariant model that
can preserve this symmetry is desired. Concretely,
the basis set coefficients ci,j,m are SE(3)-equivariant
with regard to the input atom coordinates. The scaling
factors si,j are SE(3)-invariant with regard to the input
atom coordinates.

• Charge density is data-rich and very sensitive to the
local atomic environment. A high-capacity and expres-
sive model is desired.

• Efficiency is key for general applications of charge
density prediction. The model should be efficient while
being expressive.

Based on these criteria, we consider equivariant model ar-
chitectures and the balance between capacity and efficiency.
For equivariant models, an important aspect of model expres-
sivity is the representation of node and edge features in the
form of irreducible representations (irreps) of SO(3)2: spher-
ical harmonic coefficients. A higher degree of representation
(L) is desired for building high-capacity models. Previous
works have employed the PaiNN architecture (Schütt et al.,
2021; Jørgensen & Bhowmik, 2022) that is based on Carte-
sian features (equivalent to L = 1) or architectures based on
irreps of SO(3) and tensor products (Qiao et al., 2022; Koker
et al., 2023; Cheng & Peng, 2023; Geiger & Smidt, 2022)
for charge density prediction. However, these models suffer
from limited expressivity or scalability. Cartesian features
are limited in representing angular information (L = 1);
meanwhile, the O(L6) complexity of tensor products limits
the degree of representation that can be used while remain-
ing computationally feasible.

In this work, we adopt the equivariant spherical channel
network (eSCN) architecture (Passaro & Zitnick, 2023) as
our model backbone. While using SE(3)-equivariant repre-
sentations and processing layers, the convolution layers in
eSCN reduce the SO(3) convolutions (Zitnick et al., 2022)
or tensor products (Thomas et al., 2018; Batzner et al., 2022)
to convolutions in SO(2) that are mathematically equivalent.
It reduces the complexity of the convolution operation from
O(L6) to O(L3). Further, the use of point-wise, spherical
non-linearity in eSCN also distinguishes itself from e3nn-
based equivariant models that only apply non-linearity to
the scalar features in the irreps. In our experiments, we also
find that eSCN outperforms alternative architectures, such
as tensor field networks (Koker et al., 2023; Thomas et al.,
2018) and MACE (Batatia et al., 2022). Using eSCN as the
backbone architecture, we get the last-layer latent features
xi for all real/virtual nodes:

{xi|i = 1, . . . , N} = eSCN(A,R). (8)

Prediction layers. The features xi are encoded using multi-
channel spherical harmonic coefficients (irreps). Note that
the prediction target, basis set coefficients ci,j,m, are also en-
coded as multi-channel spherical harmonic coefficients. For
example, for an eSCN with L = 3 and a latent dimension of
128, the last-layer latent atom features will be 128x0e +
128x1o + 128x2e + 128x3o. For the (uncontracted)
def2-QZVPPD basis set of hydrogen described in Ta-
ble 2, its irreps are 7x0e + 4x1e + 2x2e + 1x3e
(even parity as charge density is reflection-invariant). The
scaling factors si,j are SE(3)-invariant and can be seen
as scalar features of multi-channel irreps (14x0e for the

2We refer interested readers to (Geiger & Smidt, 2022) and
(Duval et al., 2023) for more information on equivariant geometric
neural networks.
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def2-QZVPPD basis set of hydrogen). Therefore, we can
make equivariant predictions of the basis set coefficients
and invariant predictions of the scaling factors for each atom
i through a fully connected tensor product layer over the
atom features and additional processing:

{ci,j,m,hi|j = 1, . . . , N i
b ;m = −li,j , . . . , li,j} =

FullyConnectedTensorProduct(xi,xi) (9)

{si,j |j = 1, . . . , N i
b} =

C1/(1 + exp(−Linear(hi) + lnC2)) + C3.
(10)

The basis set coefficients are directly obtained through the
fully connected tensor product. The tensor product also
produces scalar features hi (128x0e for a 128-channel
eSCN), which are used for predicting the scaling factors.
The parameterization of Equation (10) allows the prediction
to range from (C1, C1 + C3), and the scaling factors will
be C1/C2 + C3 when the linear network in Equation (10)
is zero-initialized. By setting C1 = 1.5, C2 = 2, and C3 =
0.5, we can limit the range of the scaling factors to be
(0.5, 2) (at most halve or double an exponent) and let initial
scaling factors be 1 with a zero initialization of the linear
layer in Equation (10).

With the predicted coefficients and scaling factors, the
charge density prediction ρ̂ can be obtained efficiently by
evaluating Equation (6) at all grid coordinates of the charge
density voxel. We train the model end-to-end with a mean-
absolute error loss L over the charge density:

L = Er∈Data [|ρ(r)− ρ̂(r)|] . (11)

Fine-tuning for scaling factor prediction. The scaling
factors at the exponents lead to significant training instability
when the network is trained from scratch. Therefore, we
use a fine-tuning approach, where we first pre-train the
model with fixed basis set exponents (an even-tempered
Gaussian basis derived from def2-QZVPPD) and then fine-
tune the prediction model with a small learning rate with
the learning for scaling factors enabled. To achieve this, we
zero-initialize the linear layer in Equation (10) and freeze
its weights until the fine-tuning stage.

C. Supplementary Materials
Software. Basis-set-exchange-v0.9.1 (Schuchardt et al.,
2007; Pritchard et al., 2019), PySCF-v2.5.0 (Sun et al.,
2020), are used to build the orbital basis sets. PyTorch-
v1.13.1 (Paszke et al., 2019) and CUDA-v11.6 (Nickolls
et al., 2008) are used to build the SCDP models. The
eSCN (Passaro & Zitnick, 2023) implementation is adopted

from the Open Catalyst Project (Chanussot et al., 2021). We
also acknowledge Numpy (Harris et al., 2020), ASE (Larsen
et al., 2017), Pymatgen (Ong et al., 2013), wandb (Biewald,
2020), Matplotlib (Hunter, 2007), and Plotly (Inc., 2015).
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Figure 5. Convergence of validation NMAE during pretraining and finetuning.

Table 2. The (uncontracted) def2-QZVPPD basis set for H.

l α

0 190.6916900
0 28.6055320
0 6.5095943
0 1.8412455
0 0.59853725
0 0.21397624
0 0.080316286
1 2.29200000
1 0.83800000
1 0.29200000
1 0.084063199228
2 2.06200000
2 0.66200000
3 1.39700000
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Table 3. Hyperparameters for SCDP models. 1The cutoff distance used for building the message passing graph. 2The cutoff distance for
computing the charge density using Equation (6). An orbital basis function only influences all grid coordinates within this distance.

Hyperparameter Value

eSCN

# interaction layers [4, 8]

Lmax [3, 6]

mmax 2

sphere channels 128

hidden channels 256

edge channels 128

# sphere samples 128

radius cutoff1 6 Å

Basis set

reference basis set def2-QZVPPD (Weigend & Ahlrichs, 2005)
β [2.0, 1.5, 1.3]
orbital inference cutoff2 5 Å

Training

batch size 4

# grid point samples (training, without VO) 100, 000

# grid point samples (validation/testing, without VO) 200, 000

# grid point samples (training, with VO) 60, 000

# grid point samples (validation/testing, with VO) 120, 000

precision 32

gradient clipping 0.5

# training steps (pretraining) 500, 000

# training steps (fine-tuning) 300, 000

optimizer Adam (Kingma & Ba, 2014)
Adam β1 0.9

Adam β2 0.999

Adam ϵ 1× 10−8

weight decay 0

initial learning rate (pretraining) 0.001

initial learning rate (fine-tuning) 2× 10−5

learning rate scheduler exponential (LR = initial LR× 0.96step/C)
terminal learning rate (pretraining) 1× 10−5

terminal learning rate (fine-tuning) 2× 10−6

Inference

batch size (without VO) 8

batch size (with VO) 4

Max # grid points in a forward pass for Equation (6)

eSCN, K = 4, L = 3, β = 2.0 2, 000, 000

eSCN, K = 8, L = 6, β = 2.0 1, 000, 000

eSCN, K = 8, L = 6, β = 1.5 1, 000, 000

eSCN + VO, K = 8, L = 6, β = 2.0 600, 000

eSCN + VO, K = 8, L = 6, β = 1.5 400, 000

eSCN + VO, K = 8, L = 6, β = 1.3 400, 000


