
Numerical integrators for learning dynamical systems
from noisy data

Anonymous Author(s)
Affiliation
Address
email

Abstract

Decades of research have been spent on classifying the properties of numerical1

integrators when solving ordinary differential equations (ODEs). Here, a first step2

is taken to examine the properties of numerical integrators when used to learn3

dynamical systems from noisy data with neural networks. Mono-implicit Runge–4

Kutta (MIRK) methods are a class of integrators that can be considered explicit for5

inverse problems. The symplectic property is useful when learning the dynamics6

of Hamiltonian systems. Unfortunately, a proof shows that symplectic MIRK7

methods have a maximum order of p = 2. By taking advantage of the inverse8

explicit property, a novel integration method called the mean inverse integrator,9

tailored for solving inverse problems with noisy data, is introduced. As verified in10

numerical experiments on different dynamical systems, this method is less sensitive11

to noise in the data.12

1 Introduction13

Dynamical systems describing and enhancing properties of neural networks was a topic of study14

[1, 2, 3] also prior to the seminal work on neural ODEs [4]. On the other hand, neural networks15

can be utilized to learn solutions of pre-specified ordinary or partial differential equations from16

data using physics-informed neural networks [5, 6]. Similarly, Hamiltonian neural networks [7]17

combine numerical integrators and neural networks to approximate the Hamiltonian function of18

energy preserving dynamical systems. ODEs on Hamiltonian form have been widely studied in the19

field of geometric numerical integration [8] where the symplectic property of the ODE flow is a key20

characteristic. This property could inform the neural network architecture [9] or guide the choice of21

numerical integrator, yielding a theoretical guarantee that the learning target is actually a Hamiltonian22

function [10, 11].23

Given an ODE24

ẏ = f(y), y(t) : [0, T] → Rn,

the initial value problem aims at computing solutions y(ti) when the vector field f(y) and an initial25

value y(t0) = y0 is known. The focus of this study is the inverse problem, which assumes knowledge26

of multiple samples of the solution SN = {yi}Ni=1 and aims instead at approximating the vector field27

with a neural network such that fθ ≈ f . Famously, the Runge–Kutta (RK) integrators have been28

studied for decades for solving initial value problems. This begs the question of how such methods29

are best leveraged in the inverse case.30

Submitted to the DLDE Workshop in the 36th Conference on Neural Information Processing Systems (NeurIPS
2022). Do not distribute.

2 Numerical integration in inverse ODE problems31

2.1 Inverse ODE problems on Hamiltonian form32

Assuming that the ODE samples SN are known. The inverse problem is the following optimization33

problem:34

find parameters θ satisfying min
θ

N−1∑
n=0

∥∥∥∥yn+1 − Φh,fθ (yn)

∥∥∥∥, (1)

where fθ is a neural network with parameters θ and Φh,fθ is a one-step integration method with step35

length h > 0.36

In particular, for Hamiltonian systems we follow the idea behind Hamiltonian neural networks [7]37

and learn the Hamiltonian H : Rn → R, with n = 2d, d ∈ Z+. In this case, the neural network is of38

the form39

fθ(y) := J∇Hθ(y), where J =

[
0 I
−I 0

]
, (2)

such that the learned vector field always forms a Hamiltonian system. In the numerical experiments,40

this form will be used when learning the dynamics of the double pendulum problem. For the Lotka–41

Volterra problem, the vector field will be learned directly, obtaining an approximation fθ : Rn → Rn.42

2.2 Inverse explicit integrators43

To guarantee properties such as symmetry and stability, numerical integrators often need to be implicit,44

requiring the solution of non-linear equations at every step. One such example is the implicit midpoint45

method46

ŷn+1 = Φh,f (yn, ŷn+1) = yn + hf
(yn + ŷn+1

2

)
. (3)

However, in the setting of inverse ODE problems, trajectories SN = {yi}Ni=0 are known while the47

vector field f is what we want to approximate. The value of the solution at time tn and tn+1, yn48

and yn+1 are both known and can be inserted in Equation (3), yielding an explicit procedure to49

approximate f . The procedure, which we here denote as the inverse injection, is utilized successfully50

by multiple authors [12, 13, 14, 15] when learning dynamical systems from data. The midpoint51

method is an implicit scheme when utilized on an initial value problem, but is explicit for the52

inverse problem under the inverse injection. It would be highly valuable to identify other implicit53

Runge–Kutta schemes that are inverse explicit. Let us denote such methods as being inverse explicit.54

E.g. the Gauss-Legendre collocation methods of order p > 3 are not inverse explicit as their stages55

ki are defined implicitly. However, it could be shown that the RK sub-class called mono-implicit56

Runge–Kutta (MIRK) methods [16, 17] are all inverse explicit. When used to solve initial value57

problems, these methods require only solving a system for the next step ŷn+1 and not for the stages58

ki. They are thus explicit under the inverse injection.59

MIRK methods are defined by coefficients b, v ∈ Rs and a lower triangular matrix D ∈ Rs×s such60

that61

ki = f
(
yn + vi(yn+1 − yn) + h

s∑
j=1

dijkj
)
, i = 1, . . . , s,

yn+1 = yn + h

s∑
i=1

biki,

(4)

where dij := [D]ij . Knowing a class of integration methods that are computationally efficient for62

inverse problems allows for the construction of numerical integrators tailored to specific problems,63

where high order, symmetry or symplecticity might be of importance. However, the following64

Theorem bounds the maximum order of symplectic MIRK methods and is proved in Appendix B.65

Theorem 1. The maximum order of a symplectic MIRK method is p = 2.66

Examples of two MIRK methods with order p = 4 and p = 6 can be found in Appendix A. Aside67

from Runge–Kutta methods, discrete gradient integration methods [18, 19] are inverse explicit and68

well suited to train Hamiltonian neural networks using a modified backpropagation algorithm [20].69

2

2.3 Inverse ODE problems with noise70

It is often the case that the samples SN are not exact, but perturbed by noise. A noisy ODE sample is71

here defined by an independent, normally distributed perturbation72

ỹi = yi + δi, δi ∼ N (0, σ2I), (5)

where N (0, σ2I) represents the multivariate normal distribution and we assume that σ > 0 is73

sufficiently small compared to the step size h. The flow of an ODE is the map φh,f , such that given74

an initial value y(t0), it yields the solution at time t0 + h of the ODE, φh,f (y(t0)) := y(t0 + h). The75

flow map satisfies the following fundamental group property76

φh1,f ◦ φh2,f

(
y(t0)

)
= φh1+h2,f (y(t0)), h1, h2 > 0.

Replacing exact flows by numerical flows, the mean inverse integrator (MII) removes noise leveraging77

this group property. In fact, compositions of a one-step method Φh,f can be utilized to generate78

multiple approximations to the same point in the flow. Assuming we know the points {ỹ0, ỹ1, ỹ2, ỹ3},79

then ŷ2 can be approximated by computing the mean of the numerical flows Φ starting from different80

initial values:81

y2 =
1

3

(
Φh,f (ỹ1) + Φh,f ◦ Φh,f (ỹ0) + Φ−h,f (ỹ3)

)
=

1

3

(
ỹ0 + ỹ1 + ỹ3 + h(f̂0,1 + 2f̂1,2 − f̂3,2)

)
,

where f̂n,n+1 is the vector field evaluation of an inverse explicit numerical integrator such that82

Φh,f (ỹn, ỹn+1) = ỹn+hf̂n,n+1. For the midpoint method we have f̂n,n+1 = f(ỹn+ỹn+1

2). The mean83

approximation over the whole trajectory yi, for i = 0, . . . , N , could be computed simultaneously,84

reusing multiple vector field evaluations in an efficient manner. E.g., when N = 3 we get85

y0y1y2
y3

 =
1

3

(0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


ỹ0ỹ1ỹ2
ỹ3

+ h

−3 −2 −1
1 −2 −1
1 2 −1
1 2 3


f̂0,1f̂1,2
f̂2,3

)
. (6)

The same structure is illustrated in Appendix C. In general, for a sample SN and an inverse explicit86

integrator fn,n+1 the mean inverse integrator is given by87

Y =
1

N

(
UY + hV F̂

)
, (7)

where88

Y := [y0, . . . , yN]T ∈ R(N+1)×m and F̂ := [f̂0,1, . . . , f̂N−1,N]T ∈ RN×m.

Finally, U ∈ R(N+1)×(N+1) and V ∈ R(N+1)×N are given by89

[U]ij :=

{
0 if i = j

1 else
and [V]ij :=

{
j − 1−N if j ≥ i

j else
.

By substituting the known vector field f , with a neural network fθ and denoting the matrix with90

vector field evaluations by F̂θ such that Y θ := 1
N (UY + hV F̂θ), we can formulate the inverse91

problem in (1) as92

find parameters θ satisfying min
θ

∥∥Y − Y θ

∥∥. (8)

Note that in the implementation of the algorithm for training fθ, higher accuracy was achieved if93

the neural network was trained for some initial epochs using a one-step scheme as in Equation (1),94

before proceeding to use the mean inverse integrator. This could be understood as a pre-conditioning95

or pre-training of fθ.96

3 Experiments97

The numerical integrators in Table 1 are utilized to learn vector fields from data obtained from98

the double pendulum and the Lotka–Volterra system. Both problems are defined in Appendix99

D. The inverse explicit methods are tested both as one-step methods and when used as temporal100

3

Integration method Name in plots Order Stages Symm. Sympl.
Implicit midpoint Midpoint 2 1 yes yes
MIRK4 from midpoint MIRK4 mid 4 4 yes no
MIRK6 MIRK6 6 5 no no

Table 1: Methods used in experiments. Symm. is short for symmetric and sympl. for symplectic.

discretization in the mean inverse integrator. After using the integrators in training, approximated101

solutions ỹn+1 = Φh,fθ (yn) are computed and the error is found over M different points by102

e(fθ) =
1

M

M∑
i=1

∥ỹi − yi∥2 where yi ∈ Stest
N .

For all test problems, the neural networks have 3 layers with a width of 100 neurons and tanh(·)103

as the activation function and are trained with the L-BFGS algorithm for 40 epochs. The training104

data is generated by integrating N = 500 initial values with step sizes and number of steps given105

by {h = 0.4, n = 3} and {h = 0.1, n = 12}. The points in the flow are perturbed by noise where106

σ ∈ {0, 0.05}. Error is measured in M = 10 points in the flow and the standard deviation is estimated107

by re-running 10 experiments with random initializations for both parameters θ and samples SN .108

h = 0.4 h = 0.1
0.00

0.01

0.02

0.03

e(
f θ

)

Flow error - double pendulum, σ = 0.0

Midpoint

MII Midpoint

MIRK4 mid

MII MIRK4 mid

MIRK6

MII MIRK6

h = 0.4 h = 0.1
0.0

0.1

0.2

0.3

0.4

0.5
e(
f θ

)

Flow error - double pendulum, σ = 0.05

Midpoint

MII Midpoint

MIRK4 mid

MII MIRK4 mid

MIRK6

MII MIRK6

h = 0.4 h = 0.1
0.000

0.002

0.004

0.006

e(
f θ

)

Flow error - Lotka-Volterra, σ = 0.0

Midpoint

MII Midpoint

MIRK4 mid

MII MIRK4 mid

MIRK6

MII MIRK6

h = 0.4 h = 0.1
0.00

0.01

0.02

0.03

0.04

e(
f θ

)

Flow error - Lotka-Volterra, σ = 0.05

Midpoint

MII Midpoint

MIRK4 mid

MII MIRK4 mid

MIRK6

MII MIRK6

h = 0.4 h = 0.1
0.00

0.01

0.02

0.03

0.04

e(
f θ

)

Flow error - Lotka-Volterra, σ = 0.05

Midpoint

MII Midpoint

MIRK4 mid

MII MIRK4 mid

MIRK6

MII MIRK6

h = 0.4 h = 0.1
0.00

0.01

0.02

0.03

0.04

e(
f θ

)

Flow error - Lotka-Volterra, σ = 0.05

Midpoint

MII Midpoint

MIRK4 mid

MII MIRK4 mid

MIRK6

MII MIRK6

h = 0.4 h = 0.1
0.00

0.01

0.02

0.03

0.04

e(
f θ

)

Flow error - Lotka-Volterra, σ = 0.05

Midpoint

MII Midpoint

MIRK4 mid

MII MIRK4 mid

MIRK6

MII MIRK6

Figure 1: Error in the flow for the double pendulum and Lotka–Volterra problem. The height of bars represents
the mean error over 10 experiments and the length of the black line represents the standard deviation.

4 Conclusion109

The main contribution of this work is the characterization of the inverse explicit property of the MIRK110

methods and the novel mean inverse integrator. As seen in Figure 1, the mean inverse integrator111

yields lower error in the numerical flow, as well as lower standard deviation in the error estimate. The112

MII method has relatively lower error when the step size is h = 0.1, which might be due to increased113

discretization error for the MII method at larger step sizes h. The same phenomenon is observed when114

studying the roll-out in time in Figure 2. There is however a need to do a theoretical analysis of how115

the MII method balances smoothing of noise against increased discretization error. MIRK methods116

opens up for using a range of different numerical integrators in training. The results in Figure 1,117

particularly for the chaotic double pendulum problem, might indicate that both order and symmetry118

of integrators matter for accuracy when training on noisy data. There is an extensive literature119

on Runge–Kutta methods and MIRK methods in particular and there might be other concepts and120

methods which could extend the current toolbox for learning dynamical systems from data.121

4

0 2 4 6 8 10 12 14

t

0.5

1.0

1.5

2.0

2.5

y 1

Flow roll-out Lotka-Volterra h = 0.4, σ = 0.05

Midpoint

MII Midpoint

MIRK4 mid

MII MIRK4 mid

Exact flow

Given data

0 2 4 6 8 10 12 14

t

0.5

1.0

1.5

2.0

2.5

y 1

Flow roll-out Lotka-Volterra h = 0.1, σ = 0.05

Midpoint

MII Midpoint

MIRK4 mid

MII MIRK4 mid

Exact flow

Given data

0 2 4 6 8 10 12 14

t

−0.4

−0.2

0.0

0.2

0.4

y 1

Flow roll-out double pendulum h = 0.4, σ = 0.05

Midpoint

MII Midpoint

MIRK4 mid

MII MIRK4 mid

Exact flow

Given data

0 2 4 6 8 10 12 14

t

−0.4

−0.2

0.0

0.2

0.4

y 1

Flow roll-out double pendulum h = 0.1, σ = 0.05

Midpoint

MII Midpoint

MIRK4 mid

MII MIRK4 mid

Exact flow

Given data

0 2 4 6 8 10 12 14

t

0.5

1.0

1.5

2.0

2.5

y 1

Flow roll-out Lotka-Volterra h = 0.1, σ = 0.05

Midpoint

MII Midpoint

MIRK4 mid

MII MIRK4 mid

Exact flow

Given data

0 2 4 6 8 10 12 14

t

0.5

1.0

1.5

2.0

2.5

y 1

Flow roll-out Lotka-Volterra h = 0.1, σ = 0.05

Midpoint

MII Midpoint

MIRK4 mid

MII MIRK4 mid

Exact flow

Given data

0 2 4 6 8 10 12 14

t

0.5

1.0

1.5

2.0

2.5

y 1

Flow roll-out Lotka-Volterra h = 0.1, σ = 0.05

Midpoint

MII Midpoint

MIRK4 mid

MII MIRK4 mid

Exact flow

Given data

Figure 2: Roll-out in time of the y1 variable including approximations trained by different integration methods
on noisy data, σ = 0.05. The red dots illustrate the number of points and amount of noise in one of the M = 500
training trajectories.

References122

[1] Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse problems,123

34(1):014004, 2017.124

[2] Lars Ruthotto and Eldad Haber. Deep neural networks motivated by partial differential equations.125

Journal of Mathematical Imaging and Vision, 62(3):352–364, 2020.126

[3] Weinan E. A proposal on machine learning via dynamical systems. Communications in127

Mathematics and Statistics, 5(1):1–11, 2017.128

[4] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary129

differential equations. Advances in neural information processing systems, 31, 2018.130

[5] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:131

A deep learning framework for solving forward and inverse problems involving nonlinear partial132

differential equations. Journal of Computational physics, 378:686–707, 2019.133

[6] Kirill Zubov, Zoe McCarthy, Yingbo Ma, Francesco Calisto, Valerio Pagliarino, Simone Azeglio,134

Luca Bottero, Emmanuel Luján, Valentin Sulzer, Ashutosh Bharambe, et al. NeuralPDE:135

Automating physics-informed neural networks (PINNs) with error approximations. arXiv136

preprint arXiv:2107.09443, 2021.137

[7] Sam Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian Neural Networks. CoRR,138

abs/1906.01563, 2019.139

[8] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric Numerical Integration:140

Structure-Preserving Algorithms for Ordinary Differential Equations; 2nd ed. Springer, Dor-141

drecht, 2006.142

[9] Pengzhan Jin, Zhen Zhang, Aiqing Zhu, Yifa Tang, and George Em Karniadakis. SympNets:143

Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems. Neural144

Networks, 132:166–179, 2020.145

[10] Aiqing Zhu, Pengzhan Jin, Beibei Zhu, and Yifa Tang. Inverse modified differential equations146

for discovery of dynamics. arXiv preprint arXiv:2009.01058, 2020.147

5

[11] Christian Offen and Sina Ober-Blöbaum. Symplectic integration of learned Hamiltonian systems.148

Chaos: An Interdisciplinary Journal of Nonlinear Science, 32(1):013122, 2022.149

[12] Marco David and Florian Méhats. Symplectic Learning for Hamiltonian Neural Networks.150

arXiv preprint arXiv:2106.11753, 2021.151

[13] Elena Celledoni, Andrea Leone, Davide Murari, and Brynjulf Owren. Learning Hamiltonians152

of constrained mechanical systems. Journal of Computational and Applied Mathematics,153

417:114608, 2023.154

[14] Sølve Eidnes, Alexander J Stasik, Camilla Sterud, Eivind Bøhn, and Signe Riemer-Sørensen.155

Port-Hamiltonian neural networks with state-dependent ports. arXiv preprint arXiv:2206.02660,156

2022.157

[15] Zhengdao Chen, Jianyu Zhang, Martin Arjovsky, and Léon Bottou. Symplectic recurrent neural158

networks. arXiv preprint arXiv:1909.13334, 2019.159

[16] Jeff R Cash. A class of implicit Runge–Kutta methods for the numerical integration of stiff160

ordinary differential equations. Journal of the ACM (JACM), 22(4):504–511, 1975.161

[17] K Burrage, FH Chipman, and Paul H Muir. Order results for mono-implicit Runge–Kutta162

methods. SIAM journal on numerical analysis, 31(3):876–891, 1994.163

[18] GRW Quispel and Grant S Turner. Discrete gradient methods for solving ODEs numerically164

while preserving a first integral. Journal of Physics A: Mathematical and General, 29(13):L341,165

1996.166

[19] Robert I McLachlan, G Reinout W Quispel, and Nicolas Robidoux. Geometric integration167

using discrete gradients. Philosophical Transactions of the Royal Society of London. Series A:168

Mathematical, Physical and Engineering Sciences, 357(1754):1021–1045, 1999.169

[20] Takashi Matsubara, Ai Ishikawa, and Takaharu Yaguchi. Deep energy-based modeling of170

discrete-time physics. Advances in Neural Information Processing Systems, 33:13100–13111,171

2020.172

A Mono-implicit Runge–Kutta methods173

A general Runge–Kutta method with s stages is a one-step numerical integrator given by174

ki = f
(
tn + cih, yn + h

s∑
j=1

aijkj
)
, i = 1, . . . , s,

yn+1 = yn + h

s∑
j=1

biki,

(9)

and the method is specified by the coefficient matrix A ∈ Rs×s and the vector b ∈ Rs, where175

aij = [A]ij , bi = [b]i, requiring that ci =
∑s

j=1 aij for i = 1, . . . , s. A method could be compactly176

represented by a Butcher tableau which structures the coefficients the following way:177

c A
bT

A MIRK method defined in Equation (4) is specified by a coefficient vector b ∈ Rs, v ∈ Rs in178

addition to the strictly lower triangular matrix D ∈ Rs×s. The MIRK methods are usually represented179

by an extended Butcher tableau with an extra column for v and the matrix D replaces the A matrix,180

yielding181

c v D
bT

In [17] it is proved that the maximum order of an s-stage MIRK method is p = s + 1 and several182

methods with stages s ≤ 5 are presented. The method called MIRK4 mid (left tableau below) is a183

6

symmetric MIRK method that could be understood as introducing two new stages to the 2−stage184

Gauss-Legendre collocation method of order p = 4, and is first presented in [14]. MIRK6 (right185

tableau below) is found in [17] and is a MIRK method with s = 5 stages and order p = 6.186

1
2 −

√
3
6

1
2 −

√
3
6 0 0 0 0

1
2 +

√
3
6

1
2 +

√
3
6 0 0 0 0

1
2 −

√
3
6

1
2 0 −

√
3
6 0 0

1
2 +

√
3
6

1
2

√
3
6 0 0 0

0 0 1
2

1
2

0 0 0 0 0 0 0

1 1 0 0 0 0 0
1
4

5
32

9
64 − 3

64 0 0 0
3
4

27
32

3
64 − 9

64 0 0 0
1
2

1
2 − 5

24
5
24

2
3 − 2

3 0
7
90

7
90

16
45

16
45

2
15

B Proof of Theorem 1187

Proof. A Runge–Kutta method as given by Equation (9) is symplectic if and only if188

biaij + bjaji − bibj = 0.

Inserting the MIRK coefficients aij as given by Equation (4), we get189

bi(vibj + dij) + bj(vjbi + dji)− bibj = 0

bidij + bjdji + bibj(vj + vi − 1) = 0.

As D is strictly lower triangular, we get that190

either dji = 0 or dij = 0 =⇒ bidij + bibj(vj + vi − 1) = 0,

if i = j =⇒ b2i (2vi − 1) = 0.

Requiring dij , bi and vi to satisfy the symplecticity condition yields the following restriction191

bidij + bibj(vj + vi − 1) = 0, for i ̸= j,

and bi = 0 or vi =
1

2
, for i = j.

(10)

Without loss of generality, we assume that the m first entries of b ∈ Rs are zero. Enforcing the192

conditions of Equation (10) on v ∈ Rs we get for 1 ≤ m ≤ s193

b = [0, . . . , 0, bm+1, . . . , bs]
T ,

v = [v1, . . . , vm,
1

2
, . . . ,

1

2
]T .

In total, the MIRK coefficient matrix A = D + vbT gives a Butcher tableau of the form194

0 0 . . . 0 v1bm+1 . . . v1bs
d21 0 . . . 0

d31 d32 0
...

...
...

. . .
dm,1 . . . dm,m−1 0 vmbm+1 . . . vmbs
0 0 1

2bm+1 . . . 1
2bs

...
...

...
...

0 0 1
2bm+1 . . . 1

2bs
0 0 bm+1 . . . bs

Since the lower left submatrix is the zero matrix, this leaves the stages km+1, . . . , ks unconnected195

to the first m stages. Furthermore as bi = 0 for i = 1, . . . ,m, these stages are not included in the196

7

computation of the final integration step. The method is thus reducible to the lower right submatrix197

of A and bm+1, . . . , bs. The reduced method is in general given by198

1
2b1 . . . 1

2bs
...

...
1
2b1 . . . 1

2bs

b1 . . . bs

It is trivial to check that if
∑s

i bi = 1 the method satisfies order conditions up to order p = 2, which199

could be found in [8, Ch. III.1.1] to be200 ∑
i

bi = 1, and
∑
i,j

biaij =
1

2
,

but fails to satisfy the first of the two conditions required for order p = 3, since201 ∑
i,j,k

biaijaik =
1

4

∑
i,j,k

bibjbk =
1

4
̸= 1

3
.

Hence, the maximum order of a symplectic MIRK method is p = 2.202

C Structure of the mean inverse integrator203

y0 y1 y2 y3

−hf̂2,3
−2hf̂1,2

−3hf̂0,1

y0 y1 y2 y3

hf̂0,1
−2hf̂1,2 −hf̂2,3

y0 y1 y2 y3

hf̂0,1
2hf̂1,2 −hf̂2,3

y0 y1 y2 y3

hf̂0,1
2hf̂1,2

3hf̂2,3

Figure 3: Illustration of the structure of the mean inverse integrator for N = 3.

D Test problems204

Let qi and pi denote the angle and angular momentum of pendulum i = 1, 2. The double pendulum205

system has a Hamiltonian that is not separable, where y = [q1, q2, p1, p2]
T ∈ R4 and the Hamiltonian206

is given by207

H(q1, q2, p1, p2) =
1
2p

2
1 + p22 − p1p2 cos(q1 − q2)

1 + sin2(q1 − q2)
− 2 cos(q1)− cos(q2).

The ODE is thus defined by the vector field f(y) := J∇H(y) where the matrix J is the same as208

in Equation (2). The Lotka–Volterra problem is defined by the interaction of two species, of which209

population number is represented by y1 > 0 and y2 > 0 assuming that y1 is the prey of a predator y2.210

Assuming that all interaction parameters are given by α = β = γ = δ = 1 the vector field is given by211

f(y) =

[
y1 − y1y2
y1y2 − y2

]
.

8

	Introduction
	Numerical integration in inverse ODE problems
	Inverse ODE problems on Hamiltonian form
	Inverse explicit integrators
	Inverse ODE problems with noise

	Experiments
	Conclusion
	Mono-implicit Runge–Kutta methods
	Proof of Theorem 1
	Structure of the mean inverse integrator
	Test problems

