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Abstract001

Temporal Knowledge Graphs (TKGs) repre-002
sent dynamic facts as timestamped relations003
between entities. While Large Language Mod-004
els (LLMs) show promise for TKG comple-005
tion, current approaches typically apply generic006
pipelines (neighborhood sampling, supervised007
fine-tuning, uncalibrated inference) without008
task-specific adaptation to temporal relational009
reasoning. Through systematic analysis under010
unified evaluation, we reveal three key failure011
modes: (1) retrieval strategies miss multi-hop012
dependencies when target entities are not di-013
rectly observed in history, (2) standard fine-014
tuning reinforces memorization over relational015
generalization, and (3) uncalibrated genera-016
tion produces contextually implausible enti-017
ties. We present RECIPE-TKG, a parameter-018
efficient framework that addresses each limi-019
tation through principled, task-specific design:020
rule-based multi-hop sampling for structural021
grounding, contrastive fine-tuning to shape re-022
lational compatibility, and test-time semantic023
filtering for contextual alignment. Experiments024
on four benchmarks show that RECIPE-TKG025
outperforms prior LLM-based methods across026
input regimes, achieving up to 22.4% relative027
improvement in Hits@10, with particularly028
strong gains when historical evidence is sparse029
or indirect.030

1 Introduction031

Temporal Knowledge Graphs (TKGs) are032

widely used to represent dynamic, real-033

world knowledge across domains such as034

news (Boschee et al., 2015; Leetaru and Schrodt,035

2013), biomedicine (Chaturvedi, 2024), and036

finance (Dukkipati et al., 2025). They capture037

facts as time-stamped relational tuples (subject,038

relation, object, timestamp), modeling how039

interactions evolve over time (Tresp et al., 2015).040

A core task in this setting is TKG completion,041

The code is available at this anonymous repository.

Figure 1: Example of LLM-based TKG reasoning.
Pipelines that rely on one-hop context tend to prefer
locally frequent or lexically similar entities, yielding
off-context outputs. RECIPE-TKG augments history
with structurally and temporally richer facts and applies
semantic checking, producing more plausible predic-
tions.

which involves predicting missing or future links 042

based on observed temporal interactions. This 043

task requires reasoning over both relational and 044

temporal structure, with downstream applications 045

in forecasting and decision support (Trivedi et al., 046

2017; Jin et al., 2020). 047

The rise of Large Language Models (LLMs) has 048

sparked interest in using pretrained generative mod- 049

els for TKG completion, driven by their generaliza- 050

tion capability and emergent reasoning skills (Liao 051

et al., 2024; Luo et al., 2024; Lee et al., 2023). 052

While LLM reasoning is often benchmarked on 053

math or logic-based tasks (Lewkowycz et al., 2022; 054

Wang et al., 2025), TKG completion provides a 055

complementary testbed that emphasizes two chal- 056

lenges: (1) integrating temporal and structural sig- 057

nals beyond one-hop evidence, and (2) generaliz- 058

ing when history is sparse or the answer is non- 059

historical (absent from retrieved context and typi- 060
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cally reachable only via multi-hop paths).061

Recent prompting-based and fine-tuned LLM062

methods (Lee et al., 2023; Liao et al., 2024; Luo063

et al., 2024; Xia et al., 2024a) report promising re-064

sults. However, these approaches typically adapt065

LLMs through generic pipelines borrowed from066

other domains: shallow neighborhood sampling for067

context retrieval, standard supervised fine-tuning068

objectives, and uncalibrated inference at test time.069

This overlooks the unique characteristics of tem-070

poral relational reasoning, where answers often re-071

quire multi-hop inference over time-evolving struc-072

ture rather than surface pattern matching. As illus-073

trated in Figure 1, models frequently favor entities074

that are lexically similar or locally frequent in the075

input even when the graph structure supports better076

completions.077

Under a unified evaluation (Section 2), our078

analysis reveals three recurrent limitations. (1)079

Shallow retrieval misses multi-hop, time-aligned080

evidence, which is crucial when the gold entity is081

not observed in history. (2) Standard fine-tuning082

primarily rewards token correctness and reinforces083

memorization rather than relational compatibility,084

with sharp drops on queries that require generaliza-085

tion beyond observed patterns. (3) Uncalibrated in-086

ference produces contextually implausible entities,087

often deviating from history without improving ac-088

curacy. These limitations indicate that task-specific089

design is necessary for effective LLM-based TKG090

completion.091

We present RECIPE-TKG, a parameter-092

efficient framework that addresses each limi-093

tation with a principled, stage-wise design. (1)094

Rule-Based Multi-Hop (RBMH) sampling en-095

riches the retrieved history with structurally di-096

verse, temporally aligned facts to improve multi-097

hop reachability. (2) Contrastive Fine-Tuning098

(CFT) augments next-token prediction with a rela-099

tional compatibility objective over LoRA adapters,100

encouraging discrimination among plausible can-101

didates rather than memorization of token patterns.102

(3) Test-time semantic filtering verifies contex-103

tual alignment during inference and refines low-104

alignment outputs, reducing off-context predictions105

without additional training.106

Across four benchmarks, RECIPE-TKG im-107

proves accuracy and plausibility, with especially108

strong gains in short-history and non-historical set-109

tings, and achieves up to 22.4% relative improve-110

ment in Hits@10 over prior LLM-based methods.111

Contributions. 112

• We standardize evaluation to separate the ef- 113

fects of sampling, training, and inference, clar- 114

ifying where reported gains originate. 115

• We provide a systematic characterization of 116

failure modes in LLM-based TKG completion, 117

centered on retrieval depth, supervision signal, 118

and inference calibration. 119

• We introduce RECIPE-TKG, a task-specific, 120

parameter-efficient framework whose stages 121

directly target these limitations, yielding 122

consistent gains across datasets and input 123

regimes. 124

2 Unified Analysis of Failure Modes in 125

LLM-based TKG Completion 126

Despite recent progress, LLMs adapted to TKG 127

completion often default to surface patterns and 128

fail when structural or temporal cues are indirect 129

or require multi-hop reasoning. To guide design 130

choices, we conduct a controlled re-evaluation of 131

recent approaches (Lee et al., 2023; Liao et al., 132

2024) under a unified setup. 133

2.1 Grounding Predictions in Historical 134

Context 135

Definition 2.1

A query’s history is sparse when the retrieved
context contains few and/or low-diversity facts.
A prediction is non-historical if the gold entity
does not appear in the retrieved history prior
to the query time. The notions overlap but are
not identical.

136

Figure 2(a–c) provides three empirical facts that 137

drive our design. (1) History length matters: 138

Hits@10 is below 0.3 with only one retrieved fact 139

and exceeds 0.5 with 20–50 facts, and this trend 140

holds for both ICL and SFT (Fig. 2a). (2) Struc- 141

ture, not just tokens: over 25% of targets require 142

multi-hop reachability and about 4% are unreach- 143

able with shallow sampling (Fig. 2b), indicating 144

that merely adding more one-hop facts is insuffi- 145

cient. (3) Non-historical collapse: while LLMs 146

achieve 80–83% Hits@10 on historical cases, accu- 147

racy falls below 5% when the gold entity is unseen 148

in history (Fig. 2c), revealing a reliance on lexical 149

overlap and pattern recall. 150

Taken together, these results point to depth and 151

temporal alignment in history sampling, rather than 152

2



Figure 2: Failures under short history and non-historical answers. Dataset: ICEWS14. Model: LLaMA-2-7B.
(a) Hits@10 vs. number of retrieved facts (history length): longer histories support better reasoning. (b) Share of
queries by minimum hop distance from subject to gold entity: over 25% require multi-hop reachability. (c) Hits@10
by historical (gold seen in retrieved history) vs. non-historical (gold unseen) splits for ICL and SFT, showing a sharp
drop in the latter.

longer but shallow context, as the primary driver of153

accuracy. They motivate a mitigation that (i) recov-154

ers multi-hop, time-aligned evidence and (ii) trains155

for relational compatibility beyond memorized as-156

sociations. We operationalize this in Section 4 via157

multi-hop, graph-aware history sampling and CFT158

that encourages such compatibility.159

2.2 Limitations of Supervised Fine-Tuning160

Table 1: Re-evaluation of ICL and SFT using consistent
decoding and evaluation. Gains largely stem from eval-
uation setup and history sampling; the marginal effect
of SFT is smaller under a unified setup.

Method Hits@1 Hits@3 Hits@10

Reported in GenTKG

ICL (naive sampling + basic eval) 0.258 0.430 0.510
+ Fine-Tuning (TLR sampling + eval) 0.369 0.480 0.535

Re-evaluated under consistent setup

ICL (naive sampling) + GenTKG eval 0.344 0.464 0.523
ICL (TLR sampling) + GenTKG eval 0.351 0.473 0.527
SFT (TLR sampling) + GenTKG eval 0.364 0.476 0.532

Supervised fine-tuning (SFT) is widely used to161

adapt LLMs to TKG tasks, and prior work such162

as GenTKG (Liao et al., 2024) reports notable im-163

provements over prompting-based strategies (Lee164

et al., 2023). However, our re-evaluation under165

controlled conditions shows that much of this im-166

provement originates not from fine-tuning itself,167

but from differences in sampling strategies and168

evaluation setups.169

Evaluation Frameworks Explain Much of the170

Gap. LLMs produce open-ended text that re-171

quires careful postprocessing to extract valid entity172

predictions. While Lee et al. (2023) uses a basic173

evaluation setup, GenTKG applies a more refined174

pipeline with canonicalization and output filtering, 175

making direct comparisons misleading. 176

To disentangle these effects, we re-evaluate 177

prompting-based strategies and fine-tuned models 178

with different sampling and evaluation pipelines 179

under a unified framework. We compare naive sam- 180

pling used in Lee et al. (2023) and TLR sampling 181

(Liao et al., 2024), and two evaluation settings (ba- 182

sic eval and GenTKG eval (Liao et al., 2024)). As 183

shown in Table 1, replacing the evaluation code 184

alone increases Hits@1 from 25.8% to 34.4%. TLR 185

sampling provides a modest improvement (35.1%) 186

compared to one-hop sampling, while fine-tuning 187

adds only a small additional gain (36.4%). This 188

suggests that a large portion of the reported gain 189

stems from implementation choices, not from the 190

model’s improved reasoning capabilities. 191

Fine-tuning alone does not fix generalization. 192

As established in Section 2.1, both ICL and fine- 193

tuned models struggle with non-historical predic- 194

tions, where the correct answer does not appear in 195

the retrieved history. These failures persist across 196

a range of input sizes and are especially severe 197

when the gold entity requires multi-hop reason- 198

ing, which is not supported by current sampling 199

methods. Fine-tuning improves memorization of 200

patterns seen during training but does not provide 201

the relational inductive bias needed to reason about 202

unseen or indirectly connected entities. 203

Motivating contrastive fine-tuning. We there- 204

fore supplement next-token prediction with a con- 205

trastive objective that explicitly separates plausible 206

from implausible candidates conditioned on rela- 207

tions, encouraging compatibility-driven discrimina- 208

tion under sparse or indirect evidence (Section 4). 209
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Figure 3: Overview of RECIPE-TKG. RECIPE-TKG follows a three-stage framework: (1) History Sampling,
which retrieves query-relevant facts via a two-phase strategy combining rule-based retrieval and context-guided
expansion; (2) Contrastive Learning, which jointly optimizes entity embeddings using contrastive and cross-
entropy losses. Positive/negative pairs are sampled from the subgraph, and embeddings are generated via a learnable
encoder; (3) Test-time Filtering, where predicted entities are iteratively verified by a semantic filter. Unsatisfactory
outputs are refined using a statistical generator until confident predictions are obtained.

3 Preliminaries210

Problem Formulation. A Temporal Knowledge211

Graph is a collection of time-stamped facts repre-212

sented as quadruples (s, p, o, t), where s and o are213

subject and object entities, p is a relation, and t de-214

notes the timestamp of the event. Formally, a TKG215

is denoted as G = (V,R, E , T ), where V is the set216

of entities,R the relations, E the event facts, and T217

the time indices. Each time step t defines a histori-218

cal snapshot Gt ⊆ E . The forecasting task involves219

predicting a missing entity in a future quadruple.220

Given a query of the form (s, p, ?, t) or (?, p, o, t)221

and a set of historical snapshots {G1, . . . ,Gt−1},222

the model must return the most plausible entity that223

completes the query at time t.224

Low-Rank Adaptation (LoRA) To reduce225

the number of trainable parameters, we adopt226

LoRA (Hu et al., 2022), which re-parameterizes227

the weight update as % %228

ĥ(x) =W0x+ABx, (1)229

where W0 is a frozen pretrained weight and A, B230

are trainable low-rank matrices.231

4 Method232

In this section, we present RECIPE-TKG, a three-233

stage LLM-based lightweight (see Appendix B)234

framework for temporal knowledge forecasting.235

The complete framework is illustrated in Figure 3.236

4.1 RBMH: Rule-Based Multi-Hop History 237

Sampling 238

The first stage of RECIPE-TKG focuses on retriev- 239

ing a compact yet informative history from the 240

temporal knowledge graph G. For a given query 241

(sq, pq, ?, T ), we aim to retrieve historical facts 242

{(s, p, o, t) ∈ G | t < T} that are temporally valid 243

and structurally relevant. Our sampling process 244

combines rule-based retrieval with context-guided 245

expansion to provide richer support for reasoning, 246

particularly in sparse or non-historical settings. 247

Stage 1: Temporal Logical Rule-based Sam- 248

pling. We begin by retrieving subject-aligned 1- 249

hop facts using a rule-based procedure adapted 250

from TLR (Liao et al., 2024), which learns re- 251

lational rules of the form pq ⇐ {pb1 , . . . , pbk} 252

through 1-step temporal random walks, capturing 253

event regularities. We retrieve historical quadruples 254

(s, p, o, t) such that s = sq and p appears in the rule 255

body for the query relation pq. See Appendix A.1 256

for the details. 257

However, this 1-hop retrieval cannot reach facts 258

involving semantically relevant but structurally dis- 259

tant entities. Due to the fixed number of learned 260

rules, this stage often retrieves fewer than N 261

quadruples, the maximum the LLM can handle. 262

This motivates a second stage to expand context 263

with more diverse and informative facts. 264
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Stage 2: Context-guided Multi-hop Expansion265

We then samples additional historical facts from266

G. The candidate pool includes any quadruples not267

retrieved in Stage 1 whose subjects differ from sq.268

This stage is designed to support multi-hop rea-269

soning by identifying facts that may not directly270

connect to the query subject but are structurally and271

semantically relevant. Each candidate (s, p, o, t) is272

assigned a composite weight:273

w = wn · wf · (wt + wc + wcp), (2)274

where wn downweights unreachable or distant275

nodes, wf penalizes high-frequency triples, wt pri-276

oritizes temporal recency, wc favors co-occurrence277

with the query subject or relation, and wcp rein-278

forces connectivity with the initial TLR context.279

To sample from candidate pool, We first select280

the top 10 ×M candidates by score to form a re-281

duced pool, where M is the context window bud-282

get. From this pool, we sample M quadruples with283

probabilities proportional to their weights. This284

soft filtering strategy preserves diversity while pri-285

oritizing high-quality candidates, avoiding over-286

reliance on only the highest-scoring facts. Our two-287

stage RBMH sampling method supports reasoning288

beyond immediate neighbors and avoids overfitting289

to shallow or overly common facts. The overall290

design motivation, formal definitions, hyperparam-291

eters and algorithms are provided in Appendix A.2.292

4.2 Contrastive Fine-Tuning for Structured293

Reasoning294

To improve generalization beyond memorized en-295

tity associations, we introduce a contrastive fine-296

tuning objective that supplements the standard next-297

token prediction loss, helping to disambiguate plau-298

sible from implausible predictions, especially when299

historical context is sparse or indirect.300

Relation-Guided Contrastive Pair Construction.301

Our design is guided by the international relations302

principle, The enemy of my enemy is my friend,303

which reflects relational patterns common in geopo-304

litical TKGs and motivates how we position enti-305

ties in embedding space. Inspired by this structure,306

we first categorize relations into positive, nega-307

tive, and neutral types using GPT-4o, minimizing308

the inclusion of neutral cases (see Appendix C.1).309

Given a sampled subgraph (Figure 3), we treat each310

unique entity as an anchor and examine its 1-hop311

neighbors. A neighbor is assigned as a positive312

sample if it connects via a positive relation, or a313

negative sample if it connects via a negative rela- 314

tion. If both types of edges exist, the neighbor is 315

excluded to avoid contradiction. Neutral relations 316

are ignored. This process forms contrastive groups 317

that are used to calculate the contrastive loss. 318

Entity Embedding Encoding. Since an entity 319

typically spans multiple tokens, we adopt a multi- 320

stage process to compute its representation. First, 321

the entity string is tokenized. Each resulting token 322

is then passed through the model’s embedding layer 323

(embedder), which produces an embedding vector. 324

These token embeddings {h1, h2, . . . , hk} are sub- 325

sequently aggregated into a single entity-level em- 326

bedding e using a trainable attention aggregator. 327

The final embedding is a weighted sum: 328

e =
k∑

j=1

λjhj , (3) 329

where λj are attention weights satisfying
∑

j λj = 330

1. Both the embedding layer and the aggregator 331

are learnable modules, jointly optimized during 332

fine-tuning. 333

Training Objective. The overall loss function is 334

defined as: 335

L = α · Lcontrastive + (1− α) · Lce(o, op), (4) 336

where Lce denotes the cross-entropy loss between 337

the predicted token op and the ground truth o, 338

Lcontrastive represents the contrastive loss, and α ∈ 339

[0, 1] is a balancing hyperparameter. 340

The contrastive loss is formulated as: 341

Lcontrastive =
1

Nc

Nc∑
i=1

max
(
0, 342

∥ai − posi∥2 − ∥ai − negi∥2 +m
)

(5) 343

where Nc is the number of contrastive groups, 344

and ai denotes the embedding of the anchor entity. 345

For each group, posi is the hardest positive, defined 346

as the farthest positive entity from the anchor in the 347

embedding space, while negi is the closest negative. 348

This formulation emphasizes challenging examples 349

and enforces a margin m to improve the separation 350

between positive and negative pairs. 351

This training objective encourages the model 352

to pull the most distant positive samples closer to 353

the anchor and push the nearest negatives farther 354

away. This dynamic adjustment refines the seman- 355

tic structure of the latent space, enabling better 356
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entity discrimination and improving downstream357

reasoning performance. More details can be found358

at Appendix C.359

4.3 Similarity-Based Test-Time Filtering360

Recent work shows that language models can im-361

prove inference without parameter updates by using362

lightweight test-time strategies (Snell et al., 2024;363

Ji et al., 2025). Building on this idea, we intro-364

duce a semantic similarity-based filtering method365

to reduce hallucinations by removing predictions366

misaligned with the input context.367

Our filtering approach is motivated by two em-368

pirical observations:369

1. Models often generate non-historical entities370

that have low semantic alignment with the371

input context, especially in sparse settings de-372

spite higher similarity scores correlating with373

correctness (Figure 4).374

2. In many cases, the ground truth entity already375

appears in the historical context H, yet the376

model produces a non-historical prediction377

that yields negligible gain in accuracy.378

These patterns suggest that enforcing semantic379

consistency and reconsidering salient entities from380

the input can correct many low-quality predictions.381

Rather than rejecting or reranking predictions with382

fixed rules, we apply an adaptive refinement strat-383

egy grounded in semantic similarity.384

Semantic Consistency Verification. We embed385

the generated prediction p and the input context c386

using a sentence transformer model to compute a387

similarity score:388

ϕ(p, c) = cos-sim(E(p), E(c)) (6)389

E(x) = SentenceTransformer(x) ∈ Rd (7)390

where E(·) denotes the output vector of a pre-391

trained transformer model. We use this similarity392

as a proxy for contextual alignment. A predic-393

tion is accepted if its similarity score exceeds a394

learned threshold τ , or if it already appears in the395

retrieved historyH. Otherwise, we regenerate until396

a satisfactory prediction is found, or fall back to397

history-aware scoring.398

This process is formalized as:399

p′ =


p if p ∈ H or ϕ(p, c) ≥ τ
regenerate(p) if ϕ(p, c) < τ

argmaxh∈H ψ(h) after k attempts
(8)400

Figure 4: Distribution of semantic similarity values for
correctly and incorrectly classified samples to the input
context.

Figure 3 illustrates how filtering interacts with 401

the generation process to improve robustness. 402

Historical Relevance Fallback. If repeated gen- 403

erations yield unsatisfactory predictions, we fall 404

back to the historical candidates H. Each candi- 405

date h ∈ H is scored by: 406

ψ(h) = β · f(h) + (1− β) · r(h) (9) 407

where f(h) is the frequency of h in the input his- 408

tory and r(h) captures recency. This mechanism 409

biases the selection toward historically grounded 410

entities when semantic alignment fails. 411

Threshold Selection. The threshold τ is opti- 412

mized to best separate correct and incorrect pre- 413

dictions based on empirical distributions of ϕ(p, c). 414

We describe the optimization objective and quanti- 415

tative justification in Appendix D, along with im- 416

plementation details and discuss its generalizability 417

in Appendix E. 418

5 Experiments 419

5.1 Experimental Setup 420

Proposed method. We refer to our full method as 421

RECIPE-TKG, which combines rule-based multi- 422

hop history sampling (RBMH Sampling), con- 423

trastive fine-tuning denoted as CFT, and Test-time 424

Filtering. 425

Language Models. Our primary experiments are 426

conducted on LLaMA-2-7B (Touvron et al., 2023), 427

a widely used open-source model in LLM-based 428

TKG completion research (Liao et al., 2024; Luo 429

et al., 2024). To ensure modern relevance, we also 430

evaluate LLaMA-3-8B (Meta AI, 2024). Prompts 431

and implementation details are provided in Ap- 432

pendix C.2 and C.4 433
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Table 2: Temporal link prediction results on temporal-aware filtered Hits@1/3/10. LLM-based models are
implemented based on LLaMA2-7B. Best results for each metric are highlighted in bold, and the best results among
LLM-based models are underlined. The last row shows the relative improvement (∆) of RECIPE-TKG over the
best-performing LLM-based baseline.

Datasets ICEWS14 ICEWS18 GDELT YAGO
Models Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10

Embedding-based

RE-NET (Jin et al., 2020) 0.260 0.401 0.548 0.165 0.297 0.447 0.117 0.202 0.333 - - -
RE-GCN (Li et al., 2021) 0.313 0.473 0.626 0.223 0.367 0.525 0.084 0.171 0.299 0.468 0.607 0.729
xERTE (Han et al., 2020) 0.330 0.454 0.570 0.209 0.335 0.462 0.085 0.159 0.265 0.561 0.726 0.789
TANGO (Han et al., 2021) 0.272 0.408 0.550 0.191 0.318 0.462 0.094 0.189 0.322 0.566 0.651 0.718
Timetraveler (Sun et al., 2021) 0.319 0.454 0.575 0.212 0.325 0.439 0.112 0.186 0.285 0.604 0.770 0.831

Rule-based TLogic (Liu et al., 2022) 0.332 0.476 0.602 0.204 0.336 0.480 0.113 0.212 0.351 0.638 0.650 0.660

LLM-based
CoH (Xia et al., 2024b) 0.242 0.397 0.512 0.168 0.282 0.427 - - - - - -
PPT (Xu et al., 2023) 0.289 0.425 0.570 0.169 0.306 0.454 - - - - - -
HFL (Xu et al., 2025) 0.277 0.427 0.573 0.178 0.304 0.455 - - - - - -
ICL (Lee et al., 2023) 0.344 0.464 0.523 0.164 0.302 0.382 0.090 0.172 0.242 0.738 0.807 0.823
GenTKG (Liao et al., 2024) 0.364 0.476 0.532 0.200 0.329 0.395 0.099 0.193 0.280 0.746 0.804 0.821
RECIPE-TKG 0.393 0.526 0.651 0.224 0.369 0.516 0.095 0.192 0.327 0.811 0.880 0.930

∆ 8.0% 10.5% 22.4% 12.0% 12.2% 13.4% -4.0% -0.5% 16.8% 8.7% 9.0% 13.0%

Datasets. We evaluate RECIPE-TKG on four434

commonly adopted benchmark datasets: ICEWS14435

and ICEWS18, both derived from the ICEWS436

project (Boschee et al., 2015), GDELT (Leetaru437

and Schrodt, 2013), and YAGO (Mahdisoltani et al.,438

2013). Detailed dataset statistics are provided in439

Appendix H.440

Evaluation Metrics. We choose temporal-aware441

filtered Hits@1/3/10 as our evaluation metrics, fol-442

lowing prior work (Gastinger et al., 2023).443

Baselines. We compare RECIPE-TKG against444

three categories of methods. Embedding-based445

methods include RE-NET (Jin et al., 2020), RE-446

GCN (Li et al., 2021), xERTE (Han et al., 2020),447

TANGO (Han et al., 2021), and TimeTraveler (Sun448

et al., 2021). Rule-based method includes449

TLogic (Liu et al., 2022). LLM-based methods in-450

clude ICL (Lee et al., 2023), GenTKG (Liao et al.,451

2024), PPT (Xu et al., 2023), CoH (Xia et al.,452

2024b), and HFL (Xu et al., 2025). Additional453

information about baselines are in Appendix G.454

5.2 Main Results455

Results in Table 2 show that RECIPE-TKG con-456

sistently performs well across four benchmarks,457

surpassing both embedding-based and LLM-based458

baselines on nearly all evaluation metrics. On459

ICEWS14 and YAGO, RECIPE-TKG establishes460

new state-of-the-art results among LLM-based461

methods, achieving up to 22.4% relative improve-462

ment in Hits@10. On ICEWS18, it exceeds the463

best LLM-based baseline on all three metrics464

and is competitive with RE-GCN, the strongest465

embedding-based model. For GDELT, which is466

known to be noisy and dominated by repetitive467

Table 3: Ablation study on ICEWS14 with
LLaMA2-7B. Comparison of training paradigms across
different history sampling strategies. The bold results
show the original combinations of components in prior
works and our method.

ICL SFT CFT
H@1 H@3 H@10 H@1 H@3 H@10 H@1 H@3 H@10

Lee et al. (2023) 0.344 0.464 0.523 0.360 0.469 0.530 0.363 0.479 0.529
TLR (Liao et al., 2024) 0.351 0.473 0.527 0.364 0.476 0.532 0.367 0.476 0.532
RBMH 0.364 0.500 0.572 0.389 0.519 0.582 0.392 0.521 0.580

event patterns (Trivedi et al., 2017; Li et al., 2021) 468

with fine-grained 15-minute timestamps that favor 469

symbolic rule chaining, frequent rules can be mined 470

reliably and simple chains often suffice, explaining 471

TLogic’s advantage (Liu et al., 2022); neverthe- 472

less, RECIPE-TKG attains the highest Hits@10 473

(0.327) among LLM-based models and remains 474

competitive on Hits@1 and Hits@3. These results 475

highlight the effectiveness of RECIPE-TKG and 476

position LLM-based methods as strong candidates 477

for foundation models in TKG completion. 478

6 Analysis 479

6.1 Ablation Study 480

We conducted ablation studies to evaluate key com- 481

ponents of our framework against prior works. We 482

compare three sampling methods ( Lee et al. (2023), 483

TLR (Liao et al., 2024), and our RBMH Sampling) 484

and three training paradigms (in-context learning, 485

supervised fine-tuning, and contrastive fine-tuning) 486

on ICEWS14 using LLaMA2-7B. As shown in Ta- 487

ble 3, bold results indicate original combinations 488

from prior works and RECIPE-TKG w/o filter- 489

ing. The results show that RBMH Sampling con- 490

sistently improves performance across all training 491

paradigms by retrieving structurally diverse and se- 492
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Table 4: Effect of removing RECIPE-TKG components.

SETTINGS Hits@1 Hits@3 Hits@10

RECIPE-TKG w/o CFT 0.364 0.501 0.643
RECIPE-TKG w/o RBMH Sampling 0.364 0.483 0.581
RECIPE-TKG w/o Filtering 0.392 0.521 0.580
RECIPE-TKG 0.393 0.526 0.651

Figure 5: Hits@10 grouped by number of historical
facts. RECIPE-TKG consistently outperforms ICL and
GenTKG across all history lengths, with particularly
strong improvements when the input history is sparse.

mantically relevant context. While CFT performs493

comparably to SFT with the same sampling strat-494

egy, it shows clear advantages when historical con-495

text is sparse. As discussed in Appendix I.1, con-496

trastive models generate predictions semantically497

closer to the ground truth, even when exact matches498

aren’t possible, promoting structure-aware general-499

ization beyond surface-level accuracy, especially in500

sparse settings where lexical cues are insufficient.501

Table 4 provides additional insights into the502

effects of each of the three components, espe-503

cially test-time filtering. When comparing the CFT-504

RBMH setting with and without Test-time Filtering,505

we observe a substantial boost in Hits@10 from506

0.580 to 0.651, underscoring the effectiveness of507

our test-time refinement mechanism. Notably, com-508

bining test-time filtering with RBMH Sampling and509

Test-time Filtering (RECIPE-TKG) yields the best510

performance across all metrics.511

6.2 Performance Gains Across Input Regimes512

To evaluate how historical input affects model per-513

formance, we group queries by the number of re-514

trieved facts and compare Hits@10 across methods.515

These bins align with Figure 2(a), allowing direct516

comparison with prior failure patterns. As shown in517

Figure 5, RECIPE-TKG outperforms both ICL and518

GenTKG across all groups, with especially large519

gains in the low-history regime.520

Two key insights emerge. First, prior failures521

on short-history queries were not due to intrinsic522

difficulty, but rather to shallow retrieval. Since all523

Table 5: Comparison between LLaMA2-7B and
LLaMA3-8B on ICEWS14.

Model LLaMA2-7B LLaMA3-8B
hit@1 hit@3 hit@10 hit@1 hit@3 hit@10

ICL 0.344 0.464 0.523 0.351 0.484 0.578
RECIPE-TKG 0.393 0.526 0.651 0.367 0.529 0.658

methods are evaluated on the same query set, the 524

strong gains from RECIPE-TKG (reaching over 525

60% Hits@10 for history length 0 to 2) indicate 526

that even sparse queries can be completed accu- 527

rately when provided with deeper, multi-hop con- 528

text. This validates the effectiveness of RBMH 529

Sampling in recovering structurally and temporally 530

relevant support. 531

Second, RECIPE-TKG continues to outperform 532

baselines even with longer histories (10–50 facts), 533

where other methods begin to plateau. This sus- 534

tained advantage reflects the contributions of CFT 535

and Test-time Filtering, which improve generaliza- 536

tion and reduce hallucinations. 537

Overall, these results show that RECIPE-TKG 538

not only addresses the limitations of shallow con- 539

text but also improves reasoning and prediction 540

quality across a wide range of query types. 541

6.3 Case Study: Performance of Llama3-8b 542

As shown in Table 5, LLaMA3-8B performs com- 543

parably to LLaMA2-7B, supporting our choice of 544

the latter for most experiments. Moreover, this 545

choice of base model enables a fair comparison 546

with prior work using fine-tuned models. Under 547

both backbones, RECIPE-TKG consistently out- 548

performs ICL, demonstrating its robustness and 549

generalizability across different LLMs. 550

Lightweight design. We update only ∼ 0.81% 551

of LLaMA-2-7B (54.3M params), mine rules in 552

<20s per dataset, and incur a 16.6% inference over- 553

head from filtering (details in Appendix B). 554

7 Conclusion 555

We introduced RECIPE-TKG, a framework for 556

LLM-based temporal knowledge graph forecast- 557

ing that combines multi-hop sampling, contrastive 558

fine-tuning, and semantic filtering. It delivers con- 559

sistent accuracy gains, especially under sparse or 560

indirect evidence in practice. By aligning con- 561

text with relational structure and refining inference, 562

RECIPE-TKG improves reasoning without large- 563

scale retraining, validating a modular, temporally 564

grounded design overall. 565
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Limitations566

Although RECIPE-TKG adopts a structured three-567

stage framework, it is still built on clean, fully568

observed temporal knowledge graphs, which may569

not reflect real-world scenarios. The rule mining570

step requires offline learning before sampling, and571

must be repeated if the TKG changes. Moreover,572

the framework assumes full observability of histori-573

cal events, while in practice, such information may574

be incomplete or noisy. Future work may explore575

more robust designs that support dynamic updates576

and reasoning under partially observed histories.577

License and Ethics578

All datasets used in this study are publicly available579

and licensed for academic research. Specifically,580

ICEWS14, ICEWS18, GDELT, and YAGO have581

been widely adopted in prior work on temporal582

knowledge graphs. No personally identifiable in-583

formation (PII) or sensitive content is present in584

any of the datasets.585

We use LLaMA-2 and LLaMA-3 models un-586

der Meta’s official research license, and all model587

adaptations are conducted in compliance with their588

intended use for academic and non-commercial589

research. The training and evaluation procedures590

are entirely conducted on benchmark data, and no591

human subjects are involved.592

We adhere to the ethical guidelines set forth by593

the ACL Code of Ethics, including transparency,594

reproducibility, and the responsible use of language595

models. Our work poses minimal risk of harm596

and does not involve content generation, human597

annotation, or interaction with real users.598

9



References599

Elizabeth Boschee, Jennifer Lautenschlager, Sean600
O’Brien, Steve Shellman, James Starz, and Michael601
Ward. 2015. ICEWS Coded Event Data.602

Rochana Chaturvedi. 2024. Temporal knowledge graph603
extraction and modeling across multiple documents604
for health risk prediction. In Companion Proceedings605
of the ACM Web Conference 2024, pages 1182–1185.606

Kai Chen, Ye Wang, Yitong Li, and Aiping Li. 2022.607
Rotateqvs: Representing temporal information as608
rotations in quaternion vector space for tempo-609
ral knowledge graph completion. arXiv preprint610
arXiv:2203.07993.611

Ambedkar Dukkipati, Kawin Mayilvaghanan,612
Naveen Kumar Pallekonda, Sai Prakash Hadnoor,613
and Ranga Shaarad Ayyagari. 2025. Predictive ai614
with external knowledge infusion for stocks. arXiv615
preprint arXiv:2504.20058.616

Julia Gastinger, Timo Sztyler, Lokesh Sharma, Anett617
Schuelke, and Heiner Stuckenschmidt. 2023. Com-618
paring apples and oranges? on the evaluation of meth-619
ods for temporal knowledge graph forecasting. In620
Joint European Conference on Machine Learning and621
Knowledge Discovery in Databases, pages 533–549.622
Springer.623

Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp.624
2020. Explainable subgraph reasoning for forecast-625
ing on temporal knowledge graphs. In International626
Conference on Learning Representations.627

Zhen Han, Zifeng Ding, Yunpu Ma, Yujia Gu, and628
Volker Tresp. 2021. Learning neural ordinary equa-629
tions for forecasting future links on temporal knowl-630
edge graphs. In Proceedings of the 2021 Conference631
on Empirical Methods in Natural Language Process-632
ing, pages 8352–8364.633

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan634
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and635
Weizhu Chen. 2022. Lora: Low-rank adaptation of636
large language models. In International Conference637
on Learning Representations (ICLR).638

Yixin Ji, Juntao Li, Hai Ye, Kaixin Wu, Kai Yao, Jia Xu,639
Linjian Mo, and Min Zhang. 2025. Test-time com-640
pute: from system-1 thinking to system-2 thinking.641
Preprint, arXiv:2501.02497.642

Woojeong Jin, Meng Qu, Xisen Jin, and Xiang Ren.643
2020. Recurrent event network: Autoregressive struc-644
ture inference over temporal knowledge graphs. In645
Proceedings of the 2020 Conference on Empirical646
Methods in Natural Language Processing (EMNLP),647
pages 6669–6683.648

Dong-Ho Lee, Kian Ahrabian, Woojeong Jin, Fred649
Morstatter, and Jay Pujara. 2023. Temporal knowl-650
edge graph forecasting without knowledge using in-651
context learning. Preprint, arXiv:2305.10613.652

Kalev Leetaru and Philip A Schrodt. 2013. Gdelt: 653
Global data on events, location, and tone, 1979–2012. 654
In ISA annual convention, volume 2, pages 1–49. 655
Citeseer. 656

Aitor Lewkowycz, Anders Andreassen, David Dohan, 657
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh, 658
Ambrose Slone, Cem Anil, Imanol Schlag, Theo 659
Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy 660
Gur-Ari, and Vedant Misra. 2022. Solving quantita- 661
tive reasoning problems with language models. In 662
Proceedings of the 2022 Conference on Empirical 663
Methods in Natural Language Processing, Online. 664
Association for Computational Linguistics. 665

Zixuan Li, Xiaolong Jin, Wei Li, Saiping Guan, Jiafeng 666
Guo, Huawei Shen, Yuanzhuo Wang, and Xueqi 667
Cheng. 2021. Temporal knowledge graph reason- 668
ing based on evolutional representation learning. In 669
Proceedings of the 44th International ACM SIGIR 670
Conference on Research and Development in Infor- 671
mation Retrieval, pages 408–417. 672

Ruotong Liao, Xu Jia, Yangzhe Li, Yunpu Ma, and 673
Volker Tresp. 2024. Gentkg: Generative forecasting 674
on temporal knowledge graph with large language 675
models. Preprint, arXiv:2310.07793. 676

Yushan Liu, Yunpu Ma, Marcel Hildebrandt, Mitchell 677
Joblin, and Volker Tresp. 2022. Tlogic: Tempo- 678
ral logical rules for explainable link forecasting on 679
temporal knowledge graphs. In Proceedings of the 680
Thirty-Sixth AAAI Conference on Artificial Intelli- 681
gence (AAAI), pages 4120–4127. 682

Ruilin Luo, Tianle Gu, Haoling Li, Junzhe Li, Zicheng 683
Lin, Jiayi Li, and Yujiu Yang. 2024. Chain of 684
history: Learning and forecasting with llms for 685
temporal knowledge graph completion. Preprint, 686
arXiv:2401.06072. 687

Farzaneh Mahdisoltani, Joanna Biega, and Fabian M 688
Suchanek. 2013. Yago3: A knowledge base from 689
multilingual wikipedias. In CIDR. 690

Shreyas Mangrulkar and 1 others. 2022. Peft: 691
parameter-efficient fine-tuning. https://github. 692
com/huggingface/peft. GitHub repository, ac- 693
cessed May 2025. 694

Johannes Messner, Ralph Abboud, and Ismail Ilkan 695
Ceylan. 2022. Temporal knowledge graph com- 696
pletion using box embeddings. In Proceedings of 697
the AAAI Conference on Artificial Intelligence, vol- 698
ume 36, pages 7779–7787. 699

Meta AI. 2024. Meta llama 3: Open foundation and fine- 700
tuned chat models. https://ai.meta.com/blog/ 701
meta-llama-3/. Accessed: 2025-05-16. 702

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, 703
Rianne Van Den Berg, Ivan Titov, and Max Welling. 704
2018. Modeling relational data with graph convolu- 705
tional networks. In European semantic web confer- 706
ence, pages 593–607. Springer. 707

10

https://doi.org/10.7910/DVN/28075
https://dl.acm.org/doi/10.1145/3589335.3651256
https://dl.acm.org/doi/10.1145/3589335.3651256
https://dl.acm.org/doi/10.1145/3589335.3651256
https://dl.acm.org/doi/10.1145/3589335.3651256
https://dl.acm.org/doi/10.1145/3589335.3651256
https://arxiv.org/abs/2504.20058
https://arxiv.org/abs/2504.20058
https://arxiv.org/abs/2504.20058
https://dl.acm.org/doi/abs/10.1007/978-3-031-43418-1_32
https://dl.acm.org/doi/abs/10.1007/978-3-031-43418-1_32
https://dl.acm.org/doi/abs/10.1007/978-3-031-43418-1_32
https://dl.acm.org/doi/abs/10.1007/978-3-031-43418-1_32
https://dl.acm.org/doi/abs/10.1007/978-3-031-43418-1_32
https://openreview.net/forum?id=pGIHq1m7PU
https://openreview.net/forum?id=pGIHq1m7PU
https://openreview.net/forum?id=pGIHq1m7PU
https://aclanthology.org/2021.emnlp-main.658/
https://aclanthology.org/2021.emnlp-main.658/
https://aclanthology.org/2021.emnlp-main.658/
https://aclanthology.org/2021.emnlp-main.658/
https://aclanthology.org/2021.emnlp-main.658/
https://openreview.net/forum?id=nZeGNn4cx5c
https://openreview.net/forum?id=nZeGNn4cx5c
https://openreview.net/forum?id=nZeGNn4cx5c
https://doi.org/10.48550/arXiv.2501.02497
https://doi.org/10.48550/arXiv.2501.02497
https://doi.org/10.48550/arXiv.2501.02497
https://aclanthology.org/2020.emnlp-main.541/
https://aclanthology.org/2020.emnlp-main.541/
https://aclanthology.org/2020.emnlp-main.541/
https://arxiv.org/abs/2305.10613
https://arxiv.org/abs/2305.10613
https://arxiv.org/abs/2305.10613
https://arxiv.org/abs/2305.10613
https://arxiv.org/abs/2305.10613
https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2206.14858
https://dl.acm.org/doi/10.1145/3404835.3462963
https://dl.acm.org/doi/10.1145/3404835.3462963
https://dl.acm.org/doi/10.1145/3404835.3462963
https://arxiv.org/abs/2310.07793
https://arxiv.org/abs/2310.07793
https://arxiv.org/abs/2310.07793
https://arxiv.org/abs/2310.07793
https://arxiv.org/abs/2310.07793
https://cdn.aaai.org/ojs/20330/20330-13-24343-1-2-20220628.pdf
https://cdn.aaai.org/ojs/20330/20330-13-24343-1-2-20220628.pdf
https://cdn.aaai.org/ojs/20330/20330-13-24343-1-2-20220628.pdf
https://cdn.aaai.org/ojs/20330/20330-13-24343-1-2-20220628.pdf
https://cdn.aaai.org/ojs/20330/20330-13-24343-1-2-20220628.pdf
https://arxiv.org/abs/2401.06072
https://arxiv.org/abs/2401.06072
https://arxiv.org/abs/2401.06072
https://arxiv.org/abs/2401.06072
https://arxiv.org/abs/2401.06072
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/


Sentence-Transformers. all-mpnet-base-v2. https:708
//huggingface.co/sentence-transformers/709
all-mpnet-base-v2. Accessed: 2025-05-19.710

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-711
mar. 2024. Scaling llm test-time compute optimally712
can be more effective than scaling model parameters.713
Preprint, arXiv:2408.03314.714

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-715
Yan Liu. 2020. Mpnet: Masked and permuted pre-716
training for language understanding. In Advances in717
Neural Information Processing Systems, volume 33,718
pages 16857–16867.719

Haohai Sun, Jialun Zhong, Yunpu Ma, Zhen Han, and720
Kun He. 2021. Timetraveler: Reinforcement learning721
for temporal knowledge graph forecasting. arXiv722
preprint arXiv:2109.04101.723

Hugo Touvron, Louis Martin, Kevin Stone, Abdul-724
lah Al-Dujaili, Yasmine Babaei, Nikolay Bashlykov,725
Soumya Batra, Prajjwal Bhargava, Shruti Bhos-726
ale, and 1 others. 2023. Llama 2: Open founda-727
tion and fine-tuned chat models. arXiv preprint728
arXiv:2307.09288.729

Volker Tresp, Cristóbal Esteban, Yinchong Yang,730
Stephan Baier, and Denis Krompaß. 2015. Learn-731
ing with memory embeddings. arXiv preprint732
arXiv:1511.07972.733

Rakshit Trivedi, Hanjun Dai, Yichen Wang, and734
Le Song. 2017. Know-evolve: Deep temporal reason-735
ing for dynamic knowledge graphs. In Proceedings736
of the 34th International Conference on Machine737
Learning, pages 3462–3471. PMLR.738

Shangshang Wang, Julian Asilis, Ömer Faruk Akgül,739
Enes Burak Bilgin, Ollie Liu, and Willie Neiswanger.740
2025. Tina: Tiny reasoning models via lora. arXiv741
preprint arXiv:2504.15777.742

Yuwei Xia, Ding Wang, Qiang Liu, Liang Wang, Shu743
Wu, and Xiao-Yu Zhang. 2024a. Chain-of-history744
reasoning for temporal knowledge graph forecasting.745
In Findings of the Association for Computational Lin-746
guistics: ACL 2024, pages 16144–16159, Bangkok,747
Thailand. Association for Computational Linguistics.748

Yuwei Xia, Ding Wang, Qiang Liu, Liang Wang, Shu749
Wu, and Xiao-Yu Zhang. 2024b. Chain-of-history750
reasoning for temporal knowledge graph forecasting.751
In Findings of the Association for Computational752
Linguistics: ACL 2024.753

Wenjie Xu, Ben Liu, Miao Peng, Xu Jia, and Min Peng.754
2023. Pre-trained language model with prompts755
for temporal knowledge graph completion. arXiv756
preprint arXiv:2305.07912.757

Wenjie Xu, Ben Liu, Miao Peng, Zihao Jiang, Xu Jia,758
Kai Liu, Lei Liu, and Min Peng. 2025. Historical759
facts learning from long-short terms with language760
model for temporal knowledge graph reasoning. In-761
formation Processing & Management, 62(3):104047.762

Rui Ying, Mengting Hu, Jianfeng Wu, Yalan Xie, Xi- 763
aoyi Liu, Zhunheng Wang, Ming Jiang, Hang Gao, 764
Linlin Zhang, and Renhong Cheng. 2024. Simple 765
but effective compound geometric operations for tem- 766
poral knowledge graph completion. arXiv preprint 767
arXiv:2408.06603. 768

11

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://proceedings.neurips.cc/paper/2020/file/c3a690be93aa602ee2dc0ccab5b7b67e-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c3a690be93aa602ee2dc0ccab5b7b67e-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c3a690be93aa602ee2dc0ccab5b7b67e-Paper.pdf
https://arxiv.org/abs/2109.04101
https://arxiv.org/abs/2109.04101
https://arxiv.org/abs/2109.04101
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/1511.07972
https://arxiv.org/abs/1511.07972
https://arxiv.org/abs/1511.07972
https://proceedings.mlr.press/v70/trivedi17a.html
https://proceedings.mlr.press/v70/trivedi17a.html
https://proceedings.mlr.press/v70/trivedi17a.html
https://arxiv.org/abs/2504.15777
https://doi.org/10.18653/v1/2024.findings-acl.955
https://doi.org/10.18653/v1/2024.findings-acl.955
https://doi.org/10.18653/v1/2024.findings-acl.955


A Rule-Based Multi-Hop History769

Sampling Details770

A.1 TLR Algorithm771

Algorithm 1 shows the TLR retrieval procedure772

used in our framework, reproduced from (Liao773

et al., 2024).774

Algorithm 1 TLR Retrieval
Input: Temporal knowledge graph G, query
(sq, rq, ?, T ), learned rules T R
Output: A set of retrieved facts Gsq(sq, rq, T )

1: Gsq(sq, rq, T )← ∅
2: for fact← (sq, rq, o, t < T )) ∈ G do
3: Gsq(sq, rq, T )← Gsq(sq, rq, T ) ∪ fact
4: end for
5: for top k rules w.r.t. rq ← rb ∈ T R do
6: Get a list rb ← {rb1 , rb2 , · · · , rbk}
7: end for
8: for fact← (sq, r ∈ rb, o, t < T ) ∈ G do
9: Gsq(sq, rq, T )← Gsq(sq, rq, T ) ∪ fact

10: end for
11: return Gsq(sq, rq, T )

A.2 Context-guided Multi-hop Expansion775

Details776

A.2.1 Weight Formulation Discussion777

We adopt a multiplicative combination of the778

weight components rather than a simple sum to779

for two reasons. First, the neighbor weight wn acts780

as a hard constraint: it equals zero if the subject781

or object of a candidate quadruple is not reachable782

from the query, effectively filtering out irrelevant783

facts. Second, the frequency weight wf is designed784

to down-weight commonly repeated triples while785

preserving their relative order. This logarithmic786

scaling ensures that rare but structurally relevant787

facts are not overshadowed. Together, the multi-788

plicative form enables a soft prioritization across789

dimensions while preserving hard structural con-790

straints.791

A.2.2 Weight Component792

The five weight components of equation 2 are de-793

fined as follows:794

Neighbor weight wn ensures that structurally795

closer quadruples receive higher scores:796

wn = exp (−γ1 · (hops + hopo − 1)) ,797

where hops and hopo denote the shortest hop dis-798

tances from the subject and object to the query799

subject. The weight decays exponentially with in- 800

creasing distance, and vanishes to zero when either 801

hops or hopo is infinite, corresponding to cases 802

where the entity is not reachable from the query 803

subject in the graph. Importantly, all structural 804

statistics (e.g., hop distance, co-occurrence counts, 805

and context connectivity) are computed over the 806

subgraph excluding quadruples with timestamps 807

after the query time T . 808

Frequency weight wf reduces the dominance 809

of frequent triples (history quadruples excluding 810

timestamp): 811

wf =
1

γ2 · log(nspo) + 1
, 812

where nspo is the count of the subject-predicate- 813

object triple. This logarithmic form discourages 814

over-sampling of repetitive patterns while maintain- 815

ing frequency order. 816

More precisely, for any two triples with fre- 817

quency counts n1 < n2, the corresponding weights 818

satisfy: 819

w(n1) > w(n2), and
w(n1)

w(n2)
=

log(n2) + 1

log(n1) + 1
, 820

assuming all other components of the weight func- 821

tion are equal. This shows that the multiplicative 822

formulation preserves the relative ranking induced 823

by frequency, while still suppressing the absolute 824

dominance of highly frequent triples. 825

Time weight wt favors temporally recent events: 826

wt = exp

(
−γ3 ·

T − t
δ

)
, 827

where T is the timestamp of the query, t is the 828

timestamp of the event quadruple (with T > t), δ 829

is the time granularity (e.g., δ = 24 in ICEWS14), 830

and γ3 controls the decay rate. 831

Connection weight wc promotes inclusion of 832

frequently co-occurring entity pairs: 833

wc =
log(1 + γ4 · nso)

1 + log(1 + γ4 · nso)
, 834

where nso is the co-occurrence count of the subject- 835

object pair prior to T , and γ4 is a smoothing param- 836

eter. This bounded function emphasizes structural 837

relevance while limiting hub bias. 838

Contextual priority weight wcp encourages 839

sampling quadruples that remain connected to the 840

initial TLR sampled subgraph: 841

wcp =

{
1, if s ∈ ETLR or o ∈ ETLR,

0, otherwise,
842
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Figure 6: Performance of ICL-RBMH under different
sampling hyperparameter configurations.

where ETLR is the set of all 1-hop neighbors identi-843

fied in the TLR stage. This guides the expansion844

toward semantically coherent subgraphs.845

A.2.3 Hyperparameter Sensitivity846

Experiment847

Figure 6 presents the performance in ICL-RBMH848

setting under varying sampling hyperparameters.849

We perturb each of the four γi parameters individ-850

ually (two settings per parameter), while keeping851

others fixed, and compare them against the default852

configuration. Across all variants, model perfor-853

mance remains stable, indicating that RBMH Sam-854

pling is robust to hyperparameter choices. More-855

over, ICL-RBMH consistently outperforms the856

baseline ICL-TLR across all settings.857

The sampling hyperparameter configurations858

and their corresponding performance metrics are859

summarized in Table 6, including mean and stan-860

dard deviation to reflect stability.861

Table 6: Performance of ICL-RBMH under different
sampling hyperparameter configurations on ICEWS14.

ID γ1 γ2 γ3 γ4 Hits@1 Hits@3 Hits@10

default 0.6 0.6 0.01 0.1 0.364 0.500 0.572
γ1-1 0.4 0.6 0.01 0.1 0.366 0.501 0.569
γ1-2 0.8 0.6 0.01 0.1 0.368 0.504 0.575
γ2-1 0.6 0.4 0.01 0.1 0.364 0.500 0.572
γ2-2 0.6 0.8 0.01 0.1 0.364 0.500 0.572
γ3-1 0.6 0.6 0.05 0.1 0.363 0.498 0.569
γ3-2 0.6 0.6 0.002 0.1 0.368 0.506 0.573
γ4-1 0.6 0.6 0.01 0.2 0.368 0.503 0.575
γ4-2 0.6 0.6 0.01 0.05 0.365 0.502 0.571

Mean 0.366 0.501 0.571
Std 0.0020 0.0024 0.0021

Baseline (ICL-TLR) 0.351 0.473 0.527

A.3 RBMH Algorithm 862

Algorithm 2 Rule-based Multi-hop history sam-
pling
Input: Temporal knowledge graph G, query
(sq, rq, ?, T ), learned rules T R, maximum history
length N , scoring function F , a set of TLR re-
trieved facts Gsq(sq, rq, T )
Output: A set of retrieved facts G(sq, rq, T )

1: M ← N− len(Gsq(sq, rq, T ))
2: if M = 0 then
3: G(sq, rq, T )← Gsq(sq, rq, T )
4: return G(sq, rq, T )
5: end if
6: C ← {(s, r, o, t,F(s, r, o, t)) | (s, r, o, t) ∈
G, t < T}

7: Ctop ← Top10M (C)
8: Csample ←WeightedSample(Ctop, M)
9: Gmh(sq, rq, T )← {(s, r, o, t) | (s, r, o, t, w) ∈
Csample}

10: G(sq, rq, T )← Gsq(sq, rq, T )∪Gmh(sq, rq, T )
11: return G(sq, rq, T )

B Computational Efficiency Analysis 863

RECIPE-TKG is designed to be parameter-efficient 864

and computationally lightweight while maintaining 865

strong performance. This section quantifies various 866

aspects of efficiency in our framework. 867

Parameter Efficiency Our framework fine-tunes 868

a small fraction of the total parameters in the 869

base LLM. For LLaMA2-7B, we update only LoRA 870

adapters (with rank 8, applied to query and value 871

projections across 32 transformer layers) and a self- 872

attention pooling module for entity embedding ag- 873

gregation. The trainable parameter count is approx- 874

imately 54.3M, which constitutes just 0.81% of the 875

base model’s 6.74B parameters. This parameter- 876

efficient design enables effective fine-tuning while 877

keeping most of the pre-trained knowledge intact. 878

Rule Mining Efficiency The temporal logical 879

rule mining process in our RBMH sampling strat- 880

egy is highly efficient. Table 7 shows the time 881

required for rule extraction across all datasets us- 882

ing 15 CPU processes (averaged over 5 runs). The 883

process completes in under 20 seconds even for 884

the largest dataset, representing negligible compu- 885

tational overhead. Furthermore, the extracted rules 886

capture persistent temporal patterns and are not 887

highly sensitive to minor dataset changes, allowing 888
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for infrequent updates when the knowledge graph889

evolves.890

Table 7: Rule mining time across datasets (in seconds).

Dataset ICEWS14 ICEWS18 GDELT YAGO

Time (s) 6.89 ± 0.08 16.72 ± 0.07 10.78 ± 0.08 2.73 ± 0.02

Training Overhead Table 8 compares training891

time per epoch between standard supervised fine-892

tuning and our contrastive fine-tuning on 1024 sam-893

ples. The contrastive objective introduces no ad-894

ditional training time, demonstrating its compu-895

tational efficiency despite the improved semantic896

learning.897

Table 8: Training time per epoch on 1024 samples.

Training Mode Time (s) ∆%

Fine-tuning (FT) 824.31 -
FT + Contrastive Loss 821.51 -0.34%

Inference Overhead Table 9 quantifies the run-898

time impact of our test-time filtering mechanism.899

On 1,000 test samples, filtering increases inference900

time by 16.6%, which is reasonable considering the901

consistent performance improvements in Hits@10902

across all datasets. The filtering step provides a fa-903

vorable trade-off between computational cost and904

accuracy gain.905

Table 9: Inference time on 1,000 samples.

Setting Time (s) ∆%

No filtering 2316.48 -
With filtering 2700.67 +16.60%

C Training Details906

C.1 Relation Classification907

The prompt used for relation classification is pro-908

vided in Figure 7.909

In cases where a neighbor is connected to the910

anchor via both a positive and a negative relation,911

it is excluded in training to avoid ambiguity.912

Figure 8 shows the distribution of relation types913

across four datasets. Positive and negative relations914

appear in roughly balanced proportions, while neu-915

tral relations are consistently less common. No-916

tably, YAGO exhibits a distinct relation distribu-917

tion where the majority of relations are classified as918

neutral. Upon inspection, we find that this reflects919

the actual semantic nature of the relations in the 920

dataset, which are mostly descriptive or taxonomic 921

rather than sentiment-oriented. Consequently, the 922

contrastive learning component has limited impact 923

on YAGO, as it relies on meaningful distinctions be- 924

tween positive and negative relations. The observed 925

performance gain on YAGO is therefore primarily 926

attributed to improvements in history sampling and 927

Test-time filtering. 928

C.2 Prompt 929

To guide the language model in performing tempo- 930

ral knowledge completion, we adopt a structured, 931

instruction-style prompt format shown in Figure 9. 932

The prompt defines the task explicitly: given a 933

chronological list of historical events represented 934

as quadruples, the model must predict the missing 935

object entity for a future temporal query. 936

Each historical fact is formatted 937

as {time}:[{subject}, {relation}, 938

{object_label}.{object}] where 939

{object_label} is a unique identi- 940

fier associated with the entity (e.g., 941

3380.Joseph_Robinette_Biden). This la- 942

beling scheme facilitates consistent reference 943

resolution and improves post-processing via 944

regex-based extraction. The final input ends 945

with the query, and the model is asked to gen- 946

erate the correct object in fully qualified form 947

{object_label}.{object}. 948

This prompt format is applied consistently across 949

both in-context learning and fine-tuning setups. 950

C.3 LoRA Formulation 951

We follow the standard LoRA setup (Hu et al., 952

2022). Given a frozen pretrained weight matrix 953

W0 ∈ Rd×k, LoRA introduces two trainable low- 954

rank matrices A ∈ Rd×r and B ∈ Rr×k with 955

r ≪ min(d, k), such that the original forward 956

transformation h(x) =W0x is modified as: 957

ĥ(x) =W0x+ABx. (10) 958

This design allows efficient fine-tuning by only 959

training A and B, while keeping the pretrained 960

weights W0 frozen. In our experiments, we adopt 961

the default LoRA implementation from the PEFT 962

library (Mangrulkar et al., 2022). 963

C.4 Implementation Details 964

We fine-tune LLaMA-2-7B and LLaMA-3-8B models 965

using LoRA adapters. All trainings are conducted 966
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Prompt for Relation Classification

You are analyzing relation labels from a political event knowledge graph, where each relation reflects
an action or request within a geopolitical context.
Classify the sentiment of the given relation as one of the following:

• positive (e.g., promoting peace, aid, cooperation)

• negative (e.g., violence, repression, aggression)

• neutral (e.g., procedural or ambiguous actions)

Avoid selecting "neutral" unless the relation is genuinely ambiguous or purely procedural in nature.

Figure 7: Prompt used for relation classification.

ICEWS14 ICEWS18 GDELT YAGO0

20

40

60

80

100

120

140

positive
negative
neutral

Figure 8: Distribution of relation types in four datasets
after automatic classification.

on 2 H100 GPUs in bfloat16 precision. We set967

maximum history length to 50 in history sampling968

according to the context length of LLaMA-2-7B. For969

fine-tuning, we train 1024-shots data for 50 epochs970

with the batch size of 512, the learning rate of 3e-4,971

the context length of 4096, the target length of 128,972

the LoRA rank of 8, the LoRA dropout rate of 0.05.973

For RECIPE-TKG, we train 6024-shots data (1024974

aligned with GenTKG and 5000 randomly sampled975

by seed 42) for 10 epochs, and other settings keep976

unchanged. Contrastive tuning uses a margin of 1.0977

and loss weight α = 0.2 to balance cross-entropy978

and contrastive objectives.979

Entities are tokenized using the native tokenizer980

of the LLM and embedded via the model’s em-981

bedding layer. A lightweight attention aggregator982

produces final entity embeddings, jointly trained983

with the model.984

C.5 Hyperparameter Sensitivity Experiment985

As shown in Figure 10, varying α from 0.2 to 0.8986

leads to marginal fluctuations across all evalua-987

tion metrics. These results suggest that the model988

Table 10: Performance under different contrastive
weight settings on ICEWS14.

Weight α Hits@1 Hits@3 Hits@10

0.2 0.392 0.521 0.580
0.5 0.389 0.521 0.579
0.8 0.392 0.520 0.576

Mean 0.391 0.521 0.578
Std 0.0014 0.0006 0.0020

is robust to the choice of α, and that CFT con- 989

tributes consistently across a wide range of weight- 990

ing schemes. Table 10 presents the sensitivity of 991

model performance to the contrastive weight α. 992

The consistently small standard deviations across 993

metrics suggest that the model is robust to varia- 994

tions in α. 995

D Test-Time Filtering 996

Embedding Model. To compute semantic sim- 997

ilarity between predictions and context, we use 998

the all-mpnet-base-v2 model (Song et al., 2020; 999

Sentence-Transformers) from HuggingFace, a pre- 1000

trained sentence transformer with 768-dimensional 1001

output. We treat both the generated prediction 1002

string and the full in-context prompt as input se- 1003

quences and extract mean-pooled embeddings for 1004

similarity calculation. 1005

Similarity Distribution Analysis. We analyze 1006

the cosine similarity ϕ(p, c) between prediction and 1007

context across 7,371 test samples from ICEWS14 1008

using the contrastively tuned model. The average 1009

similarity score for correct predictions exceeds that 1010

of incorrect ones by ∆µ = 0.057. This supports 1011
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Prompt Example

You must be able to correctly predict the next {object} from a given text consisting of multiple
quadruplets in the form of "{time}:[{subject}, {relation}, {object_label}.{object}]"
and the query in the form of "{time}:[{subject}, {relation}," in the end. You must generate
{object_label}.{object}.

2014-01-15: [Mehmet_Simsek, Make_statement, 5195.Other_Authorities_(Turkey)]
2014-01-20: [Nuri_al-Maliki, Consult, 3380.Joseph_Robinette_Biden]
2014-01-25: [Joseph_Robinette_Biden, Make_an_appeal, 3990.Massoud_Barzani]
2014-02-01: [Joseph_Robinette_Biden, Make_an_appeal_or_request,

Figure 9: Instruction-style prompt format for TKG forecasting.
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Figure 10: Effect of contrastive weight (α)

our assumption that similarity can serve as a proxy1012

for semantic plausibility.1013

Novelty vs. Utility. We further observe that:1014

• 9.1% of predictions are non-historical despite1015

the gold answer being present inH.1016

• Among all non-historical predictions, only1017

1.5% are correct and improve Hits@10.1018

These findings indicate that many model gener-1019

ations deviate from the historical context unnec-1020

essarily and fail to yield substantial gains. They1021

motivate fallback to more salient entities when re-1022

generation fails.1023

Threshold Optimization. The optimal threshold1024

τ∗ is learned by maximizing separation between1025

correct (C) and incorrect (I) prediction similarities:1026

τ∗ = argmax
τ

[FC(τ)− FI(τ)] (11)1027

where F is the empirical CDF of cosine similarity1028

values over samples from C and I.1029

Fallback Scoring. If generation fails after k it- 1030

erations (we use k = 1), the model selects a final 1031

answer fromH using: 1032

f(h) =
count(h)
|H|

, (12) 1033

r(h) = 1− pos(h)
|H|

, (13) 1034

ψ(h) = β · f(h) + (1− β) · r(h), (14) 1035

where pos(h) denotes the rank of h in its occur- 1036

rence order. We set β = 0.6 in all experiments. 1037

We compute cosine similarities between pre- 1038

dicted entities and prompt context using the 1039

all-mpnet-base-v2 sentence transformer from 1040

HuggingFace. The threshold τ∗ is tuned on a devel- 1041

opment set by maximizing the separation between 1042

correct and incorrect predictions. 1043

Figure 11 examines the effect of the semantic 1044

filtering threshold τ . As the threshold increases, 1045

Hits@10 improves, peaking near τ = 0.6. Al- 1046

ways falling back to historical entities (τ = 1.0) 1047

slightly increases accuracy at the cost of explo- 1048

ration and computational efficiency. Threshold 1049

τ = 0.6 balances correction with flexibility, en- 1050

abling the model to revise low-quality outputs with- 1051

out overconstraining its generation space. 1052

E Cross-Dataset Filtering Performance 1053

To evaluate the robustness and generalization ca- 1054

pability of our test-time filtering approach, we an- 1055

alyze its performance across all four benchmark 1056

datasets. While the filtering mechanism was intro- 1057

duced primarily to reduce hallucinations in open- 1058

ended generation, an important question is whether 1059

this component generalizes well across different 1060

temporal knowledge domains or if its effectiveness 1061

is dataset-dependent. 1062
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Figure 11: Effect of filtering threshold (τ )

Table 11: Effect of filtering across datasets.

Method Hits@1 Hits@3 Hits@10

ICEWS14

RECIPE-TKG 0.393 0.526 0.651
RECIPE-TKG w/o Filter 0.392 0.521 0.580

ICEWS18

RECIPE-TKG 0.224 0.369 0.516
RECIPE-TKG w/o Filter 0.242 0.382 0.437

GDELT

RECIPE-TKG 0.095 0.192 0.327
RECIPE-TKG w/o Filter 0.092 0.189 0.266

YAGO

RECIPE-TKG 0.811 0.880 0.930
RECIPE-TKG w/o Filter 0.759 0.822 0.842

Table 11 shows the impact of our similarity-1063

based filtering module across all datasets by com-1064

paring the full RECIPE-TKG framework against1065

a variant without filtering. The filtering module1066

consistently improves Hits@10 across all datasets,1067

with gains ranging from 7.1 percentage points1068

(ICEWS14) to 9.4 percentage points (GDELT).1069

Most notably, on the YAGO dataset, the filtering1070

mechanism substantially improves performance1071

across all metrics (Hits@1/3/10), suggesting partic-1072

ular effectiveness on datasets with more descriptive1073

entities and varied relation types.1074

These results demonstrate that the filtering mech-1075

anism’s effectiveness is not dependent on dataset-1076

specific properties, but rather reflects a general1077

principle: by enforcing semantic consistency be-1078

tween predictions and input context, we can en-1079

hance model performance across diverse temporal1080

knowledge domains. The observed consistency1081

suggests that contextual alignment serves as a reli-1082

able signal for identifying and correcting implausi-1083

ble outputs, regardless of the specific entities and1084

relations involved.1085

F Baseline Model Details 1086

We compare RECIPE-TKG against several base- 1087

line methods that reflect the dominant model- 1088

ing paradigms for TKG forecasting. Embedding- 1089

based methods include RE-GCN (Li et al., 2021), 1090

which applies relational graph convolutions to 1091

timestamped graph snapshots; xERTE (Han et al., 1092

2020), which combines subgraph sampling and 1093

path-based reasoning using attention for explain- 1094

ability; TANGO (Han et al., 2021), which uses neu- 1095

ral ODEs to learn continuous-time entity embed- 1096

dings; and TimeTraveler (Sun et al., 2021), which 1097

employs reinforcement learning to explore multi- 1098

hop temporal paths. Rule-based method includes 1099

TLogic (Liu et al., 2022) relies on extracted sym- 1100

bolic rules for forecasting. The results of these 1101

models are derived from Liao et al. (2024) 1102

We also replicate two recent LLM-based meth- 1103

ods. ICL (Lee et al., 2023) applies in-context learn- 1104

ing by prepending historical quadruples to a query 1105

and using greedy decoding with a regex-based an- 1106

swer extraction. GenTKG (Liao et al., 2024) per- 1107

forms parameter-efficient fine-tuning with LoRA 1108

adapters, and combines this with a rule-based his- 1109

tory sampling module. We use their official code- 1110

bases and replicate their evaluation pipelines for 1111

fair comparison. 1112

G Baseline Model Details 1113

We compare RECIPE-TKG against several base- 1114

line methods that reflect the dominant modeling 1115

paradigms for TKG forecasting. 1116

Embedding-based methods include RE- 1117

GCN (Li et al., 2021), which applies relational 1118

graph convolutions to timestamped graph snap- 1119

shots; RE-NET (Jin et al., 2020), which applies 1120

R-GCN (Schlichtkrull et al., 2018) for message 1121

passing for each snapshot and then uses tem- 1122

poral aggregation across multiple snapshots; 1123

xERTE (Han et al., 2020), which combines 1124

subgraph sampling and path-based reasoning 1125

using attention for explainability; TANGO (Han 1126

et al., 2021), which uses neural ODEs to learn 1127

continuous-time entity embeddings; and Time- 1128

Traveler (Sun et al., 2021), which employs 1129

reinforcement learning to explore multi-hop 1130

temporal paths. 1131

Rule-based method TLogic (Liu et al., 2022) 1132

relies on extracted symbolic rules for forecasting. 1133
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LLM-based methods We implement several re-1134

cent LLM-based approaches. ICL (Lee et al., 2023)1135

applies in-context learning by prepending histor-1136

ical quadruples to a query and using greedy de-1137

coding with regex-based answer extraction. Gen-1138

TKG (Liao et al., 2024) performs parameter-1139

efficient fine-tuning with LoRA adapters, com-1140

bined with rule-based history sampling. PPT (Xu1141

et al., 2023) converts quadruples into natural lan-1142

guage prompts and uses masked token prediction1143

to leverage semantic information from pretrained1144

language models. CoH (Xia et al., 2024b) ex-1145

plores high-order histories step-by-step to better1146

utilize richer historical information for LLM rea-1147

soning. HFL (Xu et al., 2025) learns from histor-1148

ical facts across different time periods through a1149

multi-perspective sampling strategy that focuses1150

on mining relational associations. We use official1151

codebases where available and replicate evaluation1152

pipelines for fair comparison.1153

Note on embedding-based baselines Several1154

specialized embedding models for TKG com-1155

pletion (e.g., RotateQVS (Chen et al., 2022),1156

BoxTE (Messner et al., 2022), CGE (Ying et al.,1157

2024)) have shown strong performance but are1158

excluded from our main evaluation for three rea-1159

sons. First, they use different dataset splits (e.g.,1160

ICEWS14 with 72,826/8,941/8,963 train/valid/test1161

samples vs. our 74,845/8,514/7,371 split). Second,1162

embedding methods require task-specific mathe-1163

matical engineering, limiting cross-dataset gen-1164

eralizability, while LLM-based approaches ben-1165

efit from pre-trained knowledge and adaptability.1166

Third, there has been limited direct comparison be-1167

tween these paradigms in the literature. We include1168

only embedding-based methods using consistent1169

dataset splits for meaningful comparison.1170

H Dataset Statistics1171

We use four standard temporal knowledge graph1172

benchmarks. ICEWS14 and ICEWS18 are subsets1173

of the Integrated Crisis Early Warning System, con-1174

taining geopolitical event records with daily granu-1175

larity. GDELT provides global political event data,1176

filtered to the most frequent events for tractability.1177

YAGO consists of curated facts from a multi-year1178

period. The statistics for these datasets are pro-1179

vided in Table 12.1180

I More Analysis 1181

I.1 Analysis of Contrastive Fine-Tuning 1182

To complement the ablation results in Section 6.1, 1183

we analyze how contrastive fine-tuning affects 1184

model behavior in low-history regimes—settings 1185

where standard exact-match metrics such as 1186

Hits@k may fail to capture the semantic relevance 1187

of model predictions. 1188

Setup. We group ICEWS14 test samples by his- 1189

tory length and compute the semantic distance be- 1190

tween each model prediction and the gold entity. 1191

We compare three supervision settings: ICL, SFT, 1192

and contrastive FT, all evaluated under the same 1193

TLR history sampling. 1194

We define semantic distance using cosine simi- 1195

larity between predicted and gold entities in a sen- 1196

tence embedding space: 1197

ϕ(p, o) = 1− cos-sim(E(p), E(o)), (15) 1198

where E(·) denotes the sentence transformer used 1199

in Section 4.3. Lower ϕ indicates higher semantic 1200

alignment, even if the prediction does not exactly 1201

match the gold entity. 1202

Contrastive Tuning Improves Semantic Ground- 1203

ing. Figure 12 plots the semantic distance ϕ(p, o) 1204

against the retrieved history length. All models 1205

show the expected trend: greater history generally 1206

yields predictions closer to the gold entity in em- 1207

bedding space. However, the distinction between 1208

supervision strategies becomes clear in low-history 1209

regimes. In the encircled region (history length 1210

≤ 3), contrastive fine-tuning produces fewer high- 1211

distance predictions than both ICL and SFT. This 1212

demonstrates that contrastive learning enhances the 1213

model’s ability to infer plausible entities even when 1214

the input lacks strong historical evidence. 1215

Multi-hop Sampling Further Stabilizes Model 1216

Behavior. To examine how our sampling strategy 1217

affects model reasoning on sparse-history inputs, 1218

we repeat the same experiment using our proposed 1219

RBMH Sampling. For comparability, we compute 1220

semantic distances on the same subset of samples 1221

originally identified as short-history under TLR. 1222

As shown in Figure 13, contrastive-tuned mod- 1223

els under RBMH Sampling exhibit more uniform 1224

semantic behavior across history lengths. Unlike 1225

the steep drop-off observed under TLR, the seman- 1226

tic distance remains relatively stable, indicating 1227

that many samples previously limited by shallow 1228
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Table 12: Dataset statistics used in our experiments. Time granularity varies by dataset and influences temporal
resolution.

Dataset #Train #Valid #Test #Entities #Relations Time Gap

ICEWS14 74,845 8,514 7,371 7,128 230 1 day
ICEWS18 373,018 45,995 49,545 23,033 256 1 day
GDELT 79,319 9,957 9,715 5,850 238 15 mins
YAGO 220,393 28,948 22,765 10,778 24 1 year

context can now be grounded through richer struc-1229

tural and temporal cues. This supports our motiva-1230

tion in Section 2.1: one-hop sampling often fails1231

to provide the necessary relational evidence, and1232

multi-hop expansion is essential for enabling reli-1233

able reasoning, rather than the test instances being1234

inherently harder.1235

Qualitative Support. Figure 14 presents qual-1236

itative examples where contrastive-tuned models1237

produce predictions that are not exact matches but1238

remain relationally and contextually appropriate. In1239

contrast, ICL and SFT often produce surface-level1240

or unrelated completions. These examples, paired1241

with the distributional evidence above, underscore1242

how contrastive fine-tuning improves semantic gen-1243

eralization and interpretability, particularly when1244

Hits@k offers limited signal.1245

Case Study. To better understand the behavior1246

of RECIPE-TKG, we provide a case study1247

comparing the top-10 predictions of four methods1248

on a specific query. The ground-truth object is1249

High_Ranking_Military_Personnel_(Nigeria),1250

which is not explicitly present in the history. As1251

shown in Figure 15, none of the models are1252

able to perfectly predict the correct entity.1253

However, the predictions made by RECIPE-1254

TKG models are clearly more semantically1255

aligned with the ground truth. For example,1256

predictions such as Military_(Nigeria) and1257

Defense_Personnel_(Nigeria) closely ap-1258

proximate the true answer in meaning, whereas1259

other models (ICL and GenTKG) fail to capture1260

such relevant semantics. This demonstrates the1261

advantage of contrastive fine-tuning in shaping the1262

embedding space, allowing the model to produce1263

more relationally compatible predictions even1264

when exact matches are not observed in history.1265

J Use of AI Tools 1266

AI assistants were used to support writing (e.g., 1267

phrasing suggestions) and code generation (e.g., 1268

syntax templates). All such outputs were subject 1269

to thorough human verification, and the authors 1270

remain fully responsible for the content presented. 1271
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Figure 12: Semantic distance (ϕ) vs. history length on ICEWS14 under TLR sampling. The encircled region
highlights CL’s improved semantic grounding in sparse-history settings.

Figure 13: Semantic distance (ϕ) vs. history length for the same TLR-identified sparse samples, but evaluated under
RBMH Sampling. The model exhibits more stable behavior across history lengths.

Figure 14: Semantic distance (ϕ) vs. history length for the same TLR-identified sparse samples, but evaluated under
RBMH Sampling. CFT learns better with RBMH as it samples the deeper relationships between entities.
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Model Outputs
ICL-LLaMA2-7b
1. Citizen_(Nigeria)
2. Boko_Haram
3. Suleiman_Abba
4. Other_Authorities_/_Officials_(Nigeria)
5. Aliyu_Mohammed_Gusau
6. Nigerian_Army
7. Nigerian_Army
8. Nigerian_Army
9. Nigerian_Army
10. Other_Authorities_/_Officials_(Nigeria)

RECIPE-TKG-LLaMA2-7b
1. Citizen_(Nigeria)
2. Boko_Haram
3. Suleiman_Abba
4. Other_Authorities_/_Officials_(Nigeria)
5. Aliyu_Mohammed_Gusau
6. Government_(Nigeria)
7. Military_(Nigeria)
8. Abdul_Aziz_Yari
9. Chief_of_Staff_(Nigeria)
10. Abdul_Aziz_Yari

GenTKG-LLaMA2-7b
1. Citizen_(Nigeria)
2. Boko_Haram
3. Suleiman_Abba
4. Other_Authorities_/_Officials_(Nigeria)
5. Nigeria
6. Aliyu_Mohammed_Gusau
7. Nigeria
8. Nigeria
9. Nigeria_Army
10. None

RECIPE-TKG-LLaMA3-8b
1. Citizen_(Nigeria)
2. Other_Authorities_/_Officials_(Nigeria)
3. Boko_Haram
4. Suleiman_Abba
5. Defense_/_Security_Ministry_(Nigeria)
6. Terrorist_(Boko_Haram)
7. Employee_(Nigeria)
8. Terrorist_(Nigeria)
9. Senior_Military_Official_(Nigeria)
10. Defense_Personnel_(Nigeria)

Ground-truth entity: High_Ranking_Military_Personnel_(Nigeria)

Figure 15: Top-10 predictions from four models. RECIPE-TKG produce semantically closer outputs to the ground
truth.
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