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Abstract

We present a technique for dynamically short-
ening the pretraining time of BERT-based mod-
els. BERT-based models are a popular choice
for pretraining research on a low budget. How-
ever improvements can still be made to further
lower monetary and time investments. We pro-
pose an approach that dynamically shortens
the context length when a plateau, a region of
slow loss reduction rate, is detected, then re-
turns to the original value after the plateau is
escaped. We show that this change forces an
abrupt exit from the plateau, which reduces the
time it takes to reach 90% of the final baseline
performance by a factor of 2.

1 Introduction

Language models use gradient descent for opti-
mization. These methods sometimes exhibit a rapid
loss function decrease at the beginning of pretrain-
ing but may slow down significantly after a rela-
tively small number of steps (see Figure 1). The
loss appears to plateau over a large number of steps,
and then start decreasing again, sometimes signifi-
cantly so (Ainsworth and Shin, 2020).

This work provides three main contributions to
identify, mitigate, and visualize plateaus during
pretraining. First, in section 3.1 we propose a
method of dynamically detecting plateaus during
the training process. We achieve this by using a
sliding window based technique that dynamically
tracks the average change in loss during training.

Second, in Section 3.2 we propose an interven-
tion strategy that aims to escape training plateaus
by employing a dynamic context length based
method. This is achieved by briefly changing the
context length of the inputs until the plateau is
escaped, then going back to the original context
length. Our method manages to reduce the plateau
length significantly, leading to faster convergence.

Third, in Section 3.3 we formulate a loss vi-
sualization technique which focuses around im-
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Figure 1: Illustration of the dynamic context length
pretraining method compared to pretraining with a con-
stant context length. The method starts with a context
length of 512, then when a plateau is detected the con-
text length is switched to length 64. Once we exit the
plateau we switch back to the original context length.

portant stages during the training process, rather
than global visualizations employed in previous
research (Li et al., 2017; Hao et al., 2019). This
is achieved by visualizing around a specific check-
point rather than using the initial weights as an
origin, and by using PCA on vectors relevant to the
training process, i.e., checkpoints close to the ori-
gin point. Using the visualization we further attest
that our method manages to escape the plateau via
manipulation of the loss landscape topology.

In section 4 we use all three proposed techniques
on BERT. We find that dynamically shortening the
context length leads to an early plateau escape. We
find that loss function plateaus correspond to low
curvature areas in the loss landscape.

Beyond efficient pretraining for BERT, our
methodology suggests a dynamic hyperparameter
intervention based on the training behaviour. This
stands in contrast with common practice of setting
static hyperparameters which only change between
training runs.



2 Background

The learning curve plateau phenomenon is a com-
mon occurrence during training in which the loss
function exhibits rapid descent during initial train-
ing steps, then the descent rate of the loss function
substantially slows down, only to finally start an-
other rapid descent (Park et al., 2000) (as can be
seen in Fig. 1). This behavior has been observed
and researched in previous studies aiming to iden-
tify the causes of the phenomenon and find ways
to early escape or avoid entering it (Ainsworth and
Shin, 2020).

Dauphin et al. (2014) have shown that sad-
dle points are common in high dimensional non-
convex optimization problems, rather than local
minima. Saddle points and local minima are both
surrounded by flat regions with minimal changes in
the error curvature, which can slow down the error
rate reduction of the gradient descent. For saddle
points however the plateau can be escaped, which
points to the need of devising methods to deal with
that type of plateaus in a time and cost effective
manner.

Several works attack the plateau phenomena us-
ing learning rate schedulers. Shi et al. (2020) have
shown that training a model using a decreasing
learning rate, a common scheduler practice, leads
to faster decrease in error rate. Another learning
rate based method was suggested by Smith (2017),
in which they present a cyclical scheduler working
within a band of values. Wang et al. (2022) ex-
plained that a cyclical learning rate helps escaping
plateaus as the increase in learning rate allows for
rapid traversal of saddle point areas. Nagatsuka
et al. (2021) have shown that using a curriculum
learning method which gradually increases the in-
put context length of a BERT model (Devlin et al.,
2019) leads to faster convergence speed.

To better understand the behavior around
plateaus, we visualize the loss surface in these ar-
eas. Visualization of loss surfaces is widely used as
a tool to better understand the learning process of
models. In Li et al. (2017) a number of visualiza-
tion strategies are reviewed, with a method based
on Principal Component Analysis (PCA) being the
preferred method for optimization trajectory visual-
ization. The method utilizes a 2D surface technique
as seen in Goodfellow and Vinyals (2014); Im et al.
(2016), with the basis for the space constructed
from the outputs of running PCA on the weight
vectors of the model at different stages of training.

3 Methodology

In this section we describe the plateau detection
method (Section 3.1), describe our method for es-
caping a plateau using context length variation
(Section 3.2), and present the visualization routine
we used for analysing loss landscapes around areas
of interest, which was used to analyse the impact of
context length on the loss behavior (Section 3.3).

3.1 Plateau Detection

In this phase, we aim to identify when the conver-
gence of the training process slows down. This is
done dynamically in the process of the pretraining
run, and is agnostic to the model and data used. The
exact method is described in Algorithm 1. The algo-
rithm saves the values of the step’s loss while train-
ing in order to calculate the average over a moving
window. It then calculates the ratio between the
averages over a window starting 2 window sizes
ago and a window starting right after that (lines
6-9). Finally, we check whether the number of
steps classified as plateau in near history surpasses
a predefined threshold to identify the present state
as a plateau (line 12). This approach allows to filter
out noise in the detection process.

3.2 Dynamic Intervention

In order to reduce the time spent in a plateau we
briefly reduce the context length to a low value after
detecting the entrance to the plateau. This is sup-
ported by the results of the CR method (Wang et al.,
2022), which show quicker convergence in smaller
context lengths. We achieve this by dynamically
changing the context length training parameter, as
well as tokenizing the dataset using the matching
context length on the fly for the required number of
steps. After the plateau detection method shows we
have exited the plateau, we switch back to the orig-
inal context length, since we still want to preserve
the model’s ability to perform on tasks requiring
the original large context size. Performance wise,
the additional tokenization time is offset by the
decrease in step duration due to smaller context
length, since less data is processed each step.

3.3 Visualization Methodology

We employ a PCA based visualization method (Li
et al., 2017), focusing specifically on the loss sur-
face around the plateau, in order to understand how
context length affect it. This is achieved by offset-
ing the trajectory and surface vectors so that the
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Figure 2: We compare between the baseline pretraining
loss and our method, which uses a dynamic context
length switch when a plateau is detected. The dashed
section is the part where the context length is shortened
to 64 tokens. Once we exit the plateau, the method
switches back to 512 tokens. Training with a dynamic
context length significantly reduces the plateau duration.

origin is a checkpoint on the center of the plateau.
This puts the focus on the interesting parts as op-
posed to visualization techniques utilizing the en-
tire training history that give a more general in-
sight into the training process. We then flatten
the weights at checkpoints around the plateau area
as an input to the PCA algorithm and retrieve the
eigenvectors of the 2 principal components. Let
v1, U2 be the eigenvectors, and 6. be the position
vector corresponding to the weights at the plateau
center checkpoint after being projected to the span
of v1, ve. The loss surface function will then be:

f(z,y) = L(zvy + yva + 6.)

where L is the model loss function.

In order to visualize the optimization trajectory
over the loss landscape we project each of the
given model checkpoints during training. To
project model weights w onto the span of vy, va,
we first define the matrix A = [v;  v2], and use
the following formula:

m = (ATA)'ATw

As v1,vo are eigenvectors of eigenvalues calcu-
lated by the PCA, they are orthogonal and thus A
is invertible, justifying the above calculation. The
visualization relies on having reasonably frequent
checkpoints of the pretraining process. These are
used both as inputs for the PCA process, and as
points on the optimization trajectory.

Algorithm 1: Plateau Detection
Input: w € N - window size
loss € R - current training step loss
pThresh € N - plateau threshold
dT'hresh € N - window ratio threshold
P - plateau detection history
L - loss history
Output: True if at plateau step, False
otherwise

L.append(loss)
if |[L| < 2 % w then

‘ return False
else

-

// Average on previous window
dl = avg(L[|L| — 2 x w : |L| — w])
// Average on last window
a2 = avg(L[|L| — w : |L]))
d=dl/d2
isPlateau = d < dThresh
P.append(isPlateau)
return

sum(P[|P|—2*w : |P|]) > pThresh
13 end if
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4 Results

In this section we present the results of evaluating
our method. We find that changing the context
length dynamically being beneficial towards pre-
training optimization. Additionally shorter context
lengths correlated with narrower plateaus in the
landscape.

Experimental setup. We pretrain a medium
sized model, BERT-base-uncased, which consists
of 110 million parameters. We used the BookCor-
pus and the English Wikipedia dump (March 2022)
datasets to pretrain all model variations, in line with
the original BERT training routine. The datasets
were mixed together and then split using a standard
90/10%, with the latter portion to be used as a test
set in the evaluation phase. We trained all models
for 100K steps. A base context length of 512 to-
kens was used, and we change the context length
to 64 when reaching a plateau. To evaluate the
effect on performance of the above technique we
use the mean reciprocal rank (MRR) metric, which
correlates with perplexity, over masked tokens. We
compare MRR scores and convergence times be-
tween a baseline with a constant context length of



512, a model trained with dynamic context length
as described above and the curriculum method (CR)
(Nagatsuka et al., 2021). Additional details regard-
ing training, plateau detection and visualization
parameters can be found in Appendix A.

Shorter context length leads to faster conver-
gence time. While shorter context length is faster
per step by virtue of processing less data each it-
eration, we additionally show that utilizing shorter
context length leads to faster convergence time.
This was done by pretraining 4 models with 4 dif-
ferent context lengths: 64, 128, 256, 512. As can
be seen in Fig. 4 in the appendix, the shorter the
context length the faster we reach convergence. Ad-
ditionally we can observe that the number of steps
spent in a plateau is getting smaller together with
smaller context length. For the smallest context
length in the experiment - 64, we do not get stuck
in a plateau at all.

Dynamic context length shortens plateau dura-
tion. By comparing loss graphs in Fig. 2, we can
see that our method reduces the number of steps
spent in plateau by half compared to the constant
model, eventually leading to a ~ 2.5z improve-
ment in convergence time.

In Fig. 3 we demonstrate the time optimizations
provided by our method. At 15% of baseline train-
ing time we can see that our method dramatically
outperforms the other methods. In particular, uti-
lizing our method and stopping at 20K steps yield
an MRR score that is ~ 85% of the maximum
achieved, while taking ~ 2.5z less time to train
than the baseline equivalent, and ~ 2z less time to
train than the CR method. Moreover, all 3 models
converge to a similar score, pointing to no degrada-
tion of performance when using our method. This
enables to pretrain for a much shorter duration
while getting MRR scores very similar to the ones
from a long training routine.

The above observations give the user the free-
dom to apply the method automatically and decide
when to stop training on the go. Additionally, based
on the results the gradual approach taken in the CR
paper might be overly cautious for the task at hand,
and a single jump between context sizes might be
faster while maintaining quality.

Different plateau lengths can also be observed in
static context lengths. In order to better under-
stand the effect of context changes on the training
process, we used a PCA visualization method with
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Figure 3: MRR score and processing time of our ap-
proach (blue squares, dynamic context length of 512-64-
512), baseline (pink triangles, pretraining with constant
context length of 512) and the CR approach (gray dots,
context length gradually increased). Each data point is
10K steps apart from the previous one in its series. Left
and higher is better. Our method performs as good as
the CR method in later stages of training, and signif-
icantly outperforms the other methods when stopping
early.

several context lengths and investigated the dif-
ferences in the landscape and trajectory between
them, as shown in Fig. 5 in the Appendix. It can
be seen that the optimization trajectory remains
unaffected by context size changes. This points
mainly to the loss landscape remaining constant in
its general topology, with the only change being
to the area of the plateau around the starting point.
This effectively mirrors the reduction in plateau
length, expressed in training steps, with longer con-
text length correlated with more expansive plateaus
in the landscape. These changes are then directly
correlated with the convergence speed due sharper
gradients in earlier stages of training.

5 Conclusions

In this work we present a dynamic context length
pretraining method as a way to escape a detected
plateau early.This method leads to a convergence
speed faster by a factor of 2 compared to the
baseline. We also use a PCA based visualization
method to explore the effect of context length on
the model’s loss landscape and optimization trajec-
tory. The visualization shows that the trajectory
remains similar for all context lengths, however
the landscape plateau is shorter for shorter context
lengths, in a manner that correlates to a faster con-
vergence speed due to sharper gradients in earlier
stages of training.



6 Limitations

This work is subject to a number of limitations.
First, the methods presented were only applied to
the BERT model. While plateaus are reported in
architectures other than BERT, we can provide no
guarantee that this method will be effective when
applied to them. Secondly, as with any empirical
machine learning research, the hyper parameters
chosen for the plateau detection algorithm may not
be universal and require adjustment when ran with
a different experimental setup.
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A Experimental Setup Details

Training Details. For dataset tokenization we
use a the bert-base-uncased tokenizer, pretrained
on the same datasets used for the training data. For
the masked language model, we use the default
setting - generating 15% mask tokens and 10%
random tokens for each input sequence (Devlin
et al., 2019).

We trained all models for 100K steps, with a
batch size of 16 examples and gradient accumula-
tion of 2. These were chosen to emulate a batch
size of 32 within our resource limitations. The
learning rate was set to 5e-5 (Devlin et al., 2019).

We used 4 GPUs (either NVIDIA A6000s,
RTX6000s or A5000s). All hyperparameters are
identical in all iterations of the experiment, except
for the varying context length.

Plateau Detection Details. Using the plateau de-
tection algorithm described at section 3.1, we used
w = 500, dT’hresh = 1.008 and pT hresh = 700.
These constants were the most stable out of a num-
ber of different configuration we tried, with other
configurations resulting in either late detections or
jittery output.

Visualization Details For the landscape visual-
ization we chose checkpoints from steps at and
around the plateau. For the trajectory, we chose
checkpoints from steps 2.5K, 5K, 7.5K, 10K,
12.5K, 15K and 25K. In our experiments we set
the range of x and y dynamically to contain all
projected trajectory checkpoints, which resulted in
range [-60,60]. We then plotted the above func-
tion with a resolution of 40 samples per axis, 1,600
sample points in total.

B Additional Graphs
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Figure 4: Comparing usage of different context lengths
in pretraining shows a consistent relation between con-
text length and plateau duration. Final loss values for
all series are very close, only the plateau exit point is
affected.
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Figure 5: Comparison of the loss landscape for different context lengths. PCA was used to compute the principal
vectors used as axes here. All 4 graphs were made with the same checkpoint as an origin point. The optimization
trajectory is described by the numbers, in ascending order. All 4 graphs exhibit a plateau in the upper right part
of the landscape, with its size decreasing as we decrease the context length. The trajectory remains very similar
between the graphs, pointing to overall topological similarity.
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