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Abstract

Author name disambiguation (AND) serves as
a core component of modern academic search
systems to curate author profiles and bibliomet-
rics. Recently, language models (LMs) and
graph neural networks (GNNSs) have signifi-
cantly pushed the frontier of modeling textual
and relational information. However, their rep-
resentation powers are not fully exploited to
improve the accuracy of AND. In this work,
we propose a unified model — graph-enhanced
language model (i.e. GAND) that enables joint
modeling of the text information and relations
between documents. Compared to the tradi-
tional contrastive loss, we develop a multi-task
fine-tuning objective. This not only mitigates
potential distribution shifts in testing data but
also improves the efficiency of fine-tuning lan-
guage models for AND. Experiments on two
real datasets for name disambiguation demon-
strate the superior performance of GAND over
embedding-based approaches, fine-tuning LMs
and OpenAT’s text embeddings.

1 Introduction

The rise of the academic search engines (Ammar
et al., 2018; Lu, 2011; Sinha et al., 2015; Tang
et al., 2008) greatly facilitates modern research ac-
tivities, which lets researchers efficiently retrieve
relevant papers and scholars from the bibliographic
database. Platforms like Google Scholar, Seman-
tic Scholar (Ammar et al., 2018) and PubMed (Lu,
2011) curate massive amounts of research publica-
tions and profiles. Meanwhile, there are thousands
of researchers who share the same or similar names.
According to Google Scholar!, there are at least
35 “James White”’s and 14 “Michael Jordan”s in
its database. When a new article is published under
a common name, how to accurately perform author
name disambiguation (AND) remains an open but
challenging problem.
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Figure 1: An author name disambiguation system.

An author name disambiguation (Han et al.,
2004; Tang et al., 2011) system aims to group pub-
lications of the same real-world person into distinct
profiles in cases where multiple authors share the
same name (e.g. "Wei Wang" in Figure 1). To deter-
mine the real-world person of each mention in pub-
lications, the common industrial pipeline (Zhang
et al., 2018; Subramanian et al., 2021) includes
three steps: (1) creating a document pool (also
known as a block) based on the same name string;
(2) transforming different features of each docu-
ment (e.g., content and co-authors) into a dense
vector; and (3) performing a hierarchical linkage-
based clustering considering the pairwise similarity
between documents under the same name.

In these steps, representation learning (Levin
et al., 2012; Subramanian et al., 2021) of docu-
ments is identified as the most fundamental task of
AND. There are two modalities to be considered
when modeling the similarity between two docu-
ments: (1) textual information: the similarity of
the content and (2) relational information: the rele-
vance of the meta information such as co-authors,
citations, venues, efc. Despite the fact that joint
modeling of both modalities have been extensively
studied (Wang et al., 2020; Zhang et al., 2021), ex-
isting models suffer from two disadvantages based
on our observation.

Lack of Advanced Unified Modeling. Exist-
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ing approaches focus either on modeling textual
similarity or on capturing relations between doc-
uments. For example, graph-based methods (Fan
et al., 2011; Tang et al., 2011) leverage relations
between documents like co-author’* and employ
affinity propagation techniques for clustering. On
the other hand neural network-based approaches
learn the encoding of text embeddings through con-
trastive learning (Zhang et al., 2018) or pair-wise
classification (Subramanian et al., 2021). However,
the potential for a unified modeling approach that
integrates both textual and relational features is
only explored at the word embedding level (Wang
et al., 2020; Zhang et al., 2021). The unified mod-
eling of pre-trained language models and graph
neural networks remains underexplored.

Limited Out-of-Distribution Generalization. Re-
cently, fine-tuning a pre-trained language model
such as Sentence-BERT (Reimers and Gurevych,
2019) greatly advances the accuracy of measuring
document similarities. Nevertheless, the task of
author name disambiguation (AND) often involves
dealing with out-of-distribution testing data. In
such cases, the topic distribution or the criteria of
"written by the same author" may vary significantly
from the training corpus. In our experiment (see
also Figure 3), we find traditional triplet loss (Co-
han et al., 2020) cannot improve the AND accuracy
on testing documents, where our observation is
consistent with the previous findings on fine-tuning
PLMs with OOD issues (Kumar et al., 2022).

To cope with the aforementioned two challenges,
we propose a novel framework GAND for author
name disambiguation. In our framework, relational
(i.e. relation with other papers) and textual at-
tributes of articles are transformed into a text-rich
bibliographical network G as shown on the left
side of Figure 1. Specifically, there are two major
differences between GAND and existing AND al-
gorithms: (1) A unified LM-based representation
learning module jointly embeds the textual and re-
lational attributes of each document. It consists
of a pre-trained language model (PLM) encoder
followed by a graph attention layer (Velickovic
et al., 2017), which learns the importance scores
of neighbors regarding embeddings derived from
the PLM. In this way, the neighbors with low con-
tent similarity would not contribute to the final
representation of the target document. We train

If two documents have a common author, they will be
connected via the relation co-author.

such a graph-enhanced language model (i.e. GNN-
LM) with annotated AND data. (2) A multi-task
training objective - Multi-FT is devised to over-
come the overfitting issue of the triplet loss. In
our approach, we treat each distinct surface name
in the training data as a separate AND task. Our
model optimizes a separate classification head for
each task, interpreting them as proxies that repre-
sent different individuals who share the same name.
Consequently, it does not enforce the embeddings
of every positive document pair being close in the
latent space. Instead, the representations of docu-
ments are updated less if they are classified to the
correct author already. Multi-FT eliminates the
need for negative samples and reduces computa-
tional cost by approximately 50% when compared
to traditional triplet loss. In our experiments, we
compare GAND with other AND algorithms and
state-of-the-art language model fine-tuning meth-
ods on two name disambiguation datasets. Our
framework outperforms baselines on four different
clustering metrics by a clear margin (i.e. Table 2).
In addition, we observe consistent improvements
on other baselines by employing the Multi-FT loss
(see also Figure 4).

Our contributions could be summarized as: (1)
we propose a graph-enhanced PLM framework uni-
fying textual and relational information for author
name disambiguation; (2) a multi-task objective
is introduced to learn the embedding function, of-
fering better generalization for out-of-distribution
data; (3) extensive experiments on two different
AND datasets demonstrate the effectiveness and
efficiency of GAND.

2 Problem Definition

In this paper, we followed the terminology in
(Zhang et al., 2018). Given a collection of aca-
demic publications D, a reference or surface name
refers to a set of authors A, where eacha € A
denotes a real-person with the same string name.
A block D4 C D contains all publications from
every author in reference A. Feature z; of pa-
per d; € D4 consists of textual attributes such
as its title and relational attributes such as author
names, venue names, etc. We use I(d;) = a;
to represent the real author a; of paper ¢ within
reference A. Therefore, I(d;) = I(d;) if two pa-
pers d;, d; are authored by the same identity (i.e.

3If there are multiple authors need disambiguation in d;,
we can duplicate the document to resolve this problem.



real-world person). Given a set of training refer-
ences Rimin = {A1, A2, ..., Ay}, the correspond-
ing blocks are Biin = {D1, D2, ..., D,}. Each
training document d; is a tuple of (r;, z;, a;), where
r; denotes the specific reference and block of d;,
x; is the feature and a; € A,, is the real author id.
We define the task of AND as follows.

Definition 2.1 (Representation Learning for Author
Name Disambiguation). Given documents from
training blocks By, the task of author name dis-
ambiguation aims to learn an embedding function
f: (ri,z;) — R? that maps document of the same
author close in the latent space.

For each testing reference rg, AND performs a
hierarchical clustering on document embeddings
f () to obain the cluster membership ¢;. The qual-
ity of AND is measured between clusters (r;, c})
and ground truth (77, a}). Our formulation of AND
as embedding learning shares the same setting with
most of the related studies (Zhang et al., 2018; Sub-

ramanian et al., 2021).

3 Method

In this section, we first describe how to construct
the document graph using textual and relational
attributes from candidate documents. Then we in-
troduce a graph-enhanced language model encoder
that unifies GNN and PLM architectures to repre-
sent each document in the graph. Finally, we design
a multi-task fine-tuning objective to alleviate the
generalization issue of traditional PLM fine-tuning
methods for AND.

3.1 Representing Textual and Relational
Attributes

In the problem definition, we categorize the fea-
tures of documents into textual and relational
attributes. Specifically, each document d; has
text information including title w and abstract
v. We concatenate w and v as a joint sequence
of tokens “[CLS] wi,...,wy [SEP] vy,...;0,".
Most relational attributes can be represented as
a unique identifier, for example, paper d; has two
authors “author_2023”, “author_2025"* and cites
“paper_156".

Graph Construction. In order to model rela-
tions between documents, we construct a document
graph G = (V, €, X) as follows: (1) each node is
a document, and an edge e;; exists if document d;

“we only use the co-author names without ambiguity.

and d; has relation 7;;. In this paper, we mainly
consider first-order and second-order relations. For
example, cite is a first-order relation and e;; € £
if d; cites “paper_j” or vice versa. co-author is a
second-order relation such that e;; € £ if both doc-
ument d; and d; shares an (unambiguous) author
“author_xzx". The textual attributes and relational
attributes are transformed into node features X and
graph edges &, respectively.

3.2 Graph-Enhanced PLM Encoder

The purpose of representation learning for author
name disambiguation is to embed documents from
the same author closely such that off-the-shelf
clustering methods can distinguish among differ-
ent identities easily. As shown in Figure 2, we
feed both the target document d; and its neigh-
bors N; in the constructed graph G into the joint
PLM-GNN model. To be specific, given the to-
ken sequence {w1, ..., w; } of the target and neigh-
bor documents, we adopt mean pooling of token
embeddings from the last layer of a pre-trained
PLM as the intermediate document embedding

1 l
h; = MEAN{L{" ..., n{"},
(DY = PLM{wy, .. w}, (1)

The neighbor documents are those documents
connected to the target document in G. In the Intro-
duction, we have discussed that not every neighbor
can help with disambiguation. To the light of this,
our model encourages the final representation to
have relevant neighbors by learning an attention
weight o on text representations h between the tar-
get and neighbors. We calculate attention weights
{a, ®} following graph attention networks (Velick-
ovic et al., 2017),

exp (o (a'[Oh; | ©h;]))
> ken(iyuiy €xXp (0 (T [Oh; || ©hy]))’
(2)
where the activation function ¢ is LeakyReLU;

a € R4, The final representation of document d;
is,

Qi =

Z; = Oém@hi + Z Oém‘@hj. 3)
JEN(3)

3.3 Multi-task Fine-Tuning

In the previous section, our proposed PLM-GNN
encoder turns textual and structural attributes into
a unified representation z;, while how to learn gen-
eralizable attention parameters {©, a} and how to
fine-tune the PLM remain challenging.
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Figure 3: Overfitting Issue of Fine-Tuning PLM.

The triplet margin loss is widely used in
contrastive PLM pre-training.  For example,
SPECTER (Cohan et al., 2020) maximizes the mar-
gin between the similarity of positive pairs and that
of negative pairs. In AMiner-AND (Zhang et al.,
2018), authors also adopt a similar idea on each
reference r:

N

Lyt = Zmax{d(zi,zi+) — d(zi, z;-) +m, 0}
i=1

“)

where d is a distance metric such as L2-norm;
(r,2;+,a;+) is a positive document if they are au-
thored by the same real-world person a; = a,;+ and
(r,z;—,a;-) is a negative document if a; # a;-.

However, if we fine-tune PLMs using the same
loss for AND, we observe the pairwise accuracy
drops as the training accuracy increases in Fig-
ure 3. In the literature, Kumar et al. (2022) recently
observed that the results of fine-tuning PLMs are
worse than linear probing when the distribution
shift between training and testing corpora is large.
In AND, the number of testing references is often
much larger than training references. It is possible
that documents of testing blocks can vary a lot from
training documents on topics or domains.

To alleviate the out-of-distribution challenge, we
formulate the training of AND as a multi-task fine-
tuning (Multi-FT) problem, where each task corre-
sponds to a training reference name. Given a small
amount of training tasks {Uy, ...,Un }, each task
disambiguates documents from block D; of refer-
ences A;. Through mini-batch training, given each
training sample as a triple of (document, ground-
truth author, task) as {z;, a;,U;}, we propose the
following multi-task learning loss,

N U;
exp(Wq'z;)
LMulti-FT = E A aWzZ/{,- , ©)
P ijl exp( ajzz)

where WY e RIMil*d ig the task-specific classifi-
cation heads and z; is the normalized document em-
beddings in Equation 3. In the section “Multi-Task
Fine-Tuning” of Figure 2, we visualize the classi-
fication of each task. For each training reference
name A;, each row of the classification heads WZZL{Z
can be interpreted as the embedding of the ground-
truth author a;, which is also called proxy in the
literature of metric learning (Movshovitz-Attias
et al., 2017). Compared to Lgr, this approach only
requires that documents from the same author a;
are closer to the same proxy embedding Wi;’;’, of-
fering two advantages: (1) it reduces the compu-
tational complexity involved in encoding negative
data points, and (2) it addresses out-of-distribution
(OOD) generalization by imposing a provable re-
laxed constraint (Movshovitz-Attias et al., 2017).
In Algorithm 1, we summarize the training and
inference procedure of GAND.

Model Analysis. There are four hyperparameters
introduced by GAND, they are the maximum size



K of the neighborhood N, the number of GNN
layers L, the maximum length of a document NV,
and the batch size B. The space complexity of
GAND is O(B - N - K*). We denote the time
complexity of PLM to encode a document of length
N as appy. The graph attention layer takes ag
time to compute embeddings of the document. For
training references with a total of |D| documents,
the total time complexity of our approach is O(|D|-
K'(ag+apLm)). We set L = 1 in our experiment
with ablation study in Section 4.3.

Algorithm 1: Pseudo code for GAND opti-
mization
Input: a set of training references Rirain,
PLM, testing references Reg,
Graph Neighborhood Sampler SAMPLE.
Output: test document embedding z’.
// Construct Graph G, Gy;
gs — -Atraim gt — Atest
// Training;
for each batch of {x;, a;,U;} from
SAMPLE(G,) do
9 compute z; < Eq.(3),
10 L + Eq.(5);
1 update {a, ©, PLMg};
12 end
13 // Testing;
14 for each document xg from SAMPLE(G;) do
15 compute z; < Eq.(3)
16 end
17 return z/

@ N T R W N -

4 Experiments

4.1 Evaluation Setup

Datasets. We evaluate the performance of au-
thor name disambiguation on two public datasets:
(1) AMiner (Zhang et al., 2018) collects 600
ambiguous name references, and about 203K
documents are published by these authors. (2)
MAG-CS is a subset of Microsoft Academic Graph
(MAG) (Sinha et al., 2015) in the computer science
domain.’ In order to create a challenging AND
task, we choose ambiguous references with at least
three different real identities and each of them has
at least five publications between 2000 and 2020.
Each paper in both datasets contains its authors and

SWe select papers from top 105 venues in the field of
computer science from MAG.

Table 1: Overall Dataset Statistics

AMiner MAG-CS
# Documents 203078 6895
# Authors 6228 454
# Total Edges 4.99M 63.6K
# Co-author Edges 4.99M 62.2K
# Cite Edges N/A 1463
# Total References 600 125

bibliographies. We preprocess the documents into
graph as described in Section 3.1, where cite is a
first-order relation and co-author is a second-order
relation. The total number of documents and graph
statistics are summarized in Table 4.

Compared Methods. We utilize MPNet (Song
et al., 2020) as the backbone PLM for our approach.
The performance of other SCiBERT variants can be
found in the Appendix § A.3. We compare GAND
with existing AND algorithms, fine-tuned language
models, and graph neural networks. These methods
are: (1) AMiner-AND (Zhang et al., 2018) learns
global document embedding through contrastive
learning and local graph embeddings in the docu-
ment graph under each reference. (2) S2AND (Sub-
ramanian et al., 2021) constructs pairwise linkage
features and then trains a gradient boosted trees
(GBT) classifier to estimate the similarity between
document pairs. For pre-trained language models,
we continue fine-tuning their checkpoints using
a triplet margin loss as of (Cohan et al., 2020).
(3) SPECTER (Cohan et al., 2020) is a citation-
informed language model pretraining method uti-
lizing the citations between scientific documents.
(4) MPNet (Song et al., 2020) is a state-of-the-art
masked language model that unifies masked and
permuted pre-training for language understanding
tasks. We also include two representative graph
neural networks using MPNet encoded representa-
tion as node features. (5) MPNet+SGC (Wu et al.,
2019) simplifies the consecutive nonlinearities and
weight matrices of traditional graph convolution
networks (Kipf and Welling, 2017) with better
scalability. (6) MPNet+GAT (Velickovic et al.,
2017) employs attention between target and neigh-
bor nodes in the graph and we also use this ar-
chitecture in GAND. Similar to experiments in
SPECTER (Cohan et al., 2020), We freeze the lan-
guage model embeddings in these two methods be-
cause of the OOM issue of fine-tuning PLMs when



Table 2: Author name disambiguation results on two datasets. We report the meangyq of five runs for all the methods.
Scores marked with ** (resp., *) pass the t-test with p < 0.05 (resp., p < 0.1) in comparison with the second best.

Method MAG-CS AMiner
Micro-F1 Macro-FI ~ B®*F1 ~ NMI |Micro-F1 Macro-F1  B3F1 ~ NMI

AMiner-AND 61.98249 65.14139 67.20143 52.63261 | 7191933 67.26029 71.62025 65.13826
S2AND 73.92,81 7529132 77.32135 66.03516 | 73.08008 69.40020 72.32135 63.840.15
SPECTER 70.58248 69.12178 72.68154 53.55187| 69.17010 62.20020 66.01001 55.530.05
MPNet 66.92,33 67.49153 70.881314 5223519 | 69.62003 63.08022 66.74931 56.15029
MPNet+SGC 72.60275 73.99140 7631141 64.1819p | 74.16033 6826054 73.23p28 64.22043
MPNet+GAT 7325235 73.92147 76.52139 63.682.14 | 73.09024 67.57007 72.10009 62.45023
OAG-BERT 69.43,00 6838124 T1.7991 5244190 | 69.56007 6221034 66.19020 55.41¢33
OpenAI-embeddings 72-292418 70-990.62 74.580.69 57. 120_9 74.670'00 68.040'00 72.430'00 62.610_00
GAND w.0. GNN 70.35390 60997163 72.83179 57.80184 | 7494016 68.82016 72.35007 63.51p63
GAND freeze PLM 74.312,97 73.591,57 77.161,43 62‘782,09 75.280'05 69.510,]4 74.260'06 62.99()‘91
GAND 75025 75.947 ., 77.987 . 67.2375 | 75.805%, 705355, 74815, 63.7504s

neighborhood size grows exponentially in GNNS.
(7) OAG-BERT (Liu et al., 2022) jointly encodes
scientific text and venue/author information with
an entity-augmented academic language model. (8)
OpenAl-embeddings uses the same augmented text
with OAG-BERT and generate embeddings through
API calls.® (9) GAND w.0. GNN is a variant of our
approach, in which we remove all neighbors, that
is, N' = @ in Equation 2. (10) GAND freeze PLM
freezes the parameter of PLM in Equation 1.

Evaluation Metrics. We evaluate the cluster-
ing results of different methods via four met-
rics: (1) Pairwise Micro-F1 is the harmonic mean
of precision and recall between all predicted
pairs. (2) Pairwise Macro-F1 computes the av-
erage Fl-score of testing references 7;. (3)
B3 F1 (Subramanian et al., 2021) is a co-reference
resolution metric that computes the precision
and recall based intersection between ground
truth cluster .4 and predicted clusters C. (4)
Normalized Mutual Information (NMI) is a sym-
metric metric to measure the quality of clustering
results. We calculate the average NMI score of all
testing references.

Experiment Settings. The inputs of the compared
algorithms are the same documents and text-rich
networks. On training references, we process the
data following the public implementation of each
method. On test references, we evaluate the quality
of document embeddings by performing the same

We use text-embedding-3-small in our experiments and
we do not see significant improvements for text-embedding-
3-large.https://platform.openai.com/docs/
guides/embeddings

hierarchical clustering algorithm. On AMiner, we
run all methods under the default training (500 ref-
erences) and testing (100 references) five times. In
addition, we separate 100 references from the train-
ing set as validation. On MAG-CS, we perform a
5-fold cross-validation under five different random
seeds. In each round, 20% and 20% of data are
used for training and validation sets, respectively.
Following existing studies (Zhang et al., 2018), we
use Macro-F1 on the validation set to select the best
checkpoint for evaluation. All models are trained
for 10 epochs in each run on a single Nvidia A6000
GPU with the batch size as 16. Configuration of
all the hyperparameters can be found in Appendix
§ A.1. The source code can be found in the supple-
mentary material. We will release the data used in
the experiment upon acceptance.

4.2 Experimental Result

In Table 2, we show the performance of all com-
pared algorithms. We report the significance level
of the best result under each metric against the
second runner through a two-tailed t-test.

First, we observe that document representa-
tions from pre-trained language models do not
outperform the feature-based method (S2AND)
and contrastive representation learning (AMiner-
AND). These methods also surpass the entity-
augmented LM (OAG-BERT) and LLMs (OpenAl-
embeddings), demonstrating that relational at-
tributes significantly enhance the performance of
author name disambiguation. Third, GAND reports
the best performance on 7 out of 8 metrics across
two datasets, indicating our design of joint GNN-
PLM encoding successfully benefits from PLMs
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Figure 4: Effect of Multi-FT on GAND and baselines
on MAG-CS.

and graph neural networks. At last, when compared
with our own variants, we find both graph structure
and fine-tuning PLMs improve the accuracy, espe-
cially on MAG-CS. We notice the performance gap
on AMiner is smaller. Because documents in the
same blocks from AMiner are collected from multi-
ple domains (e.g. chemistry and computer science),
either textual or relational information can already
distinguish documents from different authors in
this case. Nevertheless, our full model still reports
statistically significant performance improvements.

Effect of Multi-Task Fine-Tuning. In Section 3.3,
we discussed the out-of-domain challenge of fine-
tuning PLMs for author name disambiguation and
proposed a multi-task training objective. Besides
the performance improvements we observed in Ta-
ble 2, we apply the same objective on our backbone
PLM (i.e. MPNet) and two GNN baselines. We
compare the performance of original fine-tuning
(FT) via triplet loss (i.e. Equation 4) and multi-
task fine-tuning (Multi-FT) in Figure 4. Full re-
sults on both datasets can be found in Appendix
§A.5. We have three observations: (1) multi-task
fine-tuning can improve the performance of vari-
ous baselines in most cases, but still worse than
GAND. (2) Multi-FT notably improves the test per-
formance of MPNet and GAND, which confirms
that out-of-distribution (OOD) testing documents
adversely affect contrastive fine-tuning PLMs. (3)
The marginal improvement seen in baselines (e.g.
GAT, SGC) that freeze PLM embeddings reaffirms
that the extensive parameter space of PLMs be-
comes a challenge for OOD generalization when
training data is limited. Multi-FT demonstrates
promising potential as a training objective for ap-
plications that have limited supervision available.

= k=0 [=SWESY
= k=4 -

5 5 —
Micro-F1  Macro-F1 B3-F1 NMI Micro-F1  Macro-F1 B3-F1 NMI

(a) Effect of #neighbors (b) Effect of #layers

Figure 5: Parameter study on the effect of attention and
number of neighbors.

4.3 Model Study

Hyperparameter Sensitivity. Compared with
PLMs, the additional complexity of GAND comes
from the graph attention layer in Equation 2. In our
analysis, the time complexity of GAND increases
linearly with the number of neighbors K and expo-
nentially with the number of GNN layers L. Fig-
ure 5 demonstrates the result of GAND by varying
the number of neighbors and number of GNN lay-
ers. We observe that GAND performs significantly
better than our variant without GNN (K=0 in Fig-
ure 5a), highlighting the importance of relational
information encoded in the constructed graph for
achieving better performance. Meanwhile, we ob-
serve that increasing the number of neighbors (e.g.
K=4, 8, All) or the number of layers in GAND does
not lead to additional performance improvements.
We believe a small number of co-authored or cited
neighbor documents is enough for GAND. Hence,
our model does not require much more computa-
tions than fine-tuning PLMs. According to this
result, we believe setting X' = 5 and L = 1 in our
main experiment is reasonable.

Analysis of Lypui.pr. In Figure 3, we present
the generalization issue observed when fine-tuning
PLM using triplet loss. Now we compare the train-
ing and testing performance of MPNet and GAND
on MAG-CS for five runs. Figure 6 illustrates
that both models achieve high pairwise Micro-F1
scores by clustering the training data. However,
only GAND demonstrates an improved Macro-F1
on the testing data, whereas the performance of
MPNet declines throughout the training process. In
addition, GAND does not require encoding negative
samples, which effectively reduces the computation
cost by approximately half, assuming one negative
sample per positive pair. In Table 3, GAND (Multi-
FT) exhibits approximately 50% reduced training



Table 3: Training time per epoch comparison between
FT and Multi-FT.

Model Arch. MAG-CS AMiner

MPNet (FT) 1minOs 95min37s

GAND (FT) 3min06s  246mind4s
GAND (Multi-FT) 2min24s 121min47s
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Figure 6: Comparison of Fine-Tuning PLMs and GAND.

time compared to GAND (FT), particularly on the
large dataset AMiner.

5 Related Work

Author Name Disambiguation. There have been
lots of efforts in the field to perform author name
disambiguation in bibliographic databases. Early
approaches (Han et al., 2004, 2005) define vari-
ous similarity metrics between pairs of articles and
apply unsupervised clustering algorithms to cor-
respond each cluster to a real-world author. Ever
since feature engineering became the most critical
step towards successful disambiguation. Lots of
pairwise features (Louppe et al., 2016; Song et al.,
2015; Treeratpituk and Giles, 2009) are proposed
to train pairwise classifiers such as co-authors, af-
filiations, ethnicity efc. People also collected mul-
tiple AND datasets (e.g. AMiner (Zhang et al.,
2018), INSPIRE (Louppe et al., 2016)) and trained
pairwise classifier. The notable ones are random
forests (Jhawar et al., 2020; Subramanian et al.,
2021) and deep neural networks (Kim et al., 2019;
Zhang et al., 2018). Similar to GAND, (Fan et al.,
2011; Tang et al., 2011; Zhang et al., 2021) con-
structed a document graph with relations between
documents and conducted clustering on the graph.
In this work, we focus on learning the document
representations for author name disambiguation.
To this end, both AMiner-AND (Zhang et al., 2018)
and AND-GAT (Zhang et al., 2021) learn a neural
network encoder on word embeddings. However,
none of these algorithms simultaneously model
deep contextualized text embeddings and relational
information.

Pre-trained Language Models for Scientific Text.
The first well-known pre-trained masked language
model - BERT (Devlin et al., 2018) propose to
train a deep bidirectional transformer using masked
token and next sentence prediction tasks. SciB-
ERT (Beltagy et al., 2019) pre-trains a BERT
model on multiple scientific publication corpus for
downstream applications. BioBERT (Lee et al.,
2020) is another similar approach but pre-trains
BERT model on biomedical corpora. Sentence-
BERT (Reimers and Gurevych, 2019) introduces
the triplet objective to derive the sentence embed-
dings that can be compared using cosine similarity.
SPECTER (Cohan et al., 2020) applies fine-tuning
to SciBERT using a triplet loss, aiming to maxi-
mize the margin between the similarity of a query
paper and its citations compared to randomly sam-
pled papers. SciNCL(Ostendorff et al., 2022) fur-
ther extends the document similarity learning via
neighborhood sampling on citation graphs by con-
trolling the sampling margin between hard-to-learn
positives and negatives. OAG-BERT (Liu et al.,
2022) is an entity-augmented academic language
model pre-trained with the task of masked entity
prediction. Graph-empowered language models
(GNN-LMs) are introduced to incorporate the re-
lational information into the language model. For
example, GraphFormers (Yang et al., 2021) is a
GNN-nested Transformer architecture that insert
graph neural networks between transformer layers.
PATTON (Jin et al., 2023) proposes to pre-train
the GraphFormers on a text-rich graph using the
masked token and node prediction objectives. How-
ever, the computation cost of these GNN-LMs are
significantly higher than LMs. In this work, we pro-
pose an efficient graph-enhanced PLM fine-tuning
framework for author name disambiguation.

6 Conclusions and Future Work

In this paper, we study the problem of author name
disambiguation with both textual and relational at-
tributes in the documents. We propose a graph-
enhanced language model — GAND to encode both
information and further improve the performance
of AND with a novel multi-task fine-tuning loss.
Experimental result shows GAND outperforms var-
ious existing AND algorithms. Interesting future
work can be extending the multi-task fine-tuning
objective to more pairwise language understand-
ing tasks with structured knowledge like question
answering.



7 Limitations

High-order Interactions between Documents. In
this work, our proposed framework mainly utilizes
one-hop of structural information in the constructed
graph. Traditional graph neural networks deal with
multi-hop message passing. As we discuss in the
main paper, the time and space complexity of up-
dating the parameters of multiple hops of docu-
ments grows exponentially. One possible strategy
is separating approximation of high-order propaga-
tion and feature transformation such as SGC (Wu
et al., 2019) and PPRGO (Bojchevski et al., 2020).
It is also possible to conduct parallel computing
across multiple GPUs. While we demonstrate that
a deeper graph neural networks does not provide
benefits for the AND task, we leave the systematic
exploration of this direction as future work.

Risks. The proposed PLM-GNN architecture and
multi-task fine-tuning objective are evaluated for
author name disambiguation only. Although it may
be effective for other similarity modeling tasks, we
do not expect this approach yields superior perfor-
mance on other NLU tasks. When the corpus is a
lot larger than the ones used in the paper (e.g., >
10M documents), the training time of our algorithm
will be longer.

8 Ethics Statement

We carefully anonymized actual author informa-
tion in both datasets with the unique identifier as
mentioned in graph construction. For the AND
data used for train and evaluation, we do not have
any intentions other than studying the proposed
problem. Ethical information such as gender and
nationality of the authors are not used in this work.
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A Appendix

A.1 Implementation Details

We implement GAND as well as all PLM baselines
using the Hugging Face library (Wolf et al., 2019).
The graph attention layer and neighbor sampler
used in our model are implemented using torch-
geometric’. We use AdamW as our optimizer and
hyperparameter configurations are shown in Ta-
ble 4.

Table 4: Hyperparameters of all compared algorithms.

parameter name value
adam € le-8
learning rate Ir 5e-5
weight decay le-2
batch size B 16
hidden dimension d 768
maximal document length N 256
maximal gradient norm 1.0
neighborhood size K 5
# GNN layers L 1
# epochs 10
# random seeds 5

A.2 Evaluation Metric Details

Here, we provide the detailed calculation of Pair-
wise Micro-F1 and Normalized Mutual Informa-
tion (NMI) in our experiments. Given a test doc-
ument d; € D, we denote the prediction g; as a
pair of reference identifier and cluster membership
(74, ¢i), and similarly the ground truth y; as a pair
of reference identifier and real author (7;, a;).

(1) Pairwise Micro-F1 is the harmonic mean of
precision and recall between all predicted pairs.

YGpes Wri =1 Nei = ¢ Nai = aj)
Z(i,j)és I(ri =7rj Nei = ¢j)
Ypes ri =1 Nei = ¢ Nai = aj)
> (ijyes Lri =15 Nai = aj)

Prec =

Rec =

(6)

where S is the Cartesian product of all test docu-
ments S =D x D.

(2) Normalized Mutual Information (NMI) For
reference r, the NMI score is computed between

7https ://pytorch-geometric.readthedocs.
io/en/latest/index.html
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Table 5: Performance of GAND with different backbone
PLMs on MAG-CS.

Type of PLMs. Micro-F1 Macro-F1 B3-F1 NMI
MPNet 73.80 74.61 76.93  66.04
SPECTER 72.91 73.83 76.13  64.89
SciBERT 72.07 73.49 75.73  63.55
ground truth and predicted clusters.
2x I(Yy;Y
NMI(r) = (¥r; ¥r) @)

[H(Y;) + H(Y;)]

where Y, = {y;|r; = r} is the set of ground truth
pairs under reference r, I is the mutual information
and H is the entropy.

A.3 GAND with different backbone PLMs

In our main experiments, we use MPNET (Song
et al., 2020) as our backbone PLM. Here we pro-
vide the ablation study using different PLMs using
one of the random seeds in Table 5. We observe that
MPNet exhibits slightly better performance com-
pared to other standalone PLMs and when used as
the backbone for our models, as shown in both this
section and Table 2 of the main paper. As a result,
we choose MPNet as our default backbone model.

A.4 Full Results of Training Dynamics
Comparison

In Section 4.3, we compare the training dynamics
of GAND and traditional contrastive fine-tuning on
Macro-F1. In Table 7, we provide the performance
curves on other metrics. The result is consistent
with the main paper, that is, multi-task fine-tuning
can simultaneously improve the training accuracy
and clustering performance on test data.
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Figure 7: Comparison of Fine-Tuning PLMs and GAND.
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Table 6: Result of applying Multi-FT on multiple baselines.

Method MAG-CS AMiner

etho Micro-F1 Macro-F1 B3 Fl NMI ‘ Micro-F1 Macro-F1 B3 Fl NMI
MPNet 66.92 67.49 70.88 52.23| 69.59 62.86 66.43 55.86
MPNet+Multi-FT | 70.56 71.09 7438 57.77| 74.15 68.30 7222 62.27
SGC 72.60 73.99 76.31 64.18| 73.83 67.72 72.95 63.79
SGC+Multi-FT 73.72 74.21 77.05 63.20| 75.52 69.84 74.65 64.08
GAT 73.25 73.92 76.52 63.68| 72.85 67.50 72.19 62.23
GAT+Multi-FT 74.08 73.66 77.00 62.49| 74.99 69.71 74.50 64.05
GAND 75.02 75.94 7798 67.23| 75.80 70.53 74.81 63.75

A.5 Additional Results on Applying Multi-FT

In Figure 4, we show the effectiveness of Multi-
FT on MAG-CS dataset using bar plot. We also
conduct the performance on AMiner and observe
Multi-FT can improve the performance of PLMs
significantly across two datasets and four metrics.
On GNN baselines, the improvements are smaller
but consistent at most times. The detailed numbers

can be found in Table 6.
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