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ABSTRACT

Magnetic Resonance Imaging (MRI) is a crucial diagnostic tool, but high-
resolution scans are often slow and expensive due to extensive data acquisition re-
quirements. Traditional MRI reconstruction methods aim to expedite this process
by filling in missing frequency components in the K-space, performing 3D-to-3D
reconstructions that demand full 3D scans. In contrast, we introduce X-Diffusion,
a novel cross-sectional diffusion model that reconstructs detailed 3D MRI volumes
from extremely sparse spatial-domain inputs—achieving 2D-to-3D reconstruction
from as little as a single 2D MRI slice or few slices. A key aspect of X-Diffusion
is that it models MRI data as holistic 3D volumes during the cross-sectional train-
ing and inference, unlike previous learning approaches that treat MRI scans as
collections of 2D slices in standard planes (coronal, axial, sagittal). We evaluated
X-Diffusion on brain tumor MRIs from the BRATS dataset and full-body MRIs
from the UK Biobank dataset. Our results demonstrate that X-Diffusion not only
surpasses state-of-the-art methods in quantitative accuracy (PSNR) on unseen data
but also preserves critical anatomical features such as tumor profiles, spine curva-
ture, and brain volume. Remarkably, the model generalizes beyond the training
domain, successfully reconstructing knee MRIs despite being trained exclusively
on brain data. Medical expert evaluations further confirm the clinical relevance
and fidelity of the generated images. To promote reproducibility and trust in our
findings, we will publicly release the accompanying code upon publication. To
our knowledge, X-Diffusion is the first method capable of producing detailed 3D
MRIs from highly limited 2D input data, potentially accelerating MRI acquisition
and reducing associated costs.

1 INTRODUCTION

Medical imaging stands as a cornerstone in modern healthcare, with innovations playing a critical
role in disease diagnosis and treatment planning. Traditional MRI scans, though detailed, are of-
ten time-consuming and come with significant economic implications (Bell, 1996). The urgency to
tackle these impediments has propelled research endeavors, but the quest for a cost-efficient, rapid,
and precise alternative persists (Wald et al., 2020; Arnold et al., 2023; Sarracanie et al., 2015). A
rapid and affordable MRI process would catalyze early disease detection, potentially saving count-
less lives. Moreover, by reducing barriers to access, we would ensure a more holistic healthcare
approach, promptly addressing diseases before they escalate.

Traditionally, inverse 2D or 3D Fast Fourier Transform (FFT) (Brigham & Morrow, 1967) on k-
space data with full Cartesian sampling is used to reconstruct MR images from raw data, sometimes
with the help of machine learning models (Fessler, 2010; Tran-Gia et al., 2013; Roeloffs et al.,
2016; Ben-Eliezer et al., 2016; Tan et al., 2017; Wang et al., 2018). Recent years have seen a pivot
towards machine learning-based frameworks such as Generative Adversarial Networks (GANs) and
diffusion-based models, harnessing the power of deep neural networks to enhance MRI reconstruc-
tion (Quan et al., 2017; Jiang et al., 2021; Chung et al., 2022). However, a pervasive challenge re-
mains: the synthesis of high-resolution MRIs from extremely limited observations (or even a single
2D image). Previous works either target compressive sensing to increase the frequency resolution
of the MRI (Chung et al., 2023; Quan et al., 2017; Jiang et al., 2021; Chung & Ye, 2022) or aim to
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Figure 1: X-Diffusion for Sparse MRI Reconstruction. (Right) We present X-Diffusion, a method
that can generate detailed and dense MRI volumes from a single MRI slice or a few slices. X-
Diffusion is the first method in medical imaging to generate detailed 3D MRIs from extremely
sparse inputs, preserving key anatomical properties. (Left) MRI reconstruction traditionally involves
retrieving high-frequency images from low-frequency full 3D MRI volumes (in the K-space).

increase the slice density when a sufficient number of slices is available (more than 30) (Lee et al.,
2023). These existing gaps in the MRI reconstruction landscape underscore the significance of our
approach in reconstructing MRIs from an extremely small number of observations.

Motivated by this, we propose X-Diffusion, a novel architecture that learns on 3D volumetric data
by utilizing view-dependent cross-sections. This approach allows for full MRI generation with
high accuracy from a single MRI slice or multiple slices (see Figure 1). Unlike previous methods
that treat MRI data as collections of 2D slices in standard planes (coronal, axial, sagittal) or rely
heavily on frequency-domain data, X-Diffusion operates directly in the spatial domain and models
MRI samples as complete 3D volumes during both training and inference. To our knowledge, X-
Diffusion is the first method capable of producing detailed 3D MRIs from highly limited 2D input
data, potentially accelerating MRI acquisition and reducing associated costs. It is important to note
that the generated MRIs are not clinical replacements for true MRIs yet, but could provide a quick,
affordable, and informative “pseudo-MRI" before conducting a full MRI examination.

Contributions: (i) We introduce X-Diffusion, a cross-sectional diffusion model that generates MRI
volumes conditioned on a single input MRI slice or multiple slices. The proposed X-Diffusion
achieves state-of-the-art results on MRI reconstruction and super-resolution compared to recent
methods on BRATS, a large public dataset of annotated MRIs for brain tumors, and full-body MRIs
from the UK Biobank dataset. (ii) We validate the generated MRIs on a wide range of tasks to en-
sure that they retain important features of the original MRIs (e.g., tumor profiles and spine curvature)
without using this meta-information in the generation process. (iii) We showcase the generalization
of trained X-Diffusion beyond the training domain (e.g., on knee MRIs not seen in training). (iv)
We evaluated the generated brain and knee MRIs with medical experts (a surgeon and an oncologist)
who anonymously could not distinguish the real from the generated MRIs in controlled experiments
which provides a proof of concept for the potential clinical usefulness of the generated MRIs.

2 RELATED WORK

Single-View 3D Reconstruction. Recent efforts on predicting 3D from 2D RGB images are starred
with the seminal work of DreamFusion (Poole et al., 2022), which distilled a ready-made diffusion
mechanism (Saharia et al., 2022) into NeRF (Mildenhall et al., 2020; Barron et al., 2022). This
methodology ignited a myriad of new techniques, both in converting text to 3D ((Lin et al., 2023;
Chen et al., 2023)) and transitioning visuals to 3D forms ((Melas-Kyriazi et al., 2023; Liu et al.,
2023; Tang et al., 2023; Qian et al., 2023)). These frameworks were considerably improved by Zero-
123 (Liu et al., 2023), explicitly conditioning on camera-views while finetuning Stable Diffusion
on the large 3D CAD dataset Objaverse (Deitke et al., 2023). While Zero-123 learns to generate
surface renderings of a target view given a single image, X-Diffusion learns to generate a cross-
sectional slice, conditioned on the angle and depth index of the slice, allowing for dense 3D volume
generation and targeting MRI medical imaging.
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Figure 2: X-Diffusion Pipeline. A single or multi-slice input is fed into the Latent Diffusion U-Net
conditioned on the target slice index d and target rotation from 360◦ slicing. The 3D volume is
reconstructed by vertical stacking of the slices from a fixed axis of rotation. The final volume X is
obtained after averaging the N realigned view-dependant volumes R⊺

i XRi
from a set of predefined

target rotations Ri.

Full-Body MRI Analysis. Most methods on automatic MRI analysis focused on developing meth-
ods for local segmentation of organs or tumours (Chen et al., 2019; Doran et al., 2017; Windsor &
Jamaludin, 2020; Ranjbarzadeh et al., 2021). Relatively few studies looked at whole-body scans.
Most of them were developed to detect and segment the spine in tasks such as scoliosis detec-
tion(Jamaludin et al., 2017; 2020; Windsor et al., 2020; 2021; Bourigault et al., 2022). In their 2020
article, Tunariu et al. discuss advancements in whole-body magnetic resonance imaging (MRI) and
its applications in clinical practice (Tunariu et al., 2020). Similarly, Küstner et al. present a deep
learning approach for the automatic segmentation of adipose tissue in whole-body MRI scans, fa-
cilitating large-scale epidemiological studies (Küstner et al., 2020). We leverage the MRI analysis
techniques for validating the viability of the generated MRIs for tumor, spine, and other discrimina-
tive features of interest.

MRI Reconstruction. With the recent rise of foundation models in computer vision (Rombach
et al., 2022a; Caron et al., 2021; OpenAI, 2023), several attempts have shown promise in steering
these models for the medical imaging domain (Ma & Wang, 2023; Nguyen et al., 2023). However,
this is mainly limited to discriminative tasks such as segmentation, classification and detection. For
Medical imaging inverse problem tasks, mostly classical methods were employed for incensing the
resolution of the reconstruction (Ronneberger et al., 2015; Schlemper et al., 2017; Shi et al., 2015;
Wang et al., 2014), or adopt diffusion models without great leverage of image pretraining (Chung &
Ye, 2022; Chung et al., 2023; Lee et al., 2023; Song et al., 2021). The LRTV method combines low-
rank and total variation regularizations to enhance the resolution of MRI images Shi et al. (2015).
This approach effectively preserves image details while reducing noise, leading to improved im-
age quality. A similar work presents super-resolution MRI based sparse reconstruction framework,
by proposing a simultaneous two-dictionary training method for sparse reconstruction Wang et al.
(2014). ScoreMRI and TPDM (Chung & Ye, 2022; Lee et al., 2023) make use of diffusion proba-
bilistic model (DPM) performing conditional sampling-based inverse problem. TPDM (Lee et al.,
2023) proposed to overcome the limitation of ScoreMRI being an image-to-image model and lever-
aged the 3D prior distribution of the data using a product of two 2D diffusion models. Although this
approach enables 3D generation, it only samples from two fixed canonical planes from the 3D MRI
and does not work for sparse input. On the other hand, X-Diffusion leverages the full 3D volume
by sampling the brain in all directions and leverages the Stable Diffusion huge image pretraining for
3D MRI volumes from a single MRI slice.

3 METHODOLOGY

Our approach is delineated into three primary aspects: conditioning of the diffusion model, denois-
ing cross-sectional slices, and slice stacking of view-conditioned volumes to generate the final MRI
output (as shown in Figure 2).
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Figure 3: Test Time Brain Generation at Different Sampling Steps. For the input slice index of
107 (left), we show the ground-truth slice 90 (right) and the corresponding brain slice generated at
different sampling steps t in the denoising diffusion process of X-Diffusion trained on BRATS.

3.1 DIFFUSION MODELS PRELIMINARIES

In previous works on view-conditional diffusion (Kawar et al., 2022; Rombach et al., 2022a; Liu
et al., 2023), the diffusion model ϵθ is trained based on the objective:

min
θ

Ez∼E(x),t,ϵ∼N (0,1)||ϵ− ϵθ(zt, t, c(x,R, τ))||22 (1)

In Equation1, θ denotes the model parameters that are being optimized. The latent variable z is sam-
pled from a distribution E(x), where x indicates the input data and E and D are the pretrained frozen
encoder and decoder of LDM AE respectively Rombach et al. (2022a). t ∼ [1, 2, ..., T ] specifies
a particular time step during the diffusion process with maximum T steps. The term ϵ is a noise
variable sampled from a standard normal distribution, N (0, 1). The function ϵθ is representative of
the model’s prediction for a given zt, t, and transformation c(x,R, τ), where R and τ are rotation
and translation parameters, respectively.

Proceeding, the gradient of the Score Jacobian Chaining (SJC) loss, which approximates the score
towards the non-noisy input as described in (Liu et al., 2023; Rombach et al., 2022a), is given by:
∇LSJC = ∇Iπ log p√2ϵ(xπ). The term ∇Iπ specifies the gradient with respect to the image Iπ .
The expression p√2ϵ(xπ) denotes the probability distribution of the transformed image xπ under

noise level
√
2ϵ. In our setup, τ is replaced with the index d of the slice of the MRI volume, and R

is the rotation applied to the MRI volume for the cross-sectional processing.

3.2 X-DIFFUSION FOR CROSS-SECTIONAL MRI SYNTHESIS

Upon acquiring the MRI slice x ∈ R
H×W , we seek to synthesize the entire MRI volume X ∈

R
H×W×D . For this, we employ X-Diffusion ϵθ, a cross-sectional diffusion model. The fundamental

idea stems from the analogy that a 3D volume can be built crosswise by stacking slices from a certain
direction, just like a loaf of bread. The full target volume X̄ can be reconstructed from limited slices
by generating target slices indexed by their depth d ∈ [1, 2, ..., D] in the MRI volume conditioned
on a certain direction R where the volume is oriented. This simplifies the learning of cross-sections
since the rotated MRI volume RX will have the same size H×W ×D as the original volume where
zero padding is used. For simplicity of the processing of the data, we use the same dimensions for
all directions (H = W = D). This allows varying the depth after rotating the ground truth MRI X̄
volume by simply indexing by the depth index d, and hence the slice that is used for training will be
x̄d = (RX )d,:,:. The full objective of training X-Diffusion is as follows.

min
θ

Ez,t,ϵ,d,R||ϵ− ϵθ(zt, t, c(x, d,R))||22
s.t. z ∼ E(x̄d), t ∼ [1, 2, ..., T ]

ϵ ∼ N (0, 1), d ∼ [1, 2, ..., D], R ∼ SO(3)

(2)

The X-Diffusion model is trained with cross-sections from all different directions R and all different
depths d, which allows it to generate the target from any arbitrary rotation and depth (see Figure 3).
At inference, unrolled X-Diffusion is applied D times with d ∈ [1, 2, .., D] from an arbitrary orien-
tation Ri, and decoded with decoder D to obtain the view-conditional volume XRi

. This volume is
then rotated back by R⊺

i XRi
to the Canonical orientation to produce the final output MRI X .

XRi
=











D

(

ϵθ(zt, t, c(x, 1, Ri))
)

...

D

(

ϵθ(zt, t, c(x,D,Ri))
)











, t = 1, 2, ..., T , X = R⊺

i XRi
. (3)
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Input MRI d=95 GT d=100 Output d=100 Difference Input MRI d=81 GT d=63 Output d=63 Difference

Figure 4: Qualitative Results of full body 3D MRI Generation with X-Diffusion. We show
a single MRI slice example, two corresponding ground-truth MRI slices (index 68 and 100), the
corresponding generated MRI slice, and a difference map to qualitatively measure the error between
generated and ground-truth MRI.

Input d = 57 d = 73 d = 77 3D Tumour

Figure 5: Visualisations of 3D Brain Generation. For the input slice (slice index 76), we show
examples of slices from generated 3D brain MRI volumes with varying slice index (top) and its
ground-truth brain slices (bottom). We show the tumour profile segmentation map in all output and
ground truth slices to highlight the differences and show the 3D tumor in the generated MRI and
ground truth MRI in the most right column. Red is used for non-enhancing and necrotic tumor core,
green for the peritumoral edema, and blue for the enhancing tumor core.

Multi-Slice Input. While the pipeline described above is effective, it relies on heavy diffusion
operations for each slice input and output. Adding more slices by simply inflating the network
(Blattmann et al., 2023) will create computational and memory difficulties. Therefore, to efficiently
allow X-Diffusion’s pipeline to accept K slices as input while maintaining the same original weights
structure of Stable Diffusion (Rombach et al., 2022a), we perform a cumulative sum operation on
the dot product of consecutive slices to reduce to a single slice input. The reduction operation of
the K > 1 input slices (x1, x2, ..., xK) is similar to what is followed in TPDM (Lee et al., 2023)

in the conditioning volume, and it can be described as follows. x = 1
K−1

∑K−1
j=1 xj · xj+1. These

multi-slice inputs can be from the same plane (our experiments’ focus) or orthogonal planes. We
compare in Section 6.2 the different strategies to process the slices with different configurations.

Multi-View MRI Volume Generation. One advantage of our cross-sectional diffusion is that it
can learn and generate the volume XRi

from any arbitrary view direction Ri (as in Equation 3). In
training, this allows X-Diffusion to train on MRIs from all types of cross-sections, unlike the typi-
cally followed common 3 planes (coronal, sagittal, and axial) (Chung & Ye, 2022; Lee et al., 2023;
Fessler, 2010), which allows the model to generalize better. At inference, we leverage this power to
generate N volumes from N different views predefined as equally distributed views around the 360◦

around the azimuth horizontal rotations Ri ∈ {Razim(
i×360◦

N
)}Ni=1, where Razim(r) is the rotation

matrix defined by rotating by r degrees around the vertical axis (0,1,0). The final MRI volume output
X is then obtained by averaging the view-conditional volumes (XRi

from Eq (equation 3)) at infer-

ence after rotating back to the canonical orientation of the output as follows. X = 1
N

∑N

i=1 R
⊺

i XRi

This multi-view aggregation is inspired by how multi-view discriminative methods learn a global
representation by aggregating multiple views features(Su et al., 2015; Hamdi et al., 2023). We show
in Section 6.1 the utility of the volume averaging compared to a single volume.
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Test 3D PSNR ↑
Models 1 slice 2 slices 3 slices 5 slices 10 slices 31 slices

BR UK BR UK BR UK BR UK BR UK BR UK

ScoreMRI 9.37 8.54 10.25 9.16 10.68 10.42 12.37 11.88 14.31 13.24 29.24 19.01
TPDM 10.48 9.29 10.86 9.99 11.33 11.09 14.13 12.62 16.65 15.88 31.48 21.70
X-Diffusion (ours) 23.10 22.42 25.20 23.04 29.43 25.26 31.25 26.85 33.27 27.44 35.48 29.01

Table 1: Model Performance on Test Brain Data and Whole-Body MRIs. We compare the MRI recon-
struction for baselines ScoreMRI (Chung & Ye, 2022), TPDM (Lee et al., 2023), and our X-Diffusion model
for varying input slice numbers in training and inference. We report the mean 3D test PSNR on BRATS (BR)
brain dataset and the UK Biobank body dataset (UK). The results showcase huge improvement over the base-
lines, especially on the small number of input slices (particularly at 1). For reference, the parameter count and
inference time for processing a single 3D MRI on a single NVIDIA A6000 GPU with 48GB of RAM are as
follows: ScoreMRI (860M, 139.1s), TPDM (1720M, 149.5s), and X-Diffusion (990M, 141.5s).

4 EXPERIMENTS

4.1 DATASETS

We conducted our experiments on two primary datasets for evaluations (BRATS & UK BioBank)
and on two secondary datasets for out-of-domain generalization (IXI & fast knee MRI). BRATS is
the largest public dataset of brain tumours consisting of 5,880 MRI scans from 1,470 brain diffuse
glioma patients, and corresponding annotations of tumours (Baid et al., 2021; Menze et al., 2015a;
Bakas et al., 2017). All scans were skull-stripped and resampled to 1 mm isotropic resolution. All
images have a resolution of 240 × 240 × 155, and we use the flair T2 sequence. Tumours are
annotated for 3 classes: Whole Tumour (WT), Tumour Core (TC), and Enhanced Tumour Core
(ET). UK Biobank is a more comprehensive dataset of 48,384 full-body MRIs from more than
500,000 volunteers(Sudlow et al., 2015), capturing diverse physiological attributes across a broad
demographic spectrum. IXI is a dataset of T1-weighted 1.5 Tesla brain MRI images of 582 healthy
subjects, freely available online (IXI). Knee fastMRI is a public dataset of raw k-space data from
NYU Langone(Knoll et al., 2020; Zbontar et al., 2019). We use the test set provided (n=109) of
fastMRI single coil, dimensions 640x372x30. These are center-cropped to 320x320x30.

4.2 EVALUATION METRICS

We use the standard 3D PSNR (Lee et al., 2023) and 2D SSIM (Wang et al., 2004) metrics to
evaluate 3D MRI reconstruction and the following metrics for the validation experiments. Dice
Score is used to evaluate the performance of our model at segmenting the brain tumours (Menze

et al., 2015b). Dice Score = 2|Y ∩Ŷ |
D(|Y |+|Ŷ |) , where Y is the prediction, Ŷ is the ground-truth label and D

the total number of slices. Brain Volume. We measure brain volume in mm3 by counting the non-
zero voxels in the volume multiplied by the voxel spacing (Dikici et al., 2019). Spine Curvature.
Let γ(t) = (x(t), y(t)) be the equation of a twice differentiable plane curve parametrized by t ∈
[1, 209] normalized height-wise by 209 for curvature analysis. We measure the spine curvature κ

similar to (Bourigault et al., 2023): κ = (y
′′

x
′ − x

′′

y
′

)/(x
′2 + y

′2)
3

2 .

4.3 BASELINES

We compare X-Diffusion’s performance against state-of-the-art MRI generation techniques, namely
ScoreMRI (Chung & Ye, 2022) and Two-Perpendicular-Diffusion-Models TPDM (Lee et al., 2023)
using NCSNPP model (Song et al., 2020). For the multiple slice input (nx256x256) in X-Diffusion,
we aggregated the multiple inputs to form a single batch (1x256x256). For comparison with Score-
MRI, being an image-to-image model, we uniformly sampled n slices along the z-axis. As for
TPDM, we conditioned on n slices from the full volume after the fusion of the two diffusion models.

4.4 IMPLEMENTATION DETAILS

To facilitate using the pretrained weights of Zero-123 (Liu et al., 2023) (based on Stable Diffusion
(Rombach et al., 2022a)), we use the same channel size in the input 3, repeating the grayscale
images. For the size of the MRI volumes, we used H = W = D = 155, as originally the sizes in
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Figure 6: Visual Comparison of MRI Brain Reconstruction. We benchmark different methods
of reconstructed 3D brains on test set with multi-slice inputs. We show a generated slice from 3D
brain generated from ScoreMRI (Chung & Ye, 2022) (top), TPDM(Lee et al., 2023) (middle), and
X-Diffusion (bottom) conditioned on a varying number of input slices. The red zoomed crop is
placed in the exact location in all images to highlight the differences.

the dataset were 155 slices. For model training, we use a base learning rate of 1.0e−06. Batch size is
set to 32. In the diffusion sampling, we used T = 1000 time steps and an ETA of 1.0. More details
about the datasets, metrics, and setup are provided in Appendix.

5 RESULTS

5.1 MAIN RECONSTRUCTION RESULTS

Our results unequivocally highlight the superior performance of X-Diffusion in terms of both quali-
tative and quantitative metrics. Representative MRI volumes generated by our pipeline, when juxta-
posed with ground-truth images, showcased remarkable similarity, with even intricate physiological
features like tumor information, spine curvature, and fat distribution being accurately captured.

Notably, X-Diffusion achieves sota PSNR > 30 dB for a few input slices while baselines require
more than 60 input slices to achieve similar performance (Figure 7). The margin is more than 12 dB
PSNR for the 1-slice input in both the BRATS and the UK Biobank benchmarks (see Table 1 and
Figure 6). For reference, two randomly sampled MRIs from the UK Biobank would have a PSNR of
15.95 dB ± 0.36 (on 4800 randomly sampled examples). The slices from 3D reconstructed volumes
at varying depths and axis of rotation, visually match the ground truths for both brain and whole-
body scans (see Figures 5 and Figure 4). We also plot the error map (Figure 4) of such X-Diffusion
generations to highlight the differences with the ground truth MRIs.

5.2 MRI VALIDATION RESULTS

Brain Volumes Preservation. The generated MRIs by our X-Diffusion retain almost the exact same
average brain volume 1.28e6 mm3 vs 1.31e6 mm3 of the real MRIs.

Tumour Information Preservation. For the brain tumor segmentation, we use a Swin UNETR
model(Hatamizadeh et al., 2022; Tang et al., 2021), trained with random rotation, and intensity as
data augmentation. In Figure 5, we highlight the tumor profiles of the generated MRIs compared
to the ground truth tumour profile. In the test set with human ground-truth annotations (n = 333),
the real MRI Dice score is 85.15 while the generated MRIs from a single slice have a dice score of
83.09. This shows how the generated MRIs indeed preserve the tumor information and can act as
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Figure 7: Effect of the Number of Input Slices. We plot the test PSNR vs. the number of input
slices for X-Diffusion and our baselines i.e. TPDM (Lee et al., 2023) and ScoreMRI (Chung & Ye,
2022) on the brain MRI dataset. N is the number of averaged view-dependent volumes. We show
the standard deviation of each run to account for potential randomness.

an affordable and informative pseudo-MRI, before conducting an actual costly MRI examination in
hospitals. More detailed results are provided in Appendix.

Preservation of Spine Curvature. For the spine segmentation on UK Biobank, we use a UNet++
model (Zhou et al., 2018) with Dice Loss and use the curvature prediction of the spine followed
in (Bourigault et al., 2022)). We measure the Pearson correlation factor (Bourigault et al., 2022)
of spine curvature measured on the generated MRIs where the input is a single MRI coronal slice,
or a single sagittal slice against the curvature of reference real MRIs of the same samples. The
correlation coefficients are 0.89 for the coronal MRIs and 0.88 for the sagittal MRIs on the test set
of 308 human-annotated angles.

5.3 OUT-OF-DOMAIN GENERALISATION

One way to test the generalization capability of the trained X-Diffusion is to test it on a completely
different domain from an MRI dataset not seen during training. We report the single-slice results on
the test set of n = 109 knees from NYU fastMRI Knoll et al. (2020); Zbontar et al. (2019), using
the X-Diffusion trained on the BRATS brain MRIs. The test PSNR result is 34.17 and an example
is shown in Figure 8. More detailed results can be found in Table II of the Appendix. It shows how
successfully X-Diffusion can generate knee MRIs (out-of-domain) despite being trained on brains.

5.4 MEDICAL EXPERTS ASSESSMENT

While the generated MRIs preserve all visual details and other essential features, it is not clear how
physicians can benefit from the generated MRIs or whether they can clearly distinguish artifacts
of the generated MRIs. To test this we conduct a series of small retrospective clinical studies on
the generated MRIs of both the brain and knees from our X-Diffusion and with the help of expert
physicians test the samples against real MRI samples (summarized in Table 2).

Small brain MRI clinical study. We gave a certified neuro-oncologist W. S. a set of 20 Brain
MRI samples that have both the generated MRIs and the true MRIs as unordered randomized pairs.
We asked him to give his decision on which of the samples were the true ones and his precision
was only 40 %. This means that the generated brain MRIs are indistinguishable from the real ones
even for an expert oncologist. On another test, we asked him to identify if the generated MRIs on
another 10 samples have enough tumour information and rate them from 1 to 10, where 10 means
all information about the tumour is present, clear, and realistic. The score of the generated tumour
was 8.6± 1.0 out of 10.

Small Knee MRIs clinical study. To qualitatively assess how realistic our generated knee out-of-
domain 3D volumes were (produced from a single slice), we gave 20 generated examples alongside
their real MRI counterparts to an expert orthopedic surgeon J. F.. He was then asked to identify
the real example from a set of 20 MRI pairs. The surgeon correctly identified the real MRI in only
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PSNR=32.38 PSNR=33.14 PSNR=32.23

PSNR=25.82 PSNR=25.28 PSNR=24.61

Figure 8: Out-of-Domain Generations of X-Diffusion. We show an example of knee 3D MRI
generation using X-Diffusion from the single input slice on the left. We show (top): ground truth
slices of the same sample as a reference, (middle): generated slices of 3D MRI by X-Diffusion, (bot-
tom): the generated slices when X-Diffusion is trained from scratch. Our X-Diffusion can generate
high-fidelity 3D MRIs of knees, even though it is trained on BRATS brain MRI dataset, illustrating
its potential as a foundation model for 3D MRI generation. The pretraining of X-Diffusion by Stable
Diffusion (Rombach et al., 2022a) and Zero-123 (Liu et al., 2023) (same U-Net architecture) helps
in the domain generalization, explaining the success of the full X-Diffusion (middle row).

10 out of 20 pairs, could not decide in 3 pairs, and misidentified the generated MRI as real in the
remaining 7 pairs. This further validates the generated out-of-domain MRIs.

6 ANALYSIS AND ABLATION STUDY

6.1 VOLUME AVERAGING

We study the effect of volume averaging at inference as detailed in Section 3.2. We note (from
Figure 7) how the averaging volumes indeed increase the performance up to a certain point. The
results of 3D PSNR (dB) for the 31-slices X-Diffusion on N = 1, 2, 3, 5, and 10 volumes are
35.48, 35.94, 36.17, 37.40, and 36.72 respectively. This is consistent with multi-view understanding
literature when the number of views increases, performance generally increases (Hamdi et al., 2021).

6.2 ORTHOGONAL SLICES INPUT

All of the results of multi-slice input of X-Diffusion shown in Section 5 are from input slices of the
same axis (sagittal, coronal, or axial). It might be intriguing to see what if the input multi-slices were
from different orthogonal planes, the results would improve over the ones shown in Table 1. For this,
we train on the Brats dataset from orthogonal planes a 2-slice X-Diffusion (coronal + sagittal) and a
3-slice X-Diffusion and the test PSNR results would be 25.61 dB and 29.77 dB respectively. This is
compared to 25.20 dB and 29.43 dB for same-axis 2-slices and 3-slices results of Table 1.

6.3 WHY DOES X-DIFFUSION WORK?

The Effect of Pretraining. We hypothesize that the massive pretraining of our X-Diffusion based
on Stable Diffusion weights (Rombach et al., 2022a) played an important role. Another aspect is that
the Zero-123 (Liu et al., 2023) weights which are modified Stable Diffusion weights that understand
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Body Part MRI Sample Real MRI Detection Rate Average Pathology Grade
Brain 20 40.0% 8.6/10
Knee 20 58.8% N/A

Table 2: Medical Experts Assessment of Brain and Knee MRIs. For a set of twenty brain and
knee MRIs, the detection rates for the real MRI from randomized pairs of real and generated MRIs
are almost 50%, indicating that the generated samples are indisputable from real MRI samples. On a
separate set of ten generated brain MRIs, tumour information was assessed by a neuro-oncologist on
a scale of 1 to 10, where 10 means all information about the tumour is present, clear, and realistic.

viewpoints and fine-tuned on large 3D CAD dataset Objaverse (Deitke et al., 2023) can indeed be
the reason why X-Diffusion generalizes well. The PSNR for 1-slice on BRATS dataset are (SD-
pretraining): 21.52 dB, (Zero-123-pretraining): 23.13 dB, (no-pretraining): 17.14 dB. These results
highlight the importance of pertaining to X-Diffusion. Refer to Figure 8 for similar observation.

Leveraging Context. Since we train on a cancerous brain dataset, one question that might arise is
whether X-Diffusion generated brain MRIs preserve tumour information when the given inputs do
not intersect with any tumour. We perform experiments varying the input slice index for 3D brain
MRI generation. We measure the performance for input slices with no intersection with the tumour
(not a single pixel with tumor). We also measure performance when only input slices are selected
from tumor range. The Dice Scores of the random slices, no-tumour, and only-tumour are 83.09,
79.23, and 83.68 respectively. As can be seen here, the brain volumes generated from input slices
with no tumour still preserve tumour information despite a small drop in performance. This indicates
that X-Diffusion is leveraging the context to preserve key information, such as tumor locations. This
observation is consistent with how tumor segmentation models with global context (Cao et al., 2022)
perform better than local-based U-Nets. More details are provided in Appendix.

6.4 WHEN DOES X-DIFFUSION FAIL?

To see when and how X-Diffusion fails, we conducted an experiment on healthy brains (no tumour)
using the IXI dataset, by running an X-diffusion trained on the BRATS brain tumor dataset. Our
X-Diffusion achieved a PSNR of 35.86 dB on the IXI dataset despite being trained on the BRATS
dataset. We then ran the tumour segmenter on the set of 582 healthy scans and corresponding
generated MRIs. The segmenter predicted tumours in 9.9% of the real healthy brains and in 11.3% of
the generated brain MRIs. Some of these tumor hallucination examples from X-Diffusion generation
are shown in Figure 9.

Hallucination Reference Hallucination Reference Failure Reference

Figure 9: Tumour Hallucination and Failure Cases in X-Diffusion Generation. We show two
cases of failure (red arrow) of our model hallucinating tumour in healthy sample scans. These
tumour hallucinations represent only 2% of the healthy test set. Also, we show a failure case for the
out-of-domain knee generation with the reference ground truth MRI slice.

7 CONCLUSIONS AND FUTURE WORK

X-Diffusion achieves high precision with limited inputs, as confirmed by tests on BRATS and UK
Biobank data. Future directions include extending its application to dynamic MRI types and explor-
ing its utility in other domains like environmental sciences.

Limitations. X-Diffusion occasionally exhibits minor artifacts in complex tissue interfaces, a known
issue in generative models operating in input-sparse scenarios. An instance of this is discussed in
Section 6.4 and Appendix with additional examples. Additionally, the high-quality images generated
by X-Diffusion (confirmed by physicians) do not necessarily imply that the generated MRIs contain
accurate diagnostic information. Future clinical validation is required to determine their suitability
for diagnostic purposes.
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APPENDIX

A DETAILED SETUP

A.1 DATASETS

We conducted our experiments on two primary datasets:

BRATS. The largest public dataset of brain tumours consisting of 5,880 MRI scans from 1,470
brain diffuse glioma patients, and corresponding annotations of tumours(Baid et al., 2021; Menze
et al., 2015a; Bakas et al., 2017). All scans were skull-stripped and resampled to 1 mm isotropic
resolution. All images have resolution 240 × 240 × 155, and we use the flair T2 sequence. Tumours
are annotated by expert clinicians for three classes: Whole Tumour (WT), Tumour Core (TC), and
Enhanced Tumour Core (ET). We split the 5,880 MRIs split into Train (n=4704), Validation (n=588),
and Test (n=588) sets.

UK Biobank. A more comprehensive dataset of 48,384 full-body MRIs from more than 500,000
volunteers(Sudlow et al., 2015). UK Biobank MRIs are resampled to be isotropic and cropped to a
consistent resolution (501 × 160 × 224). 48,384 whole-body MRIs are paired with antero-posterior
(AP) DXA scans of the same subjects. These Dixon MRIs do not come stitched, the scans are
scanned axially and there is a disparity in the bias field effect (a common artifact of MRI machines)
which is strongest at the knee region. These Dixon MRI patches could not be stitched seamlessly
with our current pipeline. These artifacts appear on all scans of the UKBiobank that we stitch.
Therefore, the X-Diffusion trained on this data will recreate these artifacts regardless of input. The
same pattern is present on all samples in the dataset for a fixed depth, while different depth indices
will have different fixed patterns. We made sure there was a coherence split, such that each patient
was in a unique set. We will publish the unique IDs used for train-validation-testing to confirm
there is no leakage, nor retrieval of images. Both datasets are pre-processed to ensure compatibility
with the X-Diffusion pipeline and to maximize the fidelity of the generated results. Pre-processing
includes data normalization to the range [0,1], conversion to fit the RGB channel expected from the
pre-trained diffusion model via replicating the grayscale to each channel, and padding to fit network
input resolution 256x256x3.

For Validation experiments, we use the following datasets:

IXI. It is a dataset of T1-weighted MR images of 582 healthy subjects, freely available online (IXI).
IXI dataset was collected from three different hospitals in London: Hammersmith Hospital using a
Philips 3T system, Guy’s Hospital using a Philips 1.5T system and the Institute of Psychiatry using
a GE 1.5T system.

Knee fastMRI. It is a public dataset of raw k-space data from NYU Langone(Knoll et al., 2020;
Zbontar et al., 2019). We use the test set provided (n=109) of fastMRI single coil, of dimension
640x372x30. The knee MRIs are center-cropped to 320x320x30.

Synthetic Volumes. It is our own generated synthetic volumes of 3D cones with different colors,
sizes, and orientations (see Figure XII for multiple examples). It has 10K samples to see if X-
Diffusion can learn 3D volumes other than MRIs. We varied the parameters for the inner volume of
the cone and color gradient to generate cones with varying sizes and colors. The dataset is split into
80% for training (8k), 10% for validation (1k), and 10% for testing (1k).

A.2 EVALUATION METRICS

To quantify the efficacy of X-Diffusion, we employed a suite of evaluation metrics, namely:

• Peak Signal-to-Noise Ratio (PSNR): Indicates the quality of the reconstructed MRI by
assessing the fidelity of the generated MRI in relation to the original.

PSNR(x, x̂) = 10log10(
max(x)2

1
n

∑

i,j,k(xi,j,k − x̂i,j,k)2
) (4)

where x represents the ground truth volume, x̂ is the predicted volume, and n is the total
number of voxels in the ground truth volume.
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• Structural Similarity Index (SSIM): Captures the perceived changes between the original
and generated MRI images.

SSIM(x, x̂) =
(2µxµx̂ + C1) + (2σxx̂ + C2)

(µ2
x + µ2

x̂ + C1)(σ2
x + σ2

x̂ + C2)
(5)

where x denotes the ground truth slice, x̂ is the predicted slice, µx is the average of x, σ2
x

is the variance of x, σxx̂ is the covariance between x and x̂, C1=(k1L)2, C2=(k2L)2, L is
the dynamic range of pixel values, and k1=0.01 and k2=0.03.
We measured the random PSNR on the whole test set for reference on the UKBiobank,
BRATS, and knee fastMRI dataset. For the UKBiobank, two randomly sampled MRIs
have a PSNR of 15.95 ± 0.36 dB. For BRATS, it is of 19.89 ± 1.59 dB, and for the knee
fastMRI of 20.21 ± 2.58 dB.
On BRATS dataset only

• Dice Score: We use the average Dice score to evaluate the performance of our model at

segmenting the brain tumours (Menze et al., 2015b): Dice Score = 2|Y ∩Ŷ |
D(|Y |+|Ŷ |) , where Y is

the prediction, Ŷ is the ground-truth label and D the total number of slices in the set.

• Brain Volume:
We measure brain volume in mm3 by counting the non-zero voxels in the volume multi-
plied by the volume in mm3 of each voxel (Dikici et al., 2019).

NonZeroV oxCount =

N
∑

i

V (xi, yi, zi) > 0 (6)

V oxV ol(mm3) = vx ∗ vy ∗ vz (7)
BrainV ol = NonZeroV oxCount ∗ V oxV ol

On UK Biobank dataset only

• Ground-truth Correlation Index: Pearson’s correlation coefficient r measures the
strength of a linear association between two variables. The formula in 8 returns a value
between -1 and 1, where: 1 denotes a strong positive relationship; -1 denotes a strong
negative relationship; and zero denotes no relationship (Bourigault et al., 2022).

r =

∑n

i=1(xi − x̄)(yi − ȳ)
√

∑n

i=1(xi − x̄)2
√

∑n

i=1(yi − ȳ)2
(8)

• Spine Curvature Let γ(t) = (x(t), y(t)) be the equation of a twice differentiable plane
curve parametrized by t ∈ [0, 209]. We measure the spine curvature κ with the standard
mathematical formula (Bourigault et al., 2023):
κ = (y

′′

x
′ − x

′′

y
′

)/(x
′2 + y

′2)
3

2 .

A.3 IMPLEMENTATION DETAILS

We implement X-Diffusion based on the Stable Diffusion (Rombach et al., 2022a) U-Net with addi-
tional controls and conditions. We detail some of the hyperparameters and design choices below.

For the first stage of autoencoder training, the encoder downsamples the image x ∈ RH×W×3, where
H = W = 256 by a factor 8 to allow the DPM to focus on the semantic features of the latent
space in a computationally efficient manner. KL regularization is added to mitigate high variance
latent space. In the second stage, a DPM is trained on the learned lower-dimensional latent space.
The configuration of the U-Net is as follows: 2 residual blocks, channels multiples: [ 1, 2, 4, 4 ],
attention resolutions: [ 4, 2, 1 ], 8 heads, using a spatial transformer with depth = 1. For the DDPM
Latent Diffusion, we use a base learning rate of 1.0-06, timesteps T = 1000, image size = 32,
channels = 4, and hybrid conditioning (concatenation and cross attention). Sampling is performed
with classifier-free guidance (see Figure3 for an example of test time sampling).

We use image-conditioned stable diffusion v2 checkpoint from Lambda Labs. We follow the novel
view synthesis training from Zero-123. X-Diffusion is trained on a single GPU a6000, 48GB of
RAM for four days.
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Input d=110 t = 5 t = 15 t = 215 t = 265

GT d=130 t = 990 t = 890 t = 690 t = 465

Figure I: Test Time Brain Generation at Different Sampling Steps. For the input slice 107 (top
left), we show the ground-truth slice 90 (bottom) and corresponding brain slice generating at differ-
ent sampling steps t in the denoising diffusion process.

Input d = 42 d = 48 d = 65 d = 69

7.609 9.031 8.993 8.584

Figure II: Residual Error of Generated MRIs. For the input slice (left), we show a difference
map(bottom) between generated MRI (top) and ground truth. Below the (bottom) row, we indicate
the mean squared error between generated and ground-truth images. Brighter pixels indicate greater
disparity.
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d = 97 d = 104 d = 108 3D Tumour

Figure III: Generated MRIs with Segmentation Maps Overlaid. We show ground-truth segmen-
tation maps(bottom) and generated MRI (top). Red is used for the non-enhancing and necrotic tumor
core, green for the peritumoral edema, and blue for the enhancing tumor core. The 3D Dice Score
for this example is 77.26.

Input

Figure IV: Probabilistic Output for Different Volumes Generated from Single Slice by X-
Diffusion. For the same input slice (top left), we show 12 generated output slices ( at index d = 88)
using 12 different inputs Gaussian noise for X-Diffusion U-Net.
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Input MRI slice GT d=100 Output d= Difference Input MRI slice GT d=63 Output d=100 Difference

Figure V: Qualitative Results of full body 3D MRI Generation with X-Diffusion. We show
a single MRI slice example, Two corresponding ground-truth MRI slices (index 63 and 100), the
corresponding generated MRI slice, and a difference map to qualitatively measure the error between
generated and ground-truth MRI. Note that when stitching the MRIs in the UKBioBank dataset,
there is a disparity in the bias field effect which is strongest at the knee region (brighter pixels). The
same pattern is present on all samples in the dataset for a fixed depth, and hence it is learned by
X-Diffusion as well.

B ADDITIONAL RESULTS

B.1 FAT VALIDATION

We ran further experiments to investigate whether the generated MRIs (see an example in Figure V)
preserve fat information. We use an image-based regression network trained on the UKBiobank
to estimate DXA metadata information from 2D compressed middle coronal and sagittal MRIs
(Langner et al., 2021). Pearson’s correlations using Equation 8 comparing reference values and
generated values are reported in Figure IX with most fields having high correlation r > 0.9. We
show that the generated MRIs preserve crucial internal information.

B.2 BRAIN VOLUMES PRESERVATION

The comparison of generated MRIs versus reference MRIs suggests a nearly perfect preservation
of brain volume (in mm3) with median volume of reference MRIs of 1.31e6 mm3 versus generated
MRIs 1.28e6 mm3 (see an example of brain generation in Figure II).

B.3 PRESERVATION OF SPINE CURVATURE AND FAT

For the spine segmentation on UK Biobank, we use a UNet++ model (Zhou et al., 2018) with Dice
Loss. We use a model trained to predict curves on DXA on UK Biobank (Bourigault et al., 2022). We
show in Figure XIV that generated MRIs preserve the spine curvature from normal to severe scoliosis
cases. We also study the case when DXA is used to generate the MRIs and show in Figure VI how the
correlation to real curvatures compares to the input MRI case. The curvatures of the MRI generated
from the coronal plane match the DXA curvatures more than the curvatures generated from sagittal
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Figure VI: Curvature Preservation of Generated MRIs. We plot spine curvature measured on
reconstructed MRIs where the input was either, (i) a single MRI coronal slice, (ii) a single sagittal
slice, or (iii) from the paired DXA, against the curvature of reference real MRIs of the same samples.
The correlation coefficients are 0.89 for the MRIs, 0.88 for the MRIs from sagittal plane generation,
and 0.87 for the DXAs.

MRI. This is expected since the antero-posterior plane of DXA is equivalent to the coronal plane for
MRIs. This also explains the greater Pearson’s correlation coefficient r of the coronal MRI (0.89)
and DXA-generated curvature (0.88) compared to sagittal-generated curvature (0.87) relative to the
reference curvature on the coronal plane. We observe though that MRI generation using X-Diffusion
from another plane than the conventional plane for scoliosis assessment is valid.

B.4 TUMOUR INFORMATION PRESERVATION

On the test set with human ground-truth annotations (n = 333), the brain volumes generated from
single slice input preserve the volume of the different tumour components (paired t-test, p−value <
0.05 for all 3 classes) (see Table I). The real MRI Dice scores are put for reference to our generated
MRIs. X-Diffusion outperforms baselines TPDM (Lee et al., 2023) and ScoreMRI (Chung & Ye,
2022) in tumour preservation (see Table I and Figure III). We ran experiments comparing the tumour
segmentation Dice Score varying X-Diffusion configurations. The multi-slice input X-Diffusion
achieves a marginally better Dice Score than the single-slice input model (83.47 → 83.09). We also
ran experiments with slice input used for volume reconstruction intersecting or not with tumour. We
observe on average a drop of 6% Dice Score (see Table I). Further away from the tumour the input
slice for volume reconstruction is selected, and we observe a linear decrease in tumour segmentation
Dice Score with the lowest value of 77.21 Dice Score (see Figure VII).

This shows how the generated MRIs indeed preserve the tumour information and can act as an
affordable and informative pseudo-MRI, before conducting an actual costly MRI examination in
hospitals. Given that our model has been trained on brain scans all with tumours, we expect to
see hallucinations of tumours in healthy scans. We report two cases of failure of our model in
Figure VIII. Hallucinations of tumours on healthy samples represent 2% of the test set.

C ADDITIONAL ANALYSIS

C.1 ABLATION STUDY

Repeated Input Single Slice in Multi-Slice Models. We try to see whether the multi-slice models
are better than single-slice models by studying if we used repeated input single slice multiple times.
The 3D PSNR results for multi-slice input with 1, 2, 3, 5, 10, 31, and 60 repeated slices are 23.1,
23.256, 23.638, 23.921, 24.379, 25.125, and 24.921 respectively.
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Test Dice Score ↑
X-Diffusion Generated MRIs ET WT TC Average Dice 3D PSNR(dB)↑
single slice 75.48 89.24 84.57 83.09 35.81
multi-slice 75.82 89.56 85.04 83.47 36.13
multi-slice (only-tumour) 76.12 90.04 85.87 84.01 36.98
multi-slice (no-tumour) 70.14 84.29 81.65 78.69 33.24

Real 76.47 91.13 86.24 85.15 N/A

Table I: Dice Score for Brain Tumor Segmentation on Real MRI vs. Reconstructed MRI.. We show
Dice Score for generated MRIs (n = 587 test samples) by our X-Diffusion when input only intersection with
tumour (only-tumour) and when input does not intersect with tumour (no-tumour) for a single slice and multi-
slice input (31 slices). Note how X-Diffusion predicts the correct 3D tumour locations even when the input 2D
slice does not intersect the tumour in most cases (drop from 83.47 to 81.65 Dice Score). ET: Enhancing Tumor,
WT: Whole Tumor, TC: Tumor Core.
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Figure VII: Dice Score versus Distance to Tumour. We show the decrease in Dice Score for slice
selection at increasing distances from the center of the tumor. This distance goes up to 80mm
(where slice index ∈ [1, 5] ∪ [151, 155], total number of slices is 155 per scan, and n = 587 test
samples). These results indicate that the proximity of input slices to the tumor significantly impacts
reconstruction accuracy.

Failure Reference Failure Reference

Figure VIII: X-Diffusion Failure Cases. We show two cases of failure (red arrow) on BRATS
generations.
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PSNR↑ SSIM↑
Method Axial Coronal Sagittal
X-Diffusion (single) 34.17 0.88 0.87 0.88
X-Diffusion (multi) 36.57 0.89 0.88 0.89

Table II: Out-of-Domain Generalization. We evaluate 3D knee generation using 3D PSNR and
mean SSIM on the test set of n = 109 knees from NYU fastMRI (Knoll et al., 2020; Zbontar et al.,
2019). X-Diffusion is trained on brain MRIs from BRATS.

Test 3D PSNR ↑
Input Slices 1 slice 2 slices 3 5 10 31 60 120

X-Diffusion 22.30 23.50 24.63 25.77 26.79 25.55 24.44 24.24

Table III: Reconstruction Quality on the Synthetic Cone Dataset. We report the test 3D PSNR on synthetic
volume generation of our model X-Diffusion for varying input slice numbers in training. The synthetic cone
dataset is described in Section A.1.

The Effect of Pretraining. We hypothesize that the massive pretraining of our X-Diffusion based
on Stable Diffusion weights (Rombach et al., 2022a) played an important role. Another aspect is that
the Zero-123 (Liu et al., 2023) weights which are modified Stable Diffusion weights that understand
viewpoints and fine-tuned on large 3D CAD dataset Objaverse (Deitke et al., 2023) can indeed be
the reason why X-Diffusion generalizes well to out-of-domain dataset (see generalization to knee
MRIs in Figure XI).

We show the results in the following Table IV.

Different Mechanisms for Multi-Volume Aggregation. We used view-dependent volume averag-
ing as described in the main paper in all of the main results in the work. We show probabilistic
outputs in Figure IV for different brain volumes generated for a single slice. We show the results
of varying the number of volumes in Table VIII. We see that as the number of volumes averaged
increases, the performance increases up to a certain point before saturating (as noted in the multi-
view literature (Hamdi et al., 2021)). We did try to use other ways to aggregate the view-dependant
volumes (eg. by max pooling the volumes) and show the results also in Table VIII.

MRI Volumes Specificity. One hypothesis that can justify why the X-Diffusion model works very
well on MRIs is that MRI data is not ordinary volume data since it is obtained by actually run-
ning an inverse Fourier transform on different k-frequency components, which means that the 3D
information is embedded in every slice of the MRI. Introducing this Fourier effect on our synthetic
Cone volumes dataset by applying masks on the high frequencies and then inverse Fourier results
in a slight improvement of volume reconstruction of +0.51 PSNR (dB) higher than with no Fourier
masking (26.788 → 27.298 dB). This indicates that the Fourier frequency effect is negligible and
does not explain away the performance of X-Diffusion.

C.2 TIME AND MEMORY REQUIREMENTS

Lowering reconstruction speed is important for greater accessibility, MRI re-acquisition purposes,
and to monitor surgery in the case of dynamic MRI. The number of model parameters should be
kept low to enable implementation on machines with lower memory capacity. X-Diffusion is on
par with other diffusion-based baseline models, albeit higher in memory requirements than classical
methods. However, X-Diffusion is the only 3D medical imaging diffusion model that shows the

3D PSNR↑
Models 1 slice 2 slices 3 slices 5 slices 10 slices 31 slices 60 slices

X-Diffusion (pre-training) 23.13 25.25 29.43 31.25 33.27 35.48 33.18
X-Diffusion (no-pretraining) 21.52 23.42 25.16 27.06 29.32 27.86 27.43

Table IV: X-Diffusion with Pre-Training versus no Pre-Training. We show a comparison of X-Diffusion
with fine-tuning pre-trained Stable Diffusion weights versus no pre-training.
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Figure IX: Evaluation of Body Composition Metrics for Reference versus Generated MRIs.
Each row shows the correlation (left) and Bland-Altman plot (right) for a different metric: (Top)
Arm Total Mass (DxaArmsTotalMass), (Middle) Total Fat-Free Mass (DxaTotalFatFreeMass), and
(Bottom) Total Tissue Fat Percentage (DxaTotalTissueFatPercentage). Strong correlations are ob-
served for DxaTotalFatFreeMass and DxaTotalTissueFatPercentage (r > 0.95), while DxaArmsTo-
talMass has a slightly lower correlation (r < 0.95).

capacity to generalize beyond the training data, opening the potential for foundation models in 3D
MRIs. We show the cost analysis in Table VI.

Test 3D PSNR ↑
Models 1 vol 2 vol 3 vol 5 vol 10 vol 20 vol 31 vol 60 vol

X-Diffusion (max-pool) 35.48 35.48 35.52 35.48 35.31 35.46 35.19 35.33
X-Diffusion (averaging) 35.48 35.94 36.17 37.40 36.72 36.35 36.83 36.53

Table V: Effect of Volume Averaging on The Performance. We show best performing model (31 slices) on
BRATS with number of volumes averaged from view-dependent 3D MRI generation. We see that the PSNR
reaches a peak for 5 volumes averaged before stabilising at 10 volumes. We also compare with a variant that
takes the maximum of volumes instead of averaging.
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Models #Params Runtime (s)

Score-MRI(Chung & Ye, 2022) 860M 139.142
TDPM(Lee et al., 2023) 1720M 149.468
X-Diffusion 990M 141.461

Table VI: Cost Analysis. We show compute cost and runtimes that are measured on a computer with a single
GPU a6000, 48GB of RAM.

Figure X: Application of X-Diffusion: DXA to MRI Generation. We show an example of ap-
plying X-Diffusion on DXA-to-MRI generation. From left to right: input DXA, ground-truth MRI,
generated MRI, and overlay of the generated MRI and the input DXA to test the alignment. The 3D
PSNR for this example is 26.38 dB.

C.3 COMPRESSED SENSING EXPERIMENT

Some of the previous works on MRI reconstruction (Chung et al., 2023; Chung & Ye, 2022) tar-
get the task of compressive sensing, where the goal is to increase the frequency resolution of the
MRIs when the k-space is undersampled. While this is not the goal of X-Diffusion, we adapted
X-Diffusion to this task and train X-Diffusion on the k-space of the MRIs. The performance for our
model in the compressive sensing task for under-sampling factor α = 2 is PSNR = 35.17 dB.
Results are shown in Table VII.

Test 3D PSNR ↑
Acceleration Factor 2 4 6

X-Diffusion 35.17 34.41 34.16
DiffusionMBIR(Chung et al., 2023) 37.16 36.12 35.85
TPDM(Lee et al., 2023) 36.48 35.52 35.18
ScoreMRI(Chung & Ye, 2022) 34.18 33.88 33.57

Table VII: Compressive Sensing Experiment. We show test 3D PSNR for benchmark models DiffusionM-
BIR(Chung et al., 2023), TPDM(Lee et al., 2023), and ScoreMRI(Chung & Ye, 2022), and X-Diffusion for
input downsampled by acceleration factor 2, 4, and 6. This shows that X-Diffusion is not perfect for compres-
sive sensing, as its power in the spatial domain.
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Figure XI: Out-of-Domain Knee Generations of X-Diffusion 1. We show two examples of knee
3D MRI generation using X-Diffusion from the single input slice on the left. We show (top): differ-
ent slices of the generated 3D MRI, (bottom): ground truth slices of the same sample as reference.
Mean PSNR for top example is of 36.84 dB and for bottom example of 35.17 dB.

Test 3D PSNR ↑
Models 1 slice 2 slices 3 slices 5 slices 10 slices 31 slices

X-Diffusion (Avg. Dot) 23.1 25.2 29.43 31.25 33.27 35.48
X-Diffusion (MLP) 22.7 24.91 28.89 30.73 32.82 35.16

Table VIII: Comparing Model Performance of Multi-Input Aggregation Procedure on Brain Data. We
compare the MRI reconstruction for X-Diffusion model for varying aggregation procedure i.e. dot averaging
and multi-layer-perceptron (MLP) reduction and for varying input slice numbers. We report the mean 3D test
PSNR on BRATS brain dataset. The results show that our aggregation method with dot product averaging
increases model performance by a margin compared to MLP reduction method for varying number of input
slices despite its simplicity.

C.4 MULTI-SLICE INPUTS

The multi- slice inputs are sampled from the same axis of rotation during training and testing. To
reduce the memory requirement for running the pipeline, the reduction operation of the K > 1 input
slices (x1, x2, ..., xK) is similar to what is followed in TPDM (Lee et al., 2023) in the conditioning

volume, and it can be described as follows: x = 1
K−1

∑K

j=1 xj ·xj+1. The difference in performance
between the simple dot product reduction and the learned reduction with additional MLP is shown in
Table VIII. During training, the slices do not need to be consecutive. The diffusion model implicitly
learns to handle the slice gap since it is trained on multiple slices with different gaps. For the
evaluation of multi-slice benchmarks, fixed input slices are sampled uniformly from the test set and
used for all the compared models.
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Figure XII: Synthetic Volume Dataset. We show some samples of our proposed Synthetic Volumes
dataset. The dataset consists of cones with different sizes, orientations, and colours (constant and
gradient colours). The dataset is described in details in Section A.1.

Figure XIII: Synthetic Cone Generation with X-Diffusion. Top left image is the input to the
model. We show (top): the generated 3D cone and slices from the 3D volume, (bottom): the ground-
truth 3D cone and corresponding slices from 3D volume.

C.5 SYNTHETIC VOLUMES GENERATION

We applied our X-Diffusion model on a completely different volumetric data modality to see if the
MRI volume generation is indeed a simple task for X-Diffusion (see Figure XII). To do this, we
trained X-Diffusion on a synthetic volumes dataset. We show an example of the generated volume
used for training and the corresponding prediction in Figure XIII and quantitative results in Table III.
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D ADDITIONAL DISCUSSIONS (DURING REBUTTALS)

D.1 CLINICAL RELEVANCE OF X-DIFFUSION

While the generated “pseudo MRIs" from X-Diffusion are not intended to replace comprehensive
MRI scans, we believe that our work represents an exploratory step toward novel imaging method-
ologies that could have future clinical relevance. In current clinical practice, MRI scans are time-
consuming and expensive due to the need for acquiring comprehensive volumetric data. The cost of
MRI varies considerably, depending on the infrastructure costs, and personal staff Bell (1996); Wald
et al. (2020); Arnold et al. (2023). In the UK the cost of performing MRI research in a university
teaching hospital is typically in the range of £350–£500 per hour of scanner occupation 1. We envi-
sion that, in the future, technologies like X-Diffusion could be integrated into the MRI workflow to
enhance efficiency. For example:

• Preliminary Assessment: During the initial phase of an MRI examination, X-Diffusion
could generate preliminary 3D reconstructions from a limited number of high-quality 2D
slices. This could provide immediate insights into the patient’s anatomy, allowing radiolo-
gists to identify regions of interest quickly.

• Adaptive Scanning: With real-time preliminary reconstructions, technicians could adapt
the scanning protocol on-the-fly, focusing on areas that require higher resolution or addi-
tional imaging sequences, thereby optimizing scan time and resource utilization.

• Workflow Efficiency: By potentially reducing the total scanning time, X-Diffusion could
increase patient throughput and reduce waiting times, leading to improved access to MRI
services.

• Cost Reduction: Shorter scan times and optimized imaging protocols could reduce opera-
tional costs for healthcare facilities, making MRI examinations more affordable.

We acknowledge that significant challenges remain before such applications can be realized. The
current limitations include ensuring the accuracy and reliability of the generated images, partic-
ularly for detecting small lesions or subtle pathological changes that may not be captured from
limited input data. Our work is intended as a proof-of-concept to demonstrate the potential capabil-
ities of cross-sectional diffusion models in medical imaging. Further research, clinical validation,
and collaboration with healthcare professionals are necessary to assess the feasibility and safety of
integrating X-Diffusion into clinical practice. We hope that X-Diffusion will inspire future develop-
ments in rapid imaging techniques and contribute to ongoing efforts to enhance the accessibility and
efficiency of MRI examinations.

D.2 PLANNED FUTURE CLINICAL STUDY OF X-DIFFUSION

Objective. To see if recent generative AI technologies for MRIs (X-Diffusion) are relevant to knee
diagnosis. The goal is to validate our pipeline for reconstructing full MRIs from one/few slices with
high precision and evaluate its usefulness for clinical assessment of knees. Given expert grading of
how abnormal a knee is, we will compare the score given for degeneration of knees between the two
sets of knees with and without AI generated knees.

Specific Aim. Grade how abnormal a knee is on an external set of 50 reconstructed MRIs from
single slices or two slices each using X-Diffusion. Then, compare the score for knee degeneration
between the annotated original set of 50 samples from humans and see how they are correlated.
First, experts will grade degenerative knees on MRI. Then we test X-Diffusion on the same sampled
graded. Given any single slice(s) from a degenerate knee we generate synthetic knees. Finally, we
compare the score given as grading for degeneration of knees between the two sets of knees with
and without AI generated knees.

Hypothesis. The trained X-Diffusion model for generating MRIs is capable of reconstructing un-
seen MRIs from one/few slices in the clinic with high precision. The generated MRIs also maintain
the diagnosis differentiability that make them useful for physicians in the clinical setup.

1https://www.bhf.org.uk/-/media/files/for-professionals/research/bhf-clinical-research-imaging-scan-
costing-guidelines-october-2022.pdf
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Study Design. The X-Diffusion model we will use is trained on NYU (Zbontar et al., 2019) dataset
and base our model on this dataset of 1,500 Knee MRIs of coronal and sagittal MRIs. The test
will involve 50 MRI staples from Oxford hospital. The slices that will be used are the middle
slices of either coronal or sagittal of the T2 scans of the MRIs. The type of abnormalities that are
investigated are either aging-related knee degeneration or specific pathologies. Knee pathology en-
compasses conditions such as osteoarthritis, rheumatoid arthritis, meniscal tears, ligament injuries,
patellofemoral pain syndrome, bursitis, tendonitis, and gout, all of which can cause pain, inflamma-
tion, and functional impairment in the knee.

Randomization. We opt for a study setting in a similar fashion as randomised controlled trials as
they are proven to be the most reliable way to compare two techniques. We want to make sure the
only difference between the two sets of knees with and without AI generated knees is effectively AI
related. We make sure the MRIs have been acquired in the same way with the same protocol.

Process Measures. The physicians will look at the reports of the original and the generated MRIs
and will grade them 1 (poor) to 10 (perfect) based on the following criteria:

• Cartilage Integrity: Evaluate the thickness, smoothness, and presence of any lesions or
areas of thinning.

• Meniscus Condition: Assess for tears, degeneration, or displacement of the meniscal tissue.

• Ligament Integrity: Check the anterior cruciate ligament (ACL), posterior cruciate liga-
ment (PCL), medial collateral ligament (MCL), and lateral collateral ligament (LCL) for
tears, sprains, or degeneration.

• Bone Marrow: Look for signs of bone marrow edema, bruising, or lesions.

• Synovial Fluid: Assess the amount and condition of synovial fluid, looking for effusion or
abnormalities.

• Bony Structures: Examine for bone spurs, cysts, or other bony abnormalities.

• Tendon Condition: Evaluate the condition of tendons around the knee for signs of inflam-
mation or tears.

• Patellofemoral Joint: Assess the alignment, smoothness of the cartilage, and presence of
any abnormalities in the patella and its tracking.

• Bursae: Check for inflammation or abnormalities in the bursae around the knee.

• Overall Joint Alignment: Evaluate the alignment of the knee joint, looking for signs of
valgus or varus deformity.

Main Outcome Measures. The proposed research will provide a clinical assessment of the X-
Diffusion technology in knee MRIs . Specifically we will measure the pixel level precision of
the generated MRIs compared to the original MRIs in PSNR. Furthermore, we will measure the
correlation between physicians’ grades on different aspects of the reports on the original 50 knee
MRI samples and the grades given to the generated MRIs by the physicians.

Ethical, Privacy and Safety Considerations. The testing subjects’ identities will not appear on the
MRI report and no labor is needed as the researchers are the ones involved in the study. Privacy-
sensitive content like faces, biometric details, etc will not appear on the MRIs as they will be
anonymized . The knee MRI scans are normal and common MRI scans that do not have any permit
requirements or constitute a hazard in the hospital either to the staff, or the patients.

D.3 NOTE ON THE EVALUATION OF X-DIFFUSION AND THE BASELINES

Evaluating X-Diffusion poses unique challenges due to fundamental differences in input data and
reconstruction paradigms compared to traditional MRI reconstruction methods (briefly touched on
in Figure 1).

Differences in Conditioning and Setup. Traditional methods like ScoreMRI (Chung & Ye, 2022)
and TPDM (Lee et al., 2023) reconstruct high-resolution images from degraded inputs such as under-
sampled k-space data or low-resolution images. In contrast, X-Diffusion conditions on high-quality
2D slices extracted directly from the ground truth (GT) 3D volumes to infer the missing volumetric
information. Additionally, the baselines are created to address the setup where the

30



Under review as a conference paper at ICLR 2025

Implications for Evaluation. This discrepancy makes it difficult to directly compare reconstruction
quality. It is challenging to separate the model’s capability from the influence of conditioning on
accurate GT slices. Standard metrics like PSNR and SSIM may unfairly favor models with more
informative inputs. Existing baselines may not perform optimally when adapted to use high-quality
conditioning data they were not designed for.

Addressing the Challenges. To ensure a fair assessment, we:

• Adapted ScoreMRI Chung & Ye (2022) For comparison with Score-MRI for the number
of slices used as input. We uniformly sample n slices along the z-axis i.e 1,2,3,5,10,31 and
perform interpolation to obtain the full volume of 155 slices for BRATS and 160 slices for
UK Biobank. We evaluate Score-MRI on the same test split as X-Diffusion using standard
reconstruction metrics i.e 3D PSNR, and SSIM.

• Adapted TPDM Lee et al. (2023) TPDM allows for sparse input training from two orthog-
onal views, and subsequently perform fusion of the outputs from the two diffusion models.
To adapt TPDM to our experiment on the number of slice input, prior to the fusion mod-
ule, we condition on n slices from the full volume uniformly sampled in the volume range
[1,155] for BRATS and [1,160] for UK Biobank. We evaluate TPDM on the same test split
as X-Diffusion using standard reconstruction metrics i.e 3D PSNR, and SSIM.

• Used consistent evaluation metrics across all models, interpreting results with an under-
standing of input differences.

• Conducted ablation studies to assess the influence of conditioning slices on reconstruction
quality.

• Included qualitative analyses and expert evaluations to complement quantitative metrics.

D.4 SPINE CURVATURE ANALYSIS

For the spine segmentation on UK Biobank, we use a UNet++ model (Zhou et al., 2018) with Dice
Loss. We use a model trained to predict curves on DXA on UK Biobank (Bourigault et al., 2022)).
We measure the Pearson correlation factor (Bourigault et al., 2022) of spine curvature measured on
the generated MRIs where the input is a single MRI coronal slice, a single sagittal slice, or from
the paired DXA, against the curvature of reference real MRIs of the same samples. The correlation
coefficients are 0.89 for the coronal MRIs, 0.88 for the sagittal MRIs, and 0.87 for the DXAs on
the test set of 308 human-annotated angles. We can then bin the curvature, κ, of the spines under
different scoliosis categories based on human-annotated angles: mild: 0.06 < κ < 0.12, moderate:
0.12 ≤ κ < 0.15, and severe κ ≥ 0.15. We show the results in Figure XIV. This illustrates that the
generated MRIs preserve the spine curvature from normal to severe scoliosis cases.

D.5 ERROR PLOTS AS DISTANCE FROM INPUT SLICE

We show in Figure XV an error plot of the MSE error as a function of distance from the input slice
index 78. We can see that as the distance increases the eror increases , before slowly decreases as
the information content is reduced at the boundary and the model can predict this accurately.

D.6 INPUT SLICE TO FIG.6

We show in FigureXVI the input slice used to generate the 3D volume.

D.7 LARGE NUMBER OF INPUT SLICES

We show in Figure XVII as the number of input slices increases to create a dense input (120 input
out of 155), the baselines outperform X-Diffusion iun predicting the full volume. This highlights
the specialty of X-Diffusion for reconstructing sparse inputs of the MRI.

D.8 ADDITIONAL METRICS FOR EVALUATION

For additional transparency and clarity of our results,we report additional metrics and details to the
original ones reported in Table 1. Specifically, we add the standard deviations of the PSNR metric
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Figure XIV: Scoliosis Categories of Generated MRIs. We show spine curvature predicted v.s.
reference curvature and human annotated angles for scoliosis categories in section 5.2. The barplot
indicates that our generated MRIs maintain almost the same distribution of scoliosis categories for
then set of 308 patients annotated in the UK Biobank.
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Figure XV: Error Plots. We show generated MRI MSE Error v.s. output slice index for input slice
78 of samples similar to the ones in figLabel4.

in Table IX. Table X reports the LPIPS and SSIM metrics as well which corresponds to the PSNR
metric.

Test 3D PSNR ↑ STD ↓ ScoreMRI TPDM X-Diffusion

BR UK BR UK BR UK

1 slice 9.37 ± 1.46 8.54 ± 2.12 10.48 ± 1.29 9.29 ± 1.83 23.10 ± 1.1 22.42 ± 1.58
2 slices 10.25 ± 1.09 9.16 ± 1.45 10.86 ± 1.22 9.99 ± 1.78 25.20 ± 1.0 23.04 ± 1.52
3 slices 10.68 ± 1.07 10.42 ± 1.42 11.33 ± 1.15 11.09 ± 1.69 29.43 ± 0.08 25.26 ± 1.40
5 slices 12.37 ± 1.08 11.88 ± 1.43 14.13 ± 1.12 12.62 ± 1.67 31.25 ± 0.09 26.85 ± 1.31
10 slices 14.31 ± 1.06 13.24 ± 1.41 16.65 ± 1.07 15.88 ± 1.59 33.27 ± 0.08 27.44 ± 1.29
31 slices 29.24 ± 1.02 19.01 ± 1.39 31.48 ± 0.99 21.70 ± 1.25 35.48 ± 0.08 29.01 ± 1.24

Table IX: Model Performance on Test Brain Data and Whole-Body MRIs (Extension with standard de-
viation (STD)). We compare the MRI reconstruction for baselines ScoreMRI (Chung & Ye, 2022), TPDM (Lee
et al., 2023), and our X-Diffusion model for varying input slice numbers in training and inference. We report
the mean 3D test PSNR on BRATS (BR) brain dataset and the UK Biobank body dataset (UK). The results
showcase huge improvement over the baselines, especially on the small number of input slices (particularly at
1).
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Figure XVI: Input Slices to Fig6 Main Paper. We show the input slices used to generate the brain
volume shown in Figure 6 comparing baselines and our model X-Diffusion. 1st row are the 2 inputs
for the 2 slices input model. 2nd row are the inputs for the 5 slices input model. 3rd row are the
inputs for the 10 slices input model. 4th row are the inputs for the 31 slices input model.
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Figure XVII: Effect of Number Of Slices. We plot the test PSNR v.s. number of input slices for
X-Diffusion and our baselines i.e. TPDM (Lee et al., 2023) and ScoreMRI (Chung & Ye, 2022)
on the brain MRI dataset using volume averaging. We show the STD of each run to account for
randomness.

D.9 ABLATION STUDY ON TEST TIME AUGMENTATION (TTA)

We perform a series of transformations : horizontal and vertical flips, rotation in degrees [0, 90, 180,
270], and scaling [1,2,4] on the test images and we average them for the final predictions. We apply
the augmentations above (flips, rotation, scale) on the test images and we pass these augmented
batches through model. We then reverse the transformations for each batch and merge predictions
via mean to obtain the output.

We show below in the table XI the summary of the experiments on test time data augmentation for
our best model (31 slices). We show little improvement in PSNR () using TTA over the baseline.
We also perform downstream segmentation task to measure the effect of TTA on the quality of
brain tumour generation compared to baseline X-Diffusion mean dice score. X-Diffusion with TTA
achieves a brain tumour segmentation overall dice score of 83.36 compared to 83.09 for the baseline
which suggests TTA has improves the quality of brain MRI generation but this effect is limited.

D.10 TRYING FASTER DIFFUSION MODELS

We experiment fine-tuning from more modern SD diffusion weights than SD 1.O. We previously
shown the beneficial effect of large pre-training on objaverse dataset with view-dependent images
with significantly better performance fine-tuning Zero-123 with Zero-123 checkpoints. We perform
ablation experiments fine-tuning the model from SD 1.0Rombach et al. (2021), SD 2.1Rombach
et al. (2022b), SD-XL Podell et al. (2023). We also fine-tune the model with more recent Zero-123-
XL checkpoint Liu et al. (2023). We summarize the results in Table XII.

D.11 FROM ANISOTROPIC TO ISOTROPIC VOLUME GENERATION

We evaluate the capacity of our model to reconstruct SR scans. Scans in BRATs are released re-
sampled to isotropic resolution 1mm3. We perform the following experiment by downsampling the
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PSNR↑ SSIM↑ LPIPS ↓
Method Axial Coronal Sagittal
ScoreMRI 29.24 0.663 0.671 0.667 0.118
TPDM 31.48 0.814 0.806 0.797 0.087
X-Diffusion (ours) 35.48 0.891 0.889 0.881 0.035

Table X: Model Performance on Test Brain Data. The MRI reconstruction for baselines ScoreMRI (Chung
& Ye, 2022), TPDM (Lee et al., 2023), and our X-Diffusion model for 31 input slices numbers in training and
inference. We report the mean 3D test PSNR, SSIM, and LPIPS on BRATS (BR) brain dataset.

PSNR↑ SSIM↑
Method Axial Coronal Sagittal
X-Diffusion (baseline) 35.48 0.891 0.889 0.881
X-Diffusion + TTA (h/v flips) 35.60 0.894 0.892 0.884
X-Diffusion + TTA (rotation) 35.59 0.894 0.890 0.882
X-Diffusion + TTA (scale) 35.60 0.895 0.891 0.883
X-Diffusion + TTA (all) 35.61 0.896 0.893 0.884

Table XI: Test Time Augmentation (TTA) Effect on Model Performance on Test Set Brain Data. We
compare the MRI reconstruction for our X-Diffusion model using 31 input slices numbers in training and
inference. We report the mean 3D test PSNR and SSIM on BRATS (BR) brain dataset with and without TTA.
The results suggest slight improvement using TTA over the baseline.

z-dimension to 2mm and aiming to generate isotropic scans 1 x 1 x 1 from anisotropic 1 x 1 x 2. We
show the results in Table XIII.

D.12 ABLATION STUDY ON THE TIME STEPS T DURING INFERENCE

We study the effect of using different time steps T during inference on the test performance of the
reconstruction of X-Diffusion. We show the results in Figure XVIII. The performance for both
datasets BRATS and UKBB plateau after 800 steps. This indicates we could reduce the number of
time down to 800 to improve efficiency.

Figure XVIII: Timesteps Impact on Performance at Inference. We show the variation of PSNR
for varying number of timesteps up to 1000(value used in main paper). The performance for both
datasets BRATS and UKBB plateau after 800 steps. We could reduce the number of time steps up
to 800 to improve efficiency.
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Runtime(s) PSNR↑ SSIM↑
Method Axial Coronal Sagittal
X-Diffusion SD 1.0 (baseline) 141.5 27.86 0.524 0.538 0.521
X-Diffusion SD 2.1 141.6 27.94 0.528 0.543 0.524
X-Diffusion SD XL 141.9 28.13 0.586 0.597 0.583
X-Diffusion Zero-123 (baseline) 141.5 35.48 0.891 0.889 0.881
X-Diffusion Zero-123-XL 141.5 35.71 0.896 0.890 0.883

Table XII: Effect of Fine-Tuning from different pre-trained weights on Model Performance on Test Set
Brain Data. We report the inference runtime in (s), the average 3D PSNR and SSIM on axial, coronal, and
sagittal planes. We compare the MRI reconstruction for our X-Diffusion model using 31 input slices numbers
in training and inference.

PSNR↑ SSIM↑
Method Axial Coronal Sagittal
X-Diffusion (isotropic) 35.48 0.891 0.889 0.881
X-Diffusion (anisotropic) 33.14 0.848 0.841 0.837

Table XIII: Evaluation of X-Diffusion Performance for Anisotropic to Isotropic Setup. We compare
the MRI reconstruction for our X-Diffusion model trained from multi-view from isotropic (1 x 1 x 1) voxels
(baseline) to anistropic (1 x 1 x 2) setting downsampling by factor 2 the z dimension second row. We report the
mean 3D test PSNR and SSIM on BRATS brain dataset.

D.13 ASSESS CONFIDENCE IN PREDICTIONS BY CONFIDENCE INTERVALS AND

CONFORMAL PREDICTION

To assess confidence in predictions from our diffusion-based model, we use the definition by Hor-
witz & Hoshen (2022) below. Let a calibration set be defined as {xi, yi}Ni=1 where xi, yi ∈
[0, 1]M×N are the generated and target image respectively. Our goal is to construct a confidence
interval around each pixel of ŷi such that the true value of the pixel lies within the interval with a
probability set by the user. Formally, for each pixel we construct the following interval:

T (ximn) =
[

l̂(ximn), û(ximn)
]

(9)

where l̂, û are the interval lower and upper bounds. To provide the interval with statistical soundness,
the user selects a risk level α ∈ (0, 1) and an error level δ ∈ (0, 1). We then construct intervals such
that at least 1 − α of the ground truth pixel values are contained in it with probability of at least
1− δ. That is, with probability of at least 1− δ,

E

[

1

MN

∣

∣{(m,n) : y(m,n) ∈ T (x)(m,n)}
∣

∣

]

≥ 1− α, (10)

where x, y are a test sample and label originating from the same distribution as the calibration set.

Setting δ to 0.05, we are confident at the 5% level that the true value in Table last row for X-Diffusion
lies in [34.49, 35.55] for model trained on BRATS (BR) and [27.77,30.25] for UK Biobank (UK)
model. We also compute the 99% confidence interval as comparison. We are confident at the 1%
level that the true value in Table last row for X-Diffusion lies in [34.11, 35.72] for model trained on
BRATS (BR) and [27.29,30.78] for UK Biobank (UK) model.

D.14 ANALYSIS ON WHITE MATTER AND CORTICAL VOLUME OF BRAINS

In order to study cortical volumes, we use a brain parcellation module from Li et al. (2017). It
works by splitting the brain in 160 different structures via CNNs, in a similar manner as geodesic
information flows Cardoso et al. (2012). The volumes for each structure is computed via binary
label map representation using the software 3D Slicer, Segment Statistics Module. We compute
2-sample t-tests for each structure on the test set and report the test statistics and p-values. We
compare generated and real periventricular white matter on the test set by additioning left and right
volume mean. The mean difference is of 194.85 ± 83 mm3, p-value > 0.05. We compare overall

35



Under review as a conference paper at ICLR 2025

white matter volume from our parcellation, between generated 28533.05 and real 28802.42, mean
difference of 269.37 ± 105 mm3, p-value>0.05. Both p-values are not significant at 5% level which
suggest generated brains preserve white matter volume.

D.15 THE IMPORTANCE OF THE VIEW USED IN PROCESSING THE MRI

In the UK Biobank, the data is collected based on the transversal (axial) plane. This might suggests
that processing the UKBB MRIs from that axis would yield better results. Table XIV compares
the different planes in generating MRIs using our X-Diffusion, or by combining multiple planes
using our volume averaging technique proposed in Section 3.2. It clearly shows that there is no
significant difference between the different planes, but using the multi-view volume aggregation
indeed yields improved performance. This is explained by the fact that deep learning models like
X-Diffusion benefit from increase and variety of the size of training data to generalize, which benefit
from exposure to as many views as possible.

PSNR↑ SSIM↑
Method Axial Coronal Sagittal
X-Diffusion (axial) 34.91 0.859 0.858 0.854
X-Diffusion (coronal) 35.17 0.862 0.860 0.857
X-Diffusion (sagittal) 34.23 0.847 0.844 0.841
X-Diffusion (multi-view) 35.48 0.891 0.889 0.881

Table XIV: Comparison on Conventional Planes and Multi-View on Test Set Brain Data. We compare
the MRI reconstruction for our X-Diffusion model trained from input axial, coronal, or sagittal. We report the
mean 3D test PSNR and SSIM on BRATS (BR) brain dataset.

D.16 BLAND-ALTMAN PLOT FOR SPINE CURVATURE

We show the Bland-Altman plot for the curvature of spines of the generated MRIs with X-Diffusion
v.s. the curvature of the Ground Truth MRIs in Figure XIX.

D.17 TEST-TIME OPTIMISATION (TTO)

TTO has proved performant in improving the performance of diffusion-based models by encourag-
ing diversity in model output and ensuring that the generated data is not overly deterministic (Shi
et al. (2023); Pu et al. (2023); Sargent et al. (2024)). A standard way of applying TTO is through en-
tropy minimisation of the logits. This is is achieved by dynamically adjusting the noise predictions
during the iterative denoising process.

This is how we proceed. From the initialised latent variable (noisy image), we run the pre-trained
diffusion model. We obtain predicted noise and logits and we compute the entropy loss of the logits.
Lower entropy suggests higher confidence. The goal is to maximize entropy in the loss function to
increase diversity. Then we adjust the predicted noise with entropy optimization with an entropy
weight factor that we set to 0.01. We adjust the classifier-free guidance and update zt with the
adjusted noise before converting this latent sample into an image using the diffusion model decoder.

We observe minor improvement in performance metrics with TTO (see Table Table XV). It is worth
noting that TTO relies heavily on the original accuracy of the predictor. Gradient computation
requires backpropagation through the logits, which introduces major computational load. Computa-
tional cost with TTO compared to inference without TTO is increased by three times. We report the
improvement in terms of PSNR, SSIM, LPIPS metrics and the inference cost in Table XV.
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Runtime(s) PSNR↑ SSIM↑ LPIPS ↓
Method Axial Coronal Sagittal
X-Diffusion 141.461 35.48 0.891 0.889 0.881 0.035
X-Diffusion + TTO 424.383 35.97 0.894 0.893 0.883 0.028

Table XV: Model Performance on Test Brain Data and Whole-Body MRIs. We compare the MRI recon-
struction performance and inference cost for our X-Diffusion model with and without test-time optimisation
(TTO) for 31 input slices. We report the mean 3D test PSNR, SSIM, and LPIPS on BRATS (BR) brain dataset.
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Figure XIX: Spine Curvature Bland-Altman Plots. We show for each plot the average of each
predicted and ground-truth value on the x-axis and the difference between the predicted and ground-
truth value on the y-axis.
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