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Abstract

Self-supervised learning (SSL) conventionally relies on the instance consistency paradigm,
assuming that different views of the same image can be treated as positive pairs. However,
this assumption breaks down for non-iconic data, where different views may contain distinct
objects or semantic information. In this paper, we investigate the effectiveness of SSL when
instance consistency is not guaranteed. Through extensive ablation studies, we demonstrate
that SSL can still learn meaningful representations even when positive pairs lack strict instance
consistency. Furthermore, our analysis further reveals that increasing view diversity, by
enforcing zero overlapping or using smaller crop scales, can enhance downstream performance
on classification and dense prediction tasks. However, excessive diversity is found to reduce
effectiveness, suggesting an optimal range for view diversity. To quantify this, we adopt the
Earth Mover’s Distance (EMD) as an estimator to measure mutual information between
views, finding that moderate EMD values correlate with improved SSL learning, providing
insights for future SSL framework design. We validate our findings across a range of settings,
highlighting their robustness and applicability on diverse data sources.

1 Introduction

Humans can effortlessly recognize objects across different viewpoints and contexts. A cat lounging on a couch
remains a cat, whether seen from the side or above. This identity-invariant consistency has inspired the
design of self-supervised learning (SSL) methods in computer vision, which leverage cross-view consistency
as a supervision signal (Jing & Tian, 2020; He et al., 2020; Chen et al., 2020b; 2021; Grill et al., 2020;
Caron et al., 2020; 2021; Oquab et al., 2023). SSL has emerged as an effective approach for learning visual
representations from unlabeled data by aligning different views of the same image, relying on the instance
consistency paradigm (Wu et al., 2018), which considers each image as a separate class. In this paradigm,
different augmentations of an image, such as cropping, rotation, or color jittering, are treated as positive
pairs, while augmentations from other images serve as negatives (He et al., 2020; Chen et al., 2020a). The
goal is to learn representations that capture essential semantic information from common instance while
discarding irrelevant variations.

This instance consistency paradigm works remarkably well for iconic datasets, where images typically feature
a single, dominant object, ensuring that different views naturally share the same semantic content of the
common instance. However, training on such iconic datasets like ImageNet (Deng et al., 2009) poses challenges
in scalability, due to the requirement of intensive data collection and cleaning. In contrast, non-iconic datasets,
such as COCO (Lin et al., 2014) and OpenImages (Kuznetsova et al., 2020), are easier to collect but introduce
a fundamental challenge: these non-iconic datasets often feature complex scenes with multiple objects and
diverse backgrounds (Van Gansbeke et al., 2021; Selvaraju et al., 2021; Zhu et al., 2023; Chuang et al., 2022;
Stegmüller et al., 2023; Mishra et al., 2022), leading to the facts that two augmented views from the same
image may not guarantee to contain the same object or share consistent semantic information, as illustrated
in Figure 1. Surprisingly, despite the breakdown of instance consistency on non-iconic data, SSL methods
can still achieve competitive performance, as reported in Van Gansbeke et al. (2021), Mishra et al. (2022)
and Zhu et al. (2023). This challenges the conventional assumption that positive pairs must always share
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(a) Random Crops on Iconic Data (b) Random Crops on Non-iconic Data

Figure 1: Visualization of random crops on iconic data (e.g. ImageNet (Deng et al., 2009)) and
non-iconic data (e.g. COCO (Lin et al., 2014)). For iconic data, different views of the same image
maintain instance consistency. However, for non-iconic data, different views may capture entirely different
object instances, leading to the breakdown of such consistency.
instance semantics, raising a critical research question: Is instance consistency a strict requirement for
self-supervised learning?

To address this, we investigate in the following two key aspects: (1) How does SSL perform under
different levels of instance consistency? We systematically evaluate whether SSL can still function
effectively when positive pairs contain minimal shared instance semantics. Our configurations range from
overlapping views with shared instance and background patterns, to entirely non-overlapping views with
limited shared foreground content. We also explore configurations where only background information is
shared or one view contains foreground while the other contains only background. Surprisingly, our results
reveal that strict instance consistency is less essential in SSL than previously assumed. To further explore this
observation, we study: (2) How much diversity between positive pairs is beneficial, and when does
it become detrimental? We observe that increasing the diversity between positive pairs, such as enforcing
zero overlapping or using smaller crop scales, could encourage the model to discover more fine-grained visual
consistencies, particularly benefiting classification, especially fine-grained classification, and dense prediction
tasks. However, excessively increasing the diversity in between can hinder the effectiveness, leading to a
performance drop in downstream evaluations. This suggests that an optimal range of the shared information
exists, where the balance between the consistency and diversity in positive pairs plays a significant role for
effective SSL.

To quantify this balance, we adopt Earth Mover’s Distance (EMD) as a metric to measure the view diversity.
Our analysis reveals that moderate EMD values correlate with improved SSL performance, providing a useful
estimator for guiding positive pair selection in future SSL framework design. Finally, we validate our findings
above across a range of settings, including multiple SSL methods, various training datasets, and a broad
range of downstream evaluation tasks, demonstrating the practical applicability of our insights for effective
SSL across diverse application scenarios.

In short, our main contributions are as follows:

1. Revisiting the Necessity of Instance Consistency: We empirically demonstrate that strict
instance consistency is not essential for effective SSL, as models can leverage broader contextual
cues even when positive pairs contain minimal shared instance semantics. Meanwhile, we show
that increasing diversity between positive pairs can encourage the discovery of fine-grained visual
consistencies, enhancing SSL’s effectiveness. However, excessive diversity can hinder learning,
suggesting the existence of an optimal range for view diversity.

2. Earth Mover’s Distance as an Estimator for Optimal View Diversity: We adopt Earth
Mover’s Distance (EMD) as an estimator to quantify mutual information between positive pairs,
finding it to be a predictive measure of view diversity for effective SSL.

3. Validation Across Diverse Methods, Datasets and Tasks: We validate our findings across
diverse settings, while also demonstrating the robustness and generality of our proposed EMD-based
diversity estimator on various data sources.
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2 Related Work

Self-supervised Learning. Self-supervised learning (SSL) has emerged as a powerful technique for learning
rich visual representations from unlabeled data (Jing & Tian, 2020), which have demonstrated impressive
performance improvements across various downstream tasks (Caron et al., 2020; Grill et al., 2020; Oquab
et al., 2023; Darcet et al., 2023; Henaff, 2020; Luo et al., 2023; Li et al., 2020; Ma et al., 2022; Bardes et al.,
2021; Chen et al., 2020a; 2023a;b). Existing SSL methods can broadly be categorized into three main groups:
(1) Contrastive learning based SSLs (Chen et al., 2020a;b; 2021), are designed to optimize representations by
maximizing the similarity between augmented views of the same image while minimizing similarity with other
images. These methods typically rely on the assumption that each image represents a single object-centric
entity, making them well-suited for iconic datasets like ImageNet (Deng et al., 2009). (2) Self-distillation
based SSLs (Grill et al., 2020; Caron et al., 2021; Oquab et al., 2023; Caron et al., 2020), remove the need for
explicit negative pairs by focusing on consistency between teacher and student networks. These approaches
also need to learn by aligning representations across augmented views, making them effective in object-centric
contexts but challenging to extend to complex, multi-object scenes. (3) Reconstruction-based SSLs (He et al.,
2022), aim to reconstruct masked parts of the image, leveraging spatial context to learn representations.
These techniques inherently focus on local structures, making them suitable for tasks requiring spatial
feature preservation. Both contrastive-based and distillation-based SSLs primarily rely on the instance
consistency (Wu et al., 2018), where each image is treated as a separate class.
SSL on Non-iconic Data. Recent work has explored extending SSL to non-iconic datasets (Lin et al.,
2014; Kuznetsova et al., 2020), which pose unique challenges due to complex scenes with multiple objects.
Approaches like Zhao et al. (2021), Liu et al. (2020), Stegmüller et al. (2023), Chen et al. (2023b) and Wang
et al. (2021) attempt to align dense features across views within a single image. However, these methods often
require on manual feature- or image-level matching, which is challenging in complex scenes. Other techniques
handle non-iconic data by pre-processing images into object-centric patches, using supervised (Mishra et al.,
2022; Selvaraju et al., 2021) or unsupervised (Zhu et al., 2023; Peng et al., 2022) object discovery methods,
allowing traditional SSL frameworks to operate effectively on these pseudo-object-centric images. Alternative
methods have introduced new loss functions designed to handle noisy or inconsistent semantics in varied
views (Chuang et al., 2022). Meanwhile, studies on SSL with natural images (Goyal et al., 2021; 2022) suggest
that random cropping remains broadly effective, with Van Gansbeke et al. (2021) offering empirical evidence
for its applicability. In parallel, Purushwalkam & Gupta (2020) conduct an early investigation into SSL
invariances and dataset biases, finding that models trained on non-iconic data perform worse than those
trained on iconic data. However, a deeper analysis of view consistency and diversity remains under-explored,
which is essential to fully leverage SSL’s potential.
Data Augmentation in SSL. Data augmentation plays a fundamental role in SSL, providing the supervi-
sion signal to learn meaningful representations by capturing invariance across augmentations. Experiments
in SimCLR (Chen et al., 2020a) have established a detailed ablation studies on augmentation strategies,
concluding that applying diverse transformations to positive pairs improves representation learning. These
findings have since become the standard practice in modern SSL methods (He et al., 2020; Caron et al.,
2021; 2020; Grill et al., 2020), which typically employ a loss function that pushes together representations of
augmented views. More recently, Morningstar et al. (2024) propose a unified SSL framework, showing that
augmentation diversity plays a critical role in the success of recent SSL methods. Our work investigates how
augmentation-induced view diversity affects SSL when positive pairs contain minimal shared semantics.
Earth Mover’s Distance. Earth Mover’s Distance (EMD) is widely used in computer vision as a metric to
quantify structural similarity between distributions. Initially applied in tasks such as color and texture-based
image retrieval (Rubner et al., 2000) and visual tracking (Schulter et al., 2017; Zhao et al., 2008; Li, 2013),
EMD has demonstrated effectiveness in capturing relationships between complex structural patterns. More
recently, EMD has been employed to few-shot classification tasks (Zhang et al., 2020; Xie et al., 2022) to
measure structural distances between image representations. In the context of SSL, Self-EMD (Liu et al.,
2020) utilizes EMD to align dense feature embeddings in non-iconic datasets such as COCO, preserving
spatial structure in feature maps to improve object detection. Unlike prior work that applies EMD in settings
with rich supervised semantic information, our study introduces EMD in a fully self-supervised setting, using
it to estimate the view diversity, thereby providing insights for future SSL design.
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3 Preliminary

In this section, we provide an overview of MoCo-v2 (Chen et al., 2020b) and DINO (Caron et al., 2021),
two widely used SSL frameworks that serve as the foundation of our study. Our work specifically focuses
on SSLs with instance consistency (Wu et al., 2018), where each image is treated as a separate class. Both
MoCo-v2 and DINO implicitly rely on this assumption, which we seek to extend to more diverse data sources
to investigate the necessity of instance consistency in SSL.

MoCo-v2 (Chen et al., 2020b) employs a memory bank to store large number of negative samples, ensur-
ing smooth updates with momentum for better consistency. It learns feature representations using the
InfoNCE (Oord et al., 2018) loss:

Lq = − log exp (q · k+/τ)
exp (q · k+/τ) +

∑
k−

exp (q · k−/τ) , (1)

where τ is the temperature, q is the encoded query, k+ is the positive key, and k− represents the negative
keys. Note that q and k+ are two augmented views from the same image.

DINO (Caron et al., 2021) uses a teacher-student self-distillation framework, where the model learns categorical
distributions from the [CLS] token of two augmented views from the same image. The teacher θt and the
student θs share the same architecture, and the teacher parameters are updated with the Exponential Moving
Average (EMA) of the student parameters. The knowledge is distilled from teacher θt to student θs by
minimizing the cross-entropy loss:

L[CLS] = −P [CLS]
θt

(v)T log P [CLS]
θs

(u) , (2)

where u and v are two augmented views from the same image, and Pθ is the probability distribution of
network θ.

4 Delving into Instance Consistency in SSL

In this section, we conduct a comprehensive ablation study to investigate the effectiveness of SSL when
instance-consistency is not guaranteed. By systematically adjusting crop configurations, we analyze whether
SSL can still function effectively when positive pairs contain minimal shared instance semantics. Our findings
reveal that the strict instance consistency plays a less important role in SSL than previously assumed,
while view diversity plays a crucial role in enhancing SSL performance. To quantify this balance, we then
introduce Earth Mover’s Distance (EMD) as an estimator for quantifying diversity between augmented views,
demonstrating its alignment with experimental results and its potential as a predictive measure for optimizing
future SSL augmentation design. Finally, we validate our findings across diverse settings to evaluate the
robustness and generality of SSL on a wider range of data sources. Detailed descriptions of the pre-training
and downstream fine-tuning datasets, along with the experimental setups, are provided in the supplementary
materials.

4.1 How Does SSL React to Different Levels of Instance Consistency?

Traditional SSL methods (Chen et al., 2020b; Caron et al., 2021; Chen et al., 2020a) are often under the
instance consistency paradigm to treat each image as a separate class (Wu et al., 2018) and are pre-trained
on iconic data for ensuring invariant semantic features are shared across different views of the same object.
However, for non-iconic data, with complex scenes containing multiple diverse objects and varied backgrounds,
random crops of the same image may contain entirely different objects or background elements, leading to
the breakdown of such instance consistency, as illustrated in Fig. 2. For example, two crops from an image
of a pet expo might feature a cat in one view and a dog in the other. Given this, it remains unclear to
what extent SSL performance is affected by different levels of instance consistency. While SSL methods like
MoCo-v2 (Chen et al., 2020b) and DINO (Caron et al., 2021) can achieve strong performance on non-iconic
data (Van Gansbeke et al., 2021; Mishra et al., 2022; Zhu et al., 2023), it is essential to investigate whether

4



Under review as submission to TMLR

Image from COCO Smaller Crop

Larger Crop

Smaller Crop!Random Crop Only BgInst. vs BgZero Spatial Ovlp.

View1

View2

Instance Diversity

Sc
al

e
D

iv
er

sit
y

GT Inst.

Figure 2: Overview of positive pairs from different configurations. This figure illustrates various
positive pair configs proposed in our experiments, categorized into Instance Diversity and Scale Diversity.
The Instance Diversity category varies the level of instance consistency between positive pairs to investigate
its necessity, while the Scale Diversity category varies crop scales to evaluate the impact of diversity between
positive pairs.

this holds consistently across different levels of instance consistency. This leads to our first question: How
does SSL perform under different levels of instance consistency?

To probe further, we empirically conduct a series of ablation experiments with MoCo-v2 and DINO pre-trained
on various data sources, while systematically varying the shared instance semantics between positive pairs. We
then evaluate the learned representations on classification and dense prediction tasks to assess the necessity
of instance consistency on SSL performance.

Experiment Setup. We conduct controlled experiments to analyze the impact of different levels of instance
consistency between the positive pair (v1, v2), obtained from augmented views1. Given target instances with
ground-truth bounding boxes denoted as

⋃n
i=1 boxi, we introduce the following five primary configurations2:

1) Completely Random Crop. Two views v1 and v2 are randomly cropped from the same image
without any spatial constraint. This configuration replicates the default setup in multi-view SSL
methods (i.e. MoCo-v2 and DINO), which serves as the Baseline of the comparison.

2) Zero Spatial Overlap. Views are sampled with no spatial overlap to test the reliance of SSLs on
the instance consistency from the shared spatial regions.

IoU(v1, v2) = 0

3) Instance vs Bg. To further reduce the instance consistency in positive pairs in the former config
(two views may be partially cropped one same instance), we sample v1 around a foreground instance,
while v2 contains only background information, ensuring no overlap with any instance object. Here
Bg. refers to Background for simplicity.

IoU(v1, v2) = 0

(∃i, IoU(v1, boxi) > 0.8) ∧ (∀j, IoU(v2, boxj) < 0.1)

4) Only Bg. To completely remove possible instance consistency, two views are randomly sampled
purely from background regions, ensuring no foreground instances are included.

IoU(v1, v2) = 0

∀i, IoU(v1, boxi) < 0.1 ∧ IoU(v2, boxi) < 0.1
1We follow the settings from Chen et al. (2020a) to use the RandomResizedCrop in PyTorch with the scaling s = (0.2, 1.0)

and the output size of 224 × 224.
2We collectively refer to these five configurations as the Instance Diversity category, as illustrated in Fig. 2.
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Config COCO ImageNet-100
CIFAR-10 CIFAR-100 DTD Pets STL-10 CIFAR-10 CIFAR-100 DTD Pets STL-10

Baseline 70.90 47.03 38.40 38.40 71.84 71.85 48.24 39.26 43.85 75.31
Lower Bound 32.72 −38.18 12.40 −34.63 7.29 −31.11 7.28 −31.12 27.59 −44.25 32.64 −39.12 12.22 −36.02 6.65 −32.61 7.09 −36.76 28.36 −46.95

Spatial Ovlp. = 0 71.75 +0.85 48.45 +1.42 41.65 +3.25 39.53 +1.13 74.42 +2.58 74.72 +2.87 51.95 +3.71 46.01 +6.75 46.70 +2.85 76.69 +1.38

Inst. vs Bg 76.20 +5.30 54.79 +7.76 41.12 +2.72 40.90 +2.50 74.75 +2.91 75.71 +3.86 53.21 +4.97 42.77 +3.51 45.11 +1.26 77.38 +2.07

Only Bg 72.13 +1.23 49.47 +2.44 41.91 +3.51 39.20 +0.80 73.91 +2.07 73.73 +1.88 50.62 +2.38 43.40 +4.14 45.03 +1.18 76.56 +1.25

Larger Crop 67.02 −3.88 43.64 −3.39 33.24 −5.16 29.05 −9.35 69.99 −1.85 66.72 −5.13 42.15 −6.09 34.63 −4.63 36.33 −7.52 72.94 −2.37

Smaller Crop 71.36 +0.46 48.28 +1.25 41.76 +3.36 39.81 +1.41 73.69 +1.85 74.97 +3.12 51.59 +3.35 44.63 +5.37 45.90 +2.05 76.92 +1.61

Smaller Crop† 70.34 −0.56 47.26 +0.23 40.43 +2.03 36.44 −1.96 72.26 +0.42 67.72 −4.13 50.21 +1.97 40.96 +1.70 40.37 −3.48 75.65 +0.34

Table 1: Classification results with MoCo-v2 (Chen et al., 2020b) pre-trained on COCO (Lin
et al., 2014) and ImageNet-100 (Deng et al., 2009). We freeze the pre-trained weights of the SSL
backbone and train a supervised linear classifier to evaluate the learned representations on five classification
benchmarks (Krizhevsky et al., a;b; Cimpoi et al., 2014; Parkhi et al., 2012; Coates et al., 2011). All
configurations are pre-trained and linear fine-tuned for 100 epochs to ensure fair comparison. Performance
gaps relative to the baseline configuration are indicated as superscripts. Smaller Crop† denotes to Smaller
Crop with Zero Spatial Overlap configuration.

5) Lower Bound. Each view is sampled from entirely different images, minimizing any possible
consistency within positive pairs. This configuration serves as the lower-bound comparison to
evaluate how SSL performs when no mutual information exists within positive pairs.

Detailed descriptions on the implementations of these configs are provided in the supplementary materials.

Results. Table 1 presents the performance of the proposed configurations on classification (Krizhevsky
et al., a;b; Coates et al., 2011) and fine-grained classification (Parkhi et al., 2012; Cimpoi et al., 2014)
tasks, while Table 2 presents results on object detection tasks (Everingham et al., 2010; Xia et al., 2018).
As expected, the Lower Bound configuration yields the lowest performance, highlighting the importance
of shared information between positive pairs for effecive SSL. Surprisingly, a notable finding is that all
other configurations (Zero Spatial Overlap, Instance vs Bg, and Only Bg) outperform the baseline
configuration across classification and object detection evaluations, indicating that SSL can still effectively
learn representations without strict instance consistency, even surpassing the default settings.

Discussion. In contrast to prior beliefs (Selvaraju et al., 2021; Chuang et al., 2022), which suggests SSL
should rely heavily on object-centric iconic data with strong consistent semantics in positive pairs, our findings
reveal that strict instance consistency is not essential. Existing SSL methods can still learn meaningful
representations when positive pairs are in the absence of strict instance consistency, as long as both views
are sampled from the same image. This suggests that SSLs are capable of leveraging broader contextual
cues beyond instance consistency, including shared background patterns, consistent camera viewpoints, and
general color style, aligning with observations in Van Gansbeke et al. (2021). These findings highlight the
potential of SSL on non-iconic data, expanding the range of a wider applicable data sources.

Takeaway 1

In contrast to prior beliefs of instance consistency (Selvaraju et al., 2021; Chuang et al., 2022), our
experiments empirically show that SSL can learn meaningful representations even when positive pairs
contain minimal shared instance semantics.

4.2 How Much View Diversity is Beneficial?

As explored in Section 4.1, instance consistency appears to be less critical for effective SSL. Meanwhile,
while our configurations reduce the instance consistency, they simultaneously increase diversity and reduce
redundancy between positive pairs, yet still serve as a valid, and even better supervision signal. This raises a
new question: How much diversity between positive pairs is beneficial, and when does it become
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Config COCO ImageNet-100
VOC-0712 DOTA-v1.0 VOC-0712 DOTA-v1.0

random init. 53.58 31.59 53.38 31.59
Lower Bound 70.54 −2.78 47.94 −6.44 69.97 −3.94 48.96 −6.34

Baseline 73.32 54.38 73.91 55.30
Spatial Ovlp. = 0 74.55 +1.23 55.84 +1.46 74.87 +0.96 56.23 +0.93

Inst. vs Bg 74.15 +0.83 55.47 +1.09 74.35 +0.44 56.65 +1.35

Only Bg 74.73 +1.41 55.34 +0.96 74.43 +0.52 56.65 +1.35

Larger Crop 72.14 −1.18 52.09 −2.29 73.40 −0.51 54.06 −1.24

Smaller Crop 74.58 +1.26 55.52 +1.14 74.49 +0.58 56.26 +0.96

Smaller Crop† 73.90 +0.58 54.68 +0.30 74.09 +0.18 55.63 +0.33

Table 2: Object detection results with MoCo-v2 (Chen et al., 2020b) pre-trained on COCO (Lin
et al., 2014) and ImageNet-100 (Deng et al., 2009). We evaluate the learned representations on
VOC (Everingham et al., 2010) and DOTA (Xia et al., 2018) for object detection. All configs are pre-trained
for 100 epochs for fair comparison. Random Init. refers to the backbone being randomly initialized during
downstream fine-tuning.

detrimental? This aligns with findings from Tian et al. (2020), which suggest that higher diversity between
views can enhance SSL performance.

To further validate this hypothesis, we conduct a set of orthogonal experiments focusing on the diversity
between positive pairs, specifically by varying crop scales. According to the Law of Large Numbers, smaller
crop scales naturally reduce the likelihood of overlapping regions between views, while larger crops increase
spatial redundancy. Additionally, smaller crops inherently capture less information per view, potentially
increasing the diversity within positive pairs. The following experiments evaluate how different levels of view
diversity impact SSL representation learning.

Experiment Setup. We introduce three primary configurations3, which complement the previous configs
in Sec. 4.1 to regulate the diversity between positive pairs by systematically varying crop scales.

1) Smaller Crop. This configuration applies a smaller crop scale to reduce the area captured by each
view. The smaller region minimizes shared information to increase diversity between positive pairs.

2) Larger Crop. Larger crop scales increase the area captured by each view, creating larger overlap to
preserve more shared information, thereby reducing the diversity.

3) Smaller Crop with Zero Spatial Overlap. To maximize the diversity, this configuration combines
the smaller crop with the zero spatial overlap constraint, ensuring no overlapping spatial overlapping
within positive pairs. This setting enforces the lowest shared information, allowing us to evaluate
SSL’s ability to learn from highly diverse positive pairs.

All configurations maintain a consistent output size of 224× 224, aligning with the settings in Section 4.1.
Detailed descriptions and ablation studies on the selection of crop scales are provided in the supplementary
materials.

Results. Table 1 presents the classification results of varying crop scales, and Table 2 presents the detection
results. The findings confirm our hypothesis that increasing diversity between positive pairs in SSL can
enhance downstream performance: configurations with higher diversity (i.e. Smaller Crop and Smaller
Crop with Zero Spatial Overlap) consistently outperform the baseline. Conversely, the Larger Crop
configuration, which reduces diversity by preserving more shared information, leads to a significant performance
drop, suggesting that excessive redundancy between views can hinder SSL effectiveness. Interestingly, while
Smaller Crop and Zero Spatial Overlap individually boost performance, their combination does not
yield additional gains and instead results in a slight performance drop.

3We collectively refer to these three configurations as the Scale Diversity category, as illustrated in Fig. 2.
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Discussion. These findings highlight the importance of striking a balance in view diversity for effective SSL.
Increasing view diversity through configurations like, Smaller Crop and Zero Spatial Overlap, effectively
reduces mutual information, encouraging the model to discover more fine-grained visual consistencies, thus
enhancing SSL performance. However, the observed performance drop when combining these two configs
suggests that excessive diversity can be detrimental, as minimizing shared information beyond a certain
threshold hinders the model’s ability to learn meaningful representations.

This aligns with prior study (Tian et al., 2020) that describes a U-shaped relationship between mutual
information and downstream performance – indicating that while reducing redundancy is beneficial, completely
eliminating shared information can degrade SSL’s effectiveness. These insights imply the existence of an
optimal range for view diversity, while mutual information is minimized yet remains sufficient for effective SSL
learning. This highlights the need for a quantitative estimator to evaluate and balance shared information
between views, guiding the augmentation process toward optimal performance, which is to be elaborated
in Section 4.3.

Takeaway 2

Our findings empirically show that increasing the diversity in positive pairs encourages the discovery
of more fine-grained visual consistencies in SSL, thus enhancing downstream performance. However,
excessive diversity may degrade SSL’s effectiveness.

4.3 Earth Mover’s Distance as Diversity Estimator

Experiments in Secs. 4.1 and 4.2 show that view diversity between positive pairs plays a crucial role in
SSL performance. To quantify this diversity and give an estimation of the effectiveness of different view
augmentations, we adopt Earth Mover’s Distance (EMD) as an estimator to measure the shared information
between positive pairs. By evaluating the similarity between augmented views within positive pairs, EMD
provides a robust estimation of augmentation quality before model pre-training. This enables a systematic
approach to optimize the positive pair selection for improving SSL effectiveness.

(1) Grid-based EMD

(2) Sampling-based EMD

Figure 3: Two strategies for EMD-based similar-
ity score.

Background. To accurately measure the distance
or the similarity between two views, we require a
metric that account for spatial variations in the possi-
ble data sources of SSL. To accommodate non-iconic
data containing, where multiple objects or complex
scene environments appear across different views, the
simple L2 distance metric is unsuitable due to its
reliance on strict spatial alignment. Furthermore,
previous experiments in Sec. 4.1 show that SSL can
perform effective feature learning without strict in-
stance consistency, suggesting that the used view
similarity should not simply focus on the pixel or the
image level, which needs to further explore in the
feature space. Therefore, we adopt Earth Mover’s
Distance (EMD) to automatically identify correspon-
dences between views based on their visual features.

Earth Mover’s Distance (Rubner et al., 2000; Zhang
et al., 2020) quantifies the distance between two
distributions by computing the minimum cost needed
to transform one distribution into another, making
it a well-established formulation of the optimal transport problem (OTP). In our case, EMD measures the
distance between the given feature maps of two augmented views X, Y ∈ RN×D, where N denotes the
number of feature vectors in each feature map and D represents the feature dimension. More details on the
definition and computation of EMD are provided in the supplementary materials.
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Implementations. As shown in Fig. 3, to compute the EMD-based similarity score, we follow the settings
in Zhang et al. (2020) to employ two strategies for generating feature vectors from two views in the positive
pair. In both strategies, we first generate two augmented views of each image and extract their features
using a pre-trained ResNet-50 (He et al., 2016). To account for potential scale differences between augmented
views, each strategy uses distinct cropping patterns:

1) Grid-based: Each view is divided into uniform grids, with grid factors of 2 and 3. Each grid cell serves
as a separate patch, which is then passed through a pre-trained model to generate the feature vector.

2) Sampling-based: Each view is randomly sampled into 9 patches, varying the sizes and aspect ratios
to introduce scale diversity. Each sampled patch is resized with the input size of 84 before being
processed by the pre-trained model to produce its corresponding feature vector.

Results. To validate the effectiveness of Earth Mover’s Distance (EMD) as an estimator for assessing
similarity between augmented views, we compute the EMD similarity score for all the proposed configurations
in Secs. 4.1 and 4.2. Figure 4 reveals a clear reverse-U relationship between the EMD score and downstream
accuracy, evaluated using the two proposed cropping strategies. Configurations with moderate EMD scores4

(ranging from 3 to 4) consistently yield the highest performance. This suggests that when the diversity between
positive pairs is within an optimal range, the shared mutual information between views remains sufficient for
effective feature learning, leading to improved downstream performance. In contrast, configurations with either
very high (above 5) or very low EMD scores (below 2) exhibit a drop in downstream accuracy, indicating
that extreme overlap or excessive diversity between views can hinder SSL’s ability to learn meaningful
feature representations. Results for SSL pre-trained on ImageNet (Deng et al., 2009) are provided in the
supplementary materials.
Discussion. Our analysis demonstrates that Earth Mover’s Distance (EMD) is an effective estimator of
view diversity in SSL, providing an approach to quantify the mutual information between augmented views.
By leveraging EMD, we can evaluate and regulate view diversity to ensure it remains within an optimal
range for effective SSL training. This insight suggests that EMD can serve as a valuable measure for guiding
augmentation strategies in future SSL framework design, allowing the prediction of the effectiveness of positive
pair selection to enhance downstream performance.
Suggestions for Positive Pair Selection. Our experimental results suggest a potential improvement
for positive pair selection in SSL: pre-calculating EMD scores before pre-training. Specifically, our findings
indicate that the optimal EMD range lies between the baseline score (upper bound) and that of Smaller
Crop† (lower bound), where the latter can also represent positive pairs with excessive diversity. This insight
offers a promising alternative to the conventional random cropping approach in SSL.

Takeaway 3

Our findings reveal that Earth Mover’s Distance (EMD) effectively quantifies mutual information
between positive pairs, making it a predictive measure of view diversity for effective SSL.

4.4 Validation Across Diverse Settings

We have demonstrated the generality of our findings on both iconic and non-iconic data, validating their
effectiveness on both classification and object detection tasks. Building on these results, we provide additional
evaluations to further assess the robustness of our insights across diverse application scenarios.

Diverse SSL Methods. To ensure our findings are not limited to contrastive learning, we further expand
our analysis to the DINO (Caron et al., 2021) framework as shown in Figures 4c and 4d. These results
demonstrate that our insights apply beyond contrastive-based methods, generalizing to a broader range
of instance consistency-based SSL approaches. Numerical results and further analysis are provided in the
supplementary materials.

4EMD scores in Fig. 4 are scaled by 10 for better visualization.
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(a) EMD similarity versus detection accuracy with MoCo-v2 (Chen et al., 2020b) pre-trained on COCO.
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(b) EMD similarity versus classification accuracy with MoCo-v2 (Chen et al., 2020b) pre-trained on COCO.
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(c) EMD similarity versus detection accuracy with DINO (Caron et al., 2021) pre-trained on COCO.
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(d) EMD similarity versus classification accuracy with DINO (Caron et al., 2021) pre-trained on COCO.

Figure 4: EMD similarity versus detection and classification accuracy. The similarity scores between
views are plotted against object detection results in (a), (c) and classification results in (b), (d). Baseline
configuration is highlighted for reference. EMD scores are scaled by a factor of 10 for better visualization.
Across all settings, the results exhibit a clear reverse-U curve, supporting the hypothesis that an optimal
range of view diversity exists for effective SSL.
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Diverse Tasks & Experimental Settings. We further validate our findings by extending experiments
to more downstream tasks, including instance segmentation and depth prediction, assessing the generality
of our insights across different learning objectives. Additionally, we examine various experimental settings,
such as frozen-backbone tuning, extensive dataset transfer scenarios, and extended pre-training durations, to
comprehensively evaluate our findings under diverse training conditions. Detailed results and analysis are
provided in the supplementary materials.

Takeaway 4

Our validation experiments confirm the generality of our findings across a range of settings, while
highlighting the adaptability of the proposed EMD diversity estimator on various data sources.

5 Conclusion

In this paper, we investigate a critical research question: Is instance consistency a strict requirement
for self-supervised learning (SSL)? To explore this, we systematically analyze the effectiveness of
SSL when instance consistency is not guaranteed. Our findings reveal that SSL can still learn meaningful
representations even when positive pairs contain minimal shared instance semantics, suggesting that strict
instance consistency is not essential for effective SSL learning. Furthermore, our analysis further reveals that
increasing diversity between positive pairs, such as enforcing zero overlapping or using smaller crop scales,
can enhance performance across various downstream tasks. However, excessive diversity is found to reduce
effectiveness, indicating the existence of an optimal range for view diversity. To quantify this diversity, we
adopt Earth Mover’s Distance (EMD) as a metric to measure mutual information between views, finding
that moderate EMD values correlate with improved SSL learning, providing a useful estimator for guiding
positive pair selection in future SSL framework design. We validate our findings across a range of settings,
highlighting the practical applicability of our insights for effective SSL across diverse application scenarios.
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A Implementation Details

A.1 Pre-training Setup

Dataset. We conduct SSL pre-training on two datasets: COCO for non-iconic data and ImageNet-100
for object-centric data. COCO (Lin et al., 2014) is a large non-iconic dataset with 118k training images
containing approximately 896k labeled objects, averaging 7 objects per image. In contrast, ImageNet-100 is a
subset of the object-centric dataset ImageNet-1K (Deng et al., 2009), consisting of 100 randomly selected
classes, with 128k images in total. The selection ensures alignment with the number of training samples in
COCO for fair comparisons. The specific ImageNet-100 classes used in our experiments are listed in Table A.
All images of both datasets are used for SSL pre-training in our experiments.

List of ImageNet-100 classes

n01443537 n01484850 n01514668 n01518878 n01531178
n01532829 n01537544 n01580077 n01582220 n01601694
n01608432 n01632458 n01665541 n01669191 n01704323
n01728920 n01729977 n01755581 n01756291 n01797886
n01807496 n01824575 n01843065 n01847000 n01871265
n01872401 n01873310 n01950731 n01968897 n01978287
n01983481 n01985128 n02002724 n02009912 n02011460
n02017213 n02018207 n02018795 n02088364 n02088632
n02090622 n02090721 n02091032 n02091467 n02092002
n02093859 n02096437 n02097047 n02097209 n02100236
n02101388 n02105855 n02110627 n02110806 n02113624
n02113978 n02114548 n02114855 n02116738 n02130308
n02137549 n02165105 n02174001 n02177972 n02281787
n02319095 n02364673 n02415577 n02417914 n02442845
n02443114 n02444819 n02447366 n02480495 n02481823
n02493793 n02640242 n02643566 n02655020 n02727426
n02776631 n02782093 n02797295 n02804414 n02823428
n02834397 n02865351 n02869837 n02871525 n02877765
n02883205 n02917067 n02927161 n02939185 n02948072
n02965783 n02966687 n02977058 n02992529 n02999410

Table A: List of classes from ImageNet-100. These classes are randomly sampled from the original
ImageNet-1K dataset (Deng et al., 2009).

Setup. All models are pre-trained from scratch for 100 epochs. For the backbone, we use ResNet-50 (He
et al., 2016) in MoCo-v2 (Chen et al., 2020b), and ViT-S (Dosovitskiy et al., 2021) with the patch size of 16
in DINO (Caron et al., 2021). Specifically, for MoCo-v2, we set the batch size as 256 and the learning rate as
0.3 with the SGD optimizer. For DINO, we set the batch size as 256 and the learning rate as 0.0005 with
the AdamW optimizer. All other training hyper-parameters follow the original settings in their respective
implementations. All pre-training experiments are conducted on NVIDIA RTX A6000 GPUs.

Implementations. We provide the implementation details for the proposed configs in our ablation
experiments.

For the Instance Diversity category, we need to utilize the locations of object instances in the given image.
We use the GT annotations provided in COCO as the reference to obtain this object instance information.
However, unlike COCO, which includes GT bounding-box annotations, we need to self-identify the locations
of foreground instances in ImageNet-100. We adopt two unsupervised approaches to generate pseudo masks
for object instances: MaskCut (Wang et al., 2023), and Selective Search (Uijlings et al., 2013).

MaskCut (MC) is introduced in CutLER (Wang et al., 2023), which combines Normalized Cuts (NCut) (Shi
& Malik, 2000) and Conditional Random Fields (CRFs) (Krähenbühl & Koltun, 2011) to discover multiple
object instance masks without any supervision. We adopt the official implementation of MaskCut to obtain
pseudo masks for ImageNet-100. Selective Search (SS) (Uijlings et al., 2013) is a classic unsupervised object
proposal generation method, which leverages color similarity, texture similarity, region size, and fit between
regions to identify object candidates. We use the object proposals generated by SoCo’s (Wei et al., 2021)
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official implementation. To reduce noise and exclude tiny instances, we limit the maximum number of objects
to 3 per image for both approaches. The pseudo masks generated by these methods are used to implement
the configs in ablation experiments in the Instance Diversity category. A discussion of this two approaches
is provided in Appendix B.4.

For the Scale Diversity category, we carefully adjust crop scales within the pre-training dataset. For COCO,
we use the average object instance size derived from dataset annotations, resulting in a scaling range of
s = (0.08, 0.4) for Smaller Crop. Meanwhile, we apply a scaling range of s = (0.4, 1.0), which doubles the
scale in the default setting for Larger Crop. Considering the object scale difference in two datasets, for
ImageNet-100, we apply a scaling range of s = (0.18, 0.9) for Smaller Crop, and s = (0.4, 1.0) for Larger
Crop. The crop scales are selected based on the ablation studies in Appendix B.4.

A.2 Downstream Fine-tuning Setup

Dataset. We evaluate the pre-trained models on a board range of downstream evaluation tasks including
classification, object detection, instance segmentation and depth prediction. For object detection, we use
PASCAL VOC-0712 (Everingham et al., 2010) for general object detection, and DOTA-v1.0 (Xia et al.,
2018) for aerial object detection. For classification, we utilize five small-scale classification datasets: CIFAR-
10 (Krizhevsky et al., a), CIFAR-100 (Krizhevsky et al., b), DTD (Cimpoi et al., 2014), Oxford Pets (Parkhi
et al., 2012), and STL-10 (Coates et al., 2011) for general classification and fine-grained classification
evaluations. Additionally, COCO (Lin et al., 2014) is included for the in-distribution evaluation on object
detection and instance segmentation tasks. We also include depth prediction on NYUd (Silberman et al.,
2012) to demonstrate the generality of our findings to 3D downstream tasks.

Setup. All downstream experiments are conducted on NVIDIA RTX A6000 GPUs. We list the setups for
downstream tasks as follows:

• Object Detection: Evaluations are performed using MMDetection (Chen et al., 2019) and MMRo-
tate (Zhou et al., 2022). Specifically, Faster R-CNN (Ren et al., 2015) with the 24k iteration schedule
is used for PASCAL VOC general object detection. Oriented R-CNN (Xie et al., 2021) with the 1×
schedule is used for DOTA aerial object detection, and Mask R-CNN (He et al., 2017) with the 1×
schedule is used for COCO object detection and instance segmentation. The batch size is set to 2
per GPU, with other hyper-parameters following the default settings.

• Classification: We freeze the pre-trained SSL backbone and train a supervised linear classifier on
top of it to perform the classification evaluation. For MoCo-v2, we follow the evaluation protocol
in Peng et al. (2022), the linear classifier is trained for 100 epochs with an initial learning rate of
10.0, reduced by a factor of 0.1 at the 60th and 80th epochs. For DINO, we follow Caron et al. (2021)
to train the linear classifier for 100 epochs with an initial learning rate of 0.001, optimizing by SGD
using a cosine annealing schedule. The batch size is set to 512 across all five datasets for both cases.

• Depth Prediction: Evaluations are performed using Monocular-Depth-Estimation-Toolbox (Li,
2022) based on MMSegmentation (Contributors, 2020). Adabins (Bhat et al., 2021) with 2× schedule
is used for NYUd depth prediction. The batch size is set to 8 per GPU, with other hyper-parameters
following the default settings.

A.3 EMD-based Similarity Score Computation

We provide more details of the definition and computation of EMD-based similarity below.

Definition. Earth Mover’s Distance (Rubner et al., 2000; Zhang et al., 2020) quantifies the distance between
two distributions by computing the minimum cost needed to transform one distribution into another, which
has the form of the well-studied optimal transport problem (OTP). In our case, EMD measures the distance
between the given feature maps of the two augmented views X, Y ∈ RN×D, where N denotes the number of
vectors in each feature map and D is the feature dimension. We first flatten these maps into two sets of local
feature representations X = {xi|i = 1, 2, ..., N} and Y = {yj |j = 1, 2, ..., N}, where each xi and yj represents
a local vector at a specific spatial location in the given view.
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Algorithm A: Procedure for EMD-based Similarity Score
Data: Two augmented views X, Y ∈ RN×D.
Result: Similarity score S(X, Y).

1 Flatten feature maps into local feature representations
X ,Y ← {xi}N

i=1, {yj}N
j=1 ;

2 Define the overall transportation polytope
U(s, d) := {P ∈ RN×N

+ |P1 = s, P T
1 = d};

3 Compute the cost matrix
Cij ← 1− xT

i yj

∥xi∥∥yj∥ ;
4 Solve optimal transport via Sinkhorn-Knopp iteration

P ∗ = arg minP ∈U(s,d)⟨P, C⟩ − 1
λ h(P );

5 Compute the similarity score
S(X, Y)← ⟨P, 1− C⟩;

The EMD between these two feature maps is then defined as the minimum “transport cost” required to
transfer units from “suppliers” in X to “demanders” in Y, where each supplier xi has si units to transport,
and each demander yj requires dj units. The roles of suppliers and demanders can be switched without
affecting the total transportation cost. The overall transportation polytope can be formulated as follows:

U(s, d) := {P ∈ RN×N
+ |P1 = s, P T

1 = d}. (A)

Here 1 ∈ RN represents the all-ones vectors, while s and d are vectorized forms of {si} and {dj}, respectively.
These vectors are also referred to as the marginal weights of matrix P across its rows and columns. We then
define the cost matrix Cij to represent the cost per unit transported from supplier node xi to demander node
yj according to their cosine distances as:

Cij = 1−
xT

i yj

∥xi∥∥yj∥
, (B)

With this notation, we can define the EMD as:

OT(s, d) := min
P ∈U(s,d)

⟨P, C⟩, (C)

where OT(s, d) is the total transportation cost and ⟨·, ·⟩ denotes the Frobenius dot product of two matrices.

Computation Details. To find the optimal assignment matrix P ∗, we consider the OTP as a Linear
Programming problem by using Sinkhorn-Knopp iteration (Sinkhorn & Knopp, 1967; Cuturi, 2013), which
introduces a entropy constraint term h:

P ∗ = arg min
P ∈U(s,d)

⟨P, C⟩ − 1
λ

h(P ), (D)

where h(P ) is the regularization of the entropy of the assignments, and λ is a constant hyper-parameter to
control the intensity of regularization term. After repeating T times iterations (T = 10 in our case), the
approximate optimal assignment P ∗ can be obtained.

For our case, high values of P ∗
ij indicate a low transport cost from xi to yj , allowing maximum unit transfer,

which suggests that xi and yj have similar features, thus potentially sharing more meaningful mutual
information. Therefore, we can compute the similarity score S between the feature representations within
two augmented views as:

S(X, Y) = ⟨P, 1− C⟩, (E)
where 1− C denotes the cosine similarity between two local feature vectors.

We provide the pseudo code for computing the Earth Mover’s Distance (EMD)-based similarity score between
two augmented views in Algorithm A.
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Config COCO ImageNet-100
CIFAR-10 CIFAR-100 DTD Pets STL-10 CIFAR-10 CIFAR-100 DTD Pets STL-10

Baseline 74.21 49.84 49.84 48.21 81.79 77.54 53.88 53.99 57.57 84.60
Lower Bound 28.25 −45.96 12.16 −37.68 8.49 −41.35 7.63 −40.58 24.65 −57.14 28.68 −48.86 11.07 −42.81 6.49 −47.50 8.77 −48.80 26.00 −58.60

Spatial Ovlp. = 0 76.92 +2.71 52.92 +3.08 51.67 +1.83 52.38 +4.17 84.14 +2.35 78.57 +1.03 55.03 +1.15 57.14 +3.15 59.14 +1.57 86.56 +1.96

Inst. vs Bg 77.92 +3.71 53.28 +3.44 53.12 +3.28 52.22 +4.01 83.62 +1.83 80.24 +2.70 56.20 +2.32 57.87 +3.88 64.05 +6.48 86.01 +1.41

Only Bg 75.85 +1.64 51.28 +1.44 52.88 +3.04 54.26 +6.05 83.56 +1.77 79.73 +2.19 56.86 +2.98 56.78 +2.79 61.22 +3.65 86.36 +1.76

Larger Crop 70.95 −3.26 45.03 −4.81 48.19 −1.65 38.05 −10.16 78.44 −3.35 75.31 −2.23 49.43 −4.45 52.29 −1.70 53.88 −3.69 81.24 −3.36

Smaller Crop 76.19 +1.98 52.04 +2.20 52.19 +2.35 53.96 +5.75 83.51 +1.72 79.84 +2.30 55.34 +1.46 58.35 +4.36 66.72 +9.15 86.91 +2.31

Smaller Crop† 74.26 +0.05 48.94 −0.90 49.10 −0.74 48.73 +0.52 82.44 +0.65 76.51 −1.03 52.82 −1.06 52.98 −1.01 56.58 −0.99 84.09 −0.51

Table B: Classification results with DINO (Caron et al., 2021) pre-trained on COCO (Lin
et al., 2014) and ImageNet-100 (Deng et al., 2009). We freeze the pre-trained weights of the SSL
backbone and train a supervised linear classifier to evaluate the learned representations on five classification
benchmarks (Krizhevsky et al., a;b; Cimpoi et al., 2014; Parkhi et al., 2012; Coates et al., 2011). All
configurations are pre-trained and linear fine-tuned for 100 epochs to ensure fair comparison. Performance
gaps relative to the baseline configuration are indicated as superscripts. Smaller Crop† denotes to Smaller
Crop with Zero Spatial Overlap configuration.

Config COCO ImageNet-100
VOC-0712 DOTA-v1.0 VOC-0712 DOTA-v1.0

Random Init. 58.62 46.96 58.62 46.96
Lower Bound 53.30 −21.62 44.03 −18.70 53.28 −22.32 44.27 −19.76

Baseline 74.92 62.73 75.60 64.03
Spatial Ovlp. = 0 76.40 +1.48 64.08 +1.35 77.06 +1.46 66.98 +2.95

Inst. vs Bg 76.25 +1.33 64.55 +1.82 77.80 +2.20 66.49 +2.46

Only Bg 76.31 +1.39 64.05 +1.32 76.76 +1.16 65.45 +1.42

Larger Crop 73.43 −1.49 62.27 −0.46 74.45 −1.15 63.18 −0.85

Smaller Crop 76.12 +1.20 64.29 +1.56 76.81 +1.21 65.72 +1.69

Smaller Crop† 74.06 −0.86 62.49 −0.24 75.35 −0.25 64.31 +0.28

Table C: Object detection results with DINO (Caron et al., 2021) pre-trained on COCO (Lin
et al., 2014) and ImageNet-100 (Deng et al., 2009). We evaluate the learned representations on
VOC (Everingham et al., 2010) and DOTA (Xia et al., 2018) for object detection. All configs are pre-trained
for 100 epochs for fair comparison. Random Init. refers to the backbone being randomly initialized during
downstream fine-tuning.

B Additional Experiment Results

In this section, we present additional experiment results under diverse settings to further validate the generality
of our findings.

B.1 Validation on Diverse SSL Methods

To assess the broader applicability of our findings, we extend the ablation experiments on the effectiveness of
instance consistency to another SSL framework, DINO (Caron et al., 2021). Unlike contrastive learning-based
methods MoCo-v2 (Chen et al., 2020b), DINO employs a self-distillation approach while still relying on
instance consistency during knowledge distillation, which treats different views of the same image as positive
pairs. For fair comparison, we adopt the same experiment setup as MoCo-v2: pre-training on COCO /
ImageNet-100 dataset and fine-tuning for classification and object detection evaluations.

Results. As shown in Tables B and C, results on DINO align closely with those observed on MoCo-v2:
increasing diversity between positive pairs consistently enhances baseline performance, while excessive diversity
yields no additional improvements. These findings extend the applicability of our conclusions from contrastive
SSLs to a broader range of SSL methods under the instance consistency paradigm.

20



Under review as submission to TMLR

Config Pre-trained COCO Object Detection COCO Instance Segmentation
APb APb

50 APb
75 APm APm

50 APm
75

Baseline COCO 34.62 52.95 37.39 31.28 50.10 33.33
Spatial Ovlp. = 0 COCO 35.19 +0.57 53.51 +0.56 38.35 +0.96 31.82 +0.54 50.82 +0.72 34.19 +0.86

Smaller Crop COCO 35.07 +0.45 53.31 +0.36 38.09 +0.70 31.71 +0.43 50.52 +0.42 33.98 +0.65

Smaller Crop† COCO 34.78 +0.16 53.05 +0.10 37.87 +0.48 31.46 +0.18 50.28 +0.18 33.76 +0.43

Baseline ImageNet-100 34.80 53.29 37.71 31.59 50.53 33.95
Spatial Ovlp. = 0 ImageNet-100 35.09 +0.29 53.56 +0.27 38.12 +0.41 32.00 +0.41 51.01 +0.48 34.28 +0.33

Smaller Crop ImageNet-100 35.08 +0.28 53.53 +0.24 38.05 +0.34 31.80 +0.21 50.74 +0.21 34.11 +0.16

Smaller Crop† ImageNet-100 34.87 +0.07 53.33 +0.04 37.87 +0.16 31.66 +0.07 50.55 +0.02 34.05 +0.10

Table D: Object detection and instance segmentation results with MoCo-v2 (Chen et al., 2020b)
pre-trained on COCO (Lin et al., 2014) and ImageNet-100 (Deng et al., 2009). We evaluate the
learned representations on COCO (Lin et al., 2014) for object detection and instance segmentation.

Config COCO ImageNet-100
NYUd RMSE ↓

Random Init. 0.7467 0.7467
Lower Bound 0.6564 +0.1081 0.6859 +0.1357

Baseline 0.5483 0.5502
Spatial Ovlp. = 0 0.5154 −0.0329 0.5221 −0.0281

Inst. vs Bg 0.5149 −0.0334 0.5157 −0.0345

Only Bg 0.5183 −0.0300 0.5189 −0.0313

Larger Crop 0.5626 +0.0143 0.5593 +0.0091

Smaller Crop 0.5199 −0.0284 0.5114 −0.0388

Smaller Crop† 0.5596 +0.0113 0.5571 +0.0069

Table E: Depth prediction results with MoCo-v2 (Chen et al., 2020b) pre-trained on COCO (Lin
et al., 2014) and ImageNet-100 (Deng et al., 2009). We evaluate the learned representations on
NYUd (Silberman et al., 2012) for depth prediction.

B.2 Validation on Diverse Tasks

To validate our findings to more downstream tasks, we evaluate the pre-trained models on COCO for object
detection and instance segmentation and NYUd for depth prediction as mentioned in Appendix A.2, with
MoCo-v2 framework pre-trained on COCO and ImageNet-100.

1 2 3 4 5 6
Grid-based EMD similarity

0.55

0.60

0.65

NY
Ud

 R
M

SE

NYUd (COCO pre-trained)
NYUd (IN-100 pre-trained)

1 2 3 4 5 6
Sampling-based EMD similarity

0.55

0.60

0.65

NYUd (COCO pre-trained)
NYUd (IN-100 pre-trained)

Figure A: EMD similarity versus depth prediction results. The similarity scores between views are
plotted against depth prediction results. Note that RMSE is used for evaluation metric, thus results exhibit a
clear U-curve.

Results. As presented in Table D, results on COCO object detection and instance segmentation indicate
that using smaller crop scales and zero overlapping continues to enhance baseline performance, with no
added benefit from combining the two configs. Depth prediction results in Table E also align closely with the
observations in classification and object detection tasks, exhibiting a clear U-curve as shown in Figure A due
to the use of RMSE metric.
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B.3 Validation on Diverse Experimental Settings

To validate our findings with diverse training conditions, we examine the pre-trained models with various
experimental settings as follows:

Config COCO ImageNet-100
VOC-0712 DOTA-v1.0 VOC-0712 DOTA-v1.0

random init. 33.85 26.24 33.85 26.24
Lower Bound 18.63 −40.65 14.63 −26.57 19.65 −40.71 15.42 −27.12

Baseline 59.28 41.20 60.36 42.54
Spatial Ovlp. = 0 62.35 +3.07 43.85 +2.65 62.39 +2.03 44.04 +1.50

Only Bg 63.16 +3.88 44.05 +2.85 63.41 +3.05 44.18 +1.64

Smaller Crop 62.68 +3.40 42.39 +1.19 63.16 +2.80 43.91 +1.37

Smaller Crop† 60.25 +0.97 41.30 +0.10 60.96 +0.60 42.89 +0.35

Table F: Object detection results under frozen-backbone tuning with MoCo-v2 (Chen et al.,
2020b) pre-trained on COCO (Lin et al., 2014) and ImageNet-100 (Deng et al., 2009).

Full-Tuning vs Frozen-Backbone Tuning. Typically, downstream evaluations involve full fine-tuning of
the backbone to adapt the pre-trained model for task-specific performance. To better isolate and preserve
the learned representations from SSL pre-training, we evaluate models under a frozen-backbone setting,
where only the task-specific head is fine-tuned while backbone weights remain fixed. This allows us to more
directly observe the impact of instance consistency and diversity between positive pairs from pre-training.
In this setup, as shown in Tab. F, we find similar trends to the full-tuning setting: using smaller crops and
zero overlapping outperform the baseline, with no added gain from combining both. The performance gaps
between baseline and other configurations are more pronounced in this setup, reinforcing that the observed
performance improvements are due to different positive pair selection during SSL pre-training rather than
downstream adaptation. This further supports our findings of the necessity of instance consistency and
diversity between positive pairs for effective SSL.

Transfer vs In-Distribution Evaluation. In previous discussions, we primarily evaluate our findings
using transfer learning tasks, where models are pre-trained on one dataset and fine-tuned on a different
downstream one. To determine whether our insights hold for in-distribution tasks, where pre-training and
evaluation on the same dataset, we conduct experiments where both pre-training and evaluation are performed
on COCO (Lin et al., 2014). As stated in Appendix B.2, results in Table D indicate that using smaller crop
scales and zero overlapping continues to enhance baseline performance, with no added benefit from combining
the two configurations. This pattern mirrors the observation in transfer learning tasks and aligns with EMD
measurement, reinforcing that our findings on instance consistency and view diversity are robust across both
transfer and in-distribution scenarios.

Config 100 epochs 200 epochs 400 epochs

Baseline 73.32 76.34 78.67
Smaller Crop 74.58 +1.26 77.52 +1.18 79.75 +1.08

Spatial Ovlp. = 0 74.90 +1.58 77.90 +1.56 79.99 +1.32

Table G: Object detection results with extended training epochs.

Short vs Long Epochs. Initial experiments use a pre-training duration of 100 epochs, a relatively short
period for SSL pre-training, which often performs longer duration to ensure effective training. To verify
whether our findings hold with more epochs, we extend the pre-training duration to 200 and 400 epochs.
As shown in Table G, with more training epochs, using smaller crop scales and enforcing zero overlapping
consistently enhance performance over the baseline. This reinforces that our observations regarding instance
consistency and view diversity remain consistent across different training durations.
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B.4 Additional Ablation Studies

We provide additional ablation studies regarding the implementation details for proposed configs as follows.

Config ImageNet-100
VOC-0712 DOTA-v1.0

Random Init. 53.58 31.59
Lower Bound 69.97 −3.94 48.96 −6.34

Baseline 73.91 55.30

M
C Inst. vs Bg 74.35 +0.44 56.65 +1.35

Only Bg 74.43 +0.52 56.65 +1.35

S
S Inst. vs Bg 74.30 +0.39 55.94 +0.64

Only Bg 74.44 +0.53 56.37 +1.07

Table H: Object detection results with different pseudo mask generation methods with MoCo-
v2 (Chen et al., 2020b) pre-trained on ImageNet-100 (Deng et al., 2009). MC and SS refer to the
pseudo mask generation methods MaskCut (Wang et al., 2023) and Selective Search (Uijlings et al., 2013),
respectively.

Ablation Studies on Pseudo Masks. We conduct the ablation experiments on two pseudo mask
generation methods as shown in Table H. The experiments are conducted with MoCo-v2 framework and
evaluated on VOC-0712 and DOTA-v1.0. Both two methods produce quite similar results on two configs, with
validation on two object detection datasets, highlighting that the generated pseudo masks are capable to serve
as the locations of object instances for ImageNet-based experiments. We adopt MC in all our experiments.

Crop Scale VOC-0712 DOTA-v1.0

Baseline 73.91 55.30

s = (0.18, 0.9) 74.49 56.26
s = (0.16, 0.8) 73.97 55.66
s = (0.14, 0.7) 73.98 55.34
s = (0.12, 0.6) 74.06 55.23
s = (0.1, 0.5) 74.04 55.74
s = (0.08, 0.4) 73.84 55.51

Table I: Object detection results with varied crop scales with MoCo-v2 (Chen et al., 2020b) pre-
trained on ImageNet-100 (Deng et al., 2009). The Baseline config uses a scaling range of s = (0.2, 1.0).
Optimal performance is achieved with a scaling range of s = (0.18, 0.9).

Ablation Studies on Crop Scales. To optimize downstream task performance, we conduct the ablation
experiments on the selection of crop scales, focusing specifically on the scaling range used in Smaller Crop
configuration. The scale used in Larger Crop is fixed to s = (0.4, 1.0), which doubles the default setting.

For COCO, we derive the scaling range directly from the average object instance size provided in the dataset
annotations, resulting in a range of s = (0.08, 0.4). For ImageNet-100, we vary the scaling range incrementally
from 0.08 to 0.2, with a step size of 0.02, to systematically observe changes in downstream performance for
object detection. The experiments are conducted with MoCo-v2 framework and evaluated on VOC-0712 and
DOTA-v1.0. As shown in Table I, applying the scaling range of s = (0.18, 0.9) achieves optimal results for
both downstream tasks. Based on these results, we adopt this scaling range in all our experiments.

B.5 Additional Results on EMD-based Estimator

We provide additional validation results for the EMD-based similarity score. We use pre-trained ResNet-50 (He
et al., 2016) and ViT-S (Dosovitskiy et al., 2021) to extract features for computing the EMD-based score
for MoCo-v2 and DINO, respectively. Figure B presents the relationships between EMD scores with object
detection accuracy and classification accuracy for models pre-trained on ImageNet-100 (Deng et al., 2009).

23



Under review as submission to TMLR

Across all tasks, our results consistently reveal a clear reverse-U curve under the two proposed cropping
strategies, reinforcing our findings that EMD can serve as an effective estimator of view diversity across
different data sources.

Additionally, experiments using both ResNet-50 and the more advanced ViT-S features yield consistent EMD
trends, confirming that the feature representations used for EMD computation are sufficiently distinguishable
to capture meaningful differences between augmented views. This ensures that our chosen features remain a
reliable and efficient choice for estimating view diversity in SSL.

B.6 Gains Observed and Their Significance

Our experiments highlight consistent and meaningful performance improvements across different positive
pair selection configurations in SSL. While modifying views in augmentation perspective naturally yields
relatively modest gains, as reported in prior works Peng et al. (2022) and Van Gansbeke et al. (2021), our
results demonstrate that targeted control of view diversity produces improvements with practical significance.
Specifically, our proposed configurations yield:

• ∼1.5% mAP gain on VOC detection;

• over 3x higher gains on COCO detection than reported in Peng et al. (2022);

• and 3-5% accuracy improvement on classification tasks.

These improvements remain consistent even under longer training durations, as shown in Table G, reinforcing
the robustness of our findings. The consistent performance gap across datasets and tasks demonstrates the
importance of view diversity control in SSL, especially for non-iconic or complex data sources.

C Future Work

Our study provides an initial investigation into the role of instance consistency and diversity between positive
pairs in SSL. We highlight several directions for future research:

Broader Evaluation Across SSL Methods. While we validate our findings on contrastive (Chen et al.,
2020b) and distillation-based (Caron et al., 2021) SSL methods, future work could examine whether similar
trends hold for other paradigms such as SimCLR (Chen et al., 2020a), SwAV (Caron et al., 2020), and
BYOL (Grill et al., 2020). Understanding how view diversity influences learning across these different
objectives could further generalize our insights.

Scaling to Larger Pre-training Datasets. Our experiments primarily use moderate-sized datasets such
as COCO (Lin et al., 2014) and ImageNet-100 (Deng et al., 2009). Investigating whether the observed
consistency-diversity trade-off holds on larger and more diverse datasets like OpenImages (Kuznetsova et al.,
2020) would validate scalability and offer insights into SSL behavior under more realistic data regimes.

Toward Theoretical Insights. While our findings are grounded in extensive empirical analysis, a
theoretical understanding of how mutual information, instance consistency, and view diversity interact in
SSL remains an open question. Developing such a theoretical framework could deepen our understanding of
view-based supervision and guide the design of more adaptive or learnable augmentation strategies.
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(a) EMD similarity versus detection accuracy with MoCo-v2 (Chen et al., 2020b) pre-trained on ImageNet-100.
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(b) EMD similarity versus classification accuracy with MoCo-v2 (Chen et al., 2020b) pre-trained on ImageNet-100.
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(c) EMD similarity versus detection accuracy with DINO (Caron et al., 2021) pre-trained on ImageNet-100.
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(d) EMD similarity versus classification accuracy with DINO (Caron et al., 2021) pre-trained on ImageNet-100.

Figure B: EMD similarity versus detection and classification accuracy. The similarity scores between
views are plotted against object detection and classification results. Baseline configuration is highlighted for
reference.
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