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Abstract

Author name disambiguation (AND) serves as001
a core component of modern academic search002
systems to curate author profiles and bibliomet-003
rics. Recently, language models (LMs) and004
graph neural networks (GNNs) have signifi-005
cantly pushed the frontier of modeling textual006
and relational information. However, their rep-007
resentation powers are not fully exploited to008
improve the accuracy of AND. In this work,009
we propose a unified model – graph-enhanced010
language model (i.e. GAND) that enables joint011
modeling of the text information and relations012
between documents. Compared to the tradi-013
tional contrastive loss, we develop a multi-task014
fine-tuning objective. This not only mitigates015
potential distribution shifts in testing data but016
also improves the efficiency of fine-tuning lan-017
guage models for AND. Experiments on two018
real datasets for name disambiguation demon-019
strate the superior performance of GAND over020
embedding-based approaches, fine-tuning LMs021
and OpenAI’s text embeddings.022

1 Introduction023

The rise of the academic search engines (Ammar024

et al., 2018; Lu, 2011; Sinha et al., 2015; Tang025

et al., 2008) greatly facilitates modern research ac-026

tivities, which lets researchers efficiently retrieve027

relevant papers and scholars from the bibliographic028

database. Platforms like Google Scholar, Seman-029

tic Scholar (Ammar et al., 2018) and PubMed (Lu,030

2011) curate massive amounts of research publica-031

tions and profiles. Meanwhile, there are thousands032

of researchers who share the same or similar names.033

According to Google Scholar1, there are at least034

35 “James White”s and 14 “Michael Jordan”s in035

its database. When a new article is published under036

a common name, how to accurately perform author037

name disambiguation (AND) remains an open but038

challenging problem.039

1https://scholar.google.com/
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Figure 1: An author name disambiguation system.

An author name disambiguation (Han et al., 040

2004; Tang et al., 2011) system aims to group pub- 041

lications of the same real-world person into distinct 042

profiles in cases where multiple authors share the 043

same name (e.g. "Wei Wang" in Figure 1). To deter- 044

mine the real-world person of each mention in pub- 045

lications, the common industrial pipeline (Zhang 046

et al., 2018; Subramanian et al., 2021) includes 047

three steps: (1) creating a document pool (also 048

known as a block) based on the same name string; 049

(2) transforming different features of each docu- 050

ment (e.g., content and co-authors) into a dense 051

vector; and (3) performing a hierarchical linkage- 052

based clustering considering the pairwise similarity 053

between documents under the same name. 054

In these steps, representation learning (Levin 055

et al., 2012; Subramanian et al., 2021) of docu- 056

ments is identified as the most fundamental task of 057

AND. There are two modalities to be considered 058

when modeling the similarity between two docu- 059

ments: (1) textual information: the similarity of 060

the content and (2) relational information: the rele- 061

vance of the meta information such as co-authors, 062

citations, venues, etc. Despite the fact that joint 063

modeling of both modalities have been extensively 064

studied (Wang et al., 2020; Zhang et al., 2021), ex- 065

isting models suffer from two disadvantages based 066

on our observation. 067

Lack of Advanced Unified Modeling. Exist- 068
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ing approaches focus either on modeling textual069

similarity or on capturing relations between doc-070

uments. For example, graph-based methods (Fan071

et al., 2011; Tang et al., 2011) leverage relations072

between documents like co-author2 and employ073

affinity propagation techniques for clustering. On074

the other hand neural network-based approaches075

learn the encoding of text embeddings through con-076

trastive learning (Zhang et al., 2018) or pair-wise077

classification (Subramanian et al., 2021). However,078

the potential for a unified modeling approach that079

integrates both textual and relational features is080

only explored at the word embedding level (Wang081

et al., 2020; Zhang et al., 2021). The unified mod-082

eling of pre-trained language models and graph083

neural networks remains underexplored.084

Limited Out-of-Distribution Generalization. Re-085

cently, fine-tuning a pre-trained language model086

such as Sentence-BERT (Reimers and Gurevych,087

2019) greatly advances the accuracy of measuring088

document similarities. Nevertheless, the task of089

author name disambiguation (AND) often involves090

dealing with out-of-distribution testing data. In091

such cases, the topic distribution or the criteria of092

"written by the same author" may vary significantly093

from the training corpus. In our experiment (see094

also Figure 3), we find traditional triplet loss (Co-095

han et al., 2020) cannot improve the AND accuracy096

on testing documents, where our observation is097

consistent with the previous findings on fine-tuning098

PLMs with OOD issues (Kumar et al., 2022).099

To cope with the aforementioned two challenges,100

we propose a novel framework GAND for author101

name disambiguation. In our framework, relational102

(i.e. relation with other papers) and textual at-103

tributes of articles are transformed into a text-rich104

bibliographical network G as shown on the left105

side of Figure 1. Specifically, there are two major106

differences between GAND and existing AND al-107

gorithms: (1) A unified LM-based representation108

learning module jointly embeds the textual and re-109

lational attributes of each document. It consists110

of a pre-trained language model (PLM) encoder111

followed by a graph attention layer (Velickovic112

et al., 2017), which learns the importance scores113

of neighbors regarding embeddings derived from114

the PLM. In this way, the neighbors with low con-115

tent similarity would not contribute to the final116

representation of the target document. We train117

2If two documents have a common author, they will be
connected via the relation co-author.

such a graph-enhanced language model (i.e. GNN- 118

LM) with annotated AND data. (2) A multi-task 119

training objective - Multi-FT is devised to over- 120

come the overfitting issue of the triplet loss. In 121

our approach, we treat each distinct surface name 122

in the training data as a separate AND task. Our 123

model optimizes a separate classification head for 124

each task, interpreting them as proxies that repre- 125

sent different individuals who share the same name. 126

Consequently, it does not enforce the embeddings 127

of every positive document pair being close in the 128

latent space. Instead, the representations of docu- 129

ments are updated less if they are classified to the 130

correct author already. Multi-FT eliminates the 131

need for negative samples and reduces computa- 132

tional cost by approximately 50% when compared 133

to traditional triplet loss. In our experiments, we 134

compare GAND with other AND algorithms and 135

state-of-the-art language model fine-tuning meth- 136

ods on two name disambiguation datasets. Our 137

framework outperforms baselines on four different 138

clustering metrics by a clear margin (i.e. Table 2). 139

In addition, we observe consistent improvements 140

on other baselines by employing the Multi-FT loss 141

(see also Figure 4). 142

Our contributions could be summarized as: (1) 143

we propose a graph-enhanced PLM framework uni- 144

fying textual and relational information for author 145

name disambiguation; (2) a multi-task objective 146

is introduced to learn the embedding function, of- 147

fering better generalization for out-of-distribution 148

data; (3) extensive experiments on two different 149

AND datasets demonstrate the effectiveness and 150

efficiency of GAND. 151

2 Problem Definition 152

In this paper, we followed the terminology in 153

(Zhang et al., 2018). Given a collection of aca- 154

demic publications D, a reference or surface name 155

refers to a set of authors A, where each a ∈ A 156

denotes a real-person with the same string name. 157

A block DA ⊂ D contains all publications from 158

every author in reference A. Feature xi of pa- 159

per di ∈ DA consists of textual attributes such 160

as its title and relational attributes such as author 161

names, venue names, etc. We use I(di) = ai
3 162

to represent the real author ai of paper i within 163

reference A. Therefore, I(di) = I(dj) if two pa- 164

pers di, dj are authored by the same identity (i.e. 165

3If there are multiple authors need disambiguation in di,
we can duplicate the document to resolve this problem.
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real-world person). Given a set of training refer-166

ences Rtrain = {A1,A2, ...,An}, the correspond-167

ing blocks are Btrain = {D1,D2, ...,Dn}. Each168

training document di is a tuple of (ri, xi, ai), where169

ri denotes the specific reference and block of di,170

xi is the feature and ai ∈ Ari is the real author id.171

We define the task of AND as follows.172

Definition 2.1 (Representation Learning for Author173

Name Disambiguation). Given documents from174

training blocks Btrain, the task of author name dis-175

ambiguation aims to learn an embedding function176

f : (ri, xi)→ Rd that maps document of the same177

author close in the latent space.178

For each testing reference r′i, AND performs a179

hierarchical clustering on document embeddings180

f(x′i) to obain the cluster membership c′i. The qual-181

ity of AND is measured between clusters (r′i, c
′
i)182

and ground truth (r′i, a
′
i). Our formulation of AND183

as embedding learning shares the same setting with184

most of the related studies (Zhang et al., 2018; Sub-185

ramanian et al., 2021).186

3 Method187

In this section, we first describe how to construct188

the document graph using textual and relational189

attributes from candidate documents. Then we in-190

troduce a graph-enhanced language model encoder191

that unifies GNN and PLM architectures to repre-192

sent each document in the graph. Finally, we design193

a multi-task fine-tuning objective to alleviate the194

generalization issue of traditional PLM fine-tuning195

methods for AND.196

3.1 Representing Textual and Relational197

Attributes198

In the problem definition, we categorize the fea-199

tures of documents into textual and relational200

attributes. Specifically, each document di has201

text information including title w and abstract202

v. We concatenate w and v as a joint sequence203

of tokens “[CLS] w1, ..., wm [SEP] v1, ..., vn”.204

Most relational attributes can be represented as205

a unique identifier, for example, paper di has two206

authors “author_2023”, “author_2025”4 and cites207

“paper_156”.208

Graph Construction. In order to model rela-209

tions between documents, we construct a document210

graph G = (V, E ,X ) as follows: (1) each node is211

a document, and an edge eij exists if document di212

4we only use the co-author names without ambiguity.

and dj has relation rij . In this paper, we mainly 213

consider first-order and second-order relations. For 214

example, cite is a first-order relation and eij ∈ E 215

if di cites “paper_j” or vice versa. co-author is a 216

second-order relation such that eij ∈ E if both doc- 217

ument di and dj shares an (unambiguous) author 218

“author_x". The textual attributes and relational 219

attributes are transformed into node features X and 220

graph edges E , respectively. 221

3.2 Graph-Enhanced PLM Encoder 222

The purpose of representation learning for author 223

name disambiguation is to embed documents from 224

the same author closely such that off-the-shelf 225

clustering methods can distinguish among differ- 226

ent identities easily. As shown in Figure 2, we 227

feed both the target document di and its neigh- 228

bors Ni in the constructed graph G into the joint 229

PLM-GNN model. To be specific, given the to- 230

ken sequence {w1, ..., wt} of the target and neigh- 231

bor documents, we adopt mean pooling of token 232

embeddings from the last layer of a pre-trained 233

PLM as the intermediate document embedding 234

hi = MEAN{h(l)1 , ..., h
(l)
t }, 235

{h(l)1 , ..., h
(l)
t } = PLM{w1, ..., wt}, (1) 236

The neighbor documents are those documents 237

connected to the target document in G. In the Intro- 238

duction, we have discussed that not every neighbor 239

can help with disambiguation. To the light of this, 240

our model encourages the final representation to 241

have relevant neighbors by learning an attention 242

weight α on text representations h between the tar- 243

get and neighbors. We calculate attention weights 244

{a,Θ} following graph attention networks (Velick- 245

ovic et al., 2017), 246

αi,j =
exp

(
σ
(
a⊤[Θhi ∥Θhj ]

))∑
k∈N (i)∪{i} exp (σ (a⊤[Θhi ∥Θhk]))

,

(2) 247

where the activation function σ is LeakyReLU; 248

a ∈ R1×d. The final representation of document di 249

is, 250

zi = αi,iΘhi +
∑

j∈N (i)

αi,jΘhj . (3) 251

3.3 Multi-task Fine-Tuning 252

In the previous section, our proposed PLM-GNN 253

encoder turns textual and structural attributes into 254

a unified representation zi, while how to learn gen- 255

eralizable attention parameters {Θ,a} and how to 256

fine-tune the PLM remain challenging. 257
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Figure 3: Overfitting Issue of Fine-Tuning PLM.

The triplet margin loss is widely used in258

contrastive PLM pre-training. For example,259

SPECTER (Cohan et al., 2020) maximizes the mar-260

gin between the similarity of positive pairs and that261

of negative pairs. In AMiner-AND (Zhang et al.,262

2018), authors also adopt a similar idea on each263

reference r:264

LFT =
N∑
i=1

max
{
d(zi, zi+)− d(zi, zi−) +m, 0

}
(4)265

where d is a distance metric such as L2-norm;266

(r, zi+ , ai+) is a positive document if they are au-267

thored by the same real-world person ai = ai+ and268

(r, zi− , ai−) is a negative document if ai ̸= ai− .269

However, if we fine-tune PLMs using the same270

loss for AND, we observe the pairwise accuracy271

drops as the training accuracy increases in Fig-272

ure 3. In the literature, Kumar et al. (2022) recently273

observed that the results of fine-tuning PLMs are274

worse than linear probing when the distribution275

shift between training and testing corpora is large.276

In AND, the number of testing references is often277

much larger than training references. It is possible278

that documents of testing blocks can vary a lot from279

training documents on topics or domains.280

To alleviate the out-of-distribution challenge, we 281

formulate the training of AND as a multi-task fine- 282

tuning (Multi-FT) problem, where each task corre- 283

sponds to a training reference name. Given a small 284

amount of training tasks {U1, ...,UM}, each task 285

disambiguates documents from block Di of refer- 286

ences Ai. Through mini-batch training, given each 287

training sample as a triple of (document, ground- 288

truth author, task) as {zi, ai,Ui}, we propose the 289

following multi-task learning loss, 290

LMulti-FT =
N∑
i=1

 exp(WUi
ai zi)∑|Ai|

j=1 exp(W
Ui
ajzi)

 (5) 291

where WUi ∈ R|Ai|×d is the task-specific classifi- 292

cation heads and zi is the normalized document em- 293

beddings in Equation 3. In the section “Multi-Task 294

Fine-Tuning” of Figure 2, we visualize the classi- 295

fication of each task. For each training reference 296

name Ai, each row of the classification heads WUi
ai 297

can be interpreted as the embedding of the ground- 298

truth author ai, which is also called proxy in the 299

literature of metric learning (Movshovitz-Attias 300

et al., 2017). Compared to LFT, this approach only 301

requires that documents from the same author ai 302

are closer to the same proxy embedding WUi
ai , of- 303

fering two advantages: (1) it reduces the compu- 304

tational complexity involved in encoding negative 305

data points, and (2) it addresses out-of-distribution 306

(OOD) generalization by imposing a provable re- 307

laxed constraint (Movshovitz-Attias et al., 2017). 308

In Algorithm 1, we summarize the training and 309

inference procedure of GAND. 310

Model Analysis. There are four hyperparameters 311

introduced by GAND, they are the maximum size 312
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K of the neighborhood N , the number of GNN313

layers L, the maximum length of a document N ,314

and the batch size B. The space complexity of315

GAND is O(B · N · KL). We denote the time316

complexity of PLM to encode a document of length317

N as αPLM. The graph attention layer takes αΘ318

time to compute embeddings of the document. For319

training references with a total of |D| documents,320

the total time complexity of our approach isO(|D|·321

KL(αΘ+αPLM)). We set L = 1 in our experiment322

with ablation study in Section 4.3.323

Algorithm 1: Pseudo code for GAND opti-
mization

1 Input: a set of training referencesRtrain,
2 PLM, testing referencesRtest,
3 Graph Neighborhood Sampler SAMPLE.
4 Output: test document embedding z′.
5 // Construct Graph Gs, Gt;
6 Gs ← Atrain, Gt ← Atest
7 // Training;
8 for each batch of {xi, ai,Ui} from

SAMPLE(Gs) do
9 compute zi ← Eq.(3),

10 L ← Eq.(5);
11 update {a,Θ,PLMΘ};
12 end
13 // Testing;
14 for each document x′

i from SAMPLE(Gt) do
15 compute z′i ← Eq.(3)
16 end
17 return z′

4 Experiments324

4.1 Evaluation Setup325

Datasets. We evaluate the performance of au-326

thor name disambiguation on two public datasets:327

(1) AMiner (Zhang et al., 2018) collects 600328

ambiguous name references, and about 203K329

documents are published by these authors. (2)330

MAG-CS is a subset of Microsoft Academic Graph331

(MAG) (Sinha et al., 2015) in the computer science332

domain.5 In order to create a challenging AND333

task, we choose ambiguous references with at least334

three different real identities and each of them has335

at least five publications between 2000 and 2020.336

Each paper in both datasets contains its authors and337

5We select papers from top 105 venues in the field of
computer science from MAG.

Table 1: Overall Dataset Statistics

AMiner MAG-CS

# Documents 203078 6895
# Authors 6228 454

# Total Edges 4.99M 63.6K
# Co-author Edges 4.99M 62.2K

# Cite Edges N/A 1463

# Total References 600 125

bibliographies. We preprocess the documents into 338

graph as described in Section 3.1, where cite is a 339

first-order relation and co-author is a second-order 340

relation. The total number of documents and graph 341

statistics are summarized in Table 4. 342

Compared Methods. We utilize MPNet (Song 343

et al., 2020) as the backbone PLM for our approach. 344

The performance of other SciBERT variants can be 345

found in the Appendix § A.3. We compare GAND 346

with existing AND algorithms, fine-tuned language 347

models, and graph neural networks. These methods 348

are: (1) AMiner-AND (Zhang et al., 2018) learns 349

global document embedding through contrastive 350

learning and local graph embeddings in the docu- 351

ment graph under each reference. (2) S2AND (Sub- 352

ramanian et al., 2021) constructs pairwise linkage 353

features and then trains a gradient boosted trees 354

(GBT) classifier to estimate the similarity between 355

document pairs. For pre-trained language models, 356

we continue fine-tuning their checkpoints using 357

a triplet margin loss as of (Cohan et al., 2020). 358

(3) SPECTER (Cohan et al., 2020) is a citation- 359

informed language model pretraining method uti- 360

lizing the citations between scientific documents. 361

(4) MPNet (Song et al., 2020) is a state-of-the-art 362

masked language model that unifies masked and 363

permuted pre-training for language understanding 364

tasks. We also include two representative graph 365

neural networks using MPNet encoded representa- 366

tion as node features. (5) MPNet+SGC (Wu et al., 367

2019) simplifies the consecutive nonlinearities and 368

weight matrices of traditional graph convolution 369

networks (Kipf and Welling, 2017) with better 370

scalability. (6) MPNet+GAT (Velickovic et al., 371

2017) employs attention between target and neigh- 372

bor nodes in the graph and we also use this ar- 373

chitecture in GAND. Similar to experiments in 374

SPECTER (Cohan et al., 2020), We freeze the lan- 375

guage model embeddings in these two methods be- 376

cause of the OOM issue of fine-tuning PLMs when 377
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Table 2: Author name disambiguation results on two datasets. We report the meanstd of five runs for all the methods.
Scores marked with ∗∗ (resp., ∗) pass the t-test with p < 0.05 (resp., p < 0.1) in comparison with the second best.

Method
MAG-CS AMiner

Micro-F1 Macro-F1 B3 F1 NMI Micro-F1 Macro-F1 B3 F1 NMI

AMiner-AND 61.982.49 65.141.39 67.201.43 52.632.61 71.910.33 67.260.29 71.620.25 65.13∗∗0.36
S2AND 73.922.81 75.291.32 77.321.35 66.032.16 73.080.08 69.400.20 72.321.35 63.840.15

SPECTER 70.582.48 69.121.78 72.681.54 53.551.87 69.170.10 62.200.20 66.010.01 55.530.05
MPNet 66.922.33 67.491.53 70.881.34 52.232.19 69.620.03 63.080.22 66.740.31 56.150.29

MPNet+SGC 72.602.75 73.991.40 76.311.41 64.181.92 74.160.33 68.260.54 73.230.28 64.220.43
MPNet+GAT 73.252.35 73.921.47 76.521.39 63.682.14 73.090.24 67.570.07 72.100.09 62.450.23
OAG-BERT 69.432.02 68.381.24 71.790.91 52.441.90 69.560.07 62.210.34 66.190.20 55.410.33
OpenAI-embeddings 72.292.18 70.990.62 74.580.69 57.120.9 74.670.00 68.040.00 72.430.00 62.610.00

GAND w.o. GNN 70.353.90 69.971.63 72.831.79 57.801.84 74.940.16 68.820.16 72.350.07 63.510.63
GAND freeze PLM 74.312.97 73.591.57 77.161.43 62.782.09 75.280.05 69.510.14 74.260.06 62.990.91
GAND 75.02∗2.68 75.94∗1.63 77.98∗1.48 67.23∗∗1.96 75.80∗∗0.46 70.53∗∗0.60 74.81∗0.42 63.750.48

neighborhood size grows exponentially in GNNs.378

(7) OAG-BERT (Liu et al., 2022) jointly encodes379

scientific text and venue/author information with380

an entity-augmented academic language model. (8)381

OpenAI-embeddings uses the same augmented text382

with OAG-BERT and generate embeddings through383

API calls.6 (9) GAND w.o. GNN is a variant of our384

approach, in which we remove all neighbors, that385

is, N = ∅ in Equation 2. (10) GAND freeze PLM386

freezes the parameter of PLM in Equation 1.387

Evaluation Metrics. We evaluate the cluster-388

ing results of different methods via four met-389

rics: (1) Pairwise Micro-F1 is the harmonic mean390

of precision and recall between all predicted391

pairs. (2) Pairwise Macro-F1 computes the av-392

erage F1-score of testing references r′i. (3)393

B3 F1 (Subramanian et al., 2021) is a co-reference394

resolution metric that computes the precision395

and recall based intersection between ground396

truth cluster A and predicted clusters C. (4)397

Normalized Mutual Information (NMI) is a sym-398

metric metric to measure the quality of clustering399

results. We calculate the average NMI score of all400

testing references.401

Experiment Settings. The inputs of the compared402

algorithms are the same documents and text-rich403

networks. On training references, we process the404

data following the public implementation of each405

method. On test references, we evaluate the quality406

of document embeddings by performing the same407

6We use text-embedding-3-small in our experiments and
we do not see significant improvements for text-embedding-
3-large.https://platform.openai.com/docs/
guides/embeddings

hierarchical clustering algorithm. On AMiner, we 408

run all methods under the default training (500 ref- 409

erences) and testing (100 references) five times. In 410

addition, we separate 100 references from the train- 411

ing set as validation. On MAG-CS, we perform a 412

5-fold cross-validation under five different random 413

seeds. In each round, 20% and 20% of data are 414

used for training and validation sets, respectively. 415

Following existing studies (Zhang et al., 2018), we 416

use Macro-F1 on the validation set to select the best 417

checkpoint for evaluation. All models are trained 418

for 10 epochs in each run on a single Nvidia A6000 419

GPU with the batch size as 16. Configuration of 420

all the hyperparameters can be found in Appendix 421

§ A.1. The source code can be found in the supple- 422

mentary material. We will release the data used in 423

the experiment upon acceptance. 424

4.2 Experimental Result 425

In Table 2, we show the performance of all com- 426

pared algorithms. We report the significance level 427

of the best result under each metric against the 428

second runner through a two-tailed t-test. 429

First, we observe that document representa- 430

tions from pre-trained language models do not 431

outperform the feature-based method (S2AND) 432

and contrastive representation learning (AMiner- 433

AND). These methods also surpass the entity- 434

augmented LM (OAG-BERT) and LLMs (OpenAI- 435

embeddings), demonstrating that relational at- 436

tributes significantly enhance the performance of 437

author name disambiguation. Third, GAND reports 438

the best performance on 7 out of 8 metrics across 439

two datasets, indicating our design of joint GNN- 440

PLM encoding successfully benefits from PLMs 441
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(a) Micro-F1 (b) B3 F1

Figure 4: Effect of Multi-FT on GAND and baselines
on MAG-CS.

and graph neural networks. At last, when compared442

with our own variants, we find both graph structure443

and fine-tuning PLMs improve the accuracy, espe-444

cially on MAG-CS. We notice the performance gap445

on AMiner is smaller. Because documents in the446

same blocks from AMiner are collected from multi-447

ple domains (e.g. chemistry and computer science),448

either textual or relational information can already449

distinguish documents from different authors in450

this case. Nevertheless, our full model still reports451

statistically significant performance improvements.452

Effect of Multi-Task Fine-Tuning. In Section 3.3,453

we discussed the out-of-domain challenge of fine-454

tuning PLMs for author name disambiguation and455

proposed a multi-task training objective. Besides456

the performance improvements we observed in Ta-457

ble 2, we apply the same objective on our backbone458

PLM (i.e. MPNet) and two GNN baselines. We459

compare the performance of original fine-tuning460

(FT) via triplet loss (i.e. Equation 4) and multi-461

task fine-tuning (Multi-FT) in Figure 4. Full re-462

sults on both datasets can be found in Appendix463

§A.5. We have three observations: (1) multi-task464

fine-tuning can improve the performance of vari-465

ous baselines in most cases, but still worse than466

GAND. (2) Multi-FT notably improves the test per-467

formance of MPNet and GAND, which confirms468

that out-of-distribution (OOD) testing documents469

adversely affect contrastive fine-tuning PLMs. (3)470

The marginal improvement seen in baselines (e.g.471

GAT, SGC) that freeze PLM embeddings reaffirms472

that the extensive parameter space of PLMs be-473

comes a challenge for OOD generalization when474

training data is limited. Multi-FT demonstrates475

promising potential as a training objective for ap-476

plications that have limited supervision available.477

(a) Effect of #neighbors (b) Effect of #layers

Figure 5: Parameter study on the effect of attention and
number of neighbors.

4.3 Model Study 478

Hyperparameter Sensitivity. Compared with 479

PLMs, the additional complexity of GAND comes 480

from the graph attention layer in Equation 2. In our 481

analysis, the time complexity of GAND increases 482

linearly with the number of neighbors K and expo- 483

nentially with the number of GNN layers L. Fig- 484

ure 5 demonstrates the result of GAND by varying 485

the number of neighbors and number of GNN lay- 486

ers. We observe that GAND performs significantly 487

better than our variant without GNN (K=0 in Fig- 488

ure 5a), highlighting the importance of relational 489

information encoded in the constructed graph for 490

achieving better performance. Meanwhile, we ob- 491

serve that increasing the number of neighbors (e.g. 492

K=4, 8, All) or the number of layers in GAND does 493

not lead to additional performance improvements. 494

We believe a small number of co-authored or cited 495

neighbor documents is enough for GAND. Hence, 496

our model does not require much more computa- 497

tions than fine-tuning PLMs. According to this 498

result, we believe setting K = 5 and L = 1 in our 499

main experiment is reasonable. 500

Analysis of LMulti-FT. In Figure 3, we present 501

the generalization issue observed when fine-tuning 502

PLM using triplet loss. Now we compare the train- 503

ing and testing performance of MPNet and GAND 504

on MAG-CS for five runs. Figure 6 illustrates 505

that both models achieve high pairwise Micro-F1 506

scores by clustering the training data. However, 507

only GAND demonstrates an improved Macro-F1 508

on the testing data, whereas the performance of 509

MPNet declines throughout the training process. In 510

addition, GAND does not require encoding negative 511

samples, which effectively reduces the computation 512

cost by approximately half, assuming one negative 513

sample per positive pair. In Table 3, GAND (Multi- 514

FT) exhibits approximately 50% reduced training 515
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Table 3: Training time per epoch comparison between
FT and Multi-FT.

Model Arch. MAG-CS AMiner

MPNet (FT) 1min0s 95min37s
GAND (FT) 3min06s 246min44s

GAND (Multi-FT) 2min24s 121min47s

(a) Training Micro-F1 (b) Testing Macro-F1

Figure 6: Comparison of Fine-Tuning PLMs and GAND.

time compared to GAND (FT), particularly on the516

large dataset AMiner.517

5 Related Work518

Author Name Disambiguation. There have been519

lots of efforts in the field to perform author name520

disambiguation in bibliographic databases. Early521

approaches (Han et al., 2004, 2005) define vari-522

ous similarity metrics between pairs of articles and523

apply unsupervised clustering algorithms to cor-524

respond each cluster to a real-world author. Ever525

since feature engineering became the most critical526

step towards successful disambiguation. Lots of527

pairwise features (Louppe et al., 2016; Song et al.,528

2015; Treeratpituk and Giles, 2009) are proposed529

to train pairwise classifiers such as co-authors, af-530

filiations, ethnicity etc. People also collected mul-531

tiple AND datasets (e.g. AMiner (Zhang et al.,532

2018), INSPIRE (Louppe et al., 2016)) and trained533

pairwise classifier. The notable ones are random534

forests (Jhawar et al., 2020; Subramanian et al.,535

2021) and deep neural networks (Kim et al., 2019;536

Zhang et al., 2018). Similar to GAND, (Fan et al.,537

2011; Tang et al., 2011; Zhang et al., 2021) con-538

structed a document graph with relations between539

documents and conducted clustering on the graph.540

In this work, we focus on learning the document541

representations for author name disambiguation.542

To this end, both AMiner-AND (Zhang et al., 2018)543

and AND-GAT (Zhang et al., 2021) learn a neural544

network encoder on word embeddings. However,545

none of these algorithms simultaneously model546

deep contextualized text embeddings and relational547

information.548

Pre-trained Language Models for Scientific Text. 549

The first well-known pre-trained masked language 550

model - BERT (Devlin et al., 2018) propose to 551

train a deep bidirectional transformer using masked 552

token and next sentence prediction tasks. SciB- 553

ERT (Beltagy et al., 2019) pre-trains a BERT 554

model on multiple scientific publication corpus for 555

downstream applications. BioBERT (Lee et al., 556

2020) is another similar approach but pre-trains 557

BERT model on biomedical corpora. Sentence- 558

BERT (Reimers and Gurevych, 2019) introduces 559

the triplet objective to derive the sentence embed- 560

dings that can be compared using cosine similarity. 561

SPECTER (Cohan et al., 2020) applies fine-tuning 562

to SciBERT using a triplet loss, aiming to maxi- 563

mize the margin between the similarity of a query 564

paper and its citations compared to randomly sam- 565

pled papers. SciNCL(Ostendorff et al., 2022) fur- 566

ther extends the document similarity learning via 567

neighborhood sampling on citation graphs by con- 568

trolling the sampling margin between hard-to-learn 569

positives and negatives. OAG-BERT (Liu et al., 570

2022) is an entity-augmented academic language 571

model pre-trained with the task of masked entity 572

prediction. Graph-empowered language models 573

(GNN-LMs) are introduced to incorporate the re- 574

lational information into the language model. For 575

example, GraphFormers (Yang et al., 2021) is a 576

GNN-nested Transformer architecture that insert 577

graph neural networks between transformer layers. 578

PATTON (Jin et al., 2023) proposes to pre-train 579

the GraphFormers on a text-rich graph using the 580

masked token and node prediction objectives. How- 581

ever, the computation cost of these GNN-LMs are 582

significantly higher than LMs. In this work, we pro- 583

pose an efficient graph-enhanced PLM fine-tuning 584

framework for author name disambiguation. 585

6 Conclusions and Future Work 586

In this paper, we study the problem of author name 587

disambiguation with both textual and relational at- 588

tributes in the documents. We propose a graph- 589

enhanced language model – GAND to encode both 590

information and further improve the performance 591

of AND with a novel multi-task fine-tuning loss. 592

Experimental result shows GAND outperforms var- 593

ious existing AND algorithms. Interesting future 594

work can be extending the multi-task fine-tuning 595

objective to more pairwise language understand- 596

ing tasks with structured knowledge like question 597

answering. 598
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7 Limitations599

High-order Interactions between Documents. In600

this work, our proposed framework mainly utilizes601

one-hop of structural information in the constructed602

graph. Traditional graph neural networks deal with603

multi-hop message passing. As we discuss in the604

main paper, the time and space complexity of up-605

dating the parameters of multiple hops of docu-606

ments grows exponentially. One possible strategy607

is separating approximation of high-order propaga-608

tion and feature transformation such as SGC (Wu609

et al., 2019) and PPRGO (Bojchevski et al., 2020).610

It is also possible to conduct parallel computing611

across multiple GPUs. While we demonstrate that612

a deeper graph neural networks does not provide613

benefits for the AND task, we leave the systematic614

exploration of this direction as future work.615

Risks. The proposed PLM-GNN architecture and616

multi-task fine-tuning objective are evaluated for617

author name disambiguation only. Although it may618

be effective for other similarity modeling tasks, we619

do not expect this approach yields superior perfor-620

mance on other NLU tasks. When the corpus is a621

lot larger than the ones used in the paper (e.g., >622

10M documents), the training time of our algorithm623

will be longer.624

8 Ethics Statement625

We carefully anonymized actual author informa-626

tion in both datasets with the unique identifier as627

mentioned in graph construction. For the AND628

data used for train and evaluation, we do not have629

any intentions other than studying the proposed630

problem. Ethical information such as gender and631

nationality of the authors are not used in this work.632
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A Appendix810

A.1 Implementation Details811

We implement GAND as well as all PLM baselines812

using the Hugging Face library (Wolf et al., 2019).813

The graph attention layer and neighbor sampler814

used in our model are implemented using torch-815

geometric7. We use AdamW as our optimizer and816

hyperparameter configurations are shown in Ta-817

ble 4.818

Table 4: Hyperparameters of all compared algorithms.

parameter name value

adam ϵ 1e-8
learning rate lr 5e-5
weight decay 1e-2
batch size B 16

hidden dimension d 768
maximal document length N 256

maximal gradient norm 1.0
neighborhood size K 5

# GNN layers L 1
# epochs 10

# random seeds 5

A.2 Evaluation Metric Details819

Here, we provide the detailed calculation of Pair-820

wise Micro-F1 and Normalized Mutual Informa-821

tion (NMI) in our experiments. Given a test doc-822

ument di ∈ D, we denote the prediction ŷi as a823

pair of reference identifier and cluster membership824

(ri, ci), and similarly the ground truth yi as a pair825

of reference identifier and real author (ri, ai).826

(1) Pairwise Micro-F1 is the harmonic mean of827

precision and recall between all predicted pairs.828

Prec =

∑
(i,j)∈S I(ri = rj ∧ ci = cj ∧ ai = aj)∑

(i,j)∈S I(ri = rj ∧ ci = cj)
829

Rec =

∑
(i,j)∈S I(ri = rj ∧ ci = cj ∧ ai = aj)∑

(i,j)∈S I(ri = rj ∧ ai = aj)

(6)

830

where S is the Cartesian product of all test docu-831

ments S = D ×D.832

(2) Normalized Mutual Information (NMI) For833

reference r, the NMI score is computed between834

7https://pytorch-geometric.readthedocs.
io/en/latest/index.html

Table 5: Performance of GAND with different backbone
PLMs on MAG-CS.

Type of PLMs. Micro-F1 Macro-F1 B3-F1 NMI

MPNet 73.80 74.61 76.93 66.04
SPECTER 72.91 73.83 76.13 64.89
SciBERT 72.07 73.49 75.73 63.55

ground truth and predicted clusters. 835

NMI(r) =
2× I(Yr; Ŷr)

[H(Yr) +H(Ŷr)]
(7) 836

where Yr = {yi|ri = r} is the set of ground truth 837

pairs under reference r, I is the mutual information 838

and H is the entropy. 839

A.3 GAND with different backbone PLMs 840

In our main experiments, we use MPNET (Song 841

et al., 2020) as our backbone PLM. Here we pro- 842

vide the ablation study using different PLMs using 843

one of the random seeds in Table 5. We observe that 844

MPNet exhibits slightly better performance com- 845

pared to other standalone PLMs and when used as 846

the backbone for our models, as shown in both this 847

section and Table 2 of the main paper. As a result, 848

we choose MPNet as our default backbone model. 849

A.4 Full Results of Training Dynamics 850

Comparison 851

In Section 4.3, we compare the training dynamics 852

of GAND and traditional contrastive fine-tuning on 853

Macro-F1. In Table 7, we provide the performance 854

curves on other metrics. The result is consistent 855

with the main paper, that is, multi-task fine-tuning 856

can simultaneously improve the training accuracy 857

and clustering performance on test data. 858

(a) Training Accuracy (b) Testing Macro-F1

(c) Testing Micro-F1 (d) Testing B3 F1

Figure 7: Comparison of Fine-Tuning PLMs and GAND.
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Table 6: Result of applying Multi-FT on multiple baselines.

Method
MAG-CS AMiner

Micro-F1 Macro-F1 B3 F1 NMI Micro-F1 Macro-F1 B3 F1 NMI

MPNet 66.92 67.49 70.88 52.23 69.59 62.86 66.43 55.86
MPNet+Multi-FT 70.56 71.09 74.38 57.77 74.15 68.30 72.22 62.27

SGC 72.60 73.99 76.31 64.18 73.83 67.72 72.95 63.79
SGC+Multi-FT 73.72 74.21 77.05 63.20 75.52 69.84 74.65 64.08

GAT 73.25 73.92 76.52 63.68 72.85 67.50 72.19 62.23
GAT+Multi-FT 74.08 73.66 77.00 62.49 74.99 69.71 74.50 64.05

GAND 75.02 75.94 77.98 67.23 75.80 70.53 74.81 63.75

A.5 Additional Results on Applying Multi-FT859

In Figure 4, we show the effectiveness of Multi-860

FT on MAG-CS dataset using bar plot. We also861

conduct the performance on AMiner and observe862

Multi-FT can improve the performance of PLMs863

significantly across two datasets and four metrics.864

On GNN baselines, the improvements are smaller865

but consistent at most times. The detailed numbers866

can be found in Table 6.867
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