

RECIPE-TKG: From Sparse History to Structured Reasoning for LLM-based Temporal Knowledge Graph Completion

Anonymous ACL submission

Abstract

Temporal Knowledge Graphs (TKGs) represent dynamic facts as timestamped relations between entities. While Large Language Models (LLMs) show promise for TKG completion, current approaches typically apply generic pipelines (neighborhood sampling, supervised fine-tuning, uncalibrated inference) without task-specific adaptation to temporal relational reasoning. Through systematic analysis under unified evaluation, we reveal three key failure modes: (1) retrieval strategies miss multi-hop dependencies when target entities are not directly observed in history, (2) standard fine-tuning reinforces memorization over relational generalization, and (3) uncalibrated generation produces contextually implausible entities. We present RECIPE-TKG, a parameter-efficient framework that addresses each limitation through principled, task-specific design: rule-based multi-hop sampling for structural grounding, contrastive fine-tuning to shape relational compatibility, and test-time semantic filtering for contextual alignment. Experiments on four benchmarks show that RECIPE-TKG outperforms prior LLM-based methods across input regimes, achieving up to 22.4% relative improvement in Hits@10, with particularly strong gains when historical evidence is sparse or indirect.

1 Introduction

Temporal Knowledge Graphs (TKGs) are widely used to represent dynamic, real-world knowledge across domains such as news (Boschee et al., 2015; Leetaru and Schrodt, 2013), biomedicine (Chaturvedi, 2024), and finance (Dukkipati et al., 2025). They capture facts as time-stamped relational tuples (subject, relation, object, timestamp), modeling how interactions evolve over time (Tresp et al., 2015). A core task in this setting is TKG completion,

The code is available at [this anonymous repository](#).

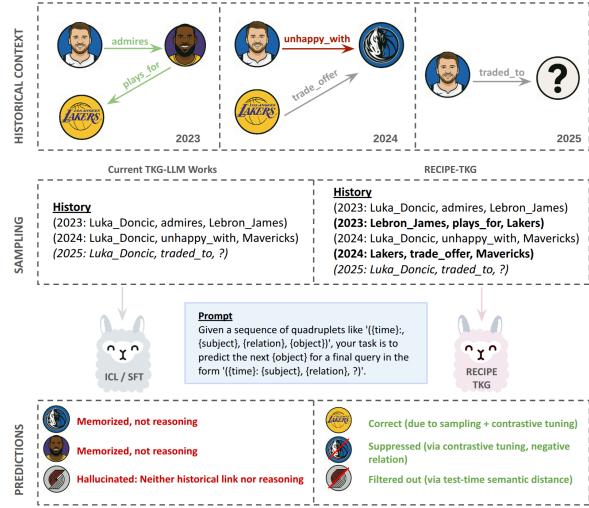


Figure 1: Example of LLM-based TKG reasoning. Pipelines that rely on one-hop context tend to prefer locally frequent or lexically similar entities, yielding off-context outputs. RECIPE-TKG augments history with structurally and temporally richer facts and applies semantic checking, producing more plausible predictions.

which involves predicting missing or future links based on observed temporal interactions. This task requires reasoning over both relational and temporal structure, with downstream applications in forecasting and decision support (Trivedi et al., 2017; Jin et al., 2020).

The rise of Large Language Models (LLMs) has sparked interest in using pretrained generative models for TKG completion, driven by their generalization capability and emergent reasoning skills (Liao et al., 2024; Luo et al., 2024; Lee et al., 2023). While LLM reasoning is often benchmarked on math or logic-based tasks (Lewkowycz et al., 2022; Wang et al., 2025), TKG completion provides a complementary testbed that emphasizes two challenges: (1) integrating temporal and structural signals beyond one-hop evidence, and (2) generalizing when history is *sparse* or the answer is *non-historical* (absent from retrieved context and typi-

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061 cally reachable only via multi-hop paths).

062 Recent prompting-based and fine-tuned LLM
063 methods (Lee et al., 2023; Liao et al., 2024; Luo
064 et al., 2024; Xia et al., 2024a) report promising
065 results. However, **these approaches typically adapt**
066 **LLMs through generic pipelines** borrowed from
067 other domains: shallow neighborhood sampling for
068 context retrieval, standard supervised fine-tuning
069 objectives, and uncalibrated inference at test time.
070 This overlooks the unique characteristics of tem-
071 poral relational reasoning, where answers often re-
072 quire multi-hop inference over time-evolving struc-
073 ture rather than surface pattern matching. As illus-
074 trated in Figure 1, models frequently favor entities
075 that are lexically similar or locally frequent in the
076 input even when the graph structure supports better
077 completions.

078 **Under a unified evaluation (Section 2), our**
079 **analysis reveals three recurrent limitations.** (1)
080 *Shallow retrieval* misses multi-hop, time-aligned
081 evidence, which is crucial when the gold entity is
082 not observed in history. (2) *Standard fine-tuning*
083 primarily rewards token correctness and reinforces
084 memorization rather than relational compatibility,
085 with sharp drops on queries that require generaliza-
086 tion beyond observed patterns. (3) *Uncalibrated in-
087 ference* produces contextually implausible entities,
088 often deviating from history without improving ac-
089 curacy. These limitations indicate that task-specific
090 design is necessary for effective LLM-based TKG
091 completion.

092 We present **RECIPE-TKG**, a parameter-
093 efficient framework that addresses each limi-
094 tation with a principled, stage-wise design. (1)
095 **Rule-Based Multi-Hop (RBMH) sampling** en-
096 riches the retrieved history with structurally di-
097 verse, temporally aligned facts to improve multi-
098 hop reachability. (2) **Contrastive Fine-Tuning**
099 (**CFT**) augments next-token prediction with a re-
100 lational compatibility objective over LoRA adapters,
101 encouraging discrimination among plausible can-
102 didates rather than memorization of token patterns.
103 (3) **Test-time semantic filtering** verifies con-
104 textual alignment during inference and refines low-
105 alignment outputs, reducing off-context predictions
106 without additional training.

107 Across four benchmarks, RECIPE-TKG im-
108 proves accuracy and plausibility, with especially
109 strong gains in short-history and non-historical set-
110 tings, and achieves up to **22.4%** relative improve-
111 ment in Hits@10 over prior LLM-based methods.

Contributions.

- We standardize evaluation to separate the effects of sampling, training, and inference, clarifying where reported gains originate.
- We provide a systematic characterization of failure modes in LLM-based TKG completion, centered on retrieval depth, supervision signal, and inference calibration.
- We introduce **RECIPE-TKG**, a task-specific, parameter-efficient framework whose stages directly target these limitations, yielding consistent gains across datasets and input regimes.

2 Unified Analysis of Failure Modes in LLM-based TKG Completion

Despite recent progress, LLMs adapted to TKG completion often default to surface patterns and fail when structural or temporal cues are indirect or require multi-hop reasoning. To guide design choices, we conduct a controlled re-evaluation of recent approaches (Lee et al., 2023; Liao et al., 2024) under a unified setup.

2.1 Grounding Predictions in Historical Context

Definition 2.1

A query’s history is **sparse** when the retrieved context contains few and/or low-diversity facts. A prediction is **non-historical** if the gold entity does not appear in the retrieved history prior to the query time. The notions overlap but are not identical.

Figure 2(a–c) provides three empirical facts that drive our design. (1) **History length matters:** Hits@10 is below 0.3 with only one retrieved fact and exceeds 0.5 with 20–50 facts, and this trend holds for both ICL and SFT (Fig. 2a). (2) **Structure, not just tokens:** over 25% of targets require multi-hop reachability and about 4% are unreachable with shallow sampling (Fig. 2b), indicating that merely adding more one-hop facts is insufficient. (3) **Non-historical collapse:** while LLMs achieve 80–83% Hits@10 on historical cases, accuracy falls below 5% when the gold entity is unseen in history (Fig. 2c), revealing a reliance on lexical overlap and pattern recall.

Taken together, these results point to *depth and temporal alignment in history sampling*, rather than

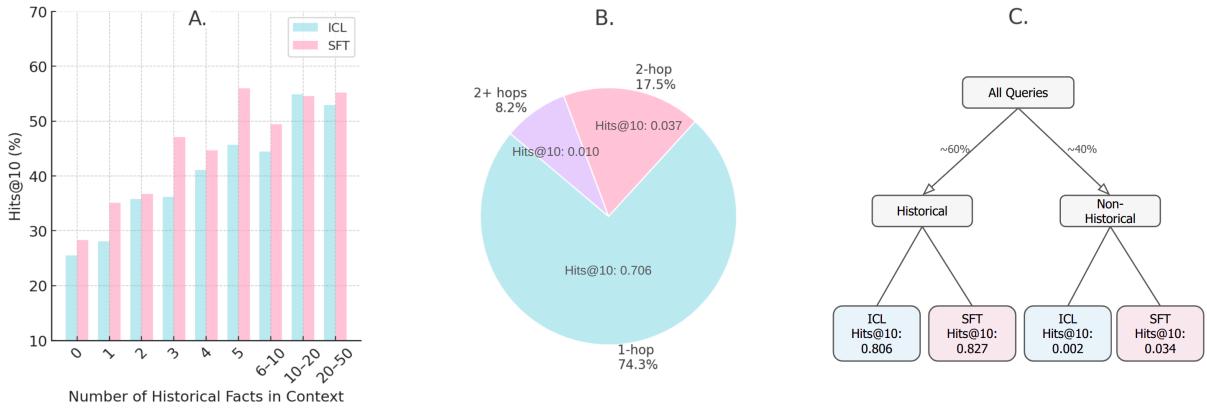


Figure 2: Failures under short history and non-historical answers. Dataset: ICEWS14. Model: LLaMA-2-7B. (a) Hits@10 vs. number of retrieved facts (history length): longer histories support better reasoning. (b) Share of queries by minimum hop distance from subject to gold entity: over 25% require multi-hop reachability. (c) Hits@10 by historical (gold seen in retrieved history) vs. non-historical (gold unseen) splits for ICL and SFT, showing a sharp drop in the latter.

longer but shallow context, as the primary driver of accuracy. They motivate a mitigation that (i) recovers multi-hop, time-aligned evidence and (ii) trains for *relational compatibility* beyond memorized associations. We operationalize this in Section 4 via multi-hop, graph-aware history sampling and CFT that encourages such compatibility.

2.2 Limitations of Supervised Fine-Tuning

Table 1: Re-evaluation of ICL and SFT using consistent decoding and evaluation. Gains largely stem from evaluation setup and history sampling; the marginal effect of SFT is smaller under a unified setup.

Method	Hits@1	Hits@3	Hits@10
<i>Reported in GenTKG</i>			
ICL (naive sampling + basic eval)	0.258	0.430	0.510
+ Fine-Tuning (TLR sampling + eval)	0.369	0.480	0.535
<i>Re-evaluated under consistent setup</i>			
ICL (naive sampling) + GenTKG eval	0.344	0.464	0.523
ICL (TLR sampling) + GenTKG eval	0.351	0.473	0.527
SFT (TLR sampling) + GenTKG eval	0.364	0.476	0.532

Supervised fine-tuning (SFT) is widely used to adapt LLMs to TKG tasks, and prior work such as GenTKG (Liao et al., 2024) reports notable improvements over prompting-based strategies (Lee et al., 2023). However, our re-evaluation under controlled conditions shows that much of this improvement originates not from fine-tuning itself, but from differences in sampling strategies and evaluation setups.

Evaluation Frameworks Explain Much of the Gap. LLMs produce open-ended text that requires careful postprocessing to extract valid entity predictions. While Lee et al. (2023) uses a basic evaluation setup, GenTKG applies a more refined

pipeline with canonicalization and output filtering, making direct comparisons misleading.

To disentangle these effects, we re-evaluate prompting-based strategies and fine-tuned models with different sampling and evaluation pipelines under a unified framework. We compare naive sampling used in Lee et al. (2023) and TLR sampling (Liao et al., 2024), and two evaluation settings (basic eval and GenTKG eval (Liao et al., 2024)). As shown in Table 1, replacing the evaluation code alone increases Hits@1 from 25.8% to 34.4%. TLR sampling provides a modest improvement (35.1%) compared to one-hop sampling, while fine-tuning adds only a small additional gain (36.4%). This suggests that a large portion of the reported gain stems from implementation choices, not from the model’s improved reasoning capabilities.

Fine-tuning alone does not fix generalization. As established in Section 2.1, both ICL and fine-tuned models struggle with non-historical predictions, where the correct answer does not appear in the retrieved history. These failures persist across a range of input sizes and are especially severe when the gold entity requires multi-hop reasoning, which is not supported by current sampling methods. Fine-tuning improves memorization of patterns seen during training but does not provide the relational inductive bias needed to reason about unseen or indirectly connected entities.

Motivating contrastive fine-tuning. We therefore supplement next-token prediction with a contrastive objective that explicitly separates plausible from implausible candidates conditioned on relations, encouraging compatibility-driven discrimination under sparse or indirect evidence (Section 4).

153
154
155
156
157
158
159
160

161
162
163
164
165
166
167
168
169

170
171
172
173
174

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

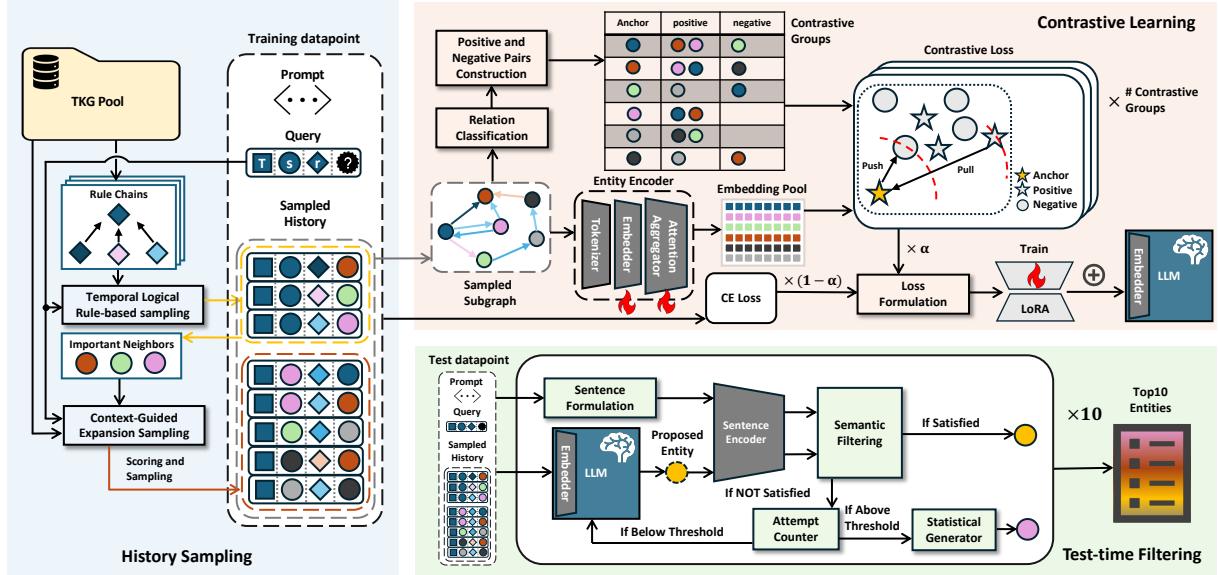


Figure 3: **Overview of RECIPE-TKG.** RECIPE-TKG follows a three-stage framework: (1) **History Sampling**, which retrieves query-relevant facts via a two-phase strategy combining rule-based retrieval and context-guided expansion; (2) **Contrastive Learning**, which jointly optimizes entity embeddings using contrastive and cross-entropy losses. Positive/negative pairs are sampled from the subgraph, and embeddings are generated via a learnable encoder; (3) **Test-time Filtering**, where predicted entities are iteratively verified by a semantic filter. Unsatisfactory outputs are refined using a statistical generator until confident predictions are obtained.

3 Preliminaries

Problem Formulation. A Temporal Knowledge Graph is a collection of time-stamped facts represented as quadruples (s, p, o, t) , where s and o are subject and object entities, p is a relation, and t denotes the timestamp of the event. Formally, a TKG is denoted as $\mathcal{G} = (\mathcal{V}, \mathcal{R}, \mathcal{E}, \mathcal{T})$, where \mathcal{V} is the set of entities, \mathcal{R} the relations, \mathcal{E} the event facts, and \mathcal{T} the time indices. Each time step t defines a historical snapshot $\mathcal{G}_t \subseteq \mathcal{E}$. The forecasting task involves predicting a missing entity in a future quadruple. Given a query of the form $(s, p, ?, t)$ or $(?, p, o, t)$ and a set of historical snapshots $\{\mathcal{G}_1, \dots, \mathcal{G}_{t-1}\}$, the model must return the most plausible entity that completes the query at time t .

Low-Rank Adaptation (LoRA) To reduce the number of trainable parameters, we adopt LoRA (Hu et al., 2022), which re-parameterizes the weight update as % %

$$\hat{h}(x) = W_0 x + A B x, \quad (1)$$

where W_0 is a frozen pretrained weight and A, B are trainable low-rank matrices.

4 Method

In this section, we present RECIPE-TKG, a three-stage LLM-based lightweight (see Appendix B) framework for temporal knowledge forecasting. The complete framework is illustrated in Figure 3.

4.1 RBMH: Rule-Based Multi-Hop History Sampling

The first stage of RECIPE-TKG focuses on retrieving a compact yet informative history from the temporal knowledge graph \mathcal{G} . For a given query $(s_q, p_q, ?, T)$, we aim to retrieve historical facts $\{(s, p, o, t) \in \mathcal{G} \mid t < T\}$ that are temporally valid and structurally relevant. Our sampling process combines rule-based retrieval with context-guided expansion to provide richer support for reasoning, particularly in sparse or non-historical settings.

Stage 1: Temporal Logical Rule-based Sampling. We begin by retrieving subject-aligned 1-hop facts using a rule-based procedure adapted from TLR (Liao et al., 2024), which learns relational rules of the form $p_q \Leftarrow \{p_{b_1}, \dots, p_{b_k}\}$ through 1-step temporal random walks, capturing event regularities. We retrieve historical quadruples (s, p, o, t) such that $s = s_q$ and p appears in the rule body for the query relation p_q . See Appendix A.1 for the details.

However, this 1-hop retrieval cannot reach facts involving semantically relevant but structurally distant entities. Due to the fixed number of learned rules, this stage often retrieves fewer than N quadruples, the maximum the LLM can handle. This motivates a second stage to expand context with more diverse and informative facts.

265 **Stage 2: Context-guided Multi-hop Expansion**

266 We then sample additional historical facts from
 267 \mathcal{G} . The candidate pool includes any quadruples not
 268 retrieved in Stage 1 whose subjects differ from s_q .

269 This stage is designed to support multi-hop reasoning by identifying facts that may not directly
 270 connect to the query subject but are structurally and
 271 semantically relevant. Each candidate (s, p, o, t) is
 272 assigned a composite weight:

274
$$w = w_n \cdot w_f \cdot (w_t + w_c + w_{cp}), \quad (2)$$

275 where w_n downweights unreachable or distant
 276 nodes, w_f penalizes high-frequency triples, w_t priori-
 277 tizes temporal recency, w_c favors co-occurrence
 278 with the query subject or relation, and w_{cp} rein-
 279 forces connectivity with the initial TLR context.

280 To sample from candidate pool, We first select
 281 the top $10 \times M$ candidates by score to form a re-
 282duced pool, where M is the context window bud-
 283 get. From this pool, we sample M quadruples with
 284 probabilities proportional to their weights. This
 285 soft filtering strategy preserves diversity while pri-
 286 oritizing high-quality candidates, avoiding over-
 287 reliance on only the highest-scoring facts. Our two-
 288 stage RBMH sampling method supports reasoning
 289 beyond immediate neighbors and avoids overfitting
 290 to shallow or overly common facts. The overall
 291 design motivation, formal definitions, hyperparam-
 292 eters and algorithms are provided in Appendix A.2.

293 **4.2 Contrastive Fine-Tuning for Structured**
 294 **Reasoning**

295 To improve generalization beyond memorized en-
 296 tity associations, we introduce a contrastive fine-
 297 tuning objective that supplements the standard next-
 298 token prediction loss, helping to disambiguate plau-
 299 sible from implausible predictions, especially when
 300 historical context is sparse or indirect.

301 **Relation-Guided Contrastive Pair Construction.**
 302 Our design is guided by the international relations
 303 principle, *The enemy of my enemy is my friend*,
 304 which reflects relational patterns common in geo-
 305 political TKGs and motivates how we position enti-
 306 ties in embedding space. Inspired by this structure,
 307 we first categorize relations into **positive**, **ne-
 308 gative**, and **neutral** types using GPT-4o, minimiz-
 309 ing the inclusion of neutral cases (see Appendix C.1).
 310 Given a sampled subgraph (Figure 3), we treat each
 311 unique entity as an anchor and examine its 1-hop
 312 neighbors. A neighbor is assigned as a *positive*
 313 sample if it connects via a positive relation, or a

negative sample if it connects via a negative relation.
 314 If both types of edges exist, the neighbor is
 315 excluded to avoid contradiction. Neutral relations
 316 are ignored. This process forms contrastive groups
 317 that are used to calculate the contrastive loss.
 318

319 **Entity Embedding Encoding.** Since an entity
 320 typically spans multiple tokens, we adopt a multi-
 321 stage process to compute its representation. First,
 322 the entity string is tokenized. Each resulting token
 323 is then passed through the model’s embedding layer
 324 (embedder), which produces an embedding vector.
 325 These token embeddings $\{h_1, h_2, \dots, h_k\}$ are sub-
 326 sequently aggregated into a single entity-level em-
 327 bedding e using a trainable **attention aggregator**.
 328

The final embedding is a weighted sum:

$$e = \sum_{j=1}^k \lambda_j h_j, \quad (3)$$

330 where λ_j are attention weights satisfying $\sum_j \lambda_j =$
 331 1. Both the embedding layer and the aggregator
 332 are learnable modules, jointly optimized during
 333 fine-tuning.

334 **Training Objective.** The overall loss function is
 335 defined as:

$$\mathcal{L} = \alpha \cdot \mathcal{L}_{\text{contrastive}} + (1 - \alpha) \cdot \mathcal{L}_{\text{ce}}(o, o_p), \quad (4)$$

336 where \mathcal{L}_{ce} denotes the cross-entropy loss between
 337 the predicted token o_p and the ground truth o ,
 338 $\mathcal{L}_{\text{contrastive}}$ represents the contrastive loss, and $\alpha \in$
 339 $[0, 1]$ is a balancing hyperparameter.

340 The contrastive loss is formulated as:

$$\mathcal{L}_{\text{contrastive}} = \frac{1}{N_c} \sum_{i=1}^{N_c} \max \left(0, \right. \\ \left. \|a_i - pos_i\|^2 - \|a_i - neg_i\|^2 + m \right) \quad (5)$$

341 where N_c is the number of contrastive groups,
 342 and a_i denotes the embedding of the anchor entity.
 343 For each group, pos_i is the hardest positive, defined
 344 as the farthest positive entity from the anchor in the
 345 embedding space, while neg_i is the closest negative.
 346 This formulation emphasizes challenging examples
 347 and enforces a margin m to improve the separation
 348 between positive and negative pairs.

349 This training objective encourages the model
 350 to pull the most distant positive samples closer to
 351 the anchor and push the nearest negatives farther
 352 away. This dynamic adjustment refines the semantic
 353 structure of the latent space, enabling better
 354

entity discrimination and improving downstream reasoning performance. More details can be found at Appendix C.

4.3 Similarity-Based Test-Time Filtering

Recent work shows that language models can improve inference without parameter updates by using lightweight test-time strategies (Snell et al., 2024; Ji et al., 2025). Building on this idea, we introduce a semantic similarity-based filtering method to reduce hallucinations by removing predictions misaligned with the input context.

Our filtering approach is motivated by two empirical observations:

1. Models often generate non-historical entities that have low semantic alignment with the input context, especially in sparse settings despite higher similarity scores correlating with correctness (Figure 4).
2. In many cases, the ground truth entity already appears in the historical context \mathcal{H} , yet the model produces a non-historical prediction that yields negligible gain in accuracy.

These patterns suggest that enforcing semantic consistency and reconsidering salient entities from the input can correct many low-quality predictions. Rather than rejecting or reranking predictions with fixed rules, we apply an adaptive refinement strategy grounded in semantic similarity.

Semantic Consistency Verification. We embed the generated prediction p and the input context c using a sentence transformer model to compute a similarity score:

$$\phi(p, c) = \text{cos-sim}(E(p), E(c)) \quad (6)$$

$$E(x) = \text{SentenceTransformer}(x) \in \mathbb{R}^d \quad (7)$$

where $E(\cdot)$ denotes the output vector of a pre-trained transformer model. We use this similarity as a proxy for contextual alignment. A prediction is accepted if its similarity score exceeds a learned threshold τ , or if it already appears in the retrieved history \mathcal{H} . Otherwise, we regenerate until a satisfactory prediction is found, or fall back to history-aware scoring.

This process is formalized as:

$$p' = \begin{cases} p & \text{if } p \in \mathcal{H} \text{ or } \phi(p, c) \geq \tau \\ \text{regenerate}(p) & \text{if } \phi(p, c) < \tau \\ \arg \max_{h \in \mathcal{H}} \psi(h) & \text{after } k \text{ attempts} \end{cases} \quad (8)$$

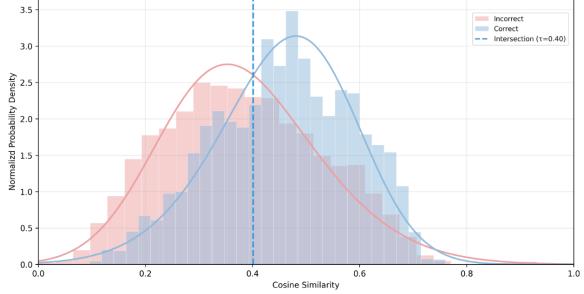


Figure 4: Distribution of semantic similarity values for correctly and incorrectly classified samples to the input context.

Figure 3 illustrates how filtering interacts with the generation process to improve robustness.

Historical Relevance Fallback. If repeated generations yield unsatisfactory predictions, we fall back to the historical candidates \mathcal{H} . Each candidate $h \in \mathcal{H}$ is scored by:

$$\psi(h) = \beta \cdot f(h) + (1 - \beta) \cdot r(h) \quad (9)$$

where $f(h)$ is the frequency of h in the input history and $r(h)$ captures recency. This mechanism biases the selection toward historically grounded entities when semantic alignment fails.

Threshold Selection. The threshold τ is optimized to best separate correct and incorrect predictions based on empirical distributions of $\phi(p, c)$. We describe the optimization objective and quantitative justification in Appendix D, along with implementation details and discuss its generalizability in Appendix E.

5 Experiments

5.1 Experimental Setup

Proposed method. We refer to our full method as RECIPE-TKG, which combines rule-based multi-hop history sampling (*RBMH Sampling*), contrastive fine-tuning denoted as *CFT*, and *Test-time Filtering*.

Language Models. Our primary experiments are conducted on LLaMA-2-7B (Touvron et al., 2023), a widely used open-source model in LLM-based TKG completion research (Liao et al., 2024; Luo et al., 2024). To ensure modern relevance, we also evaluate LLaMA-3-8B (Meta AI, 2024). Prompts and implementation details are provided in Appendix C.2 and C.4

Table 2: **Temporal link prediction results on temporal-aware filtered Hits@1/3/10.** LLM-based models are implemented based on LLaMA2-7B. Best results for each metric are highlighted in **bold**, and the best results among LLM-based models are underlined. The last row shows the relative improvement (Δ) of RECIPE-TKG over the best-performing LLM-based baseline.

Datasets Models	ICEWS14			ICEWS18			GDELT			YAGO		
	Hits@1	Hits@3	Hits@10	Hits@1	Hits@3	Hits@10	Hits@1	Hits@3	Hits@10	Hits@1	Hits@3	Hits@10
Embedding-based	RE-NET (Jin et al., 2020)	0.260	0.401	0.548	0.165	0.297	0.447	0.117	0.202	0.333	-	-
	RE-GCN (Li et al., 2021)	0.313	0.473	0.626	0.223	0.367	0.525	0.084	0.171	0.299	0.468	0.607
	xERTE (Han et al., 2020)	0.330	0.454	0.570	0.209	0.335	0.462	0.085	0.159	0.265	0.561	0.726
	TANGO (Han et al., 2021)	0.272	0.408	0.550	0.191	0.318	0.462	0.094	0.189	0.322	0.566	0.651
Rule-based	TimeTraveler (Sun et al., 2021)	0.319	0.454	0.575	0.212	0.325	0.439	0.112	0.186	0.285	0.604	0.770
	TLogic (Liu et al., 2022)	0.332	0.476	0.602	0.204	0.336	0.480	0.113	0.212	0.351	0.638	0.650
LLM-based	CoH (Xia et al., 2024b)	0.242	0.397	0.512	0.168	0.282	0.427	-	-	-	-	-
	PPT (Xu et al., 2023)	0.289	0.425	0.570	0.169	0.306	0.454	-	-	-	-	-
	HFL (Xu et al., 2025)	0.277	0.427	0.573	0.178	0.304	0.455	-	-	-	-	-
	ICL (Lee et al., 2023)	0.344	0.464	0.523	0.164	0.302	0.382	0.090	0.172	0.242	0.738	0.807
	GenTKG (Liao et al., 2024)	0.364	0.476	0.532	0.200	0.329	0.395	<u>0.099</u>	<u>0.193</u>	0.280	0.746	0.804
RECIPE-TKG		0.393	0.526	0.651	0.224	0.369	0.516	0.095	0.192	0.327	0.811	0.880
Δ		8.0%	10.5%	22.4%	12.0%	12.2%	13.4%	-4.0%	-0.5%	16.8%	8.7%	9.0%

Datasets. We evaluate RECIPE-TKG on four commonly adopted benchmark datasets: ICEWS14 and ICEWS18, both derived from the ICEWS project (Boschee et al., 2015), GDELT (Leetaru and Schrodt, 2013), and YAGO (Mahdisoltani et al., 2013). Detailed dataset statistics are provided in Appendix H.

Evaluation Metrics. We choose temporal-aware filtered Hits@1/3/10 as our evaluation metrics, following prior work (Gastinger et al., 2023).

Baselines. We compare RECIPE-TKG against three categories of methods. **Embedding-based methods** include RE-NET (Jin et al., 2020), RE-GCN (Li et al., 2021), xERTE (Han et al., 2020), TANGO (Han et al., 2021), and TimeTraveler (Sun et al., 2021). **Rule-based method** includes TLogic (Liu et al., 2022). **LLM-based methods** include ICL (Lee et al., 2023), GenTKG (Liao et al., 2024), PPT (Xu et al., 2023), CoH (Xia et al., 2024b), and HFL (Xu et al., 2025). Additional information about baselines are in Appendix G.

5.2 Main Results

Results in Table 2 show that RECIPE-TKG consistently performs well across four benchmarks, surpassing both embedding-based and LLM-based baselines on nearly all evaluation metrics. On ICEWS14 and YAGO, RECIPE-TKG establishes new state-of-the-art results among LLM-based methods, achieving up to **22.4%** relative improvement in Hits@10. On ICEWS18, it exceeds the best LLM-based baseline on all three metrics and is competitive with RE-GCN, the strongest embedding-based model. For GDELT, which is known to be noisy and dominated by repetitive

Table 3: **Ablation study on ICEWS14 with LLaMA2-7B.** Comparison of training paradigms across different history sampling strategies. The bold results show the original combinations of components in prior works and our method.

	ICL			SFT			CFT		
	H@1	H@3	H@10	H@1	H@3	H@10	H@1	H@3	H@10
Lee et al. (2023)	0.344	0.464	0.523	0.360	0.469	0.530	0.363	0.479	0.529
TLR (Liao et al., 2024)	0.351	0.473	0.527	0.364	0.476	0.532	0.367	0.476	0.532
RBMH	0.364	0.500	0.572	0.389	0.519	0.582	0.392	0.521	0.580

event patterns (Trivedi et al., 2017; Li et al., 2021) with fine-grained 15-minute timestamps that favor symbolic rule chaining, frequent rules can be mined reliably and simple chains often suffice, explaining TLogic’s advantage (Liu et al., 2022); nevertheless, RECIPE-TKG attains the highest Hits@10 (0.327) among LLM-based models and remains competitive on Hits@1 and Hits@3. These results highlight the effectiveness of RECIPE-TKG and position LLM-based methods as strong candidates for foundation models in TKG completion.

6 Analysis

6.1 Ablation Study

We conducted ablation studies to evaluate key components of our framework against prior works. We compare three sampling methods (Lee et al. (2023), TLR (Liao et al., 2024), and our *RBMH Sampling*) and three training paradigms (in-context learning, supervised fine-tuning, and contrastive fine-tuning) on ICEWS14 using LLaMA2-7B. As shown in Table 3, bold results indicate original combinations from prior works and RECIPE-TKG w/o filtering. The results show that *RBMH Sampling* consistently improves performance across all training paradigms by retrieving structurally diverse and se-

Table 4: Effect of removing RECIPE-TKG components.

SETTINGS	Hits@1	Hits@3	Hits@10
RECIPE-TKG w/o CFT	0.364	0.501	0.643
RECIPE-TKG w/o RBMH Sampling	0.364	0.483	0.581
RECIPE-TKG w/o Filtering	0.392	0.521	0.580
RECIPE-TKG	0.393	0.526	0.651

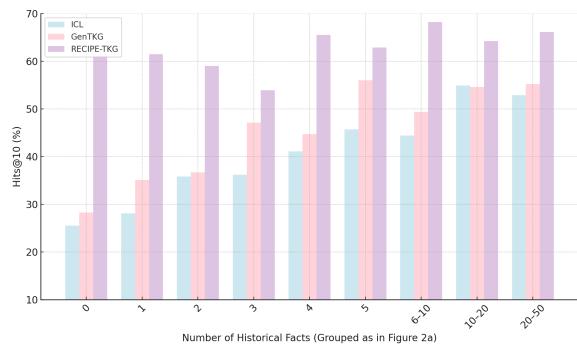


Figure 5: Hits@10 grouped by number of historical facts. RECIPE-TKG consistently outperforms ICL and GenTKG across all history lengths, with particularly strong improvements when the input history is sparse.

493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511

mantically relevant context. While *CFT* performs comparably to *SFT* with the same sampling strategy, it shows clear advantages when historical context is sparse. As discussed in Appendix I.1, contrastive models generate predictions semantically closer to the ground truth, even when exact matches aren’t possible, promoting structure-aware generalization beyond surface-level accuracy, especially in sparse settings where lexical cues are insufficient.

503
504
505
506
507
508
509
510
511

Table 4 provides additional insights into the effects of each of the three components, especially *test-time filtering*. When comparing the CFT-RBMH setting with and without *Test-time Filtering*, we observe a substantial boost in Hits@10 from 0.580 to 0.651, underscoring the effectiveness of our test-time refinement mechanism. Notably, combining *test-time filtering* with *RBMH Sampling* and *Test-time Filtering* (**RECIPE-TKG**) yields the best performance across all metrics.

512 6.2 Performance Gains Across Input Regimes

513
514
515
516
517
518
519
520
521
522
523

To evaluate how historical input affects model performance, we group queries by the number of retrieved facts and compare Hits@10 across methods. These bins align with Figure 2(a), allowing direct comparison with prior failure patterns. As shown in Figure 5, RECIPE-TKG outperforms both ICL and GenTKG across all groups, with especially large gains in the low-history regime.

Two key insights emerge. First, prior failures on short-history queries were not due to intrinsic difficulty, but rather to shallow retrieval. Since all

Table 5: Comparison between LLaMA2-7B and LLaMA3-8B on ICEWS14.

Model	LLaMA2-7B			LLaMA3-8B		
	hit@1	hit@3	hit@10	hit@1	hit@3	hit@10
ICL	0.344	0.464	0.523	0.351	0.484	0.578
RECIPE-TKG	0.393	0.526	0.651	0.367	0.529	0.658

524
525
526
527
528
529
530
531

methods are evaluated on the same query set, the strong gains from RECIPE-TKG (reaching over 60% Hits@10 for history length 0 to 2) indicate that even sparse queries can be completed accurately when provided with deeper, multi-hop context. This validates the effectiveness of *RBMH Sampling* in recovering structurally and temporally relevant support.

532
533
534
535
536
537

Second, RECIPE-TKG continues to outperform baselines even with longer histories (10–50 facts), where other methods begin to plateau. This sustained advantage reflects the contributions of *CFT* and *Test-time Filtering*, which improve generalization and reduce hallucinations.

538
539
540
541

Overall, these results show that RECIPE-TKG not only addresses the limitations of shallow context but also improves reasoning and prediction quality across a wide range of query types.

542 6.3 Case Study: Performance of Llama3-8b

543
544
545
546
547
548
549
550

As shown in Table 5, LLaMA3-8B performs comparably to LLaMA2-7B, supporting our choice of the latter for most experiments. Moreover, this choice of base model enables a fair comparison with prior work using fine-tuned models. Under both backbones, RECIPE-TKG consistently outperforms ICL, demonstrating its robustness and generalizability across different LLMs.

551
552
553
554

Lightweight design. We update only $\sim 0.81\%$ of LLaMA-2-7B (54.3M params), mine rules in <20 s per dataset, and incur a 16.6% inference overhead from filtering (details in Appendix B).

555 7 Conclusion

556
557
558
559
560
561
562
563
564
565

We introduced RECIPE-TKG, a framework for LLM-based temporal knowledge graph forecasting that combines multi-hop sampling, contrastive fine-tuning, and semantic filtering. It delivers consistent accuracy gains, especially under sparse or indirect evidence in practice. By aligning context with relational structure and refining inference, RECIPE-TKG improves reasoning without large-scale retraining, validating a modular, temporally grounded design overall.

566

Limitations

567 Although RECIPE-TKG adopts a structured three-
 568 stage framework, it is still built on clean, fully
 569 observed temporal knowledge graphs, which may
 570 not reflect real-world scenarios. The rule mining
 571 step requires offline learning before sampling, and
 572 must be repeated if the TKG changes. Moreover,
 573 the framework assumes full observability of histori-
 574 cal events, while in practice, such information may
 575 be incomplete or noisy. Future work may explore
 576 more robust designs that support dynamic updates
 577 and reasoning under partially observed histories.

578 **License and Ethics**

579 All datasets used in this study are publicly available
 580 and licensed for academic research. Specifically,
 581 ICEWS14, ICEWS18, GDELT, and YAGO have
 582 been widely adopted in prior work on temporal
 583 knowledge graphs. No personally identifiable in-
 584 formation (PII) or sensitive content is present in
 585 any of the datasets.

586 We use LLaMA-2 and LLaMA-3 models un-
 587 der Meta’s official research license, and all model
 588 adaptations are conducted in compliance with their
 589 intended use for academic and non-commercial
 590 research. The training and evaluation procedures
 591 are entirely conducted on benchmark data, and no
 592 human subjects are involved.

593 We adhere to the ethical guidelines set forth by
 594 the ACL Code of Ethics, including transparency,
 595 reproducibility, and the responsible use of language
 596 models. Our work poses minimal risk of harm
 597 and does not involve content generation, human
 598 annotation, or interaction with real users.

References

Elizabeth Boschee, Jennifer Lautenschlager, Sean O'Brien, Steve Shellman, James Starz, and Michael Ward. 2015. *ICEWS Coded Event Data*.

Rochana Chaturvedi. 2024. *Temporal knowledge graph extraction and modeling across multiple documents for health risk prediction*. In *Companion Proceedings of the ACM Web Conference 2024*, pages 1182–1185.

Kai Chen, Ye Wang, Yitong Li, and Aiping Li. 2022. Rotateqvs: Representing temporal information as rotations in quaternion vector space for temporal knowledge graph completion. *arXiv preprint arXiv:2203.07993*.

Ambedkar Dukkipati, Kawin Mayilvaghanan, Naveen Kumar Pallekonda, Sai Prakash Hadnoor, and Ranga Shaarad Ayyagari. 2025. *Predictive ai with external knowledge infusion for stocks*. *arXiv preprint arXiv:2504.20058*.

Julia Gastinger, Timo Sztyler, Lokesh Sharma, Anett Schuelke, and Heiner Stuckenschmidt. 2023. *Comparing apples and oranges? on the evaluation of methods for temporal knowledge graph forecasting*. In *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*, pages 533–549. Springer.

Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp. 2020. *Explainable subgraph reasoning for forecasting on temporal knowledge graphs*. In *International Conference on Learning Representations*.

Zhen Han, Zifeng Ding, Yunpu Ma, Yujia Gu, and Volker Tresp. 2021. *Learning neural ordinary equations for forecasting future links on temporal knowledge graphs*. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*, pages 8352–8364.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. 2022. *Lora: Low-rank adaptation of large language models*. In *International Conference on Learning Representations (ICLR)*.

Yixin Ji, Juntao Li, Hai Ye, Kaixin Wu, Kai Yao, Jia Xu, Linjian Mo, and Min Zhang. 2025. *Test-time compute: from system-1 thinking to system-2 thinking*. *Preprint*, arXiv:2501.02497.

Woojeong Jin, Meng Qu, Xisen Jin, and Xiang Ren. 2020. *Recurrent event network: Autoregressive structure inference over temporal knowledge graphs*. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pages 6669–6683.

Dong-Ho Lee, Kian Ahrabian, Woojeong Jin, Fred Morstatter, and Jay Pujara. 2023. *Temporal knowledge graph forecasting without knowledge using in-context learning*. *Preprint*, arXiv:2305.10613.

Kalev Leetaru and Philip A Schrod. 2013. Gdelt: Global data on events, location, and tone, 1979–2012. In *ISA annual convention*, volume 2, pages 1–49. Citeseer.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. 2022. *Solving quantitative reasoning problems with language models*. In *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, Online. Association for Computational Linguistics.

Zixuan Li, Xiaolong Jin, Wei Li, Saiping Guan, Jiafeng Guo, Huawei Shen, Yuanzhuo Wang, and Xueqi Cheng. 2021. *Temporal knowledge graph reasoning based on evolutional representation learning*. In *Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pages 408–417.

Ruotong Liao, Xu Jia, Yangzhe Li, Yunpu Ma, and Volker Tresp. 2024. *Gentkg: Generative forecasting on temporal knowledge graph with large language models*. *Preprint*, arXiv:2310.07793.

Yushan Liu, Yunpu Ma, Marcel Hildebrandt, Mitchell Joblin, and Volker Tresp. 2022. *Tlogic: Temporal logical rules for explainable link forecasting on temporal knowledge graphs*. In *Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI)*, pages 4120–4127.

Ruilin Luo, Tianle Gu, Haoling Li, Junzhe Li, Zicheng Lin, Jiayi Li, and Yujiu Yang. 2024. *Chain of history: Learning and forecasting with llms for temporal knowledge graph completion*. *Preprint*, arXiv:2401.06072.

Farzaneh Mahdisoltani, Joanna Biega, and Fabian M Suchanek. 2013. *Yago3: A knowledge base from multilingual wikipedias*. In *CIDR*.

Shreyas Mangrulkar and 1 others. 2022. Peft: parameter-efficient fine-tuning. <https://github.com/huggingface/peft>. GitHub repository, accessed May 2025.

Johannes Messner, Ralph Abboud, and Ismail Ilkan Ceylan. 2022. *Temporal knowledge graph completion using box embeddings*. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pages 7779–7787.

Meta AI. 2024. *Meta llama 3: Open foundation and fine-tuned chat models*. <https://ai.meta.com/blog/meta-llama-3/>. Accessed: 2025-05-16.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max Welling. 2018. *Modeling relational data with graph convolutional networks*. In *European semantic web conference*, pages 593–607. Springer.

708 Sentence-Transformers. all-mpnet-base-v2. <https://huggingface.co/sentence-transformers/all-mpnet-base-v2>. Accessed: 2025-05-19. 763
709 764
710 765
711 766
712 767
713 768
714

715 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. 2024. Scaling llm test-time compute optimally 769
716 can be more effective than scaling model parameters. 770
717 *Preprint*, arXiv:2408.03314. 771

718 Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie- 772
719 Yan Liu. 2020. Mpnet: Masked and permuted pre- 773
720 training for language understanding. In *Advances in 774
721 Neural Information Processing Systems*, volume 33, 775
722 pages 16857–16867. 776

723 Haohai Sun, Jialun Zhong, Yunpu Ma, Zhen Han, and 777
724 Kun He. 2021. Timetraveler: Reinforcement learning 778
725 for temporal knowledge graph forecasting. *arXiv 779
726 preprint arXiv:2109.04101*. 780

727 Hugo Touvron, Louis Martin, Kevin Stone, Abdul- 781
728 lah Al-Dujaili, Yasmine Babaei, Nikolay Bashlykov, 782
729 Soumya Batra, Prajwal Bhargava, Shruti Bhosale, and 1 others. 2023. Llama 2: Open founda- 783
730 tion and fine-tuned chat models. *arXiv preprint 784
731 arXiv:2307.09288*. 785

732 Volker Tresp, Cristóbal Esteban, Yinchong Yang, 788
733 Stephan Baier, and Denis Krompaß. 2015. Learning 789
734 with memory embeddings. *arXiv preprint 790
735 arXiv:1511.07972*. 791

736 Rakshit Trivedi, Hanjun Dai, Yichen Wang, and 792
737 Le Song. 2017. Know-evolve: Deep temporal reason- 793
738 ing for dynamic knowledge graphs. In *Proceedings 794
739 of the 34th International Conference on Machine 795 Learning*, pages 3462–3471. PMLR. 796

740 Shangshang Wang, Julian Asilis, Ömer Faruk Akgül, 797
741 Enes Burak Bilgin, Ollie Liu, and Willie Neiswanger. 798
742 2025. Tina: Tiny reasoning models via lora. *arXiv 799
743 preprint arXiv:2504.15777*. 800

744 Yuwei Xia, Ding Wang, Qiang Liu, Liang Wang, Shu 803
745 Wu, and Xiao-Yu Zhang. 2024a. Chain-of-history 804
746 reasoning for temporal knowledge graph forecasting. 805
747 In *Findings of the Association for Computational 806
748 Linguistics: ACL 2024*, pages 16144–16159, Bangkok, 807
Thailand. Association for Computational Linguistics. 808

749 Yuwei Xia, Ding Wang, Qiang Liu, Liang Wang, Shu 809
750 Wu, and Xiao-Yu Zhang. 2024b. Chain-of-history 810
751 reasoning for temporal knowledge graph forecasting. 811
752 In *Findings of the Association for Computational 813
753 Linguistics: ACL 2024*. 814

754 Wenjie Xu, Ben Liu, Miao Peng, Xu Jia, and Min Peng. 815
755 2023. Pre-trained language model with prompts 816
756 for temporal knowledge graph completion. *arXiv 817
757 preprint arXiv:2305.07912*. 818

758 Wenjie Xu, Ben Liu, Miao Peng, Zihao Jiang, Xu Jia, 819
759 Kai Liu, Lei Liu, and Min Peng. 2025. Historical 820
760 facts learning from long-short terms with language 821
761 model for temporal knowledge graph reasoning. *In- 822
762 formation Processing & Management*, 62(3):104047. 823

769 A Rule-Based Multi-Hop History 770 Sampling Details

771 A.1 TLR Algorithm

772 Algorithm 1 shows the TLR retrieval procedure
773 used in our framework, reproduced from (Liao
774 et al., 2024).

Algorithm 1 TLR Retrieval

Input: Temporal knowledge graph \mathcal{G} , query $(s_q, r_q, ?, T)$, learned rules \mathcal{TR}

Output: A set of retrieved facts $\mathcal{G}_{s_q}(s_q, r_q, T)$

```

1:  $\mathcal{G}_{s_q}(s_q, r_q, T) \leftarrow \emptyset$ 
2: for  $fact \leftarrow (s_q, r_q, o, t < T) \in \mathcal{G}$  do
3:    $\mathcal{G}_{s_q}(s_q, r_q, T) \leftarrow \mathcal{G}_{s_q}(s_q, r_q, T) \cup fact$ 
4: end for
5: for top k rules w.r.t.  $r_q \leftarrow r_b \in \mathcal{TR}$  do
6:   Get a list  $r_b \leftarrow \{r_{b_1}, r_{b_2}, \dots, r_{b_k}\}$ 
7: end for
8: for  $fact \leftarrow (s_q, r \in r_b, o, t < T) \in \mathcal{G}$  do
9:    $\mathcal{G}_{s_q}(s_q, r_q, T) \leftarrow \mathcal{G}_{s_q}(s_q, r_q, T) \cup fact$ 
10: end for
11: return  $\mathcal{G}_{s_q}(s_q, r_q, T)$ 

```

775 A.2 Context-guided Multi-hop Expansion 776 Details

777 A.2.1 Weight Formulation Discussion

778 We adopt a multiplicative combination of the
779 weight components rather than a simple sum to
780 for two reasons. First, the neighbor weight w_n acts
781 as a hard constraint: it equals zero if the subject
782 or object of a candidate quadruple is not reachable
783 from the query, effectively filtering out irrelevant
784 facts. Second, the frequency weight w_f is designed
785 to down-weight commonly repeated triples while
786 preserving their relative order. This logarithmic
787 scaling ensures that rare but structurally relevant
788 facts are not overshadowed. Together, the multi-
789 plicative form enables a soft prioritization across
790 dimensions while preserving hard structural con-
791 straints.

792 A.2.2 Weight Component

793 The five weight components of equation 2 are de-
794 fined as follows:

795 **Neighbor weight** w_n ensures that structurally
796 closer quadruples receive higher scores:

$$797 w_n = \exp(-\gamma_1 \cdot (\text{hop}_s + \text{hop}_o - 1)),$$

798 where hop_s and hop_o denote the shortest hop dis-
799 tances from the subject and object to the query

800 subject. The weight decays exponentially with in-
801 creasing distance, and vanishes to zero when either
802 hop_s or hop_o is infinite, corresponding to cases
803 where the entity is not reachable from the query
804 subject in the graph. Importantly, all structural
805 statistics (e.g., hop distance, co-occurrence counts,
806 and context connectivity) are computed over the
807 subgraph excluding quadruples with timestamps
808 after the query time T .

809 **Frequency weight** w_f reduces the dominance
810 of frequent triples (history quadruples excluding
811 timestamp):

$$812 w_f = \frac{1}{\gamma_2 \cdot \log(n_{spo}) + 1},$$

813 where n_{spo} is the count of the subject-predicate-
814 object triple. This logarithmic form discourages
815 over-sampling of repetitive patterns while maintain-
816 ing frequency order.

817 More precisely, for any two triples with fre-
818 quency counts $n_1 < n_2$, the corresponding weights
819 satisfy:

$$820 w(n_1) > w(n_2), \quad \text{and} \quad \frac{w(n_1)}{w(n_2)} = \frac{\log(n_2) + 1}{\log(n_1) + 1},$$

821 assuming all other components of the weight func-
822 tion are equal. This shows that the multiplicative
823 formulation preserves the relative ranking induced
824 by frequency, while still suppressing the absolute
825 dominance of highly frequent triples.

826 **Time weight** w_t favors temporally recent events:

$$827 w_t = \exp\left(-\gamma_3 \cdot \frac{T - t}{\delta}\right),$$

828 where T is the timestamp of the query, t is the
829 timestamp of the event quadruple (with $T > t$), δ
830 is the time granularity (e.g., $\delta = 24$ in ICEWS14),
831 and γ_3 controls the decay rate.

832 **Connection weight** w_c promotes inclusion of
833 frequently co-occurring entity pairs:

$$834 w_c = \frac{\log(1 + \gamma_4 \cdot n_{so})}{1 + \log(1 + \gamma_4 \cdot n_{so})},$$

835 where n_{so} is the co-occurrence count of the subject-
836 object pair prior to T , and γ_4 is a smoothing param-
837 eter. This bounded function emphasizes structural
838 relevance while limiting hub bias.

839 **Contextual priority weight** w_{cp} encourages
840 sampling quadruples that remain connected to the
841 initial TLR sampled subgraph:

$$842 w_{cp} = \begin{cases} 1, & \text{if } s \in \mathcal{E}_{\text{TLR}} \text{ or } o \in \mathcal{E}_{\text{TLR}}, \\ 0, & \text{otherwise,} \end{cases}$$

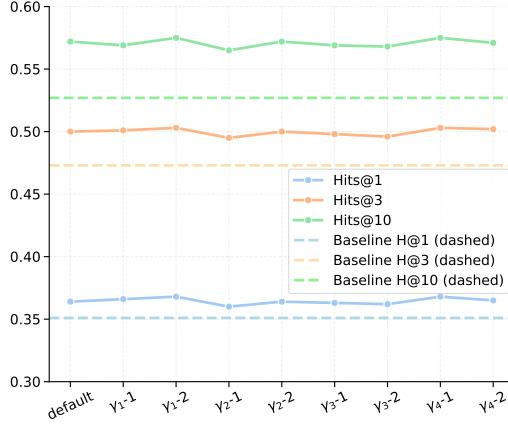


Figure 6: Performance of ICL-RBMH under different sampling hyperparameter configurations.

where \mathcal{E}_{TLR} is the set of all 1-hop neighbors identified in the TLR stage. This guides the expansion toward semantically coherent subgraphs.

A.2.3 Hyperparameter Sensitivity Experiment

Figure 6 presents the performance in ICL-RBMH setting under varying sampling hyperparameters. We perturb each of the four γ_i parameters individually (two settings per parameter), while keeping others fixed, and compare them against the default configuration. Across all variants, model performance remains stable, indicating that *RBMH Sampling* is robust to hyperparameter choices. Moreover, ICL-RBMH consistently outperforms the baseline ICL-TLR across all settings.

The sampling hyperparameter configurations and their corresponding performance metrics are summarized in Table 6, including mean and standard deviation to reflect stability.

Table 6: Performance of ICL-RBMH under different sampling hyperparameter configurations on ICEWS14.

ID	γ_1	γ_2	γ_3	γ_4	Hits@1	Hits@3	Hits@10		
default	0.6	0.6	0.01	0.1	0.364	0.500	0.572		
γ_1^{-1}	0.4	0.6	0.01	0.1	0.366	0.501	0.569		
γ_1^{-2}	0.8	0.6	0.01	0.1	0.368	0.504	0.575		
γ_2^{-1}	0.6	0.4	0.01	0.1	0.364	0.500	0.572		
γ_2^{-2}	0.6	0.8	0.01	0.1	0.364	0.500	0.572		
γ_3^{-1}	0.6	0.6	0.05	0.1	0.363	0.498	0.569		
γ_3^{-2}	0.6	0.6	0.002	0.1	0.368	0.506	0.573		
γ_4^{-1}	0.6	0.6	0.01	0.2	0.368	0.503	0.575		
γ_4^{-2}	0.6	0.6	0.01	0.05	0.365	0.502	0.571		
Mean		0.366		0.501		0.571			
Std		0.0020		0.0024		0.0021			
Baseline (ICL-TLR)				0.351		0.473			
				0.527					

A.3 RBMH Algorithm

Algorithm 2 Rule-based Multi-hop history sampling

Input: Temporal knowledge graph \mathcal{G} , query $(s_q, r_q, ?, T)$, learned rules \mathcal{TR} , maximum history length N , scoring function \mathcal{F} , a set of TLR retrieved facts $\mathcal{G}_{s_q}(s_q, r_q, T)$

Output: A set of retrieved facts $\mathcal{G}(s_q, r_q, T)$

```

1:  $M \leftarrow N - \text{len}(\mathcal{G}_{s_q}(s_q, r_q, T))$ 
2: if  $M = 0$  then
3:    $\mathcal{G}(s_q, r_q, T) \leftarrow \mathcal{G}_{s_q}(s_q, r_q, T)$ 
4:   return  $\mathcal{G}(s_q, r_q, T)$ 
5: end if
6:  $\mathcal{C} \leftarrow \{(s, r, o, t, \mathcal{F}(s, r, o, t)) \mid (s, r, o, t) \in \mathcal{G}, t < T\}$ 
7:  $\mathcal{C}_{\text{top}} \leftarrow \text{Top}_{10M}(\mathcal{C})$ 
8:  $\mathcal{C}_{\text{sample}} \leftarrow \text{WeightedSample}(\mathcal{C}_{\text{top}}, M)$ 
9:  $\mathcal{G}_{\text{mh}}(s_q, r_q, T) \leftarrow \{(s, r, o, t) \mid (s, r, o, t, w) \in \mathcal{C}_{\text{sample}}\}$ 
10:  $\mathcal{G}(s_q, r_q, T) \leftarrow \mathcal{G}_{s_q}(s_q, r_q, T) \cup \mathcal{G}_{\text{mh}}(s_q, r_q, T)$ 
11: return  $\mathcal{G}(s_q, r_q, T)$ 

```

B Computational Efficiency Analysis

RECIPE-TKG is designed to be parameter-efficient and computationally lightweight while maintaining strong performance. This section quantifies various aspects of efficiency in our framework.

Parameter Efficiency Our framework fine-tunes a small fraction of the total parameters in the base LLM. For LLaMA2-7B, we update only LoRA adapters (with rank 8, applied to query and value projections across 32 transformer layers) and a self-attention pooling module for entity embedding aggregation. The trainable parameter count is approximately 54.3M, which constitutes just 0.81% of the base model’s 6.74B parameters. This parameter-efficient design enables effective fine-tuning while keeping most of the pre-trained knowledge intact.

Rule Mining Efficiency The temporal logical rule mining process in our RBMH sampling strategy is highly efficient. Table 7 shows the time required for rule extraction across all datasets using 15 CPU processes (averaged over 5 runs). The process completes in under 20 seconds even for the largest dataset, representing negligible computational overhead. Furthermore, the extracted rules capture persistent temporal patterns and are not highly sensitive to minor dataset changes, allowing

889 for infrequent updates when the knowledge graph
 890 evolves.

Table 7: Rule mining time across datasets (in seconds).

Dataset	ICEWS14	ICEWS18	GDELT	YAGO
Time (s)	6.89 ± 0.08	16.72 ± 0.07	10.78 ± 0.08	2.73 ± 0.02

891 **Training Overhead** Table 8 compares training
 892 time per epoch between standard supervised
 893 fine-tuning and our contrastive fine-tuning on 1024
 894 samples. The contrastive objective introduces no
 895 additional training time, demonstrating its compu-
 896 tational efficiency despite the improved semantic
 897 learning.

Table 8: Training time per epoch on 1024 samples.

Training Mode	Time (s)	$\Delta\%$
Fine-tuning (FT)	824.31	-
FT + Contrastive Loss	821.51	-0.34%

898 **Inference Overhead** Table 9 quantifies the
 899 run-time impact of our test-time filtering mechanism.
 900 On 1,000 test samples, filtering increases inference
 901 time by 16.6%, which is reasonable considering the
 902 consistent performance improvements in Hits@10
 903 across all datasets. The filtering step provides a
 904 favorable trade-off between computational cost and
 905 accuracy gain.

Table 9: Inference time on 1,000 samples.

Setting	Time (s)	$\Delta\%$
No filtering	2316.48	-
With filtering	2700.67	+16.60%

C Training Details

C.1 Relation Classification

908 The prompt used for relation classification is pro-
 909 vided in Figure 7.

910 In cases where a neighbor is connected to the
 911 anchor via both a positive and a negative relation,
 912 it is excluded in training to avoid ambiguity.

913 Figure 8 shows the distribution of relation types
 914 across four datasets. Positive and negative relations
 915 appear in roughly balanced proportions, while neu-
 916 tral relations are consistently less common. Nota-
 917 bly, YAGO exhibits a distinct relation distribu-
 918 tion where the majority of relations are classified as
 919 *neutral*. Upon inspection, we find that this reflects

920 the actual semantic nature of the relations in the
 921 dataset, which are mostly descriptive or taxonomic
 922 rather than sentiment-oriented. Consequently, the
 923 contrastive learning component has limited impact
 924 on YAGO, as it relies on meaningful distinctions be-
 925 tween positive and negative relations. The observed
 926 performance gain on YAGO is therefore primarily
 927 attributed to improvements in history sampling and
 928 *Test-time filtering*.

C.2 Prompt

929 To guide the language model in performing tempo-
 930 ral knowledge completion, we adopt a structured,
 931 instruction-style prompt format shown in Figure 9.
 932 The prompt defines the task explicitly: given a
 933 chronological list of historical events represented
 934 as quadruples, the model must predict the missing
 935 object entity for a future temporal query.

936 Each historical fact is formatted
 937 as `{time}:{[subject}, {relation},`
 938 `{object_label}.{object}]` where
 939 `{object_label}` is a unique identi-
 940 fier associated with the entity (e.g.,
 941 3380.Joseph_Robinette_Biden). This la-
 942 beling scheme facilitates consistent reference
 943 resolution and improves post-processing via
 944 regex-based extraction. The final input ends
 945 with the query, and the model is asked to gen-
 946 erate the correct object in fully qualified form
 947 `{object_label}.{object}`.

948 This prompt format is applied consistently across
 949 both in-context learning and fine-tuning setups.

C.3 LoRA Formulation

950 We follow the standard LoRA setup (Hu et al.,
 951 2022). Given a frozen pretrained weight matrix
 952 $W_0 \in \mathbb{R}^{d \times k}$, LoRA introduces two trainable low-
 953 rank matrices $A \in \mathbb{R}^{d \times r}$ and $B \in \mathbb{R}^{r \times k}$ with
 954 $r \ll \min(d, k)$, such that the original forward
 955 transformation $h(x) = W_0x$ is modified as:

$$\hat{h}(x) = W_0x + ABx. \quad (10)$$

956 This design allows efficient fine-tuning by only
 957 training A and B , while keeping the pretrained
 958 weights W_0 frozen. In our experiments, we adopt
 959 the default LoRA implementation from the PEFT
 960 library (Mangrulkar et al., 2022).

C.4 Implementation Details

964 We fine-tune LLaMA-2-7B and LLaMA-3-8B models
 965 using LoRA adapters. All trainings are conducted

Prompt for Relation Classification

You are analyzing relation labels from a political event knowledge graph, where each relation reflects an action or request within a geopolitical context.

Classify the sentiment of the given relation as one of the following:

- **positive** (e.g., promoting peace, aid, cooperation)
- **negative** (e.g., violence, repression, aggression)
- **neutral** (e.g., procedural or ambiguous actions)

Avoid selecting "neutral" unless the relation is genuinely ambiguous or purely procedural in nature.

Figure 7: Prompt used for relation classification.

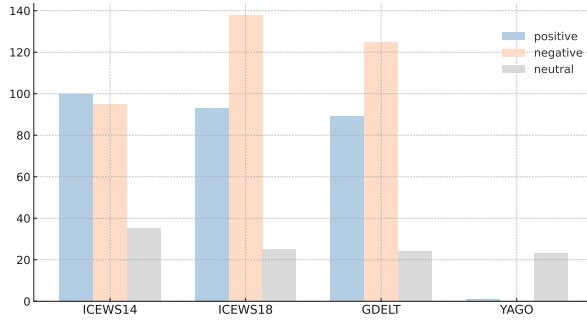


Figure 8: Distribution of relation types in four datasets after automatic classification.

Table 10: Performance under different contrastive weight settings on ICEWS14.

Weight α	Hits@1	Hits@3	Hits@10
0.2	0.392	0.521	0.580
0.5	0.389	0.521	0.579
0.8	0.392	0.520	0.576
Mean	0.391	0.521	0.578
Std	0.0014	0.0006	0.0020

is robust to the choice of α , and that *CFT* contributes consistently across a wide range of weighting schemes. Table 10 presents the sensitivity of model performance to the contrastive weight α . The consistently small standard deviations across metrics suggest that the model is robust to variations in α .

D Test-Time Filtering

Embedding Model. To compute semantic similarity between predictions and context, we use the `all-mpnet-base-v2` model (Song et al., 2020; Sentence-Transformers) from HuggingFace, a pre-trained sentence transformer with 768-dimensional output. We treat both the generated prediction string and the full in-context prompt as input sequences and extract mean-pooled embeddings for similarity calculation.

Similarity Distribution Analysis. We analyze the cosine similarity $\phi(p, c)$ between prediction and context across 7,371 test samples from ICEWS14 using the contrastively tuned model. The average similarity score for correct predictions exceeds that of incorrect ones by $\Delta\mu = 0.057$. This supports

967 on 2 H100 GPUs in bfloat16 precision. We set
968 maximum history length to 50 in history sampling
969 according to the context length of LLaMA-2-7B. For
970 fine-tuning, we train 1024-shots data for 50 epochs
971 with the batch size of 512, the learning rate of 3e-4,
972 the context length of 4096, the target length of 128,
973 the LoRA rank of 8, the LoRA dropout rate of 0.05.
974 For RECIPE-TKG, we train 6024-shots data (1024
975 aligned with GenTKG and 5000 randomly sampled
976 by seed 42) for 10 epochs, and other settings keep
977 unchanged. Contrastive tuning uses a margin of 1.0
978 and loss weight $\alpha = 0.2$ to balance cross-entropy
979 and contrastive objectives.

980 Entities are tokenized using the native tokenizer
981 of the LLM and embedded via the model’s em-
982 bedding layer. A lightweight attention aggregator
983 produces final entity embeddings, jointly trained
984 with the model.

C.5 Hyperparameter Sensitivity Experiment

985 As shown in Figure 10, varying α from 0.2 to 0.8
986 leads to marginal fluctuations across all evalua-
987 tion metrics. These results suggest that the model
988

989
990
991
992
993
994
995

996
997
998
999
1000
1001
1002
1003
1004
1005

1006
1007
1008
1009
1010
1011

Prompt Example

You must be able to correctly predict the next {object} from a given text consisting of multiple quadruplets in the form of "{time}:[{subject}, {relation}, {object_label}.{object}]" and the query in the form of "{time}:[{subject}, {relation},]" in the end. You must generate {object_label}.{object}.

2014-01-15: [Mehmet_Simsek, Make_statement, 5195.Other_Authorities_(Turkey)]
 2014-01-20: [Nuri_al-Maliki, Consult, 3380.Joseph_Robinette_Biden]
 2014-01-25: [Joseph_Robinette_Biden, Make_an_appeal, 3990.Massoud_Barzani]
 2014-02-01: [Joseph_Robinette_Biden, Make_an_appeal_or_request,

Figure 9: Instruction-style prompt format for TKG forecasting.

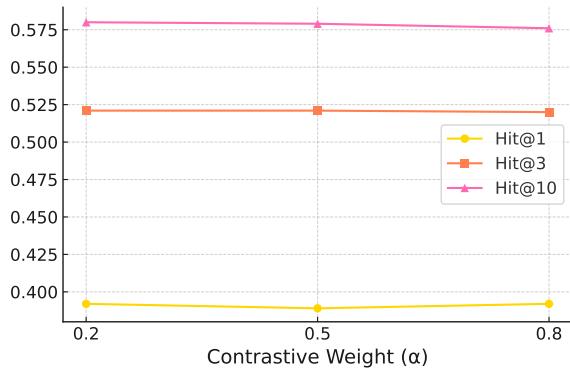


Figure 10: Effect of contrastive weight (α)

our assumption that similarity can serve as a proxy for semantic plausibility.

Novelty vs. Utility. We further observe that:

- 9.1% of predictions are non-historical despite the gold answer being present in \mathcal{H} .
- Among all non-historical predictions, only 1.5% are correct and improve Hits@10.

These findings indicate that many model generations deviate from the historical context unnecessarily and fail to yield substantial gains. They motivate fallback to more salient entities when regeneration fails.

Threshold Optimization. The optimal threshold τ^* is learned by maximizing separation between correct (\mathcal{C}) and incorrect (\mathcal{I}) prediction similarities:

$$\tau^* = \arg \max_{\tau} [F_{\mathcal{C}}(\tau) - F_{\mathcal{I}}(\tau)] \quad (11)$$

where F is the empirical CDF of cosine similarity values over samples from \mathcal{C} and \mathcal{I} .

Fallback Scoring. If generation fails after k iterations (we use $k = 1$), the model selects a final answer from \mathcal{H} using:

$$f(h) = \frac{\text{count}(h)}{|\mathcal{H}|}, \quad (12)$$

$$r(h) = 1 - \frac{\text{pos}(h)}{|\mathcal{H}|}, \quad (13)$$

$$\psi(h) = \beta \cdot f(h) + (1 - \beta) \cdot r(h), \quad (14)$$

where $\text{pos}(h)$ denotes the rank of h in its occurrence order. We set $\beta = 0.6$ in all experiments.

We compute cosine similarities between predicted entities and prompt context using the all-mpnet-base-v2 sentence transformer from HuggingFace. The threshold τ^* is tuned on a development set by maximizing the separation between correct and incorrect predictions.

Figure 11 examines the effect of the semantic filtering threshold τ . As the threshold increases, Hits@10 improves, peaking near $\tau = 0.6$. Always falling back to historical entities ($\tau = 1.0$) slightly increases accuracy at the cost of exploration and computational efficiency. Threshold $\tau = 0.6$ balances correction with flexibility, enabling the model to revise low-quality outputs without overconstraining its generation space.

E Cross-Dataset Filtering Performance

To evaluate the robustness and generalization capability of our test-time filtering approach, we analyze its performance across all four benchmark datasets. While the filtering mechanism was introduced primarily to reduce hallucinations in open-ended generation, an important question is whether this component generalizes well across different temporal knowledge domains or if its effectiveness is dataset-dependent.

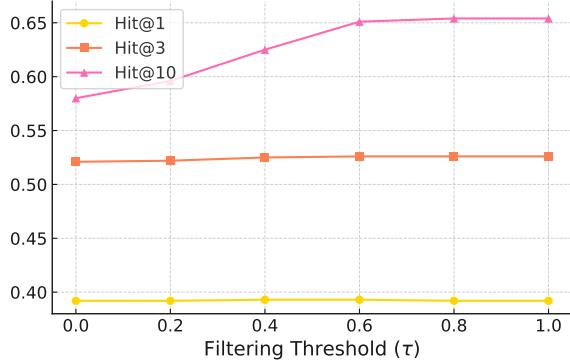


Figure 11: Effect of filtering threshold (τ)

Table 11: Effect of filtering across datasets.

Method	Hits@1	Hits@3	Hits@10
<i>ICEWS14</i>			
RECIPE-TKG	0.393	0.526	0.651
RECIPE-TKG w/o Filter	0.392	0.521	0.580
<i>ICEWS18</i>			
RECIPE-TKG	0.224	0.369	0.516
RECIPE-TKG w/o Filter	0.242	0.382	0.437
<i>GDELT</i>			
RECIPE-TKG	0.095	0.192	0.327
RECIPE-TKG w/o Filter	0.092	0.189	0.266
<i>YAGO</i>			
RECIPE-TKG	0.811	0.880	0.930
RECIPE-TKG w/o Filter	0.759	0.822	0.842

Table 11 shows the impact of our similarity-based filtering module across all datasets by comparing the full RECIPE-TKG framework against a variant without filtering. The filtering module consistently improves Hits@10 across all datasets, with gains ranging from 7.1 percentage points (ICEWS14) to 9.4 percentage points (GDELT). Most notably, on the YAGO dataset, the filtering mechanism substantially improves performance across all metrics (Hits@1/3/10), suggesting particular effectiveness on datasets with more descriptive entities and varied relation types.

These results demonstrate that the filtering mechanism’s effectiveness is not dependent on dataset-specific properties, but rather reflects a general principle: by enforcing semantic consistency between predictions and input context, we can enhance model performance across diverse temporal knowledge domains. The observed consistency suggests that contextual alignment serves as a reliable signal for identifying and correcting implausible outputs, regardless of the specific entities and relations involved.

F Baseline Model Details

We compare RECIPE-TKG against several baseline methods that reflect the dominant modeling paradigms for TKG forecasting. Embedding-based methods include RE-GCN (Li et al., 2021), which applies relational graph convolutions to timestamped graph snapshots; xERTE (Han et al., 2020), which combines subgraph sampling and path-based reasoning using attention for explainability; TANGO (Han et al., 2021), which uses neural ODEs to learn continuous-time entity embeddings; and TimeTraveler (Sun et al., 2021), which employs reinforcement learning to explore multi-hop temporal paths. Rule-based method includes TLogic (Liu et al., 2022) relies on extracted symbolic rules for forecasting. The results of these models are derived from Liao et al. (2024)

We also replicate two recent LLM-based methods. ICL (Lee et al., 2023) applies in-context learning by prepending historical quadruples to a query and using greedy decoding with a regex-based answer extraction. GenTKG (Liao et al., 2024) performs parameter-efficient fine-tuning with LoRA adapters, and combines this with a rule-based history sampling module. We use their official codebases and replicate their evaluation pipelines for fair comparison.

G Baseline Model Details

We compare RECIPE-TKG against several baseline methods that reflect the dominant modeling paradigms for TKG forecasting.

Embedding-based methods include RE-GCN (Li et al., 2021), which applies relational graph convolutions to timestamped graph snapshots; RE-NET (Jin et al., 2020), which applies R-GCN (Schlichtkrull et al., 2018) for message passing for each snapshot and then uses temporal aggregation across multiple snapshots; xERTE (Han et al., 2020), which combines subgraph sampling and path-based reasoning using attention for explainability; TANGO (Han et al., 2021), which uses neural ODEs to learn continuous-time entity embeddings; and TimeTraveler (Sun et al., 2021), which employs reinforcement learning to explore multi-hop temporal paths.

Rule-based method TLogic (Liu et al., 2022) relies on extracted symbolic rules for forecasting.

1134 **LLM-based methods** We implement several re-
1135 cent LLM-based approaches. ICL (Lee et al., 2023)
1136 applies in-context learning by prepending histor-
1137 ical quadruples to a query and using greedy de-
1138 coding with regex-based answer extraction. Gen-
1139 TKG (Liao et al., 2024) performs parameter-
1140 efficient fine-tuning with LoRA adapters, com-
1141 bined with rule-based history sampling. PPT (Xu
1142 et al., 2023) converts quadruples into natural lan-
1143 guage prompts and uses masked token prediction
1144 to leverage semantic information from pretrained
1145 language models. CoH (Xia et al., 2024b) ex-
1146 plores high-order histories step-by-step to better
1147 utilize richer historical information for LLM rea-
1148 soning. HFL (Xu et al., 2025) learns from histor-
1149 ical facts across different time periods through a
1150 multi-perspective sampling strategy that focuses
1151 on mining relational associations. We use official
1152 codebases where available and replicate evaluation
1153 pipelines for fair comparison.

1154 **Note on embedding-based baselines** Several
1155 specialized embedding models for TKG com-
1156 pletion (e.g., RotateQVS (Chen et al., 2022),
1157 BoxTE (Messner et al., 2022), CGE (Ying et al.,
1158 2024)) have shown strong performance but are
1159 excluded from our main evaluation for three rea-
1160 sons. First, they use different dataset splits (e.g.,
1161 ICEWS14 with 72,826/8,941/8,963 train/valid/test
1162 samples vs. our 74,845/8,514/7,371 split). Second,
1163 embedding methods require task-specific mathe-
1164 matical engineering, limiting cross-dataset gen-
1165 eralizability, while LLM-based approaches ben-
1166 efit from pre-trained knowledge and adaptability.
1167 Third, there has been limited direct comparison be-
1168 tween these paradigms in the literature. We include
1169 only embedding-based methods using consistent
1170 dataset splits for meaningful comparison.

1171 **H Dataset Statistics**

1172 We use four standard temporal knowledge graph
1173 benchmarks. ICEWS14 and ICEWS18 are subsets
1174 of the Integrated Crisis Early Warning System, con-
1175 taining geopolitical event records with daily gran-
1176 ularity. GDELT provides global political event data,
1177 filtered to the most frequent events for tractability.
1178 YAGO consists of curated facts from a multi-year
1179 period. The statistics for these datasets are pro-
1180 vided in Table 12.

1181 **I More Analysis**

1182 **I.1 Analysis of Contrastive Fine-Tuning**

1183 To complement the ablation results in Section 6.1,
1184 we analyze how contrastive fine-tuning affects
1185 model behavior in low-history regimes—settings
1186 where standard exact-match metrics such as
1187 Hits@k may fail to capture the semantic relevance
1188 of model predictions.

1189 **Setup.** We group ICEWS14 test samples by his-
1190 tory length and compute the semantic distance be-
1191 tween each model prediction and the gold entity.
1192 We compare three supervision settings: ICL, SFT,
1193 and contrastive FT, all evaluated under the same
1194 TLR history sampling.

1195 We define semantic distance using cosine simi-
1196 larity between predicted and gold entities in a sen-
1197 tence embedding space:

$$\phi(p, o) = 1 - \text{cos-sim}(E(p), E(o)), \quad (15)$$

1198 where $E(\cdot)$ denotes the sentence transformer used
1199 in Section 4.3. Lower ϕ indicates higher semantic
1200 alignment, even if the prediction does not exactly
1201 match the gold entity.

1202 **Contrastive Tuning Improves Semantic Ground-
1203 ing.** Figure 12 plots the semantic distance $\phi(p, o)$
1204 against the retrieved history length. All models
1205 show the expected trend: greater history generally
1206 yields predictions closer to the gold entity in em-
1207 bedding space. However, the distinction between
1208 supervision strategies becomes clear in low-history
1209 regimes. In the encircled region (history length
1210 ≤ 3), contrastive fine-tuning produces fewer high-
1211 distance predictions than both ICL and SFT. This
1212 demonstrates that contrastive learning enhances the
1213 model’s ability to infer plausible entities even when
1214 the input lacks strong historical evidence.

1215 **Multi-hop Sampling Further Stabilizes Model**

1216 **Behavior.** To examine how our sampling strategy
1217 affects model reasoning on sparse-history inputs,
1218 we repeat the same experiment using our proposed
1219 *RBMH Sampling*. For comparability, we compute
1220 semantic distances on the same subset of samples
1221 originally identified as short-history under TLR.

1222 As shown in Figure 13, contrastive-tuned mod-
1223 els under *RBMH Sampling* exhibit more uniform
1224 semantic behavior across history lengths. Unlike
1225 the steep drop-off observed under TLR, the seman-
1226 tic distance remains relatively stable, indicating
1227 that many samples previously limited by shallow

Table 12: Dataset statistics used in our experiments. Time granularity varies by dataset and influences temporal resolution.

Dataset	#Train	#Valid	#Test	#Entities	#Relations	Time Gap
ICEWS14	74,845	8,514	7,371	7,128	230	1 day
ICEWS18	373,018	45,995	49,545	23,033	256	1 day
GDELT	79,319	9,957	9,715	5,850	238	15 mins
YAGO	220,393	28,948	22,765	10,778	24	1 year

1229 context can now be grounded through richer structural and temporal cues. This supports our motivation in Section 2.1: one-hop sampling often fails
1230 to provide the necessary relational evidence, and
1231 multi-hop expansion is essential for enabling reliable
1232 reasoning, rather than the test instances being
1233 inherently harder.
1234

1235
1236 **Qualitative Support.** Figure 14 presents qualitative examples where contrastive-tuned models
1237 produce predictions that are not exact matches but
1238 remain relationally and contextually appropriate. In
1239 contrast, ICL and SFT often produce surface-level
1240 or unrelated completions. These examples, paired
1241 with the distributional evidence above, underscore
1242 how contrastive fine-tuning improves semantic generalization and interpretability, particularly when
1243 Hits@k offers limited signal.
1244

1245
1246 **Case Study.** To better understand the behavior
1247 of RECIPE-TKG, we provide a case study
1248 comparing the top-10 predictions of four methods
1249 on a specific query. The ground-truth object is
1250 `High_Ranking_Military_Personnel_(Nigeria)`,
1251 which is not explicitly present in the history. As
1252 shown in Figure 15, none of the models are
1253 able to perfectly predict the correct entity.
1254 However, the predictions made by RECIPE-
1255 TKG models are clearly more semantically
1256 aligned with the ground truth. For example,
1257 predictions such as `Military_(Nigeria)` and
1258 `Defense_Personnel_(Nigeria)` closely ap-
1259 proximate the true answer in meaning, whereas
1260 other models (ICL and GenTKG) fail to capture
1261 such relevant semantics. This demonstrates the
1262 advantage of contrastive fine-tuning in shaping the
1263 embedding space, allowing the model to produce
1264 more relationally compatible predictions even
1265 when exact matches are not observed in history.
1266

J Use of AI Tools

1267 AI assistants were used to support writing (e.g.,
1268 phrasing suggestions) and code generation (e.g.,
1269 syntax templates). All such outputs were subject
1270 to thorough human verification, and the authors
1271 remain fully responsible for the content presented.
1272

1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2

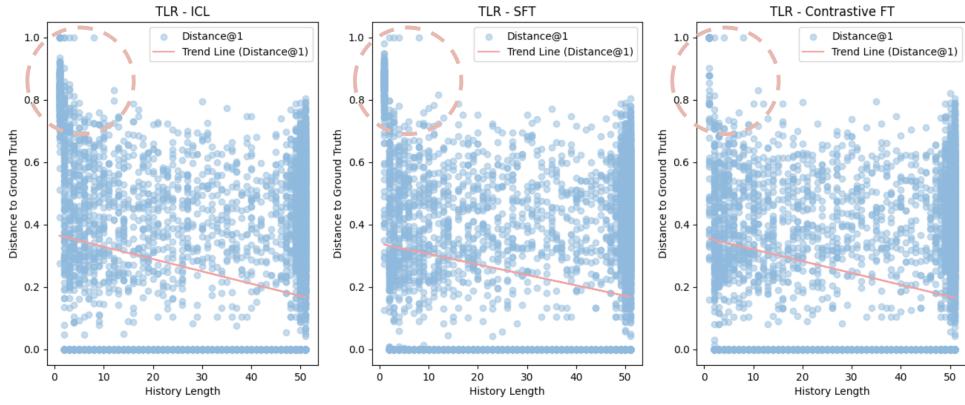


Figure 12: Semantic distance (ϕ) vs. history length on ICEWS14 under TLR sampling. The encircled region highlights CL's improved semantic grounding in sparse-history settings.

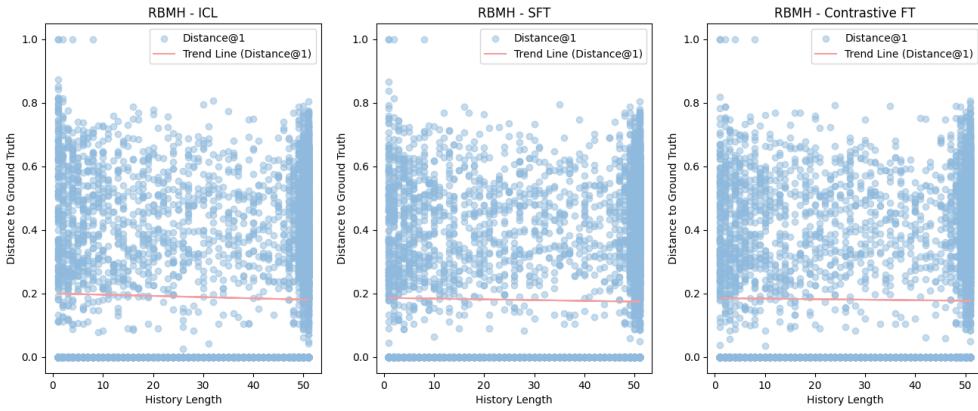


Figure 13: Semantic distance (ϕ) vs. history length for the same TLR-identified sparse samples, but evaluated under *RBMH Sampling*. The model exhibits more stable behavior across history lengths.

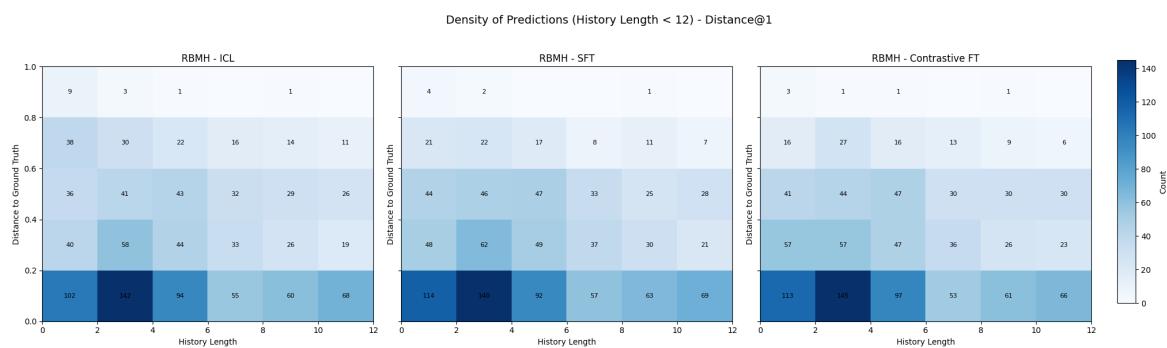


Figure 14: Semantic distance (ϕ) vs. history length for the same TLR-identified sparse samples, but evaluated under *RBMH Sampling*. CFT learns better with RBMH as it samples the deeper relationships between entities.

Model Outputs

ICL-LLaMA2-7b

1. Citizen_(Nigeria)
2. Boko_Haram
3. Suleiman_Abba
4. Other_Authorities_/_Officials_(Nigeria)
5. Aliyu_Mohammed_Gusau
6. Nigerian_Army
7. Nigerian_Army
8. Nigerian_Army
9. Nigerian_Army
10. Other_Authorities_/_Officials_(Nigeria)

RECIPE-TKG-LLaMA2-7b

1. Citizen_(Nigeria)
2. Boko_Haram
3. Suleiman_Abba
4. Other_Authorities_/_Officials_(Nigeria)
5. Aliyu_Mohammed_Gusau
6. Government_(Nigeria)
7. Military_(Nigeria)
8. Abdul_Aziz_Yari
9. Chief_of_Staff_(Nigeria)
10. Abdul_Aziz_Yari

GenTKG-LLaMA2-7b

1. Citizen_(Nigeria)
2. Boko_Haram
3. Suleiman_Abba
4. Other_Authorities_/_Officials_(Nigeria)
5. Nigeria
6. Aliyu_Mohammed_Gusau
7. Nigeria
8. Nigeria
9. Nigeria_Army
10. None

RECIPE-TKG-LLaMA3-8b

1. Citizen_(Nigeria)
2. Other_Authorities_/_Officials_(Nigeria)
3. Boko_Haram
4. Suleiman_Abba
5. Defense_/_Security_Ministry_(Nigeria)
6. Terrorist_(Boko_Haram)
7. Employee_(Nigeria)
8. Terrorist_(Nigeria)
9. Senior_Military_Official_(Nigeria)
10. Defense_Personnel_(Nigeria)

Ground-truth entity: High_Ranking_Military_Personnel_(Nigeria)

Figure 15: Top-10 predictions from four models. RECIPE-TKG produce semantically closer outputs to the ground truth.