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Abstract
We consider the problem of clustering grouped
data for which the observations may include
group-specific variables in addition to the vari-
ables that are shared across groups. This type of
data is quite common; for example, in cancer ge-
nomic studies, molecular information is available
for all cancers whereas cancer-specific clinical
information may only be available for certain can-
cers. Existing grouped clustering methods only
consider the shared variables but ignore valuable
information from the group-specific variables. To
allow for these group-specific variables to aid in
the clustering, we propose a novel Bayesian non-
parametric approach, termed global-local (GLo-
cal) Dirichlet process, that models the “global-
local” structure of the observations across groups.
We characterize the GLocal Dirichlet process us-
ing the stick-breaking representation and the rep-
resentation as a limit of a finite mixture model.
We theoretically quantify the approximation er-
rors of the truncated prior, the corresponding finite
mixture model, and the associated posterior distri-
bution. We develop a fast variational Bayes algo-
rithm for scalable posterior inference, which we
illustrate with extensive simulations and a TCGA
pan-gastrointestinal cancer dataset.

1. Introduction
This article considers the clustering of grouped data that
includes both shared variables across groups and group-
specific idiosyncratic variables, as often seen in practice.
For example, large-scale studies like The Cancer Genome
Atlas (TCGA) provide molecular and clinical profiles across
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cancers, enabling a systematic pan-cancer classification.
While molecular data (e.g., mRNA expression) are shared
across tumors, clinical variables may be cancer-specific
(e.g., prostate-specific antigen for prostate cancer). These
cancer-specific clinical variables may provide valuable infor-
mation in clustering. Moreover, it is of scientific interest to
investigate if patients with different clinical characteristics
show differential gene expression patterns. Thus, while it is
desirable to utilize both molecular and clinical information
to identify pan-cancer subpopulations, their varying avail-
ability across cancers makes it a challenging problem. This
paper introduces a novel Bayesian nonparametric method
for clustering such grouped data.

The Dirichlet process (DP, Ferguson, 1973) is at the core of
numerous model-based Bayesian nonparametric clustering
methods (Antoniak, 1974; Escobar & West, 1995; Mallick
& Walker, 1997; Hjort et al., 2010; Müller et al., 2015). One
of the advantages of DP mixture models (Lo, 1984; Escobar
& West, 1995; Maceachern & Müller, 1998) is its ability
to perform clustering without having to fix the number of
clusters a priori.

When analyzing grouped data (e.g., tumor tissues of differ-
ent origins in our application), one could naively apply a
separate DP mixture model to each group, treating them in-
dependently. However, it is often desirable to identify group-
specific clusters while allowing the groups to be linked so
that clusters are comparable across groups. The hierarchical
Dirichlet process (HDP, Teh et al., 2006) is a remarkable
contribution in this direction. The HDP formulation relies
on modeling groups of observations using distinct DPs with
a common base measure, which, in turn, is itself a realization
from another DP. Since the draws from this DP are almost
surely discrete, all group-specific distributions share the
same set of atoms. Another classic group clustering method
is the nested Dirichlet process (nested DP, Rodrı́guez et al.,
2008), which focuses on simultaneously clustering groups
as well as observations within each group cluster. However,
the nested DP is known to suffer from a degeneracy property
(Camerlenghi et al., 2019) – two distributions sharing even
one atom in their support are automatically assigned to the
same cluster.

Both the HDP and the nested DP fall under the general
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framework of dependent DP (MacEachern, 1999; 2000).
See Quintana et al., 2022 for a recent review of different
dependent DPs. Several recent works (Beraha et al., 2021;
Balocchi et al., 2022; Bi & Ji, 2023; Lijoi et al., 2023)
have been proposed to take advantage of the cluster-sharing
feature of the HDP and the group-clustering feature of the
nested DP. In contrast to methods relying on the HDP or
its variants, some other works rely on models with additive
structure or common atoms (Camerlenghi et al., 2019; Denti
et al., 2023; D’Angelo et al., 2023; Chandra et al., 2023;
D’Angelo & Denti, 2024). However, the aforementioned
methods assume that the observations across the groups are
measured on the same set of variables (with possible missing
values for some variables within a group). In this paper,
we develop a grouped clustering framework that explicitly
accounts for group-specific variables.

Let xji represent observation i from group j. They are
assumed to be partially exchangeable (de Finetti, 1938),
entailing that observations are exchangeable within but not
across groups. Partition xji into

(
xLji,x

G
ji

)
, where xGji in-

cludes variables shared across groups (e.g., age, sex, gene
expression) and xLji includes group-specific variables (e.g.,
prostate-specific antigen for prostate cancer). Unlike exist-
ing group clustering methods, which consider a common set
of variables across groups, we distinguish between global
(xGji) and local (xLji) variables. We propose a Bayesian
nonparametric approach to cluster observations while incor-
porating this “global-local” structure.

To model both global and local variables, we let the group-
specific random measure Gj be supported on a shared sub-
space across groups and an idiosyncratic subspace unique to
each group. Specifically, we assume that conditionally on α
and V , Gj ∼ DP(α,Uj ⊗ V ), where Uj is a group-specific
base measure, V is a common base measure, and ⊗ is the
measure product. To share clustering information across
groups, we assume V is also DP-distributed. This model,
termed the global-local (GLocal) DP, allows Gj to share
atoms in the common subspace across groups, enabling
global clustering. As we will explain later, the idiosyn-
cratic base measure Uj refines the global clusters into local
clusters using the local variables.

GLocal DP generalizes HDP by handling group-specific
variables. Unlike HDP, the GLocal DP does not assume
group exchangeability, as Gj has a group-specific base mea-
sure. Although HDP can still be generalized to avoid the
exchangeability of the groups by introducing group-specific
concentration hyperparameters, the variables share the same
support and, thus, HDP cannot be used to cluster observa-
tions with varying variable sets across groups. Addressing
this limitation and enabling the clustering of such data con-
stitute the main motivation of the proposed GLocal DP.

Recently, Dinari & Freifeld (2020) proposed the versatile

hierarchical Dirichlet process mixture model (vHDPMM)
for modeling grouped data that includes both shared and
group-specific variables. Although the modeling motivation
behind the vHDPMM is closely related to that of our pro-
posed GLocal DP, the two approaches differ fundamentally
in their underlying constructions. We detail these differ-
ences in Section 2.2. Importantly, the models are not special
cases of one another.

Summary: First, we propose a general Bayesian nonpara-
metric approach, GLocal DP, to incorporate group-specific
local variables for clustering of grouped data. Second, we
provide two characterizations of GLocal DP, each providing
a different perspective. Third, we provide some theoretical
results relating to the use of finite truncation of the GLocal
DP in posterior inference. Fourth, we develop an efficient
variational Bayes algorithm for scalable inference. Finally,
we demonstrate our model through experiments on synthetic
data as well as a real TCGA pan-gastrointestinal cancer
dataset. Both simulations and real data analysis demonstrate
excellent performance of our model in identifying clusters
of observations shared across groups. Furthermore, our
method highlights the importance of incorporating group-
specific variables in refining the shared clusters into smaller
subclusters through the local variables. All codes used for
simulations and real data analysis, as well as the datasets
themselves, are available here.

2. Model
Because of space limit, we provide an overview of the DP
mixture model for a single population/group and the HDP
mixture model for multiple groups in the Appendix Sec-
tion A. When data contain varying sets of variables across
groups, the HDP prior (25) is not appropriate (e.g., Gj does
not have the correct support). We address this challenge
of clustering grouped data with varying variable sets by
proposing a joint distribution forGj’s that incorporates both
local and global variables.

Recall that xji =
(
xLji,x

G
ji

)
denotes the ith observation

from the group j. We assume that each observation is drawn
independently from a mixture model with factor θji . Sim-
ilar to the observations, factor θji can be partitioned into
local and global factors, θji =

(
θLji,θ

G
ji

)
. By later con-

struction, there is a positive prior probability that the global
factors are equal across groups (e.g., θGji = θ

G
j′i′), thereby

inducing the sharing of global clusters. Furthermore, local
factors (θLji) can modify the global clusters and may refine
them into smaller local clusters.

Let F (xji | θji) be the distribution of xji, conditional on
factor θji. For simplicity, we assume that this distribution
can be expressed in a factorized form:

F (xji | θji) = F1(x
L
ji | θLji)F2(x

G
ji | θGji). (1)
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Here, F1(x
L
ji | θLji) represents the conditional distribu-

tion of local variables xLji, given local factors θLji, while
F2(x

G
ji | θGji) represents the conditional distribution of

global variables xGji, given global factors θGji. This implies
that xGji and xLji are conditionally independent, although
they are not independent marginally. If additional depen-
dency between xGji and xLji is desired, F1(x

L
ji | θLji) in (1)

could be replaced with F1(x
L
ji | xGji,θLji); however, this

direction is not pursued in this paper. Let Gj denote the
group-specific prior distribution for factors θji. We assume
that the factors are conditionally independent given Gj , re-
sulting in the following probability model:

θji =
(
θLji,θ

G
ji

)
| Gj ∼ Gj (2)

Consider (Θj ,Aj) as the measurable space associated with
the local factors specific to group j, and (Ω,B) as the mea-
surable space corresponding to the shared global factors
across all groups. The GLocal DP defines a collection of
random probability measures Gj , one for each group, on
the product space (Θj × Ω,Aj ⊗ B),

Gj | α, V ∼ DP(α,Uj ⊗ V ), (3)

where α is the positive concentration parameter. The base
measure Uj⊗V is a random product probability measure of
the local measure Uj and the global measure V defined on
the product space (Θj × Ω,Aj ⊗ B). In other words, Uj is
defined on (Θj ,Aj) and V is defined on (Ω,B). To allow
for the sharing of global factors across groups, we further
assume,

V | γ ∼ DP(γ,H), (4)

where γ and H are the concentration parameter and base
probability measure, respectively. Equations (1) and (2)
along with the prior specifications given in (3) and (4) com-
plete the specification of the proposed GLocal DP mixture
model. The GLocal DP reduces to the HDP when group-
specific local variables (and consequently local factors) are
absent across all groups. However, when local variables are
present, they play a significant role in clustering grouped
data. In addition to defining group-specific local clusters,
the local variables can also influence the clustering of global
variables across populations, as discussed at the end of Sec-
tion 2.1.1. This makes our method different from the HDP,
even at the global level. Furthermore, following Ascolani
et al. 2022, we assume non-informative gamma priors on
the concentration parameters to avoid inconsistencies in the
estimation of the number of clusters in DP mixture models
(Miller & Harrison, 2013; Yang et al., 2020).

2.1. Representations

2.1.1. THE STICK-BREAKING REPRESENTATION

Since the global measure V is distributed as a DP, it can be
expressed using a stick-breaking representation (Sethura-

man, 1994),

V =

∞∑
k=1

βkδϕk
, (5)

where β = (βk)
∞
k=1 ∼ GEM(γ) and ϕk

iid∼ H independent
of β. Here GEM stands for Griffiths, Engen and McCloskey
distribution (Pitman, 2002). Furthermore, as each Gj is
distributed as a DP, a similar stick-breaking representation
gives,

Gj =

∞∑
t=1

πjtδψjt , (6)

where πj = (πjt)
∞
t=1 ∼ GEM(α) and ψjt | V

ind∼ Uj ⊗ V
independent of πj . Since each factor θji is distributed
according to Gj , it takes on the value ψjt =

(
ψLjt, ψ

G
jt

)
with probability πjt, where ψLjt

iid∼ Uj and ψGjt | V
iid∼ V .

Because V has support at the points ϕ = (ϕk)
∞
k=1, the

marginal distribution of each Gj with ψLjt marginalized
out also has support at these points through ψGjt. That is,(
ψGjt
)∞
t=1

are necessarily the same as (ϕk)∞k=1. Indeed, ψGjt
takes on the value ϕk with probability βk. This sharing of
global factors across the groups facilitates the sharing of
clustering of the global variables. To make the clustering as-
pect of our model explicit, we introduce the latent variables
tji and kjt, where

tji | πj
ind∼ πj , (7)

kjt | β
ind∼ β, (8)

such that, conditional on the latent indicators tji and
(kjt)

∞
t=1, we have xji ∼ F1(x

L
ji | ψLjtji)F2(x

G
ji | ϕkjtji ).

We refer to the latent indicator kjtji as the global-level clus-
ter label as it indicates the shared clustering across groups.
For example, if kjtji = kj′tj′i′ , the i-th observation from
group j and the i′-th observation from group j′ belong to
the same global cluster. Similarly, we refer to the latent
variable tji as the local-level cluster label as it identifies the
finer sub-clusters within each group. Specifically, for two
observations i and i′, if tji ̸= tji′ , then the local variable(s)
in group j refines the corresponding global clusters kjtji
and kjtji′ into two distinct sub-clusters. The dissimilarity in
the local variable(s) between observations i and i′ drives this
refinement, providing insight into how the local variables
influence the clustering of global variables. With these two
sets of latent indicators, we obtain an equivalent representa-
tion of the GLocal DP mixture via the following conditional
distributions:

β ∼ GEM(γ), kjt ∼ β,
πj ∼ GEM(α), tji ∼ πj ,
ϕk ∼ H, ψLjt ∼ Uj ,
xji ∼ F1(x

L
ji | ψLjtji)F2(x

G
ji | ϕkjtji ).

(9)
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We remark that our clusters have hierarchical structure
where the local-level clusters (given by tji) are nested within
the global-level clusters (corresponding to kjtji). This hi-
erarchical nature of our clusters indicates that the local
variables help refine the global clusters. In our motivat-
ing pan-cancer application, this plays a pivotal role in the
finer understanding of molecular subpopulations modified
by cancer-specific clinical variables. The Figure 5 in the
Appendix Section B shows the graphical model representa-
tion of the GLocal DP mixture model. Clearly, given the
data {xLji,xGji}, the marginalized global-level assignment
of observation i in group j, denoted kji, is influenced by
the corresponding local variables xLji. Therefore, the local
variables can impact the clustering at the global level.

2.1.2. THE INFINITE LIMIT OF FINITE MIXTURE MODELS

Alternatively to the stick-breaking representation, the GLo-
cal DP mixture model in (9) can be derived as the infinite
limit of a finite mixture model. Specifically, consider the
following finite mixture model,

β ∼ Dir(γ/K, . . . , γ/K), kjt ∼ β,
πj ∼ Dir(α/T, . . . , α/T ), tji ∼ πj ,
ϕk ∼ H, ψLjt ∼ Uj ,
xji ∼ F1(x

L
ji | ψLjtji)F2(x

G
ji | ϕkjtji ),

(10)
with K ≤ T , where β is the global mixing proportion
vector, πj is the group-specific mixing proportion vector,
K is the number of global mixture components, and T is
the number of local mixture components. As K → ∞ the
model converges to the infinite limit, which is precisely the
proposed GLocal DP mixture model as shown in Appendix
Section C.

2.2. Comparison with Versatile Hierarchical Dirichlet
Process

The vHDPMM (Dinari & Freifeld, 2020) was introduced
to model grouped data comprising both shared and group-
specific variables/features, aligning in motivation with our
proposed GLocal DP. Despite this similarity in modeling
objectives, there are crucial differences in the modeling
formulations of the two approaches. Notably, the GLocal
DP mixture model and the vHDPMM are not special cases
of one another. To model the global (shared) variables xGji,
Dinari & Freifeld (2020) employ a HDP-type mixture model
of the form:

p
(
{xGji}

nj

i=1|θ,πj
)
=

nj∏
i=1

∞∑
k=1

πjk f(x
G
ji; θk), (11)

where πjk > 0 for all k,
∑∞
k=1 πjk = 1, f denotes a group-

independent probability density function (pdf) or probability
mass function (pmf) parameterized by θk, with θk

iid∼ H for

some base measure H , and the mixing proportions πj ∼
GEM(α). Introducing latent allocation variables, zj =
(zj1, . . . , zjnj ), with zji = k if and only if xGji is drawn
from global component k, equivalently, (11) is written as,

zji
iid∼ Cat(πj), i = 1, . . . , nj ,

p({xGji}
nj

i=1|θ, zj) =
nj∏
i=1

f(xGji; θzji).
(12)

The global cluster k is defined as ck =
(xGji)zji=k, j=(1,...,J), i=(1,...,nj) and let K be a latent
random variable denoting the number of global clusters.
Furthermore, for each j = 1, . . . , J and each k = 1, . . . ,K,
skj = (xLji)i:zji=k is defined as the collection of local
features having the global features in global cluster k.
Consequently, each skj is modeled with an infinite mixture
model as,

p(skj |θkj ,πkj ) =
∏

i:zji=k

∞∑
w=1

πkjw fj(x
L
ji; θ

k
jw), (13)

where πkjw > 0 for all k,
∑∞
w=1 π

k
jw = 1, fj is a group-

specific pdf or pmf parametrized by θkjw, πkj ∼ GEM(η),

and θkjw
ind∼ Lj . Equivalently, using hidden local clusters,

(13) is defined as,

zlji
iid∼ Cat(πkj ), ∀ i s.t. zji = k,

p(skj |θkj , zlj) =
∏

i:zji=k

fj(x
L
ji; θ

k
jzlji

). (14)

In summary, the vHDPMM is defined hierarchically by first
modeling the shared global variables and then conditionally
modeling the local variables conditional on the global clus-
ters. Contrarily, our proposed GLocal DP mixture model is
defined jointly as in (9). Using our formulation, for two dis-
tinct observations i and i′ in the same group j, if tji = tji′ ,
then automatically, they share the same global clusters i.e.,
kjtji = kjtji′ . In other words, if the i-th and the i′-th ob-
servation from group j share the same local cluster, then
they also belong to the same global cluster. However, this is
not the case for the vHDPMM of Dinari & Freifeld, 2020,
where the local clusters for observations i and i′ are defined
conditional on their global clusters. In other words, for any
group j, if i ∈ skj and i′ ∈ sk

′

j , where k ̸= k′, then the two
observations i and i′ cannot have the same global cluster,
even if they share the same local feature. Furthermore, our
model exactly reduces to the HDP in the absence of local
variables for all the groups. However, the vHDPMM, even
in the absence of local variables for all the groups, is not
exactly the HDP mixture model. Additionally, the posterior
inference procedures for the GLocal DP and the vHDPMM
are distinct, as discussed at the end of Section 4.
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3. Truncation Approximation Bounds
In Section 2.1.2, we presented the finite mixture model
representation of the GLocal DP, derived from the finite
truncation of the GLocal DP prior. The finite truncation is
critical in many Bayesian nonparametric posterior inference
algorithms including ours. Therefore, it is important to
evaluate the error arising from the truncated GLocal DP
prior, the corresponding GLocal DP mixture model, and the
resulting posterior distribution.

We recall that Gj |α, V ∼ DP(α,Uj ⊗ V ), where V |γ ∼
DP(γ,H). We hierarchically define the truncated versions
of Gj as follows,

V K =

K∑
k=1

βKk δϕk
, (15)

where ϕk
iid∼ H, k = 1, . . . ,K, and

βKk =

{
βk if k ≤ K − 1,

1−
∑K−1
k=1 βk if k = K,

(16)

and

GT,Kj =

T∑
t=1

πT,Kjt δψjt , (17)

where ψjt
ind∼ Uj ⊗ V K , t = 1, . . . , T , and

πT,Kjt =

{
πjt if t ≤ T − 1,

1−
∑T−1
t=1 πjt if t = T.

(18)

Here T,K > 0 define the truncation levels for the different
random probability measures.

Consider J groups, each of them containing nj obser-
vations, j = 1, . . . , J . Denote by (xLj ,x

G
j ) ≡ xj =(

xj1, . . . ,xjnj

)
the collection of all observations from

the j-th group arising from the mixture model xji|θji ∼
F (·|θji) with θji|Gj ∼ Gj where the Gj’s are generated
according to the proposed GLocal DP. Let f(·|θji) be the
density of F (·|θji) with respect to some dominating mea-
sure. We assume that θji ∈ (Θj × Ω), where (Θj × Ω) is a
Polish space equipped with its corresponding Borel σ–field
Aj⊗B. Finally, we denote by x = (x1, . . . ,xJ), the vector
containing the observations from all J groups. Define

P∞,∞(θ) =∫
Ω

 J∏
j=1

∫
Θj

{
nj∏
i=1

P (θji|Gj)

}
P∞(dGj |V )

P∞(dV )

(19)

and

PT,K(θ) =

∫
Ω

 J∏
j=1

∫
Θj

{
nj∏
i=1

P (θji|Gj)

}
PT (dGj |V )

PK(dV ),

(20)

as the prior distribution of the parameters θ under the GLo-
cal DP and its corresponding truncated version after integrat-
ing out the random distributions. Here P (θji | Gj) denotes
the prior distribution of the parameters θji given the random
measure Gj . Furthermore, let m∞,∞(x) and mT,K(x) de-
note the marginal distribution of the data x derived from
these priors. Then we have the following result.
Proposition 3.1. Let P∞,∞(θ) and PT,K(θ) denote the
prior distribution of the parameters θ under the GLocal DP
prior and its corresponding truncated version with the ran-
dom measures integrated out. Furthermore, let m∞,∞(x)
and mT,K(x) denote the marginal distribution of the data
x, derived from these priors. Then,∫

XN

∣∣mT,K(x)−m∞,∞(x)
∣∣ dx ≤∫

ΞN

∣∣PT,K(θ)− P∞,∞(θ
∣∣ dθ ≤ ϵT,K(α, γ),

where

ϵT,K(α, γ) = 4

[
1−

{(
1−

(
α

1 + α

)T−1)}N
×

×

{(
1−

(
γ

1 + γ

)K−1)}N]
,

N = n1 + · · · + nJ , ΞN =
∏J
j=1(Θj × Ω)nj , and XN

denotes the sample space of observations x.

Note that the bounds approach zero in the limit and hence,
the truncated prior and the prior predictive distribution (
marginal data distribution) converge in total variation (and
therefore in distribution) to the GLocal DP. Furthermore,
the approximation errors decay exponentially in both T and
K. Consequently, we have the following result relating
to the posterior distribution of the parameters θ under the
truncated GLocal DP prior.
Proposition 3.2. The posterior distribution of the parame-
ters θ under the GLocal DP prior and its truncated version,

π∞,∞(θ|x) = f(x|θ)P∞,∞(θ)

m∞,∞(x)
,

πT,K(θ|x) = f(x|θ)PT,K(θ)

mT,K(x)
,

satisfies∫
XN

∫
ΞN

∣∣πT,K(θ|x)− π∞,∞(θ|x)
∣∣m∞,∞(x) dθ dx

= O
(
ϵT,K(α, γ)

)
.
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Thus, Proposition 3.2 tells us that the posterior distribution
for θ under the truncated GLocal DP is exponentially accu-
rate when integrated with respect to the marginal density of
the data m∞,∞(x) under the original GLocal DP.

4. Variational Posterior Inference
The standard posterior inference approach is Markov chain
Monte Carlo (MCMC). However, it is well-known that
MCMC methods have limited scalability when dealing with
large datasets and/or in high-dimensional settings. We in-
stead develop a variational posterior inference (VI) algo-
rithm for scalable computation, which aims to find, among a
set of simple distributions (called variational distributions),
the one that minimizes the Kullback-Leibler (KL) diver-
gence from the posterior distribution, which is equivalent to
maximizing the evidence lower bound (ELBO). We adopt a
mean-field approach, which assumes the variational distribu-
tions are factorized. Furthermore, we assume a multivariate
Gaussian likelihood for both global and local variables, al-
though, this approach can be adapted in a straightforward
manner whenever the data distribution is a member of the
exponential family, as discussed in Blei & Jordan, 2006.
We refer the reader to Appendix Section F for more details
on the assumed form of the likelihood, prior distributions,
and an alternative finite mixture model representation of the
GLocal DP that simplifies the VI algorithm.

Following Blei & Jordan (2006), we use a truncated varia-
tional distribution to deal with the nonparametric mixture,
where the truncation levels are denoted by T and K. Specif-
ically, we assume,

q(t,k,u,v,ϕ,ψ, α, γ;λ) =

J∏
j=1

nj∏
i=1

q(tji; {ξjit}Tt=1)

J∏
j=1

T∏
t=1

q(kjt; {ρjtl}Kl=1)×

J∏
j=1

T−1∏
t=1

q(ujt; ājt, b̄jt)

K−1∏
k=1

q(vk; āk, b̄k)×

K∏
k=1

q(µk,Λk;mk, λk, ck,Dk) q(γ; r1, r2)×

J∏
j=1

T∏
t=1

q(µjt,Λjt;mjt, λjt, cjt,Djt) q(α; s1, s2),

where q(tji; {ξjit}Tt=1) and q(kjt; {ρjtl}Kl=1) are multino-
mial distributions; q(vk; āk, b̄k) and q(ujt; ājt, b̄jt) are beta
distributions, and they are such that q(vK = 1) = 1 and
q(vg = 0) = 1 for g > K and similarly, q(ujT = 1) = 1
and q(ujh = 0) = 1 for h > T ; q(α; s1, s2) and q(γ; r1, r2)
are gamma distributions; q(µk,Λk;mk, λk, ck,Dk) and
q(µjt,Λjt;mjt, λjt, cjt,Djt) are normal-Wishart distribu-
tions. Under this representation, the set of latent variables is

Θ =
(
t,k,u,v, {µk,Λk}Kk=1, {{µjt,Λjt}Tt=1}Jj=1, α, γ

)
and the set of variational parameters is λ =
(ρ, ξ, ā, b̄, {āj}Jj=1, {b̄j}Jj=1, s1, s2, r1, r2,m, t, c,D,

{mj}Jj=1, {tj}Jj=1, {cj}Jj=1, {Dj}Jj=1). Finally, the
variational parameters λ⋆ that maximize the ELBO are
found by the coordinate ascent variational inference
(CAVI - see, for example, Bishop, 2006) algorithm; see
the Algorithm 2 in Appendix F, where we also provide
additional details on the evaluation of the ELBO.

As noted at the end of Section 2.2, the posterior inference
strategy for our proposed GLocal DP differs fundamentally
from that employed in the vHDPMM of Dinari & Freifeld
(2020). Specifically, their approach utilizes a split-merge
MCMC sampler that jointly accounts for both global and
local variables. In contrast, we adopt a scalable variational
inference framework, which is more computationally effi-
cient and better suited for large-scale applications.

5. Experiments
We conduct experiments to demonstrate the usefulness of
the proposed GLocal DP on both synthetic data as well as a
publicly available pan-cancer genomics data.

5.1. Simulations

Throughout the simulations, we considered three groups
or populations. We assumed that there were three shared
global variables across the populations and there were two,
three, and four local variables for populations 1, 2, and 3,
respectively. We varied the degree of separation in the local
variables for the three populations. The detailed simulation
strategy is presented in Appendix Section G.4.

We assessed the clustering accuracy by adjusted Rand in-
dex (ARI, Hubert & Arabie, 1985). We compared GLo-
cal DP with HDP in terms of global-level clustering and
with a Gaussian mixture model (GMM) applied to each
group separately in terms of local-level clustering. HDP
used global variables only whereas GLocal DP and GMM
used both global and local variables. All simulations were
replicated 50 times. We ran the HDP MCMC sampler for
50,000 iterations. The first half of the iterations were dis-
carded as burn-in, and posterior samples were retained at
every 25th iteration after burn-in. For the proposed VI, we
considered the difference in ELBO in successive iterations,
∆(t− 1, t) < 10−5 as a stopping rule to define the conver-
gence of the algorithm. Although the discrepancy between
the variational distribution and the target posterior is re-
duced at each iteration, there is no guarantee that the CAVI
algorithm will converge to a global optimum; rather it will
likely obtain a local solution depending on the initialization.
Hence, we executed 20 distinct runs of the algorithm with
different starting points, keeping the one with the highest
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Figure 1. Comaprison of clustering accuracy of GLocal DP with
(a) HDP at the global-level and (b) GMM at the local-level with
varying separation in the local variables.

ELBO to draw the inference. Furthermore, we chose the
truncation levels, K = T = 30.

For the HDP MCMC sampler, we estimated the clusters
by minimizing the variation of information loss (Wade &
Ghahramani, 2018). For the proposed VI algorithm, it re-
turns the optimized variational parameters corresponding to
the cluster assignment probabilities, i.e., ρ̂jtk = q∗(kjt =

k) and ξ̂jit = q∗(tji = t) where q∗(·) denotes the varia-
tional probability under the optimized variational parame-
ters. Hence, in this case, the clusters were estimated as

k̂jt = argmax
k=1,...,K

ρ̂jtk and t̂ji = argmax
t=1,...,T

ξ̂jit

for j = 1, . . . , J , t = 1, . . . , T , and i = 1, . . . , nj .

Clearly, Figure 1 shows that the clustering performance of
the proposed GLocal DP is better than HDP. Furthermore,
the clustering performance of our method clearly improves

with the increasing separation in the local variables. More-
over, at the local level, the GLocal DP clustering accuracy
is higher than the GMM. In the Appendix Section G.4 we
present additional simulations comparing the GLocal DP
with HDP and GMM with different dimensions of global
variables and varying sample sizes. In all cases, GLocal
DP outperforms both the competing models in terms of
clustering accuracy.

Additionally, we have performed simulations comparing
the clustering accuracy of the GLocal DP using MCMC vs
VI. The results are presented in Appendix Section G.1. In
summary, the clustering performance of the two algorithms
is comparable. However, VI offers significant advantages in
computational efficiency and resource utilization.

Given the shared modeling motivation between the
vHDPMM and our GLocal DP, we also performed a se-
ries of simulation experiments to compare the clustering
performance of the two models under various scenarios,
with detailed simulation strategies and results provided in
Appendix Section G.6. In summary, both models perform
comparably well in scenarios with well-separated clusters,
regardless of the data-generating mechanism. However, un-
der less separated conditions, the GLocal DP outperforms
the vHDPMM even when the latter is the true generative
model, highlighting the advantages of the GLocal DP’s
joint modeling framework over the hierarchical modeling
approach of the vHDPMM. These results underscore the
greater flexibility of the GLocal DP in capturing complex
global and local clustering patterns across diverse settings.

5.2. Real Data

In this section, we showcase the usefulness of the proposed
GLocal DP by analyzing a pan-cancer genomics dataset. In-
tegrated clustering analyses across cancers can objectively
identify cancer subpopulations beyond the tumor site of ori-
gin, enhancing our understanding of both intra-tumor and
inter-tumor heterogeneity and potentially repurposing exist-
ing cancer treatments across tumor types (Schein, 2021; Ro-
drigues et al., 2022). In databases like TCGA, genomic data
are often accompanied by clinical data, providing largely
orthogonal information regarding tumor heterogeneity, and
some clinical data may be cancer-specific. Existing meth-
ods for clustering grouped data are limited to using a com-
mon set of variables, necessitating the exclusion of critical
cancer-specific clinical data. In this application, we aim to
identify pan-cancer subpopulations using both shared and
cancer-specific data through GLocal DP.

We analyzed four gastrointestinal (GI) tract cancers:
esophageal, stomach, colon, and rectal. Esophageal and
stomach cancers, categorized as upper GI tract cancers,
originate in the food pipe and stomach lining, respectively.
Colon and rectal cancers, collectively termed colorectal can-
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cer (Paschke et al., 2018), belong to the lower GI tract and
share many features (Libutti et al., 2018a;b). Our study ex-
plores tumor heterogeneity within and across these cancers,
using gene expression and clinical data from the TCGA
database (Goldman et al., 2020). The dataset includes log-
transformed gene expression for 60,483 genes across 173,
407, 512, and 177 patients with esophageal, stomach, colon,
and rectal cancers, respectively. The selection of clinical
variables to include in our analysis is explained in the fol-
lowing. First, smoking has been identified as a major risk
factor for esophageal cancer (Fan et al., 2008). Second, the
number of positive lymph nodes serve as an indicator for the
degree of tumor spread in stomach cancer (Wu et al., 1996).
Third, CEA is an important prognostic marker for moni-
toring tumor progression in colorectal cancer. However,
CEA is not collected for esophageal and stomach cancers.
Finally, recent studies have shown that several common
cancers including colon cancer have been linked to obesity
(Pati et al., 2023). According to Frezza et al., 2006, measur-
ing BMI is crucial for assessing the obesity-related risk of
developing colon cancer. In conclusion, such scientifically
relevant aspects led us to consider the number of cigarettes
smoked per day as a local variable for esophageal cancer,
the number of positive lymph nodes for stomach cancer, the
pre-operative and pre-treatment CEA as the local variable
for both colon and rectal cancers, and BMI as an additional
variable specific to colon cancer. After excluding patients
with missing clinical data, the final sample sizes were 92,
363, 173, and 120 for esophageal, stomach, colon, and rectal
cancers, respectively.

Following the common practice, we performed PCA on the
combined gene expression data from the four cancers and
retained the top ten principal components (PC) as the global
variables. We considered the truncation levels,K = T = 30
and ran the VI algorithm 20 times with different initializa-
tions in parallel, choosing the one with the highest ELBO
to draw inference. The maximum runtime over the 20 runs
was less than 9 minutes on a MacBook Pro with M1 chip
and 16GB RAM. For visualization, we reduced the original
combined gene expression data to two dimensions using the
uniform manifold approximation and projection (UMAP,
McInnes et al., 2018). Figure 2 shows the UMAP embed-
dings colored by the estimated global- and local-level clus-
ters. The global-level clusters in Figure 2(a) show that
patients with colon and rectal cancers share significant simi-
larities. However, some colon cancer patients exhibit slight
differences in gene expression patterns (corresponds to clus-
ter 26). Further investigation reveals that the colon and
rectal cancer patients corresponding to cluster 12 have sim-
ilar CEA levels (median values of 3.2 and 3.625 ng/mL)
while the colon cancer patients belonging to cluster 26 have
a higher median CEA of 4.1 ng/mL. Contrary to the lower
GI tract cancers, the two upper GI cancers are not similar

to each other. And they are also not similar to lower GI
cancers.

Figure 2(b) shows the subclusters identified at the local level,
which emerge through the refinement of global-level clus-
ters due to the presence of group-specific clinical variables.
Figure 3 shows how the local-level clusters are influenced
by the local variables. For instance, distinct clusters are
observed among esophageal cancer patients based on smok-
ing history, highlighting group-specific heterogeneity. The
corresponding gene expression patterns for these subgroups
of patients may be investigated based on the local-level
clusters. To understand if the identified cancer subpopu-
lations possibly inform cancer prognosis, we plotted the
Kaplan-Meier survival curves for each of the identified can-
cer subpopulations in Figure 4. Among esophageal cancer
patients, the survival curves reveal distinct trajectories as-
sociated with smoking history, underscoring the prognostic
implications of this variable. Furthermore, for stomach can-
cer, the subcluster 2g (Figure 3) is characterized by patients
with a very high number of positive lymph nodes. The
corresponding survival curve in Figure 4 indicates that this
subgroup exhibits poorer survival outcomes compared to
other groups, particularly in comparison to those with fewer
positive lymph nodes. Clustering based on gene expression
data alone cannot discern the tumor heterogeneity from the
prognostic perspective.

6. Conclusion
We have introduced the GLocal DP as a stochastic process
for grouped random measures and as a prior for group clus-
tering that accommodates varying variable sets. The GLocal
DP was characterized using its stick-breaking representation
and as a limit of a finite mixture model, with truncation error
results providing practical guidelines for truncation level
selection. We have developed a novel variational inference
algorithm for scalable inference and have showcased our
method through extensive simulations and an application
to a pan-cancer dataset integrating shared gene expression
and cancer-specific clinical data. For example, our approach
identifies global clusters shared across cancers and finer
cancer-specific sub-clusters using local variables, which
existing methods cannot achieve.

There are a few possible future directions. First, our model
could be extended to incorporate the group-clustering fea-
ture of the nested DP alongside the cluster-sharing feature
of the HDP (Beraha et al., 2021; Balocchi et al., 2022; Li-
joi et al., 2023), or to leverage shared-atom nested models
(Denti et al., 2023; D’Angelo et al., 2023; D’Angelo &
Denti, 2024). Second, in the presence of external predictors,
our model may be extended to achieve covariate-assisted
GLocal clustering in line with Ren et al., 2011; Wade et al.,
2014; Rigon & Durante, 2021; Zhang et al., 2024.
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Figure 2. Global variables. (a) The colors indicate global-level
clusters estimated from GLocal DP. (b) The colors indicate the
estimated local-level clusters.
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different cancers.
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Global-Local Dirichlet Process

A. Background
In this section, we present a brief overview of some preliminaries needed before introducing our model in Section 2 of the
main manuscript. In particular, we provide a concise introduction to infinite mixture models for a single population, the DP
mixture model, and for multiple exchangeable populations, the HDP mixture model.

DIRICHLET PROCESS MIXTURE MODEL

For a single population, let xi denote the ith realization of a random variable X . Consider the following mixture model,

θi | G
iid∼ G, xi | θi

ind∼ F (θi), (21)

where F (θi) denotes the distribution of xi parameterized by θi. The parameters θi’s are conditionally independent given the
prior distribution G. In a DP mixture model, G is assigned a DP prior, G ∼ DP(α0, G0) with concentration α0 and base
probability measure G0.

Sethuraman, 1994 presented the stick-breaking representation of the DP based on independent sequences of i.i.d. random
variables (π′

k)
∞
k=1 and (ϕk)

∞
k=1, which is given by,

π′
k
iid∼ Beta(1, α0), ϕk

iid∼ G0, (22)

πk = π′
k

k−1∏
l=1

(1− π′
l), G =

∞∑
k=1

πkδϕk
, (23)

where δϕ is a point mass at ϕ and ϕk’s are called the atoms of G. The sequence of random weights π = (πk)
∞
k=1 constructed

from (22) and (23) satisfies
∑∞
k=1 πk = 1 with probability one. The random probability measure on the set of integers is

denoted by π ∼ GEM(α0) for convenience where GEM stands for Griffiths, Engen and McCloskey (Pitman, 2002). It is
clear from (21) and (23) that θi takes the value ϕk with probability πk. Let zi be a categorical variable such that zi = k if
θi = ϕk. An equivalent representation of a Dirichlet process mixture is given by,

π ∼ GEM(α0), zi | π
iid∼ π,

ϕk
iid∼ G0, xi | zi, (ϕk)∞k=1

ind∼ F (ϕzi).
(24)

HIERARCHICAL DIRICHLET PROCESS MIXTURE MODEL

Suppose observations are now organized into multiple groups. Let xji denote the observation i from group j. Let F (θji)
denote the distribution of xji parameterized by θji, and let Gj denote a prior distribution for θji. The group-specific mixture
model is given by,

θji | Gj
ind∼ Gj , xji | θji

ind∼ F (θji).

As with the DP mixture model, when the random measures Gj’s are assigned an HDP prior,

G0 ∼ DP(γ,H),

Gj | G0 ∼ DP(α0, G0),
(25)

the corresponding mixture model is referred to as the HDP mixture model. The global random probability measure G0 is
distributed as a DP with concentration parameter γ and base probability measure H . The group-specific random measures
Gj’s are conditionally independent given G0 and hence are exchangeable. They are distributed as DP with the base measure
G0 and some concentration parameter α0. Because DP-distributed G0 is almost surely discrete, the atoms of Gj’s are
necessarily shared across groups. This leads to a positive probability of shared clusters across different groups.

B. Graphical Representation of GLocal DP
In this section, we present the graphical model representation of the GLocal DP mixture model (Figure 5).
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xLji

tji

πj

α

ψLj

Uj

xGji

kj

β

γ

ϕ

H

J

nj

Figure 5. Graphical representation of the GLocal DP mixture model. Each node corresponds to a random variable, with shaded rectangles
denoting observed variables. Rectangular plates indicate replication.

C. Proof of the Infinite Limit of Finite Mixture Model
The finite mixture model represenatation of the GLocal DP is given by,

β ∼ Dir(γ/K, . . . , γ/K), kjt ∼ β,
πj ∼ Dir(α/T, . . . , α/T ), tji ∼ πj ,
ϕk ∼ H, ψLjt ∼ Uj ,

xji ∼ F1(x
L
ji | ψLjtji)F2(x

G
ji | ϕkjtji ),

(C.26)

where β is the global vector of mixing proportions, πj is the group-specific vector of mixing proportions, K is the number
of global mixture components, and T ≥ K is the number of local mixture components. Further, as K → ∞, the infinite
limit of this model is the proposed GLocal DP mixture model.

Proof. Consider the random probability measure

V K =

K∑
k=1

βkδϕk
,

where β = (βk)
L
k=1 ∼ Dir(γ/K, . . . , γ/K) and ϕk

iid∼ H, k = 1, . . . ,K independent of β. Ishwaran & Zarepour, 2002
shows that for every measurable function g, integrable with respect to H , we have, as K → ∞∫

g(θ)dV K(θ)
D→
∫
g(θ)dV (θ). (C.27)

Further, for T ≥ K, define

GT,Kj =

T∑
t=1

πjtδψjt ,
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where πj = (πjt)
T
t=1 ∼ Dir(α/T, . . . , α/T ) and ψjt = (ψLjt, ψ

G
jt)

iid∼ Uj ⊗ V K independent of πj . Let Bj × C be an
arbitrary measurable subset of Θj × Ω. Then,

GT,Kj (Bj × C) =

T∑
t=1

πjt1Bj (ψ
L
jt)1C(ψ

G
jt)

=

T∑
t=1

K∑
k=1

πjt1Bj
(ψLjt)1C(ϕk) (C.28)

Here the indicator function 1A(x) = 1 if x ∈ A and is 0 otherwise. The second equality follows since for T <∞ and any
fixed t, ψGjt = ϕk, for some k = 1, . . . ,K. Since (C.28) holds for any arbitrary measurable Bj × C, we have

GT,Kj ∼ DP(α,Uj ⊗ V K). (C.29)

It is clear from (C.27) and (C.29), that as K → ∞, T → ∞, and the marginal distribution that the finite mixture model
induces on the observations approaches the proposed GLocal DP mixture model.

D. Proof of Truncation Approximation Bounds
In this section we provide the proof of Proposition 3.1 and Proposition 3.2. Recall that the GLocal DP prior is defined as,
Gj |α, V ∼ DP(α,Uj ⊗ V ), where V |γ ∼ DP(γ,H). Furthermore, define the truncated versions of Gj as follows,

V K =

K∑
k=1

βKk δϕk
,

where ϕk
i.i.d.∼ H, k = 1, . . . ,K,

βKk =

{
βk if k ≤ K − 1,

1−
∑K−1
k=1 βk if k = K,

GT,Kj =

T∑
t=1

πT,Kjt δψjt
,

where ψjt
ind∼ Uj ⊗ V K , t = 1, . . . , T , and

πT,Kjt =

{
πjt if t ≤ T − 1,

1−
∑T−1
t=1 πjt if t = T.

Here T,K > 0 define the truncation levels for the different random probability measures.

Consider J groups, each of them containing nj observations, j = 1, . . . , J . Denote by (xLj ,x
G
j ) ≡ xj =

(
xj1, . . . ,xjnj

)
the collection of all observations from the j-th group arising from the mixture model xji|θji ∼ F (·|θji) with θji|Gj ∼ Gj
where the Gj’s are generated according to the proposed GLocal DP. Let f(·|θji) be the density of F (·|θji) with respect
to some dominating measure. We assume that θji ∈ (Θj × Ω), where (Θj × Ω) is a Polish space equipped with its
corresponding Borel σ–field Aj ⊗ B. Finally, we denote by x = (x1, . . . ,xJ) the vector containing the observations from
all J groups. Moreover, recall that

P∞,∞(θ) =

∫
Ω

 J∏
j=1

∫
Θj

{
nj∏
i=1

P (θji|Gj)

}
P∞(dGj |V )

P∞(dV ) and

PT,K(θ) =

∫
Ω

 J∏
j=1

∫
Θj

{
nj∏
i=1

P (θji|Gj)

}
PT (dGj |V )

PK(dV )
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denotes the prior distribution of the parameters θ under the GLocal DP and its corresponding truncated version after
integrating out the random distributions. Here P (θji | Gj) denotes the prior distribution of the parameters θji given the
random measure Gj . Furthermore, let m∞,∞(x) and mT,K(x) denote the marginal distribution of the data x derived from
these priors. Particularly,

m∞,∞(x) =

∫
ΞN

f(x|θ)P∞,∞(θ) dθ and mT,K(x) =

∫
ΞN

f(x|θ)PT,K(θ) dθ.

Then we have the following result.

Proposition 3.1. Let P∞,∞(θ) and PT,K(θ) denote the prior distribution of the parameters θ under the GLocal DP
prior and its corresponding truncated version with the random measures integrated out. Furthermore, let m∞,∞(x) and
mT,K(x) denote the marginal distribution of the data x, derived from these priors. Then,∫

XN

∣∣mT,K(x)−m∞,∞(x)
∣∣ dx ≤

∫
ΞN

∣∣PT,K(θ)− P∞,∞(θ
∣∣ dθ ≤ ϵT,K(α, γ), (D.1)

where

ϵT,K(α, γ) = 4

1−{(1− ( α

1 + α

)T−1
)}N {(

1−
(

γ

1 + γ

)K−1
)}N , (D.2)

N = n1 + · · ·+ nJ , ΞN =
∏J
j=1(Θj × Ω)nj , and XN denotes the sample space of observations x.

Proof. Note that,∫
XN

∣∣mT,K(x)−m∞,∞(x)
∣∣ dx =

∫
XN

∣∣∣∣∫
ΞN

f(x|θ)PT,K(θ)dθ −
∫
ΞN

f(x|θ)P∞,∞(θ)dθ

∣∣∣∣ dx
=

∫
XN

∣∣∣∣∫
ΞN

f(x|θ)
{
PT,K(θ)− P∞,∞(θ)

}
dθ

∣∣∣∣ dx
≤
∫
XN

∫
ΞN

f(x|θ)
∣∣PT,K(θ)− P∞,∞(θ)

∣∣ dθ dx
=

∫
ΞN

{∫
XN

f(x|θ) dx
} ∣∣PT,K(θ)− P∞,∞(θ)

∣∣ dθ
=

∫
ΞN

∣∣PT,K(θ)− P∞,∞(θ)
∣∣ dθ

= 2 sup
A ∈ ΞN

∣∣PT,K(A)− P∞,∞(A)
∣∣

= 2 dTV(P
T,K , P∞,∞), (D.3)

where dTV(P
T,K , P∞,∞) denotes the distance in total variation between the marginalized GLocal DP prior on θ, P∞,∞

and its corresponding truncated version, PT,K . Let θji =
(
θLjtji ,θ

G
jkjtji

)
. The sampled values of (θj)Jj=1 under GT,K and

G are identical when tji < T and kjtji < K, for i = 1, . . . , nj ; j = 1, . . . , J . Therefore, we have,

dTV(P
T,K , P∞,∞) ≤ 2

(
1−GT,K{tji < T and kjtji < K for all j and i}

)
= 2

(
1−GT,K{kjtji < K for all j and i | tji < T for all j and i}GT,K{tji < T for all j and i}

)
= 2

1−
J∏
j=1

[
E

(
T−1∑
t=1

πjt

)nj

E

(
K−1∑
k=1

βk

)nj]
≤ 2

1−
J∏
j=1

[
E (1− πjT )

nj E (1− βK)
nj

]
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= 2

1−{(1− ( α

1 + α

)T−1
)}N {(

1−
(

γ

1 + γ

)K−1
)}N , (D.4)

where the second last inequality follows by the Jensen’s inequality and the last equality follows by straightforward
calculations based on the stick–breaking representation of the weights. The proof follows immediately from (D.3) and
(D.4).

Next, we prove the Proposition 3.2, which states,

Proposition 3.2. The posterior distribution of the parameters θ under the GLocal DP prior and its truncated version,

π∞,∞(θ|x) = f(x|θ)P∞,∞(θ)

m∞,∞(x)
,

πT,K(θ|x) = f(x|θ)PT,K(θ)

mT,K(x)

(D.5)

satisfies ∫
XN

∫
ΞN

∣∣πT,K(θ|x)− π∞,∞(θ|x)
∣∣m∞,∞(x) dθ dx = O

(
ϵT,K(α, γ)

)
. (D.6)

Proof. Write
P∞,∞(θ) = PT,K(θ) +

(
P∞,∞(θ)− PT,K(θ)

)
.

Therefore we have,

∣∣πT,K(θ|x)− π∞,∞(θ|x)
∣∣ = ∣∣∣∣f(x|θ)PT,K(θ)

mT,K(x)
− f(x|θ)PT,K(θ)

m∞,∞(x)
+
(
P∞,∞(θ)− PT,K(θ)

) f(x|θ)
m∞,∞(x)

∣∣∣∣
≤
∣∣∣∣f(x|θ)PT,K(θ)

mT,K(x)

(
1− mT,K(x)

m∞,∞(x)

)∣∣∣∣+ ∣∣∣∣ f(x|θ)
m∞,∞(x)

(
P∞,∞(θ)− PT,K(θ)

)∣∣∣∣
=
f(x|θ)PT,K(θ)

mT,K(x)

∣∣∣∣1− mT,K(x)

m∞,∞(x)

∣∣∣∣+ f(x|θ)
m∞,∞(x)

∣∣P∞,∞(θ)− PT,K(θ)
∣∣ ,

and consequently,∫
XN

∫
ΞN

∣∣πT,K(θ|x)− π∞,∞(θ|x)
∣∣m∞,∞(x) dθ dx

≤
∫
XN

∫
ΞN

f(x|θ)PT,K(θ)

mT,K(x)

∣∣mT,K(x)−m∞,∞(x)
∣∣ dθ dx+

∫
XN

∫
ΞN

f(x|θ)
∣∣P∞,∞(θ)− PT,K(θ)

∣∣ dθ dx
=

∫
XN

{∫
ΞN

f(x|θ)PT,K(θ)

mT,K(x)
dθ

} ∣∣mT,K(x)−m∞,∞(x)
∣∣ dx+

∫
ΞN

{∫
XN

f(x|θ) dx
} ∣∣P∞,∞(θ)− PT,K(θ)

∣∣ dθ
=

∫
XN

∣∣mT,K(x)−m∞,∞(x)
∣∣ dx+

∫
ΞN

∣∣P∞,∞(θ)− PT,K(θ)
∣∣ dθ

≤ ϵT,K(α, γ) + ϵT,K(α, γ) from Proposition 3.1

= O
(
ϵT,K(α, γ)

)
,

which concludes the proof.

E. Blocked Gibbs Sampler
Based on the finite mixture model approximation of the GLocal DP in (10), with large enough truncation levels K and T , it
is straightforward to develop an MCMC-based Metropolis-within-blocked-Gibbs sampler for the GLocal DP. In this section,
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we outline the blocked Gibbs sampling algorithm as an alternative to our VI algorithm as described in the next section.
Recall the finite mixture model representation of the GLocal DP,

β ∼ Dir(γ/K, . . . , γ/K), kjt ∼ β,
πj ∼ Dir(α/T, . . . , α/T ), tji ∼ πj ,
ϕk ∼ H, ψLjt ∼ Uj ,

xji ∼ F1(x
L
ji | ψLjtji)F2(x

G
ji | ϕkjtji ).

(E.1)

Let x = (xj)
J
j=1 to denote the observations from all J groups. Similarly, t = (tj)

J
j=1 and k = (kj)

J
j=1 denotes the

collection of all local-level and global-level latent indicators respectively. The collection of all local atoms are denoted by
ψ = (ψj)

J
j=1, with ψj =

(
ψLjt
)T
t=1

denoting the local atoms of group j. Similarly, the collection of global atoms are given
by ϕ = (ϕk)

K
k=1. Furthermore, let f1(. | ψLjt) and f2(. | ϕk) be the density functions (with respect to some dominating

measure) corresponding to the distributions F1(. | ψLjt) and F2(. | ϕk), respectively. The augmented likelihood is then given
by,

p(x, t,k | ψ,ϕ, (πj)Jj=1,β) =


J∏
j=1

nj∏
i=1

f1(x
L
ji | ψLjtji)f2(x

G
ji | ϕkjtji )

×
J∏
j=1

nj∏
i=1

T∏
t=1

π
1(tji=t)
jt

J∏
j=1

T∏
t=1

K∏
k=1

β
1(kjt=k)
k .

The model parameters are {ψ,ϕ, (πj)Jj=1,β, α, γ}, with the joint prior distribution given by,

p(ψ,ϕ, (πj)
J
j=1,β, α, γ)


J∏
j=1

T∏
t=1

p(ψLjt)


{

K∏
k=1

p(ϕk)

}
J∏
j=1

p(πj |α)

× p(β|γ) p(α) p(γ).

We remark that K and T are the maximal numbers of global and local clusters specified by the users. They should be large
enough so that the numbers of sampled clusters are always strictly smaller than them over the course of the MCMC. Picking
the maximal number of clusters in our algorithm is much more straightforward than picking the exact number of clusters
in many existing clustering algorithms. Alternatively, the user should choose a value for K and T that leads to a precise
approximation of the truncated GLocal DP mixture model.

For simplicity of presentation, for the global variables, we assume a mixture of multivariate Gaussian kernels p(· | ϕ) =
Np(· | µ,Λ−1), with µ a p-dimensional mean vector and Λ a p × p precision matrix. Also, we assume a conjugate
normal-Wishart prior distribution on the model parameters,

(µ,Λ) ∼ NW(µ0, τ0, ν0,Ψ0).

Similarly, for the local variables in population j, we assume, pj(· | ψLj ) = Npj (· | µj ,Λ−1
j ), with µj a pj-dimensional

mean vector and Λj a pj × pj precision matrix. Furthermore, we assume a conjugate normal-Wishart prior distribution on
the model parameters,

(µj ,Λj) ∼ NW(µj0, τj0, νj0,Ψj0).

The blocked Gibbs sampler for the GLocal DP is given in Algorithm 1. We remark that for other choices of kernels and
prior distributions, the blocked Gibbs sampling algorithm is straightforward to derive from Algorithm 1. Particularly, the
likelihood functions in steps 5 and 6 of Algorithm 1 need to be replaced by those of the chosen kernels. Similarly, the
conditional posteriors of the global atoms and local atoms in steps 3 and 4 would change depending on the choice of the
kernel and prior distributions.

Algorithm 1 Blocked Gibbs Sampler for the GLocal DP

for i = 1 to B do
Sample the parameters from their conditional posterior distributions,

1. For each j, sampleπj from a Dirichlet distribution Dir(mj1+α/T, . . . ,mjT+α/T ), wheremjt =
∑nj

i=1 1(tji =
t).
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2. Sample β from a Dirichlet distribution Dir(d1 + γ/K, . . . , dK + γ/K), where dk =
∑J
j=1

∑T
t=1 1(kjt = k).

3. For each k, sample ϕk from a conjugate NW(µ̂k, τ̂k, ν̂k, Ψ̂k) distribution with parameters

µ̂k = λ̂−1
k (τ0 µ0 +Nkx̄

G
k ), λ̂k = τ0 +Nk, ν̂k = ν0 +Nk,

Ψ̂−1
k = Ψ−1

0 +
τ0Nk
τ0 +Nk

(
x̄Gk − µ0

) (
x̄Gk − µ0

)T
+ SGk ,

where

Nk =

J∑
j=1

nj∑
i=1

T∑
t=1

1(tji = t) 1(kjt = k), x̄Gk = N−1
k

 J∑
j=1

nj∑
i=1

T∑
t=1

{
1(tji = t) 1(kjt = k) xGji

} ,

SGk =

J∑
j=1

nj∑
i=1

T∑
t=1

(
1(tji = t) 1(kjt = k)

(
xGji − x̄Gk

) (
xGji − x̄Gk

)T)
.

4. For each j and t, sample ψLjt from a conjugate NW(µ̂jt, τ̂jt, ν̂jt, Ψ̂jt) distribution with parameters

µ̂jt = λ̂−1
jt (τj0 µj0 +Njtx̄

L
jt), λ̂jt = τj0 +Njt, ν̂jt = νj0 +Njt,

Ψ̂−1
jt = Ψ−1

j0 +
τj0Njt
τj0 +Njt

(
x̄Ljt − µj0

) (
x̄Ljt − µj0

)T
+ SLjt,

where

Njt =

nj∑
i=1

1(tji = t), x̄Ljt = N−1
jt

(
nj∑
i=1

1(tji = t) xLji

)
,

SLjt =
nj∑
i=1

(
1(tji = t)

(
xLji − x̄Ljt

) (
xLji − x̄Ljt

)T)
.

5. For each j, i, and t, sample the local-level latent indicators from the following full conditional distribution:

P(tji = t | −) ∝ πjtNpj (x
L
ji | µjt,Λ−1

jt )Np(x
G
ji | µkjt ,Λ−1

kjt
).

6. For each j, t, and k, sample the global-level latent indicators from the following full conditional distribution:

P(kjt = k | −) ∝ βk

nj∏
i=1

∋tji=t

Np(x
G
ji | µk,Λ−1

k ).

7. Sample α following full conditional distribution:

p(α | −) ∝ {Γ(α)}J

{Γ(α/T )}JT
J∏
j=1

T∏
t=1

π
α/T−1
jt p(α),

using a Metropolis-Hastings (MH) step with a gamma proposal distribution.

8. Sample γ following full conditional distribution:

p(γ | −) ∝ Γ(γ)

{Γ(γ/K)}K
K∏
k=1

β
γ/K−1
k p(γ),

using a MH step with a gamma proposal distribution.

end for
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F. Variational Inference
In this section, we outline the variational inference algorithm for the GLocal DP for the specific case of multivariate Gaussian
likelihood. However, this approach can be adapted in a straightforward manner whenever the data distribution is a member
of the exponential family, as discussed in Blei & Jordan, 2006. As before, for the global variables, we assume a mixture of
multivariate Gaussian kernels p(· | ϕ) = Np(· | µ,Λ−1), with µ a p-dimensional mean vector and Λ a p × p precision
matrix. Also, we assume a conjugate normal-Wishart prior distribution on the model parameters,

(µ,Λ) ∼ NW(µ0, τ0, ν0,Ψ0).

Similarly, for the local variables in population j, we assume, pj(· | ψLj ) = Npj (· | µj ,Λ−1
j ), with µj a pj-dimensional

mean vector and Λj a pj × pj precision matrix. Furthermore, we assume a conjugate normal-Wishart prior distribution on
the model parameters,

(µj ,Λj) ∼ NW(µj0, τj0, νj0,Ψj0).

First, we provide an alternative representation of the proposed GLocal DP relying on the finite truncation of the stick-breaking
representation. Specifically, consider the following finite mixture model,

vk
i.i.d.∼ Beta(1, γ), k = 1, . . . ,K − 1, vK = 1, β1 = v1, βk = vk

∏k−1
l=1 (1− vl), for k = 2, . . . ,K

Let β = (β1, . . . , βK) kjt ∼ β,
ujt

ind∼ Beta(1, α), t = 1, . . . , T − 1, ujT = 1, πj1 = uj1, πjt = ujt
∏t−1
l=1(1− ujt), for t = 2, . . . , T

Let πj = (πj1, . . . , πjT ) tji ∼ πj ,
(µk,Λk) ∼ NW(µ0, τ0, ν0,Ψ0), (µjt,Λjt) ∼ NW(µj0, τj0, νj0,Ψj0),
xji ∼ Npj (x

L
ji | µjtji ,Λ

−1
jtji

)Np(x
G
ji | µkjtji ,Λ

−1
kjtji

).

(F.1)

Furthermore, we assume non-informative priors on the concentration parameters, i.e., γ ∼ Gamma(aγ , bγ) and α ∼
Gamma(aα, bα). Recall that we consider a fully factorized mean field family of distributions as the variational family.
Furthermore, we use a truncated variational family to deal with the nonparametric mixture, where the truncation levels are
denoted by T and K. Specifically, we assume,

q(t,k,u,v,ϕ,ψ, α, γ;λ) =

J∏
j=1

nj∏
i=1

q(tji; {ξjit}Tt=1)

J∏
j=1

T∏
t=1

q(kjt; {ρjtl}Kl=1)

J∏
j=1

T−1∏
t=1

q(ujt; ājt, b̄jt)×

×
K−1∏
k=1

q(vk; āk, b̄k)

K∏
k=1

q(µk,Λk;mk, λk, ck,Dk)×

×
J∏
j=1

T∏
t=1

q(µjt,Λjt;mjt, λjt, cjt,Djt) q(α; s1, s2) q(γ; r1, r2),

where q(tji; {ξjit}Tt=1) and q(kjt; {ρjtl}Kl=1) are multinomial distributions; q(vk; āk, b̄k) and q(ujt; ājt, b̄jt) are beta dis-
tributions, and they are such that q(vK = 1) = 1 and q(vg = 0) = 1 for g > K and similarly, q(ujT = 1) = 1
and q(ujh = 0) = 1 for h > T ; q(α; s1, s2) and q(γ; r1, r2) are gamma distributions; q(µk,Λk;mk, λk, ck,Dk)
and q(µjt,Λjt;mjt, λjt, cjt,Djt) are normal-Wishart distributions. Under this representation, the set of latent vari-
ables is Θ =

(
t,k,u,v, {µk,Λk}Kk=1, {{µjt,Λjt}Tt=1}Jj=1, α, γ

)
and the set of variational parameters is λ =

(ρ, ξ, ā, b̄, {āj}Jj=1, {b̄j}Jj=1, s1, s2, r1, r2,m, t, c,D, {mj}Jj=1, {tj}Jj=1, {cj}Jj=1, {Dj}Jj=1). Optimization is then car-
ried out by looking for the combination of variational parameters λ⋆ that maximizes the evidence lower bound (ELBO). To
this end, based on (F.1), we derive a coordinate-ascent variational inference algorithm (CAVI), given in Algorithm 2.

Algorithm 2 CAVI updates for the GLocal DP

Input: t← 0. Randomly initialize λ(0). Define the threshold ϵ and randomly set ∆ > ϵ.
while ∆(t− 1, t) > ε do

Set t = t+ 1; Let λ(t−1) = λ(t);
Update the variational parameters according to the following CAVI steps:
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1. For j = 1, . . . , J and t = 1, . . . , T , q⋆(kjt) is a K-dimensional multinomial, with q⋆(kjt = k) = ρjtk for k = 1, . . . , T ,

log ρjtk = g(āk, b̄k) +

k−1∑
l=1

g(b̄l, āl) +
1

2

nj∑
i=1

ξjit
(
ℓ
(1)
k + ℓ

(2)
jik

)
,

where g(x, y) = ψ(x) − ψ(x + y), with ψ denoting the digamma function, ℓ(1)k =
∑p

i=1 ψ ((ck − i+ 1)/2) + p log 2 +

log |Dk|, and ℓ(2)jik = −p/λk − ck(xG
ji −mk)

TDk(x
G
ji −mk).

2. For j = 1, . . . , J and i = 1, . . . , nj , q⋆(tji) is a T -dimensional multinomial, with q⋆(tji = t) = ξjit for t = 1, . . . , T ,

log ξjit = g(ājt, b̄jt) +

t−1∑
l=1

g(b̄jl, ājl) +
1

2
ℓ
(1)
jt +

1

2
ℓ
(3)
jit +

1

2

K∑
k=1

ρjtk
(
ℓ
(1)
k + ℓ

(2)
jik

)
,

where ℓ(1)jt =
∑pj

i=1 ψ ((cjt − i+ 1)/2) + pj log 2 + log |Djt| and ℓ(3)jit = −pj/λjt − cjt(xL
ji −mjt)

TDjt(x
L
ji −mjt).

3. For j = 1, . . . , J and t = 1, . . . , T − 1, q⋆(ujt) is a Beta(ājt, b̄jt) distribution with

ājt = 1 +

nj∑
i=1

ξjit, b̄jt = s1/s2 +

T∑
l=t+1

nj∑
i=1

ξjil.

4. For k = 1, . . . ,K − 1, q⋆(vk) is a Beta(āk, b̄k) distribution with

āk = 1 +

J∑
j=1

T∑
t=1

ρjtk, b̄k = r1/r2 +

K∑
l=k+1

J∑
j=1

T∑
t=1

ρjtl.

5. For k = 1, . . . ,K, q⋆(µk,Λk) is a NW(mk, λk, ck,Dk) distribution with parameters

mk = λ−1
k (τ0 µ0 +Nkx̄

G
k ), λk = τ0 +Nk, ck = ν0 +Nk,

D−1
k = Ψ−1

0 +
τ0Nk

τ0 +Nk

(
x̄G

k − µ0

)(
x̄G

k − µ0

)T
+ SG

k ,

where

Nk =

J∑
j=1

nj∑
i=1

T∑
t=1

ξjit ρjtk, x̄G
k = N−1

k

(
J∑

j=1

nj∑
i=1

T∑
t=1

ξjit ρjtk xG
ji

)
,

SG
k =

J∑
j=1

nj∑
i=1

T∑
t=1

ξjit ρjtk
(
xG

ji − x̄G
k

)(
xG

ji − x̄G
k

)T
.

6. For j = 1, . . . , J and t = 1, . . . , T , q⋆(µjt,Λjt) is a NW(mjt, λjt, cjt,Djt) distribution with parameters

mjt = λ−1
jt (τj0 µj0 +Njtx̄

L
jt), λjt = τj0 +Njt, cjt = νj0 +Njt,

D−1
jt = Ψ−1

j0 +
τj0Njt

τj0 +Njt

(
x̄L

jt − µj0

)(
x̄L

jt − µj0

)T
+ SL

jt,

where

Njt =

nj∑
i=1

ξjit, x̄L
jt = N−1

jt

( nj∑
i=1

ξjit x
L
ji

)
,

SL
jt =

nj∑
i=1

ξjit
(
xL

ji − x̄L
jt

)(
xL

ji − x̄L
jt

)T
.

7. q⋆(α) is a Gamma(s1, s2) distribution with parameters

s1 = aα + J(T − 1), s2 = bα −
T−1∑
t=1

J∑
j=1

g(b̄jt, ājt).
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8. q⋆(γ) is a Gamma(r1, r2) distribution with parameters

r1 = aγ +K − 1, r2 = bγ −
K−1∑
k=1

g(b̄k, āk).

Store the updated parameters in λ and let λ(t) = λ;
Compute ∆(t− 1, t) = ELBO(λ(t))− ELBO(λ(t−1)).

end while
Return λ⋆, containing the optimized variational parameters.

F.1. Computation of the ELBO in the variational inference approach

Here we outline the ELBO evaluation for the GLocal DP. Recall that we use the notation g(x, y) = ψ(x)− ψ(x+ y). The
minimization of the Kullback-Leibler divergence between the posterior and the variational distributions is equivalent to the
maximization of the ELBO, expressed as

ELBO(q) = Eq [log p(x,Θ)]− Eq [log qλ(Θ)] .

The first term, Eq [log p(x,Θ)], can be decomposed into the following components:

1. E[log p(xL | {{µjt,Λjt}Tt=1)}Jj=1] =
1
2

∑J
j=1

∑nj

i=1

∑T
t=1 ξjit

{
ℓ
(1)
jt + ℓ

(3)
jit − pj log 2π

}
.

2. E[log p(xG | {µk,Λk}Kk=1)] =
1
2

∑J
j=1

∑nj

i=1

∑T
t=1

∑K
k=1 ξjit ρjtk

{
ℓ
(1)
k + ℓ

(2)
jik − p log 2π

}
.

3. E [log p(t | u)] =
∑J
j=1

∑nj

i=1

∑T
t=1 ξjit

{
g(ājt, b̄jt) +

∑
l<t g(b̄jl, ājl))

}
.

4. E [log p(k | v)] =
∑J
j=1

∑T
t=1

∑K
k=1 ρjtk

{
g(āk, b̄k) +

∑
l<k g(b̄l, āl))

}
.

5. E
[
log p(

∏K
k=1{µk,Λk})

]
= K logB (Ψ0, ν0) + 0.5(ν0 − p − 1)

∑K
k=1 ℓ

(1)
k − 0.5

∑K
k=1 ckT (Ψ−1

0 Dk) +

0.5
∑K
k=1

[
p log(τ0/2π) + ℓ

(1)
k − pτ0/λk − τ0ck(mk − µ0)

TDk(mk − µ0)
]
, where T (·) is the trace operator

and B (Ψ0, ν0) is the inverse of the normalizing constant of a Wishart distribution (see, for more details, Appendix B
of Bishop, 2006).

6. E
[
log p(

∏J
j=1

∏T
t=1{µjt,Λjt})

]
= T

∑J
j=1 logB (Ψj0, νj0) + 0.5

∑J
j=1

∑T
t=1(νj0 − pj − 1)ℓ

(1)
jt −

0.5
∑J
j=1

∑T
t=1 cjtT (Ψ−1

j0 Djt) + 0.5
∑J
j=1

∑T
t=1

[
pj log(τj0/2π) + ℓ

(1)
jt − pjτj0/λjt − τj0cjt(mjt −

µj0)
TDjt(mjt − µj0)

]
.

7. E [log p(u)] = J(T − 1) (ψ(s1)− log(s2)) + (s1/s2 − 1)
∑J
j=1

∑T−1
t=1 g(b̄jt, ājt).

8. E [log p(v)] = (K − 1) (ψ(r1)− log(r2)) + (r1/r2 − 1)
∑K−1
k=1 g(b̄k, āk).

9. E [log p(α)] = log(Cα(aα, bα)) + (aα − 1)(ψ(s1)− log(s2))− bαs1/s2, where Cα(·) is the normalizing constant of
a Gamma distribution.

10. E [log p(γ)] = log(Cγ(aγ , bγ)) + (aγ − 1)(ψ(r1)− log(r2))− bγr1/r2.

The second term is decomposed into the following six components:

1. E [log q(t)] =
∑J
j=1

∑nj

i=1

∑T
t=1 ξjit log(ξjit).

2. E [log q(k)] =
∑J
j=1

∑T
t=1

∑K
k=1 ρjtk log(ρjtk).

3. E [log q(u)] =
∑J
j=1

∑T−1
t=1 {log(Cu(ājt, b̄jt)) + (ājt − 1)g(ājt, b̄jt) + (b̄jt − 1)g(b̄jt, ājt)}, where Cu(·) is the

normalizing constant of a Beta distribution.
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4. E [log q(v)] =
∑K−1
k=1 {log(Cv(āk, b̄k)) + (āk − 1)g(āk, b̄k) + (b̄k − 1)g(b̄k, āk)}.

5. E
[
log q(

∏K
k=1{µk,Λk})

]
=
∑K
k=1

[
0.5ℓ

(1)
k +0.5p(log(λk/2π)−1)−H (q(Λk))

]
,where H (q(Λk)) is the entropy

of a Wishart distribution.

6. E
[
log q(

∏J
j=1

∏T
t=1{µjt,Λjt})

]
=
∑J
j=1

∑T
t=1

[
0.5ℓ

(1)
jt + 0.5pj(log(λjt/2π)− 1)−H (q(Λjt))

]
.

7. E [log(q(α))] = log(Cα(s1, s2)) + (s1 − 1)(ψ(s1) − log(s2)) − s1, where Cα(·) is the normalizing constant of a
Gamma distribution.

8. E [log(q(γ))] = log(Cγ(r1, r2)) + (r1 − 1)(ψ(r1)− log(r2))− r1.

G. Simulations
G.1. Comparison of MCMC and VI for the GLocal DP

First, we conduct simulations comparing the clustering accuracy of the GLocal DP using the MCMC-based blocked Gibbs
sampler and the VI-based algorithm. Throughout the simulations, we assume that there are three groups or populations. We
consider a simulation setting in which the shared variables across the populations are five dimensional. Furthermore, we
assume that there are two, three, and four local variables for populations 1, 2, and 3, respectively. We generated the data
from,

xji ∼
{
f1(x

L
ji | ψLjt)f2(xGji | ϕk)

}
, (G.1)

where,

f1(x
L
ji | ψLjt) =

Lℓj∑
t=1

πjtNpj (x
L
ji | µjt,Λ−1

jt ), (G.2)

f2(x
G
ji | ϕk) =

Lg∑
k=1

βkN5(x
G
ji | µk,Λ−1

k ). (G.3)

Here p1 = 2, p2 = 3, p3 = 4, Lℓ1 = 3, Lℓ2 = 5, Lℓ3 = 4, and Lg = 6. The true parameters and the true mixture weights
corresponding to the local variables are drawn from,

(µjt,Λjt) ∼ NW(0, 0.1, 5 pj , Ipj )

α ∼ Gamma(25, 1), πj ∼ Dir(α/Lℓj , . . . , α/Lℓj ),

for j = 1, 2, 3, and t = 1, . . . , Lℓj . The true local indicator tji is drawn from a multinomial distribution with class
probabilities πj , for j = 1, 2, 3. Similarly, the true parameters and mixture weights corresponding to the global variables
are drawn from,

(µk,Λk) ∼ NW(0, 0.1, 5 p, Ip)

γ ∼ Gamma(25, 1), β ∼ Dir(γ/Lg, . . . , γ/Lg),

for k = 1, . . . , Lg,, where p = 5. The true latent indicator kjt is drawn from a multinomial distribution with the class
probabilities β, for t = 1, . . . , Lg . We considered several sample sizes for the three populations. In particular, we considered
for all j = 1, 2, 3 nj = 100, 200, and 500.

We ran our MCMC sampler for 50,000 iterations. The first half of the iterations were discarded as burn-in, and posterior
samples were retained at every 25th iteration after burn-in. As for the VI approach, we considered ∆(t− 1, t) < 10−5 as a
stopping rule to define the convergence of the ELBO. Although the discrepancy between the variational distribution and
the target posterior is reduced at each iteration, there is no guarantee that the CAVI algorithm will converge to a global
optimum, rather it will likely obtain a local solution depending on the initialization. Hence, we executed 20 distinct runs of
the algorithm with different starting points, keeping the one with the highest ELBO to draw the inference.

Depending on the computational strategy, the posterior point estimates of the clusters were obtained using different
procedures. For the MCMC output, we estimated the clusters by minimizing the variation of information loss (Wade
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& Ghahramani, 2018). When dealing with the VI approach, the algorithm returns the optimized variational parameters
corresponding to the cluster assignment probabilities, i.e., ρ̂jtk = q∗(kjt = k) and ξ̂jit = q∗(tji = t). Hence, in this case,
the clusters were estimated as

k̂jt = argmax
k=1,...,K

ρ̂jtk and t̂ji = argmax
t=1,...,T

ξ̂jit

for j = 1, . . . , J , t = 1, . . . , T , and i = 1, . . . , nj . We assessed the accuracy of the estimated clusters using the adjusted
Rand index (ARI, Hubert & Arabie, 1985) between the posterior point estimate and the true cluster. Figure 6(a) shows the
distribution of the ARIs, over 50 simulated datasets obtained by MCMC based Gibbs sampler and VI for several choices
of truncation levels, while keeping the sample size fixed at nj = 200 for all j = 1, 2, 3. Similarly, Figure 6(b) shows the
distribution of ARIs for varying sample sizes in each group (N denotes the total sample size), and truncation levels fixed at
30. Clearly, the clustering performance from the two methods are comparable.

Next, we consider the the need for a variational inference approach over the MCMC based method. We compare the
computational cost of the two algorithms. In particular, we compare the memory usage and the computing time by both
algorithms. For the MCMC methods, the need to store the entire Markov chains (at most, excluding the burn-in and
post thinning) can raise issues with memory allocation. On the contrary, VI methods only require storing the optimized
parameters. Figure 7 shows the computational time and memory used for varying truncation levels and sample sizes, as
before. For the MCMC sampler, computation time denotes the total run time for 50,000 iterations. Contrarily, for the VI
based approach, we report the maximum individual run time obtained over the 20 runs for each dataset as the computational
cost of the CAVI. Clearly, Figure 7 shows significant gains in computational time and resource utilization by the VI approach
in comparison to the MCMC based approach.

G.2. Comparison of GLocal DP with DP Mixture Model and GMM

In the main manuscript, we presented the comparison of clustering accuracy of the GLocal DP with GMM at the local-level,
when the global variables were three-dimensional. In this subsection, we further compare the clustering accuracy with a DP
mixture model (DPMM, Escobar & West, 1995) applied separately to each group. Specifically, for the simulation study
presented in the main manuscript—where three global variables are shared across the three populations, and each population
has two, three, and four local variables, respectively—we fit a separate DPMM for each group, incorporating both global
and local variables. As in the main manuscript, we varied the degree of separation in the local variables while keeping
the sample size fixed at nj = 200 for all j = 1, 2, 3. The DPMM inference was conducted using an MCMC sampler run
for 50,000 iterations, with the first half discarded as burn-in. After burn-in, posterior samples were retained at every 25th
iteration. For cluster estimation under the DPMM, we followed the approach of minimizing the variation of information
loss (Wade & Ghahramani, 2018). As in our original analysis, we also evaluated a GMM separately on each group and
applied our proposed GLocal DP, which jointly models both global and local variables. The evaluation was conducted over
50 independent replications, and clustering accuracy was assessed using the ARI. Figure 8 demonstrates that across different
levels of separation in the local variables, GLocal DP achieves clustering accuracy that is either comparable to or superior to
that of the DPMM in terms of local-level clustering within each group.

G.3. Clustering Performance of GLocal DP Using Additional Metrics

In the main manuscript, we evaluated the clustering accuracy of the GLocal DP by comparing it to the HDP at the global-level
and separate GMMs applied to each group at the local-level, using the ARI as the evaluation metric. In this subsection, we
complement that analysis by incorporating two additional clustering accuracy measures: Normalized Mutual Information
(NMI; Strehl & Ghosh, 2002) and Purity (Manning et al., 2008). Specifically, we compare the global-level clustering
performance of GLocal DP to that of HDP applied solely to the global variables, and the local-level clustering performance
of GLocal DP to that of separate DPMMs fitted independently within each group. Figure 9 illustrates the superior clustering
performance of GLocal DP compared to HDP at the global-level, as measured by both NMI and Purity, across varying
degrees of separation in the local variables. Similarly, Figure 10 compares the clustering performance of GLocal DP with
that of separate DPMMs applied to each group at the local-level. The results demonstrate that, across different levels of
separation in the local variables, GLocal DP achieves clustering accuracy that is either comparable to or superior to that of
the DPMM, as assessed by both NMI and Purity.
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Figure 6. Accuracy of global-level and local-level clustering. Each panel shows the distribution of the ARI obtained across the 50
replications, for each configuration. The colors correspond to the algorithm.

G.4. Comparison of GLocal DP with HDP and GMM

In the main manuscript, we presented the comparison of clustering accuracy of the GLocal DP with the HDP at the
global-level and GMM at the local-level, when the global variables were three-dimensional. In this subsection, we further
compare the clustering accuracy when the global variables were five-dimensional. As before, we assumed that there were
two, three, and four local variables for populations 1, 2, and 3, respectively. We generated the data from (G.1) and as before,
we assumed,

(µjt,Λjt) ∼ NW(0, λ−1
L , 5 pj , Ipj ) (G.4)
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Figure 7. Top row: distributions of the computing time (in seconds) over the 50 replications for the two algorithms, for each configuration.
Bottom row: distributions of the memory usage (in MB) over the 50 replications for the two algorithms, for each configuration. The
colors correspond to the algorithm.
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Figure 8. Comparison of clustering accuracy of GLocal DP with DPM and GMM at the local-level with varying separation in the local
variables.

α ∼ Gamma(25, 1), πj ∼ Dir(α/Lℓj , . . . , α/Lℓj ),

for j = 1, 2, 3, and t = 1, . . . , Lℓj . Furthermore, λ−1
L is a precision parameter corresponding to the local variables. Similarly,

the true parameters and mixture weights corresponding to the global variables are drawn from,

(µk,Λk) ∼ NW(0, λ−1
G , 5 p, Ip) (G.5)

γ ∼ Gamma(25, 1), β ∼ Dir(γ/Lg, . . . , γ/Lg),
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Figure 9. Comparison of clustering accuracy of GLocal DP using the metrics (a) NMI and (b) Purity with HDP at the global-level.
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Figure 10. Comparison of clustering accuracy of GLocal DP using the metrics (a) NMI and (b) Purity with DPMM at the local-level.

for k = 1, . . . , Lg,, where p = 5 and λ−1
G is a precision parameter corresponding to the global variables. For simulations,

we set λG = 1 in (G.5), making the separations between the global variables to be low. Furthermore, we varied the degree of
separation in the local variables for the three populations by varying the local-level precision parameter λL = 0.1, 0.05, 0.01
in (G.4). We considered for all j = 1, 2, 3 the sample size, nj = 200. As before, HDP was applied to the global variables
only whereas GLocal DP was applied to both global and local variables. Furthermore, we looked at the accuracy of
local-level estimated clusters of GLocal DP and the estimated clusters obtained from a separate GMM for each group and all
simulations were replicated 50 times. For the HDP, we ran the sampler for 50,000 iterations. The first half of the iterations
were discarded as burn-in, and posterior samples were retained at every 25th iteration after burn-in. For the VI approach of
our GLocal DP, we considered ∆(t− 1, t) < 10−5 as a stopping rule to define the convergence of the ELBO. As before, we
executed 20 distinct runs of the algorithm with different starting points, keeping the one with the highest ELBO to draw the
inference. We assessed the accuracy of the estimated clusters using the ARI between the posterior point estimate and the
true cluster.

As before, Figure 11 shows that the clustering performance of the proposed GLocal DP was better than HDP and the
clustering accuracy improves with the increasing separation in the local variables. Furthermore, at the local-level the GLocal
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Figure 11. Five-dimensional Global Variables: Comaprison of Clustering Accuracy of GLocal DP with (a) HDP at the global-level and (b)
GMM at the local-level with varying separation in the local variables.

DP clustering accuracy is higher than a GMM on each group separately.

Next, we varied the sample sizes in each group, i.e., for j = 1, 2, 3 the sample size, nj = 100, 200, and 500. We fixed the
degree of separation in the global and local variables for the three populations. In particular, we set λG = 0.1 in (G.5),
allowing moderate separation in the global variables. Furthermore, we set λL = 0.1 in (G.4), allowing low separation in the
local variables. We naively refer to the separation of the local variable by the level of information it contains e.g., “Low”
level of information in local variable corresponds to low separation in the local variable. Even in this case, when the local
variables contain “low information”, Figure 12(b) shows that the clustering accuracy of the GLocal DP is either comparable
to or better than the HDP at the global-level across sample sizes. This underscores the importance of incorporating local
variables, when available to improve clustering accuracy, further highlighting that our model is different than the HDP at the
global-level. Furthermore, our joint clustering of global and local variables facilitates information sharing across variable
types, enhancing clustering performance at the local-level. Specifically, the GLocal DP demonstrates superior clustering
accuracy compared to applying a GMM independently to each group, with accuracy further improving as the sample size
increases.

N
 = 300

N
 = 600

N
 = 1500

Population 1 Population 2 Population 3

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

A
R

I Method

GLocal DP
HDP

(a) Global-level clustering.

N
 = 300

N
 = 600

N
 = 1500

Population 1 Population 2 Population 3

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

A
R

I Method

GLocal DP
GMM

(b) Local-level clustering.

Figure 12. Varying Sample Size: Comaprison of clustering accuracy of GLocal DP with (a) HDP at the global-level and (b) GMM at the
local-level.
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G.5. Impact of the local variables in clustering

In this subsection, we examine the impact of local variables on clustering performance. In the main manuscript, we
emphasized that our method differs from the HDP, even at the global-level. To illustrate this, we compare clustering
accuracy when the global variables are two-dimensional. We assumed that there were one, two, and three local variables for
populations 1, 2, and 3, respectively and we generated the data from (G.1). Furthermore, the true parameters and the true
mixture weights corresponding to the local variables are drawn from (G.4) with λL = 0.01, resulting in high separability
among the local variables. Similarly, the true parameters and mixture weights corresponding to the global variables are
drawn from (G.5) with λG = 1, making the separations between the global variables to be low. All other simulation details
were same as in Section G.4. Figure 13(a) shows that in the presence of highly overlapped global variables, GLocal DP
is able to identify clusters with perfect accuracy. In contrast, HDP struggles to distinguish these overlapping clusters, as
shown in Figure 13(b). The group-specific local variables are shown in Figure 14 along with the estimated local-level
clusters, which further show the high separability of the local variables. This separation of local variables aids in identifying
overlapping clusters of global variables, underscoring the significance of incorporating group-specific local variables, when
available, to enhance the clustering of shared variables.

G.6. Comparison with Versatile Hierarchical Dirichlet Process

In the main manuscript, we emphasized that, despite sharing similar modeling objectives, the formulation of the vHDPMM
proposed by Dinari & Freifeld (2020) is fundamentally different from our proposed GLocal DP mixture model. The
vHDPMM adopts a hierarchical specification in which global variables are modeled first, followed by local variables that
are conditionally dependent on the global cluster assignments. In contrast, the GLocal DP is defined jointly leading to a
more flexible model specification. Under our formulation, for any two distinct observations i and i′ within the same group j,
if tji = tji′ , then it follows directly that kjtji = kjtji′ ; that is, if the observations are assigned to the same local cluster,
they necessarily share the same global cluster. This dependency arises naturally from the joint modeling structure. In the
vHDPMM, however, the local clusters are defined conditionally on global assignments, and this hierarchical construction
imposes the restriction that for any group j, if i ∈ skj and i′ ∈ sk

′

j , where k ̸= k′, then the two observations i and i′ cannot
have the same global cluster, even if they share the same local feature. Furthermore, our model exactly reduces to the HDP
in the absence of local variables for all the groups. However, the vHDPMM, even in the absence of local variables for all the
groups, is not exactly the HDP mixture model. Finally, the two models differ in their approaches to posterior inference. We
develop a scalable variational inference algorithm, while the vHDPMM employs a split-merge based MCMC sampling
scheme.

Using the cosegmentation example presented in Dinari & Freifeld, 2020, for an image j, if two pixel observations i and i′

share the same local cluster corresponding to spatial location, GLocal DP highlights that they automatically share the same
global cluster (given by the RGB colors). However, vHDPMM first clusters the observations i and i′ into global cluster
(given by the RGB colors) and conditional on same global cluster, models the local clusters (given by spatial locations).
This, we feel is restrictive (also possibly counter-intuitive as in the cosegmentation example) and our model provides a
natural method of estimating clusters, both corresponding to the global- and local-level. To highlight this, we performed
some simple simulation studies.

First, we generated data from the vHDPMM model with three distinct groups or populations, setting the sample size in
each group to nj = 100, for j = 1, 2, 3. The global variables were drawn from a six-component trivariate Gaussian mixture
model. While our VI–based approach is designed to accommodate varying dimensionality of local variables across different
populations, the publicly available implementation of the vHDPMM model is restricted to settings where the local variables
share a common dimensionality across all populations. To ensure comparability under this constraint, we simulated two local
variables for each group from a five-component mixture of bivariate Gaussian distributions. Additionally, we considered a
setting where both the global and local clusters were well separated. We then applied both the vHDPMM and the proposed
GLocal DP model to the simulated data and evaluated clustering accuracy at both the global and local levels. As shown in
Table 1, the vHDPMM performs well, as expected, given that the data were generated from its own model. Furthermore, the
GLocal DP also achieves comparable clustering accuracy.

Next, we generated the data from the GLocal DP model with three groups/populations. All other simulation settings were
the same as before. We then applied both the proposed GLocal DP and the vHDPMM to the same dataset to evaluate and
compare their clustering performance at both the global and local levels. The clustering accuracy results, summarized in
Table 2, indicate that the GLocal DP model achieves high accuracy, as expected given that the data were generated from
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Figure 13. Two-dimensional Global Variables: Comparison of clustering Accuracy of (a) GLocal DP and (b) HDP when the global are
highly overlapped and local variables are separated. The colors indicate the estimated clusters. Adjusted Rand index is reported at the top
of each panel.

its own generative process. Notably, the vHDPMM also performs comparably well, yielding similar levels of clustering
accuracy across both global and local levels. These results suggest that, in settings characterized by well-separated clusters
both models exhibit robust and comparable performance, even when the data-generating mechanism aligns more closely
with one model over the other.

Finally, we considered a more challenging clustering scenario by increasing the sample size within each group and reducing
the separation among clusters. Specifically, we set nj = 200 for each group j = 1, 2, 3, and generated data from the
vHDPMM with low separation in both global and local features. All other simulation settings remained consistent with
previous experiments. We then applied both the vHDPMM and the proposed GLocal DP model to this dataset. As shown
in Table 3, the GLocal DP model outperforms the vHDPMM in terms of clustering accuracy at both the global and local
levels. Importantly, this superior performance is observed even though the data were generated from the vHDPMM. This
advantage can be attributed to the joint modeling approach of the GLocal DP, which enables more coherent inference, in
contrast to the hierarchical specification of the vHDPMM. These findings highlight the increased flexibility of the GLocal
DP framework, demonstrating its ability to accurately recover complex clustering structures even under misspecification of
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Figure 14. Local-level clustering of local variables by GLocal DP. The colors indicate the estimated clusters. Adjusted Rand index is
reported at the top of each panel.

Table 1. Comparison of clustering performance of vHDPMM and GLocal DP when the data are generated from the vHDPMM. Sample
size in each group nj = 100 for j = 1, 2, 3. Both the global and local clusters have high separation. The accuracy of clustering was
assessed using the adjusted Rand index (ARI) between the estimated and true cluster.

Global-level Clusters Local-level Clusters

Model Group 1 Group 2 Group 3 Group 1 Group 2 Group 3

vHDPMM 1.00 0.98 1.00 0.59 0.79 0.44
GLocal DP 1.00 1.00 1.00 0.59 0.79 0.34

the true data-generating process.

H. Real Data Analysis with Versatile Hierarchical Dirichlet Process
In this section, we analyze the data from our motivational problem in the main manuscript with the vHDPMM. Recall that
we analyzed four gastrointestinal (GI) tract cancers, namely esophageal, stomach, colon, and rectal cancers. The dataset
included log-transformed gene expression for 60,483 genes across 173, 407, 512, and 177 patients with esophageal, stomach,
colon, and rectal cancers, respectively. Since the publicly available implementation of the vHDPMM model is restricted to
settings where the local variables share a common dimensionality across all populations, we modified the selection of the
clinical variables. Particularly, we considered the number of cigarettes smoked per day as a local variable for esophageal
cancer, the number of positive lymph nodes for stomach cancer, the pre-operative and pre-treatment CEA for rectal cancer,
and BMI as the local variable for colon cancer. After excluding patients with missing clinical data, the final sample sizes
were 92, 363, 263, and 120 for esophageal, stomach, colon, and rectal cancers, respectively.

As before, we performed PCA on the combined gene expression data from the four cancers and retained the top ten PCs
as the global variables. We ran the vHDPMM on the final dataset for 10, 000 iterations. Furthermore, as before, for
visualization, we reduced the original combined gene expression data to two dimensions using the UMAP. Figure 15 shows
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Table 2. Comparison of clustering performance of vHDPMM and GLocal DP when the data are generated from the GLocal DP mixture
model. Sample size in each group nj = 100 for j = 1, 2, 3. Both the global and local clusters have high separation. The accuracy of
clustering was assessed using the adjusted Rand index (ARI) between the estimated and true cluster.

Global-level Clusters Local-level Clusters

Model Group 1 Group 2 Group 3 Group 1 Group 2 Group 3

vHDPMM 1.00 1.00 1.00 1.00 1.00 0.79
GLocal DP 1.00 1.00 1.00 1.00 1.00 1.00

Table 3. Comparison of clustering performance of vHDPMM and GLocal DP when the data are generated from the vHDPMM. Sample
size in each group nj = 200 for j = 1, 2, 3. Both the global and local clusters have low separation. The accuracy of clustering was
assessed using the adjusted Rand index (ARI) between the estimated and true cluster.

Global-level Clusters Local-level Clusters

Model Group 1 Group 2 Group 3 Group 1 Group 2 Group 3

vHDPMM 0.33 0.00 0.95 0.29 0.00 0.50
GLocal DP 0.36 0.82 1.00 0.24 0.50 0.48

the UMAP embeddings colored by the estimated global- and local-level clusters obtained from the vHDPMM, while Figure
16 shows kernel density plot of local variables, segregated by the estimated local-level clusters. Finally, as in the main
manuscript, we plotted the Kaplan-Meier survival curves for each of the identified cancer subpopulations in Figure 17,
colored by the estimated local-level clusters obtained from the vHDPMM.
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Figure 15. Global variables. (a) The colors indicate global-level clusters estimated by the vHDPMM. (b) The colors indicate the estimated
local-level clusters by the vHDPMM.
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Figure 17. Survival curves according to local-level clusters estimated by the vHDPMM for different cancers.

35



Global-Local Dirichlet Process

Acronym Full Form

DP Dirichlet process
GEM Griffiths, Engen and McCloskey distribution
HDP Hierarchical Dirichlet process
nested DP Nested Dirichlet process
GLocal DP Global-Local Dirichlet process
GMM Gaussian mixture model
TCGA The Cancer Genome Atlas
MCMC Markov chain Monte Carlo
VI Variational inference
CAVI Coordinate ascent variational inference
KL divergence Kullback-Leibler divergence
ELBO Evidence lower bound
ARI Adjusted Rand index
GI Gastrointestinal
CEA Carcinoembryonic antigen
BMI Body mass index
PCA Principal component analysis
PC Principal component
UMAP Uniform manifold approximation and projection

Table 4. List of acronyms and their full forms.

Notation Definition

xji Observation i from group j
xL

ji Local variables in group j
θL
ji Local parameters (factors)

xG
ji Global variables shared across groups

θG
ji Global parameters (factors)
Gj Random measure corresponding to group j
Uj Group-specific base measure for group j
V Common base measure
⊗ Measure product
F1(x

L
ji | θL

ji) Conditional distribution of local variables, conditional on local factors
F2(x

G
ji | θG

ji) Conditional distribution of global variables, conditional on global factors
ψL

jt Local atoms corresponding to Gj in group j
ϕk Shared global atoms corresponding to V
tji Local-level cluster label of observation i in group j
kjtji Global-level cluster label of observation i in group j
GT,K

j Truncated measure corresponding to Gj , truncated at levels T and K
P∞,∞(θ) Prior distribution of parameters θ under GLocal DP prior
PT,K(θ) Prior distribution of parameters θ under truncated GLocal DP prior
m∞,∞(x) Marginal distribution of data x under GLocal DP prior
mT,K(x) Marginal distribution of data x under truncated GLocal DP prior
π∞,∞(θ|x) Posterior distribution of parameters θ under GLocal DP prior
πT,K(θ|x) Posterior distribution of parameters θ under truncated GLocal DP prior
q(tji; {ξjit}Tt=1) Variational distribution of tji, which is a multinomial distribution
q(kjt; {ρjtl}Kl=1) Variational distribution of kjt, which is a multinomial distribution
q(vk; āk, b̄k) Variational distribution of vk, which is a beta distribution
q(ujt; ājt, b̄jt) Variational distribution of ujt, which is a beta distribution
q(α; s1, s2) Variational distribution of α, which is a gamma distribution
q(γ; r1, r2) Variational distribution of γ, which is a gamma distribution
q(µk,Λk;mk, λk, ck,Dk) Variational distribution of {µk,Λk} is a normal-Wishart distribution
q(µjt,Λjt;mjt, λjt, cjt,Djt) Variational distribution of {µjt,Λjt} is a normal-Wishart distribution
k̂jt = argmaxk=1,...,K ρ̂jtk Optimal clusters corresponding to kjt obtained from VI
t̂ji = argmaxt=1,...,T ξ̂jit Optimal local-level clusters obtained from VI

Table 5. Notation and corresponding definitions.
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