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Abstract
Parameter-efficient fine-tuning (PEFT) has001
emerged as an effective method for adapting002
pre-trained language models to various tasks003
efficiently. Recently, there has been a growing004
interest in transferring knowledge from one or005
multiple tasks to the downstream target task006
to achieve performance improvements. How-007
ever, current approaches typically either train008
adapters on individual tasks or distill shared009
knowledge from source tasks, failing to fully010
exploit task-specific knowledge and the cor-011
relation between source and target tasks. To012
overcome these limitations, we propose PEMT,013
a novel parameter-efficient fine-tuning frame-014
work based on multi-task transfer learning.015
PEMT extends the mixture-of-experts (MoE)016
framework to capture the transferable knowl-017
edge as a weighted combination of adapters018
trained on source tasks. These weights are de-019
termined by a gated unit, measuring the cor-020
relation between the target and each source021
task using task description prompt vectors. To022
fully exploit the task-specific knowledge, we023
also propose the Task Sparsity Loss to improve024
the sparsity of the gated unit. We conduct025
experiments on a broad range of tasks over026
17 datasets. The experimental results demon-027
strate our PEMT yields stable improvements028
over full fine-tuning, and state-of-the-art PEFT029
and knowledge transferring methods on various030
tasks. The results highlight the effectiveness of031
our method which is capable of sufficiently ex-032
ploiting the knowledge and correlation features033
across multiple tasks.034

1 Introduction035

Fine-tuning pre-trained models (PLMs) has be-036

come an effective way to migrate model capabili-037

ties to downstream tasks (Devlin et al., 2019; Liu038

et al., 2019; Raffel et al., 2020). However, training039

and storing a full copy of the model parameters for040

each task becomes expensive as the scale of PLM041

increases. To mitigate this problem, parameter-042

efficient fine-tuning methods (Houlsby et al., 2019;043
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Figure 1: Performance of different parameter-efficient
fine-tuning approaches. All results are based on T5-base
for a fair comparison. The proposed PEMT achieves
significant improvements over all compared methods
while fine-tuning only a small number of parameters.

Schick and Schütze, 2021b; Pfeiffer et al., 2020; 044

Lester et al., 2021; Liu et al., 2023) have been pro- 045

posed to reduce the number of trainable parameters. 046

Despite their efficiency gains, these methods often 047

sacrifice performance compared to full fine-tuning 048

(Gao et al., 2021a; Hu et al., 2021; Li and Liang, 049

2021). 050

Recent work has proposed to distill knowledge 051

from one or multiple source tasks and adapt it to 052

various downstream target tasks to achieve further 053

improvements (Vu et al., 2022; Asai et al., 2022; 054

Wang et al., 2022c). Despite significant success, 055

there remains a substantial performance gap be- 056

tween these methods and full fine-tuning. The limi- 057

tations of existing methods can be categorized as 058

follows: (1) Most existing methods primarily fo- 059

cus on utilizing shared knowledge across all source 060

tasks, neglecting task-specific knowledge during 061

adaptation to downstream tasks. (2) Task-specific 062

representations of source and target tasks are typi- 063

cally trained independently, leading to insufficient 064
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exploitation of the correlation between them. As065

a result, the performance of multi-task transfer of-066

ten lags behind that of distilling knowledge from a067

single source task. (3) The formulation of source068

and target tasks may be inconsistent, hindering069

cross-task adaptation. (4) The knowledge from070

source tasks is typically used as an initialization,071

but during fine-tuning, this knowledge may become072

intertwined with downstream tasks and gradually073

forgotten.074

To mitigate these challenges, we propose PEMT,075

a parameter efficient fine-tuning framework based076

on multi-task transfer learning. PEMT comprises077

two training stages for source task learning and078

target task adaptation, respectively. (1) In Stage079

1, we follow adapter-based tuning (e.g., Adapter080

(Houlsby et al., 2019) and LoRA (Hu et al., 2021))081

to train task-specific adapters on multiple source082

tasks. We incorporate a sequence of task-specific083

prompt vectors to distinguish different source tasks084

and utilize task descriptions to initialize each task085

prompt effectively. (2) In Stage 2, we train the086

adapter for the downstream task while incorporat-087

ing knowledge from source tasks into the model.088

To enable multi-task transfer learning and pre-089

vent knowledge forgetting, we freeze the source090

adapters and integrate them using a mixture-of-091

experts architecture (MoE). Instead of relying on a092

single source task, the knowledge of source tasks is093

incorporated as a soft combination of all adapters094

trained during Stage 1. We employ an MoE gated095

unit to measure the correlation between the tar-096

get task and each source task, leveraging the task-097

specific prompt vectors. To ensure the effective098

utilization of the specific knowledge from source099

tasks, we introduce the Task Sparsity Loss, encour-100

aging the MoE gate to prioritize the most relevant101

source expert.102

We conduct experiments on 17 NLP datasets in-103

volving multiple tasks and domains to evaluate the104

effectiveness of our approach. On all benchmarks,105

PEMT achieves an overall improvement of more106

than 2 points over full fine-tuning and all the com-107

pared PEFT methods as shown in Figure 1. Under108

the few-shot setting, PEMT also proves a signifi-109

cant improvement of 10 points over the compared110

transfer learning models. Further analysis on the111

weights of different task experts demonstrates that112

the model tends to incorporate knowledge from the113

most relevant source task expert, which explains114

the efficiency and adaptability of our method.115

Overall, this work makes the following contribu- 116

tions: 117

• We propose PEMT, a two-stage parameter- 118

efficient fine-tuning method facilitating multi- 119

task transfer learning. PEMT captures the trans- 120

ferable knowledge through a combination of 121

adapters trained on source tasks, effectively lever- 122

aging task-specific knowledge. 123

• We propose a task-correlation-based gated unit to 124

determine the weight of each source adapter by 125

measuring the correlation between source and 126

target downstream tasks. To capture interde- 127

pendency across tasks, we introduce a sequence 128

of task-specific prompt vectors to describe each 129

task. 130

• Experimental results indicate PEMT consistently 131

outperforms full fine-tuning and state-of-the-art 132

PEFT methods across a broad range of tasks, 133

which demonstrates the robustness and adaptabil- 134

ity of our method. PEMT is proven to be also 135

effective for few-shot learning using 4-32 labels. 136

• We also conduct extensive experiments to ana- 137

lyze how the performance changes under various 138

settings, which provides a clear interpretation for 139

the effectiveness of the proposed method. 140

2 Related Work 141

Parameter-Efficient Fine-tuning. Parameter- 142

efficient fine-tuning freezes the original PLM and 143

introduces a small number of additional parameters 144

for fine-tuning. Existing works can be categorized 145

into two classes, adapter-based tuning and prompt- 146

based tuning. Adapter-based methods (Houlsby 147

et al., 2019; Pfeiffer et al., 2020) incorporate a train- 148

able bottleneck module to each transformer layer. 149

Prompt-based tuning (Lester et al., 2021; Schick 150

and Schütze, 2021a; Gao et al., 2021b) prepends 151

continuous or discrete prompt vectors to the in- 152

put. Recently, some methods are proposed (Pfeiffer 153

et al., 2021; Vu et al., 2022; Wang et al., 2022a; 154

Gururangan et al., 2022; Diao et al., 2023; He 155

et al., 2022; Asai et al., 2022; Wang et al., 2022c; 156

Zhao et al., 2023) to transfer knowledge of trained 157

adapters to downstream tasks. 158

Multi-Task Transfer Learning. Transferring 159

knowledge from tasks has been proven to be an ef- 160

fective approach (Vu et al., 2020; Aghajanyan et al., 161

2021; Zhong et al., 2021; Clark et al., 2019b; Singh 162
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et al., 2022). Many studies (Sanh et al., 2022; Wei163

et al., 2021; Wang et al., 2022b; Liu et al., 2022)164

show the zero-shot or few-shot transferring capa-165

bilities of language models through massive multi-166

task training over a broad range of tasks. However,167

the corresponding overhead could be enormous. To168

overcome the issue, some more recent works (Vu169

et al., 2022; Asai et al., 2022; Wang et al., 2022c;170

Diao et al., 2023) propose to transfer the knowledge171

shared by various tasks using parameter-efficient172

fine-tuning.173

Among the related works, AdaMix (Wang et al.,174

2022a) and MPT (Wang et al., 2022c) are the175

most relevant methods. Compared to our PEMT,176

AdaMix trains the representation of source and177

target tasks independently and fails to sufficiently178

leverage the interdependency across tasks. MPT179

learns a single prompt by distilling the shared180

knowledge while ignoring the rich task-specific181

information.182

3 Approach183

Task. Given a set of K source tasks S = {S1,S2,184

· · · ,SK} and a set of M target tasks T =185

{T1, T2, · · · , TM}, our goal is to capture the knowl-186

edge of S and adapt it to any target task Tm ∈ T .187

Overview. To sufficiently exploit the task-188

specific knowledge of each source task, we di-189

vide the training process of PEMT into two stages,190

which are illustrated in Figure 2 and Figure 3 re-191

spectively. In the first stage, we follow the vanilla192

adapter-based (e.g., LoRA (Hu et al., 2021) or193

Adapter (Houlsby et al., 2019)) to train the source194

task adapters. For each source task, we freeze the195

original PLM parameters and inject a task-specific196

adapter to the feed-forward layer (FFN) for each197

Transformer layer. Besides, to learn a better rep-198

resentation of each task, we incorporate a task-199

specific description prompt which is used to mea-200

sure the correlation between tasks. In Stage 2, we201

distill the knowledge of source tasks as a weighted202

combination of the source adapters. The Mixture-203

of-experts architecture (MoE) is exploited to in-204

tegrate the frozen source adapters and the MoE205

gate measures the weight of each source expert us-206

ing the task prompts learned in Stage 1. The task207

prompt for the target task is a correlation-based208

combination of the trainable prompt vectors and209

the frozen prompts of the source tasks. To adapt to210

a downstream task, another task adapter is injected211

after the MoE module as shown in Figure 3.212

Pre-trained
Model

Initialization

Description

Embedding

Multi-Head
Attention

Add & Norm

Forward
Output

Add & Norm

Source
Adapter

Feed-Forward
Input

Layer Output

Description
Prompt

Figure 2: The training process of Stage 1. The task-
specific adapters and task representation prompts are
trained on multiple source tasks.

3.1 Source Training 213

The goal of Stage 1 is to capture the task-specific 214

knowledge of each source task. To this end, we 215

fine-tune the PLM on multiple source tasks using 216

adapter-based PEFT methods. 217

Source Task Adapter. As shown in Figure 2, the 218

task adapter is injected in each transformer layer, 219

which works parallel to the FFN layer to learn the 220

task-specific knowledge. This design is inspired 221

by recent studies (Geva et al., 2021; De Cao et al., 222

2021; Meng et al., 2022) that FFN captures the 223

major knowledge of the training data. To be spe- 224

cific, a transformer FFN consists of two stacked 225

layers, an up projection layer and a down projection 226

layer. We integrate an adapter module to the FFN 227

using either a parallel Adapter (He et al., 2021) 228

or a LoRA, which works parallel to the up projec- 229

tion layer. The task adapter is implemented as two 230

stacked low-rank matrices for reducing overheads. 231

Task Description Prompts. We introduce a task 232

description prompt for each source task. The 233

prompt describes the task formulation and is uti- 234

lized to measure the correlation between tasks. Ex- 235

isting methods (Vu et al., 2022; Asai et al., 2022; 236

Wang et al., 2022c) train the representations of 237

various tasks from scratch independently, which 238

brings a gap between tasks. To address this issue, 239

we propose a simple but effective method to use 240

handcrafted task descriptions as the initialization 241

for the prompt vectors. Concretely, given a source 242

task Sk ∈ S, we prepend a trainable prompt matrix 243

Pk ∈ RNk×d to the input tokens of PLM, where 244

d is the embedding dimension and Nk denotes the 245

length of the task description (i.e. prompt length). 246

The task description is a sentence consisting of a 247
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Figure 3: The training process of Stage 2. A MoE module is employed to distill knowledge from source tasks. The
source task adapters are used as the experts and combined with a MoE gate which measures the correlation between
the target task and each source task. The specific adapter for the target task is injected after the MoE module. The
task sparsity loss Lts is incorporated to improve the sparsity of the MoE gate. The task prompt for the target task is
a task-correlation-based combination of the trainable prompt vectors and the frozen prompts of the source tasks.

task definition and input-output format based on the248

distinctive features of various tasks. It should be249

noted that the description length for different tasks250

could be different. The details for the template of251

the task descriptions are provided in Appendix A.252

Training on Source Tasks. Both the task253

adapters and task description prompts are trained254

following the typical PEFT procedure. There is no255

particular requirement for the source tasks. To256

bridge the gap between different tasks, we uni-257

formly formulate all source tasks as text-to-text258

generation. We follow the format as proposed by259

(Raffel et al., 2020).260

3.2 Target Adaptation261

In the second stage, PEMT is guided by the correla-262

tion between tasks to utilize the distilled knowledge263

of all source tasks for adaptation to the downstream264

target task.265

Mixture of Source Task Adapters. We employ266

a Mixture-of-Experts (MoE) module to combine267

the source adapters as the transferable knowledge.268

Instead of only focusing on the shared knowledge,269

we maintain the task-specific information of each270

source task during adapting to the downstream task.271

As illustrated in Figure 3, the task adapters trained272

in Stage 1 are exploited as the experts in the MoE 273

module. Instead of fine-tuning the source task 274

adapters, we freeze the parameters of the experts 275

to avoid the catastrophic forgetting problem. For- 276

mally, the output of the MoE module in the l-th 277

layer is calculated as: 278

Hl
e =

K∑
k=1

wl
k ·El

k, (1) 279

where El
k is the task adapter in the l-th Transformer 280

layer trained on the k-th source task Sk, and K is 281

the total number of source tasks. wl
k denotes the 282

weight of El
k, which is obtained by the MoE gate, 283

calculated as: 284

wl
k = softmax

(
Wl

g · avg (H)
)
k
, (2) 285

where Wl
g ∈ Rd×K is a trainable matrix, and avg 286

is an average pooling layer. H is the prompt ma- 287

trix for the current target task, which captures the 288

correlation between tasks. 289

Correlation-Guided Task Prompt. As afore- 290

mentioned, existing methods train source and tar- 291

get representations independently, which leaves 292

an obstacle to acquire knowledge interdependency 293

across tasks. To exploit the correlation between 294
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tasks sufficiently, we propose to incorporate the295

prompts trained on source tasks into the target adap-296

tation process based on attention mechanism. Fol-297

lowing (Vaswani et al., 2017), the attention func-298

tion attn(Q,K, V ) takes three inputs, query, key,299

and value respectively. Here, we utilize the target300

prompt as a query and the source prompts as key301

and value. Formally, let Q = (q1, · · · ,qT ) de-302

notes the trainable prompt matrix of the target task.303

Q ∈ RT×d is initialized with a task description304

of T tokens following the same way as in Stage 1305

and qt denotes the t-th prompt vector. Given the306

prompt of the k-th source task Pk, the correlation307

feature between source task Sk and the target task308

is obtained as:309

Ck = attn(Q,Pk,Pk) ∈ RT×d. (3)310

Once the correlation feature for each source task311

is obtained, we simply add all the correlation in-312

formation to the original prompt of the target task.313

Concretely, the final prompt matrix H ∈ RT×d for314

the target task is calculated by:315

H = Q+
K∑

k=1

Ck. (4)316

This design is inspired by the additive composition-317

ality of word embedding (Mikolov et al., 2013),318

which is proven to be simple but effective accord-319

ing to the experimental results. The prompt for320

the target task captures the representation informa-321

tion and interdependency across source and target322

tasks, and is exploited to measure the weight of323

each source task adapter (Eq 2). It should be noted324

that all Transformer layers of PEMT share the same325

H for the sake of efficiency.326

Target Task Adapter. To adapt to the down-327

stream task, we incorporate another task-specific328

adapter into each Transformer layer. The target329

task adapter, which is inserted after the MoE mod-330

ule, is exploited to mine the knowledge which is331

not covered by the experts trained on source tasks.332

The combination of source and target adapters fa-333

cilitates the model to take advantage of both the334

rich knowledge learned from each source task and335

the task-specific knowledge of the target task.336

Fine-Tuning on the Target Tasks To sufficiently337

utilize the knowledge of the source tasks, we pro-338

pose the Task Sparsity Loss (TSL) to improve the339

sparsity of the MoE module. The intuition is to340

ensure the MoE gate assigns a higher priority to 341

the top-1 source task expert by measuring the simi- 342

larity between specific expert output and the final 343

layer output. Formally, the TSL is defined as: 344

Lts = − 1

LK

L∑
l=1

K∑
k=1

wl
k · sim(Hl

o,E
l
k), (5) 345

where Hl
o denotes the final hidden state of the l-th 346

Transformer layer, L is the total number of lay- 347

ers, and sim is a similarity score function and we 348

choose cosine similarity in this paper. 349

Similar to the training process on source tasks, 350

we formulate the target tasks as a text-to-text gen- 351

eration problem. The training objective is to mini- 352

mize the negative log-likelihood of output y con- 353

ditioned on the input text x and the task prompt 354

H. Finally, the fine-tuning loss on the target task is 355

defined as: 356

L = −
∑
j

P (yj |y<j ;x,H) + αLts, (6) 357

where α is a hyperparameter to balance the losses. 358

4 Experiment 359

We conduct experiments on a comprehensive range 360

of NLP datasets to demonstrate the effectiveness 361

of PEMT. The performance of different methods 362

is compared under both full-dataset and few-shot 363

settings. 364

4.1 Datasets and Tasks 365

As in (Wang et al., 2022c), 6 high-resource datasets 366

are used as the as source tasks: MNLI (Williams 367

et al., 2018), QNLI (Demszky et al., 2018), QQP 368

(Wang et al., 2018), SST-2 (Socher et al., 2013), 369

SQuAD (Rajpurkar et al., 2016) and ReCoRD 370

(Zhang et al., 2018). We use other datasets 371

from four benchmarks as target tasks: MultiRC 372

(Khashabi et al., 2018), BoolQ (Clark et al., 373

2019a), WiC (Pilehvar and Camacho-Collados, 374

2019), WSC (Levesque et al., 2012) and CB 375

(De Marneffe et al., 2019) from SuperGLUE (Wang 376

et al., 2019); RTE (Giampiccolo et al., 2007), 377

CoLA (Warstadt et al., 2019), STS-B (Cer et al., 378

2017), MRPC (Dolan and Brockett, 2005) from 379

GLUE (Wang et al., 2018); Natural Questions 380

(NQ) (Kwiatkowski et al., 2019), HotpotQA (HP) 381

(Yang et al., 2018), NewsQA (News) (Trischler 382

et al., 2017), and SearchQA (SQA) (Dunn et al., 383

2017) from MRQA (Fisch et al., 2019); Wino- 384

Grande (Sakaguchi et al., 2021), Yelp-2 (Zhang 385
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Method GLUE & SuperGLUE
STS-B MRPC RTE CoLA Multi BoolQ WiC WSC CB Avg.

FT 89.7 89.1 71.9 61.8 72.8 81.1 70.2 59.6 85.7 75.8
PT 89.5 68.1 54.7 10.6 58.7 61.7 48.9 51.9 67.9 56.9

BitFit 90.9 86.8 67.6 58.2 74.5 79.6 70.0 59.6 78.6 74.0
Adapter 90.7 85.3 71.9 64.0 75.9 82.5 67.1 67.3 85.7 76.7
LoRA 91.1 86.8 74.1 61.5 75.2 81.8 69.2 65.4 85.7 76.7
SPoT 90.0 79.7 69.8 57.1 74.0 77.2 48.9 51.9 67.9 68.5

ATTEMPT 89.7 85.7 73.4 57.4 74.4 77.1 66.8 53.8 78.6 73.0
MPT 90.4 89.1 79.4 62.4 74.8 79.6 69.0 67.3 79.8 76.9

MixDA 90.8 88.2 66.9 60.8 59.2 61.7 48.9 50.0 78.6 67.2
Adamix 91.0 88.2 70.5 58.7 72.9 80.2 63.6 51.9 85.7 73.6
PEMT 91.10.22 88.70.40 83.01.36 67.02.12 75.50.36 82.60.38 68.70.89 67.30.0 94.11.68 79.80.17

Table 1: Results on GLUE and SuperGLUE. The metrics are Pearson correlation for STS-B, F1 for MultiRC
(Multi), and accuracy for other tasks as evaluation metrics. Our results are averaged over three runs, and subscripts
denote standard deviation.

et al., 2015), SciTail (Khot et al., 2018), and PAWS-386

Wiki (Zhang et al., 2019) from the Others bench-387

mark as in (Asai et al., 2022).388

Compared Methods We compare PEMT with389

the state-of-the-art fine-tuning methods: (1) Full390

fine-tuning (FT), which fine-tunes all parameters391

of the pre-trained model. (2) Prompt-based tun-392

ing, including vanilla prompt tuning (PT) (Lester393

et al., 2021), SPoT (Vu et al., 2022), ATTEMPT394

(Asai et al., 2022) and MPT (Wang et al., 2022c).395

(3) Adapter-based tuning, including vanilla adapter396

(Houlsby et al., 2019), AdaMix (Wang et al.,397

2022a) and MixDA (Diao et al., 2023). (4)398

Other parameter-efficient tuning methods, includ-399

ing LoRA (Hu et al., 2021) and BitFit (Zaken et al.,400

2022).401

4.2 Implementation402

Following existing works, we use the publicly avail-403

able pre-trained T5-Base model (Raffel et al., 2020)404

with 220M parameters from HuggingFace 1 as the405

backbone.406

Following (Karimi Mahabadi et al., 2021), if a407

dataset does not have a publicly available test split408

with annotations, we use the full set of a subset of409

the developing partition or a subset of the for test-410

ing. PEMT is trained on 4 x NVIDIA A800 GPUs.411

The implementation details and hyper-parameters412

are listed in Appendix B.413

We run all the experiments three times with dif-414

ferent random seeds, and report the mean values415

and standard deviations. Under the few-shot set-416

ting, for each number of shots k ∈ {4, 16, 32}, we417

1https://huggingface.co/

randomly collect k samples from the downstream 418

task data. The random seed is shared by all com- 419

pared methods for a fair comparison. 420

4.3 Results 421

Full Data. Experimental results in Table 1 and 422

2 show that PEMT significantly outperforms full 423

fine-tuning and all other parameter-efficient tuning 424

methods. As observed from Table 1, PEMT estab- 425

lishes the new state-of-the-art results for parameter- 426

efficient fine-tuning on GLUE and SuperGLUE. 427

According to the results, Adapter and MPT are 428

the most competitive methods, while our method 429

yields an improvement of 2.75% and 2.91%. Es- 430

pecially, On CB task, the improvement comes to 431

13.06% and 7.16%. On RTE task, PEMT outper- 432

forms all other methods with over 10 points, which 433

illustrates the capability of knowledge transferring 434

of our method. 435

Table 2 shows the performance of different meth- 436

ods on MRQA and Others benchmark. Compared 437

with GLUE and SuperGLUE, the data sizes of these 438

two datasets are larger, and the contexts of the sam- 439

ples are longer. Due to these complexities, the 440

performance of previous PEFT methods is signifi- 441

cantly inferior to full fine-tuning. From the results, 442

PEMT successfully outperforms full fine-tuning 443

on these datasets, suggesting the stability and ro- 444

bustness of PEMT across different data sizes and 445

context lengths. 446

Few-shot. Following prior works, we conduct 447

few-shot experiments on GLUE and SuperGLUE 448

benchmark to measure the generalization of PEMT 449

to new tasks with only a few training examples 450

available (k ∈ {4, 16, 32}). Table 3 shows the 451
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Method MRQA Others
NQ HP SQA News Avg. WG Yelp SciTail PAWS Avg.

FT 75.1 77.5 81.1 65.2 74.7 61.9 96.7 95.8 94.1 87.1
PT 67.9 72.9 75.7 61.1 69.4 49.6 95.1 87.9 55.8 72.1

BitFit 70.7 75.5 77.7 64.1 72.0 57.2 94.7 94.7 92.0 84.7
Adapter 74.2 77.6 81.4 65.6 74.7 59.2 96.9 94.5 94.3 86.2
LoRA 73.9 77.1 80.1 64.9 74.0 60.2 96.4 94.5 94.2 86.3
SPoT 68.2 74.8 75.3 58.2 69.1 50.4 95.4 91.2 91.1 82.0

ATTEMPT 70.4 75.2 77.3 62.8 71.4 57.6 96.7 93.1 92.1 84.9
MPT 70.4 75.2 77.3 62.8 72.8 56.5 96.4 95.5 93.5 85.5

MixDA 71.2 76.1 78.3 63.9 72.4 55.2 95.7 50.8 82.7 71.1
Adamix 73.2 77.5 80.4 65.2 74.1 59.8 96.6 96.0 94.0 86.6
PEMT 75.10.04 78.30.10 81.80.09 65.90.12 75.30.02 62.30.08 97.00.06 96.90.69 94.30.08 87.60.18

Table 2: Results on MRQA and the Others benchmark. Our results are averaged over three runs and subscripts
indicate standard deviation.

k-shot Method GLUE & SuperGLUE
STS-B MRPC RTE CoLA Multi BoolQ WiC WSC CB Avg.

4
PT 88.8 68.1 56.3 27.4 61.8 61.6 51.2 60.4 53.5 58.8

MPT 89.1 68.1 62.6 34.8 62.2 62.2 52.9 67.3 73.6 63.6
PEMT 89.2 78.4 64.0 44.7 72.0 71.0 62.1 44.2 78.6 67.1

16
PT 87.8 68.1 54.7 28.5 60.3 61.9 48.9 44.2 63.5 57.5

MPT 89.1 70.1 64.8 32.1 64.5 63.3 49.8 67.3 78.6 64.4
PEMT 89.8 86.8 69.8 43.4 72.4 74.0 66.5 44.2 82.1 69.9

32
PT 87.5 68.1 54.7 23.2 59.2 61.7 52.6 67.3 67.8 60.2

MPT 89.7 74.5 59.7 30.8 63.3 68.9 53.9 67.3 82.1 65.6
PEMT 89.8 86.3 71.9 45.5 72.2 74.4 61.8 51.9 85.7 71.1

Table 3: Few-shot learning results on GLUE with 4, 16, and 32 training examples.

results. With limited data resources, our method452

still yields a significant improvement, especially453

on some tasks such as WiC, MultiRC, CoLA, and454

MRPC. Another interesting observation is that the455

improvement of PEMT over baselines becomes456

more pronounced as the number of training sam-457

ples increases. This further underscores that the458

task-shared knowledge of MPT gradually fades dur-459

ing the training process of downstream tasks when460

more training data is provided. In contrast, PEMT461

freezes the source task adapters, which not only462

preserves shared knowledge to the greatest extent463

possible but also sufficiently exploits the associa-464

tions and distinctions across various tasks.465

5 Analysis466

We conduct further analysis to investigate the ef-467

fectiveness of different components of PEMT.468

Weights of Source Adapters. In order to ex-469

plore how the weights of source experts change on470

various target tasks, we collect the outputs of the471

MoE gate and visualize them through histograms472

as shown in Figure 4. As observed, there are obvi-473

ous tendencies and priorities in the weight distri- 474

bution. For GLUE and SuperGLUE benchmarks, 475

the knowledge of the MNLI plays a dominant role, 476

with a weighting of more than 50% of all tasks. The 477

contributions of some individual tasks are close to 478

0 under the constraint of Task Sparsity Loss. Con- 479

trastively, the distribution of weights on MRQA 480

is totally different, where the two tasks SQuAD 481

and ReCorD account for about 80% of the weights. 482

The reason is that all the three datasets MRQA, 483

SQuAD and ReCorD belong to the Q&A category, 484

which also indicates the correlation guided MoE 485

module and the task sparsity loss effectively work 486

as expected. 487

Task Description Prompts. As introduced in 488

Section 3.1, We initialize the task prompt with 489

a sentence of task description. To measure the 490

effectiveness of this method in maintaining consis- 491

tency in task representation, we replace it with a 492

randomly initialized prompt and keep the prompt 493

length the same. As shown in Table 5 (Row 2), the 494

averaged score on the two benchmarks decreases by 495

0.8% without initialization with task descriptions. 496
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Figure 4: The source expert weight distribution in GLUE, SuperGLUE, MRQA and Others benchmarks.

Number of Source Task STS-B MRPC RTE CoLA Multi BoolQ WiC WSC CB Avg.
1 91.3 86.8 80.6 66.3 76.1 81.5 65.4 67.3 92.9 78.7
2 91.0 87.8 83.5 64.3 75.4 82.1 68.3 67.3 92.9 79.2
4 91.3 89.2 82.0 64.2 74.9 82.6 68.7 67.3 92.9 79.2
6 91.1 89.7 83.0 67.0 75.5 82.6 68.7 67.3 94.1 79.8

Table 4: Average scores on GLUE and SuperGLUE benchmark with different number of source tasks.

No. Ablation Avg. Score
1 PEMT with LoRA 79.8
2 w/o description 79.0
3 w/o correlation 78.3
4 w/o correlation and MoE 76.6
5 PEMT with Adapter 79.0

Table 5: Results of ablation studies on GLUE and
SuperGLUE benchmark.

Correlation Guided Task Prompt. We conduct497

experiments to evaluate the effectiveness of task498

correlation features in facilitating the model to se-499

lect the optimal source expert. We remove the500

entire prompt module in both source task training501

and target adaptation while maintaining the MoE502

module. For the MoE gate, we use an average pool-503

ing on the hidden states of the previous FFN layer504

as input. The ablation study in Table 5 (Row 3)505

shows that task correlation features produce a 1.5%506

average performance improvement.507

Mixture-of-Source-Adapters. We further inves-508

tigate the effectiveness of the source adapters on509

target adaptation. To this end, we remove both the510

target prompt and the source adapters, while only511

maintaining the task-specific adapter after each512

FFN layer. This change degenerates the model513

to the simple variant of Adapter which inserts an514

adapter module into each multi-head attention and515

FFN layer. We evaluate the performance on target516

adaptation without training on source tasks. The517

results in Table 5 (Row 4) show that, without the 518

task prompt and source adapters, the performance 519

drops sharply by 3.2% on average. 520

5.1 The Number of Source Task 521

To substantiate the scalability of PEMT, we also 522

investigate how the performance changes when dif- 523

ferent numbers of source tasks are used in Stage 1. 524

As shown in Table 4, compared to MixDA, PEMT 525

exhibits a gradual improvement as the number of 526

source tasks increases, which is different from the 527

results of existing methods (Diao et al., 2023). This 528

observation suggests the capability of PEMT to suf- 529

ficiently capture the commonalities and differences 530

among various tasks, which demonstrates a certain 531

degree of continual learning proficiency. 532

6 Conclusion 533

In this paper, we propose PEMT, a new parameter- 534

efficient fine-tuning framework that is capable of 535

adapting the knowledge from multiple tasks to the 536

downstream target tasks. PEMT is facilitated with 537

the correlation features between tasks and suffi- 538

ciently leverages the task-specific knowledge of 539

source tasks with prompt tuning and the mixture-of- 540

experts architecture. We also introduce novel meth- 541

ods to improve prompt initialization and model 542

sparsity. Experiments are conducted on a compre- 543

hensive range of datasets involving multiple tasks 544

and domains and the results demonstrate PEMT 545

significantly outperforms existing SOTA methods. 546
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Limitations547

The model’s inference latency rises proportionally548

with the number of experts, prompting the necessity549

to identify a stable reparameterization for merging550

the weights of multiple experts or to explore a re-551

liable pruning method. Additionally, the entire552

framework involves a two-stage supervised learn-553

ing process. Though maintaining efficient at infer-554

ence, the two-stage architecture incurs both train-555

ing overhead and data costs, and also introduces556

potential risks of data leakage or model attacks.557
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A Task Description Details956

We designed task descriptions based on the dis-957

tinctive features of various tasks. Take MNLI958

task as an example, we use a description “Given a959

premise sentence and a hypothesis sentence, pre-960

dict whether the premise entails the hypothesis,961

contradicts the hypothesis, or neither” to initialize962

the continuous prompt vectors prepended to the963

input. The descriptions for all tasks are shown as964

Table 8.965

Param Value
Optimizer AdamW

Learning rate 5e-4
Batch size 128

Warmup steps 500
Expert dimension 64
Training epochs 5

Learning rate schedule linear decay

Table 6: Stage 1 training: experimental setup.

Param Value
Optimizer AdamW

Learning rate {6e-4, 1e-3}
Batch size {64, 128}

Expert dimension 64
Training epochs 20

Seed {42, 1024, 4096}
MoE loss factor 0.1

Learning rate schedule linear decay

Table 7: Stage 2 training: experimental setup.

B Implementation Details966

We use down projection dimension r = 64 in both967

source training and target adaptation. For source968

training, we train PEMT on each source task for 5969

epochs. For target adaptation, we train all of the970

baselines for 20 epochs on small datasets with less971

than 10k examples, 10 epochs on medium size data972

with more than 10k examples, and 5 epochs on973

MRQA datasets. We limit the maximum training974

data number of Yelp-2 to be 100k samples. We975

run inferences on the test data using the model976

with the best development performance. We set977

the maximum token length to be 512 for MRQA978

datasets, 348 for MultiRC and 256 for all of other979

datasets. We set the maximum length of the input980

to be 256, 256, 512, 256 for GLUE, SuperGLUE,981

MRQA 2019, and Others task set, respectively. We 982

set the maximum length of input to be 348 for 983

MultiRC. The details for training parameters are 984

shown in Table 6 and Table 7 985
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Task Description
QNLI Given a question and a context sentence, determine whether the context sentence contains the

answer to the question.
MNLI Given a premise sentence and a hypothesis sentence, predict whether the premise entails the

hypothesis (entailment), contradicts the hypothesis (contradiction), or neither (neutral).
QQP Given a pair of sentences, determine if the two sentences are semantically equivalent or not.
SST-2 Given a sentence, predict whether a given sentence expresses a positive or negative sentiment.
ReCoRD Given a passage and a cloze-style question about the article in which one entity is masked out,

predict the masked out entity from a list of possible entities in the provided passage.
SQuAD Given an article and a corresponding question about the article, answer the question accurately

based on the provided context in the articles.
CoLA Given a sentence, judge the grammatical acceptability of the sentence.
RTE Given a premise sentence and a hypothesis sentence, determine whether the hypothesis can be

inferred from the premise.
MRPC Given a pair of sentences, determine whether the two sentences are semantically equivalent or not.
STS-B Given a pair of sentences, measure the degree of semantic similarity or relatedness between pairs

of sentences.
CB Given a premise and a hypothesis, determine the type and strength of the commitment being

expressed.
WiC Given a target word and a pair of sentences, determine if a given target word in a sentence has the

same meaning in two different contexts.
WSC Given a set of sentences that contain an ambiguous pronoun, determine the referent of the ambiguous

pronoun based on the context provided.
BoolQ Given a question and a paragraph, determine if a given question can be answered with a simple

"true" or "false" based on a given passage of text.
Multi Given a passage of text and a set of related multiple-choice questions, where each question is

accompanied by several answer choices, select the correct answer choice for each question based
on the information provided in the passage.

MRQA Given an article and a corresponding question about the article, answer the question accurately
based on the provided context in the articles.

SciTail Given a premise and a hypothesis, classify the relationship between the premise and the hypothesis
as entail or neutral.

Yelp Given a Yelp sentence, predict the sentiment polarity (positive or negative) of customer reviews
from the Yelp dataset.

WG Given a sentence and two options, choose the right option for a given sentence which requires
commonsense reasoning.

PAWS Given a pair of sentence, where one sentence is a paraphrase of the other. Determine if the given
sentence pair is a paraphrase or not.

Table 8: Tasks descriptions for prompt Initialization
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