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Abstract

Millions of abandoned oil and gas wells are scattered across the world, leaching1

methane into the atmosphere and toxic compounds into the groundwater. Many2

of these locations are unknown, preventing the wells from being plugged and3

their polluting effects averted. Remote sensing is a relatively unexplored tool for4

pinpointing abandoned wells at scale. We introduce the first large-scale dataset5

for this problem1, leveraging medium-resolution multi-spectral satellite imagery6

from Planet Labs. Our curated dataset comprises over 213,000 wells (abandoned,7

suspended, and active) from Alberta, a region with especially high well density,8

sourced from the Alberta Energy Regulator and verified by domain experts. We9

evaluate baseline algorithms for well detection and segmentation, showing the10

promise of computer vision approaches but also significant room for improvement.11

1 Introduction12

Across the world, there are millions of abandoned oil and gas wells, left to degrade by the companies13

or individuals that built them. No longer producing usable fossil fuels, these wells nonetheless have a14

significant impact on the environment, with many of them leaking significant quantities of methane, a15

powerful greenhouse gas, into the atmosphere. In aggregate, these emissions represent the equivalent16

of millions of tons of carbon dioxide per year [1]. Abandoned wells also pose health and safety17

concerns, in particular by leaching toxic chemicals into the groundwater of surrounding communities18

[2].19

It is possible to plug abandoned wells to mitigate the harms associated with them (with so-called20

“super-emitter” wells an especially high priority [3, 4]). However, a significant fraction of abandoned21

wells remain unknown. In Pennsylvania, as much as 90% of abandoned wells are estimated to be22

unrecorded [4]. In Canada, abandoned wells have been described as the most uncertain source of23

methane emissions nationally, due to the poor quality of data surrounding them [1].24

With the advent of large-scale remote sensing datasets and powerful machine learning tools to process25

them, it has become possible to label and monitor the built environment as never before [5]. Many26

such works have focused on opportunities to use remote sensing to accelerate climate action and27

environmental protection, and oil and gas infrastructure has increasingly been an object of scrutiny28

(see e.g. [6, 7]). In this paper, we present the first large-scale machine learning dataset for pinpointing29

oil and gas wells, encompassing abandoned, suspended, and active wells. Our main contributions are30

as follows:31

1Dataset available at: https://figshare.com/s/bdb097730714ee82fcb0
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(a) Training set (b) Validation set (c) Test set

Figure 1: Distribution of the number of individual wells in positive samples from the dataset. We
also include an equal number of images with no wells at all.

• We introduce the Alberta Wells Dataset, which includes information on over 200k abandoned,32

suspended, and active oil and gas wells, together with high-resolution satellite imagery.33

• We frame the problem of identification of wells as a challenge for object detection and34

binary segmentation.35

• We evaluate a wide range of deep learning algorithms commonly used for similar tasks,36

finding promising performance but opportunities for significant improvement.37

We hope that this work will represent a step towards scalable identification of abandoned well sites38

and reduction of their deleterious effects upon the climate and environment.39

2 Previous Work40

Hundreds of satellites continuously monitor the Earth’s surface, generating petabyte-scale remote41

sensing datasets [5]. With advancements in hardware, the quality of remote sensing images has42

significantly improved in terms of spatial and temporal resolution. High-quality remote sensing data43

are available through state-funded projects like Sentinel and Landsat, and more recently through44

private projects such as Planet [8]. Increasingly, machine learning has been used to parse such raw45

data, including in a wide range of applications for tackling climate change [6]. Benchmark datasets46

in this area have included tasks in land use and land cover (LULC) estimation [9], crop classification47

[10, 11], species distribution modeling [12], and forest monitoring [13].48

Within this area of research, an increasing body of work has considered the problem of detecting49

artifacts associated with oil and gas operations. The detection of oil spills using a combination of50

remote sensing and machine learning has been widely explored [14, 15, 16]. Recently, the detection51

of oil and gas infrastructure has also been investigated [7, 17], with some studies focusing on the goal52

of estimating methane emissions [18, 19]. The dataset by [7] includes 7,066 aerial images, with 14953

images of oil refineries. The METER-ML dataset [18] comprises 86,599 georeferenced images in the54

U.S. labeled for methane sources. The OGIM v1 dataset [19] includes 2.6 million point locations of55

major facilities. A dataset by [20] features 1,388 images of pipelines in the Arctic, while a dataset by56

[21] includes 3,266 images of heavy-polluting enterprises with 0.25 m resolution.57

The problem of detection of oil and gas wells has also been proposed by a number of authors. Existing58

datasets, however, are quite small (500-5,000 samples), and typically are limited to a small region59

and contain only active wells, limiting their applicability in the context of identifying abandoned or60

suspended wells. The NEPU-OWOD V1.0 dataset [22] includes 432 0.41m/px resolution Google61

Earth Imagery-based high-resolution images from Daqing City, China, containing 1,192 oil wells.62

The NEPU-OWS V1.0 dataset [23] consists of 1,200 10m/px resolution Sentinel-2 images from63

Russia with a resolution of 10 m per pixel, covering 1192 oil wells and V2.0 [24] includes 12064

multispectral images from Austin, USA. NEPU-OWOD 3.0 [25] contains 722 images with 3749 oil65

wells from various locations in China & California, with resolutions of 0.48 m/px. A dataset with66

5,895 images from Daqing City, each containing 1–5 oil wells at 0.26 m per pixel, was proposed67

in [26] Another dataset of 930 images from the Permian Basin, USA, was introduced in [27], with68

resolutions ranging from 15 cm to 1 m per pixel. These various works have largely considered69
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Table 1: Statistics of wells represented across the Alberta Wells Dataset.

Split Count
Total

Count
Wells

Count
Non-Wells

Count of Well Type in Wells Patches of Split
Abandoned Suspended Active

Train 167436 83718 83718 46342 47595 100294
Validation 9463 4731 4731 3166 2671 2406

Test 11789 5894 5894 4024 3609 3340

only simple machine learning algorithms for well detection, without evaluating the more complex70

approaches which have proven useful in other remote sensing contexts.71

3 Alberta Wells Dataset72

In this paper, we introduce the benchmark Alberta Wells Dataset for oil and gas well detection.The73

dataset is drawn from the province of Alberta, Canada, a region with a substantial number of oil and74

gas wells and infrastructure present for over a century, including over 94,000 patches of satellite75

imagery acquired from Planet Labs [8], covering more than 213,000 individual wells. Each patch76

is annotated with labels for both segmentation and bounding box localization. The annotations are77

based on data from the Alberta Energy Regulator, quality-controlled by domain experts.78

Our dataset attempts to maximize the amount of data available for learning by including a mixture of79

active and suspended wells alongside abandoned wells. These types of wells appear overall similar in80

satellite imagery. In contrast to abandoned wells, “suspended” refers to wells that have merely paused81

operations temporarily, though this designation can be inaccurate, and some wells are classified as82

suspended for long enough that they are truly abandoned. Active wells are those that are currently in83

operation.84

To simulate real-world conditions, we ensure a varied density of wells per image, as highlighted85

in Figure 1. We also include satellite imagery patches with no wells present from areas nearby to86

areas with wells, ensuring no overlap between the samples. This balanced dataset maintains an equal87

distribution of well and non-well images. Table 1 details the total sample count in each dataset split,88

alongside the number of well and non-well patches.89

(a) Step-1 k1i clusters (b) c2i cluster centroids (c) Step-2 k2i clusters (d) Final Dataset Split

Figure 2: Illustration of the outcome of applying our dataset splitting algorithm: In Figures (a) to (c),
different colors represent various cluster IDs. In Figure (d), blue refers to the training set, orange to
the validation set, and green to the test set.
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Table 2: Information on the numbers of wells represented in the dataset across different states
(suspended, abandoned, and active), including domain-specific technical details such as the mode and
the types of fossil fuel reserves represented.

Well State Count License Status Mode Short Description Fluid Short Description

Suspended 55007
Suspension All

Gas, Crude oil, Crude bitumen,
Liquid petroleum gas,
Coalbed methane-coals and other Lith,
Coalbed methane-coals only,
Shale gas only, Acid gas,
CBM and shale and other sources,
Shale gas and other sources.

Issued SuspendedAmended

Abandoned 54947
Abandoned All
Issued Abandoned, Abandoned Zone,

Junked and Abandoned.Amended

Active 107139
Issued Flowing, Pumping,Gas Lift.Amended
Re-Entered Abandoned and Re-Entered

3.1 Well Data Collection, Quality Control & Patch Creation90

The Alberta Energy Regulator (AER) oversees the energy industry in the province, ensuring compa-91

nies adhere to regulations as they develop oil and gas resources. AER publishes AER ST37[28], a92

monthly list of all wells reported in Alberta, detailing their geographic location, mode of operation,93

license status, and type of product being extracted, among other attributes. This data is provided in94

shapefile format along with metadata. However, this data cannot be used directly because the license95

status or mode of operation does not always correlate with the actual status of the well. Therefore,96

we work with domain experts to perform quality control on the dataset.97

First, we remove duplicate entries from the well metadata, which often contain multiple instances98

of the same well identified by duplicate license numbers. We resolve these duplicates by retaining99

the most recent update.A similar approach is applied to the shapefile, where duplicates are resolved100

using the license date. Afterward, we merge both datasets and filter the data as shown in Table101

2, categorizing the wells as active, abandoned, or suspended based on specific criteria developed102

in consultation with domain experts. We check for duplicate location coordinates in the dataset103

and resolve them by retaining the instance with the latest drill date. Finally, we ensure all the well104

instances in the dataset are indeed within the boundaries of Alberta.105

After filtering and performing quality control on the datasets with domain experts, we calculate106

the geographical bounds covered by the well instances across the province and divide the region107

into nonoverlapping square image patches, each covering an area of 1.1025 sq km (with sides of108

1050m). These images include various numbers of individual wells (see Fig. 1), and we ensure that109

an approximately equal number of patches exist with and without wells.110

3.2 Dataset Splitting111

To create a well-distributed dataset that represents various geographical regions and offers a diverse112

benchmark for evaluation and testing, we developed a splitting algorithm (see Algorithm 1). This113

method involves forming small clusters k1i of nearby well patches based on their centroids as114

illustrated in Figure 1(a). These small clusters are then grouped into larger, non-intersecting super-115

clusters k2i, with each super-cluster representing a city or larger geographical area. The formation116

of super-clusters involves calculating a centroid for each k1i cluster based on the centroids of the117

well patches it contains as illustrated in Figure 1(b). By clustering wells in this manner, we ensure118

that k1i clusters group wells from nearby localities together, while k2i clusters group wells from the119

same geographic region as illustrated in Figure 1(c). Thus, each k2i cluster represents a geographic120

distribution, with each k1i cluster within it representing a sample of that distribution. To ensure a121

diverse and well-distributed evaluation and testing of our machine learning model, we select the k1i122

clusters with the two fewest well instances from each k2i super-cluster for inclusion in the evaluation123

and test sets. This approach ensures a diverse representation of the dataset as observed in Figure 1(d).124

Moreover, we maintain an equal distribution of well and non-well patches. In cases of imbalance in125

non-well images, we exclude such patches from the contributing k1i clusters as specified in Algorithm126

1. For imbalances in well images, we sample non-well patches that are not part of any other clusters.127

The parameters used in constructing the dataset are M = 300 and N = 30.128
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Algorithm 1 Clustering Algorithm for Dataset Splitting
W : Set of image patches ids containing wells ; NW : Set of image patches ids not containing wells
Input: xi represents the i-th patch with centroid coordinates ci, where i ∈ W or i ∈ NW ;
Output: Ts: Test Set ; Tr : Train Set ; Ev : Eval Set ;
Step 1: Clustering into M Clusters
Perform K-Means Clustering k1(∗) with M clusters using all centroid coordinates ci, where i ∈ W .
Assign each i-th patch into the m-th cluster where m ∈{1,...,M} and i ∈ W : cluster k1i = k1(ci) = m and update patches (xi, ci, k1i)
for z ∈ {1, . . . ,M} do

Wcz = {j ∈ W | k1j = z}
Calculate cluster centroids c2j based on values of ci and update patch: (xi, ci, k1i, c2j), where i ∈ Wcz .

end for
Step 2: Clustering into N Super Clusters
Let Wcc be the set of unique c2j for j ∈ W
Perform K-Means clustering k2(∗) with N clusters using all c2i ∈ Wcc.
Assign each c2i ∈ Wcc to n-th cluster, where n ∈{1,..,N} & k2i = k2(c2i) = n.
Update patches (xj , cj , k1j , c2j , k2j) where c2j = c2i and j ∈ W .
Step 3: Assigning Patches to Sets
for z ∈ {1, . . . , N} do

Find all j with k2j = z, where j ∈ W as Wfz .
Find unique k1j and count oj associated with it for j in Wfz . The, assign k1j with minimum counts as min1 and min2.
For each i in Wfz , append i to Ev if k1i = min1, to Ts if k1i = min2, otherwise to Tr .

end for
Step 4: Assigning Non-Well Patches
for each set_counter in {Ev , Ts, Tr} do

for each unique k1i as zi ∈ set_counter do
Find convex hull radius r(zi) of area occupied by cj , where j ∈ set_counter & k1j = zi.
Locate non-well patches f ∈ NW within radius r(zi) not in any other cluster; Assign f to cluster zi: (xf , cf , k1f ) : k1f = zi .

end for
end for
Step 5: Imbalance Correction
Tw refers to Count of Well Instances & Tnw refers to Count of Non-Well Instances in a Dataset Split
if Tnw > Tw then

Identify clusters k1j in data split contributing to the imbalance of excess non-well patches, assign to Wic

for each i in Wic do
R(i) = (Tnw − Tw) · Count_Non_Wells(k1i)∑

Count_Non_Wells(k1l) where l∈Wic
; where R(i) is the no. of Samples to be Removed from i-th Cluster.

end for
else

Sample non-well patches xj : j ∈ NW & j ̸∈ k1j .
end if

3.3 Satellite Imagery Acquisition & Label Creation129

We used PlanetScope-4-Band imagery [8] featuring RGB and Near Infrared bands to represent130

satellite images of the region with a medium resolution of about 3 meters per pixel. PlanetScope, a131

product of Planet Labs, consists of approximately 130 satellites that can image the entire Earth’s land132

surface daily, collecting up to 200 million sq. km of data each day. We obtained Surface Reflectance133

imagery, which is offset-corrected, flat-field-corrected, ortho-rectified, visually processed, and radio-134

metrically corrected. These processes ensure consistency across varying atmospheric conditions and135

minimize uncertainty in spectral response over time and location, making the data ideal for temporal136

analysis and monitoring applications. To ensure the highest quality, we selected images with no137

Figure 3: A sample image patch from our dataset, including the infrastructure comprising a single
well (visible as a lighter region against the darker gray background), alongside target images from the
binary segmentation and object detection tasks.
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cloud cover. The images were acquired by Planet satellites within a timeframe that aligns with the138

well location data from AER. We obtained satellite images for each sample based on geographical139

coordinates, ensuring an intersection between the actual area of interest and the acquired imagery.140

We frame the task of identifying wells as both an object detection and segmentation task, since141

related remote sensing tasks have found both framings to be constructive. For each image patch as142

shown in Figure 3, we generated corresponding segmentation maps and object detection annotations143

for all known wells in the image based on the point labels provided in the AER data. For binary144

segmentation, we annotated each well site with a circle to match the teardrop shape typical for well145

sites. We standardized the diameter of a well site to a value of 90 meters (such sites typically range146

from 70 to 120 meters in diameter). We used the same scale to define bounding boxes in the object147

detection task, following the COCO [29] format for annotations. Additionally, we created multi-class148

segmentation maps, where each class represents a different state of the well (active, suspended, or149

abandoned), and included this information in the object detection annotations. (We do not perform150

multi-class segmentation experiments here, but it is possible that future researchers may find this task151

useful.)152

4 Benchmark Experiments153

We train benchmark deep learning models for both the binary segmentation and object detection tasks.154

Our focus includes all oil and gas wells, regardless of their operational status, since they exhibit155

similar footprints and consistent features, making them detectable in satellite imagery.156

For both tasks, we augment images by randomly resizing images to 256×256, ensuring all bounding157

boxes remain intact for object detection. We then apply horizontal and vertical flipping with a158

probability of 0.25 each, followed by normalization using channel-wise mean and standard deviation159

calculated from the training split of the dataset. The hyperparameters we use in these various160

models represent standard performant settings and are not intended to represent the outcome of161

hyperparameter optimization.162

4.1 Binary Segmentation163

We selected well-known baseline models for binary segmentation, encompassing the deep CNN-164

based approaches U-Net [30] and DeepLabV3+ [31] as well as the Transformer-based architectures165

Segformer[32] and UperNet[33]. U-Net [30] was chosen for its widespread use as a baseline, offering166

an effective encoder-decoder architecture for multi-scale feature extraction. DeepLabV3+[31] was167

selected for its popularity in remote sensing tasks with its Atrous Convolution and ASPP module for168

capturing contextual information at various scales. SegFormer [32] is a transformer-based architecture169

designed for semantic segmentation, utilizing self-attention mechanisms for capturing long-range170

dependencies. UperNet [33] combines UNet [30] and PSPNet [34] architectures, featuring a UNet-171

like structure for multi-scale feature fusion and PSPNet’s pyramid pooling module integrated with a172

Swin Transformer [35] backbone for efficient multi-scale processing.173

We train all CNN-based models with a ResNet50 [36] backbone, batch size of 128, and BCELogits174

loss function. A cosine annealing scheduler [37] adjusts the learning rate smoothly in a cyclical175

manner, aiding in fine-tuning the model by gradually decreasing the learning rate. For transformer-176

based models, while both Segformer and UperNet use a Dice loss function and a polynomial learning177

rate scheduler, Segformer utilizes a mit-b0-ade [32] backbone with a batch size of 128, and UperNet178

employs a Swin Small Transformer with a batch size of 64. All models are optimized using AdamW179

[38] for 50 epochs, with the learning rate specified in Table 3.180

We evaluate the binary segmentation task with respect to IoU, Precision, Recall, and F1-Score. High181

Precision corresponds to reducing false positives, while high Recall corresponds to reducing false182

negatives. IoU measures the overlap between predicted and ground truth masks, offering further183

insight into segmentation accuracy. F1-Score, the harmonic mean of precision and recall, provides a184

balanced measure considering both false positives and false negatives.185
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Table 3: Results for the binary segmentation task for a variety of models evaluated over the test
set.We report the Intersection over Union (IoU), precision, recall, and F1-score.

Architecture Backbone Learning Rate IoU F1 Score Precision Recall
U-Net ResNet50 10−3 56±0.4 59.3±0.2 78.5±2.8 68±1.8

DeepLabV3+ ResNet50 10−4 55.1±0.6 58.5±0.5 77.8±1.7 67.3±1.2
Segformer mit-b0-ade 6.10−4 51.3±0.7 54.1±0.6 74.8±2.4 69.8±0.2
UperNet swin small 10−4 51.4± 0.5 54.8±0.5 69.3±0.2 75.3±0.3

4.2 Object Detection186

For binary object detection, we consider the CNN-based architectures RetinaNet [39] and Faster187

R-CNN [40] and the transformer-based architecture DETR [41]. RetinaNet is a one-stage architecture188

trained using focal loss, which helps to address class imbalance. It uses a Feature Pyramid Network189

(FPN) for multi-scale feature extraction and efficient object detection across different scales. Faster190

R-CNN is a two-stage model recognized for its high accuracy. It employs a Region Proposal Network191

(RPN) for generating region proposals and a separate network for predicting class labels and refining192

bounding box coordinates. DETR (DEtection TRansformers) is a transformer-based model that treats193

object detection as a set prediction problem. It eliminates the need for specialized components such194

as anchor boxes and NMS, using transformers to directly predict the final set of detections.195

All object detection models are trained with a ResNet50 backbone. The batch size is 256 for Faster196

R-CNN and DETR and 512 for RetinaNet. For RetinaNet and Faster R-CNN, we use a cosine197

annealing scheduler [37]. DETR uses a step-wise learning rate scheduler, reducing the learning rate198

by a factor of 50 epochs. We train Faster R-CNN and RetinaNet for 120 epochs, and DETR for 150199

epochs. All models are optimized using AdamW [38].200

In evaluating binary object detection, we compute IoU with various thresholds (IoU0.1, IoU0.3,201

IoU0.5), indicating how well the model distinguishes between predicted and actual well locations202

across different overlap levels. We also assess Mean Average Precision (mAP) metrics, including203

mAP50 and mAP50:95, measuring the model’s precision-recall trade-off and detection accuracy at204

various IoU thresholds.205

4.3 Results & Analysis206

Our tasks involve identifying a roughly circular well region with a 90m diameter in real life, which207

translates to less than 30 pixels in satellite imagery due to resizing and other augmentations. This poses208

a challenge for machine learning models given the heterogeneous nature of the background, including209

various similarly shaped and sized features of the natural and built environment. Additionally,210

vegetation can occlude wells in RGB channels, highlighting the importance of near-infrared imagery211

for guiding the model. The wells themselves also vary somewhat in shape, and can be in various212

states of disrepair as a result of differing ages and maintenance.213

For the binary segmentation task framing, we train both CNN-based and Transformer-based back-214

bones, considering the prevalent imbalance in the image data due to the small size of wells. Among215

our models, as shown in Table 3, the traditional U-Net performs the best, with CNN-based models216

showing higher IOU, precision, and F1 scores, indicating more accurate predictions of well instances217

compared to other models. Precision, which reflects the accuracy of our positive detections compared218

to the ground truth, is crucial. However, a high recall value ensures the model captures most actual219

well instances, reducing the risk of missing important information. Thus, the Uper-Net model with220

the highest recall value of 75.3± 0.3, which excels at capturing global context information, appears221

well-suited for this task.222

For the object detection task framing, the IoU metrics measure how accurately the model identifies223

predicted well locations compared to the actual locations, at different levels of overlap. A higher224

IoU indicates better alignment between predicted and ground truth bounding boxes. Mean Average225

Precision (mAP) metrics, including mAP50 and mAP50:95, provide a comprehensive assessment of226
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Table 4: Results for the object detection task for a variety of models evaluated over the test set. We
report the intersection over union (IoU) over thresholds 0.1, 0.3, 0.5 and the mean average precision
(mAP) for both IoU= 0.5 and IoU∈ [0.5, 0.95] thresholds.

Architecture Learning Rate IoU0.1 IoU0.3 IoU0.5 mAP50 mAP50:95

RetinaNet 10−4 24.58±0.11 43.07±0.8 59.79±0.36 0.72±1.12 0.18±0.28
FasterRCNN 10−3 36.79±1.07 46.95±0.66 61.29±0.35 19.12±3.41 5.2±1.0

DETR 10−4 21.6±0.25 42.1±1.38 60±2.64
24.1×10−5

±
7.75×10−5

6.8×10−5

±
4.09×10−5

the model’s precision-recall trade-off. mAP50 considers precision at a single IoU threshold of 0.5,227

giving an overall measure of the model’s accuracy in detecting well instances. On the other hand,228

mAP50:95 evaluates the model’s performance across a range of IoU thresholds from 0.5 to 0.95,229

providing a detailed understanding of its precision-recall behavior across different levels of detail in230

the predictions.231

Our evaluation, as shown in Table 4 indicates that while all models perform reasonably well in terms232

of aligning predicted and actual well locations, Faster R-CNN stands out with the highest IoU0.5233

score of 61.29 ± 0.35. However, all models perform poorly in terms of mean average precision,234

with Faster R-CNN achieving the highest score of only 19.12± 3.41. DETR and RetinaNet perform235

particularly poorly, with near-zero scores indicating their inability to identify well-bounding box236

locations accurately. This could be attributed to the fact that these models might not produce region237

proposals confidently enough, especially considering instances with a large number of wells. While238

IoU scores are decent with increasing thresholds, the mAP scores indicate that a more complex model239

may be required for this task.240

5 Conclusion241

In this paper, we have introduced the first large-scale dataset for identifying oil and gas wells, in242

particular abandoned wells, which represent a major source of greenhouse gases and other pollutants.243

We combine high-resolution imagery, an extensive database of well locations, and expert verification244

to create the Alberta Wells Dataset. We frame well identification both in terms of object detection245

and binary segmentation, and evaluate the performance of a wide range of popular deep learning246

methods on these tasks. We find that the Uper-Net model in particular represents the most promising247

baseline for the binary segmentation task, while for object detection all models demonstrate more248

mixed results, with relatively strong IoU scores but weak mAP. These results show that the Alberta249

Wells Dataset represents both a challenging as well as a societally impactful set of tasks.250

We do not envision any significant negative uses of our work. Localization of wells is primarily251

of interest to the climate change mitigation community and is not, for example, a primary means252

whereby fossil fuel companies select new locations for drilling. Therefore, we do not believe this253

dataset is susceptible to dual use.254

One potential limitation of our work is that we rely on well locations listed by the Alberta Energy255

Regulator. It is likely that many true well locations are missing in this data, leading to the potential256

for false negatives in the ground-truth data for this problem. However, it is to be expected that this257

will not significantly affect the training of algorithms since these labels represent a small fraction of258

the negative locations in the dataset, and deep learning algorithms are known to be robust to moderate259

amounts of label noise (see e.g. [42]). Instead the effect may simply be that the reported test accuracy260

is actually lower than the true value (due to certain correctly predicted well locations being evaluated261

as false). We hope to investigate such effects further in future work.262

Another noteworthy limitation is the exclusive focus on Alberta, which we selected because there is a263

large amount of labeled data available for this region. Another promising direction for future work264

will be to assess the capacity for few- or zero-shot transfer learning from the region of Alberta to265
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other regions with a high expected concentration of abandoned wells, including the Appalachian and266

Mountain West regions of the United States, as well as a number of former Soviet states.267

We hope that our work may be of use to policymakers and other stakeholders involved in climate268

action and environmental protection, according to the following envisioned steps:269

• Use the Alberta Wells Dataset to train algorithms for pinpointing well locations.270

• Run these algorithms at scale across a broader region of interest, comparing against any271

existing databases to identify those wells which may be undocumented.272

• Flag abandoned wells for plugging, prioritizing those identified as super-emitters.273

We believe that the scalability of machine learning tools for remote sensing will make them an274

invaluable tool in pinpointing and mitigating the global environmental impact of abandoned oil and275

gas wells.276
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