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Abstract

We present a technique for dynamically short-001
ening the pretraining time of BERT-based mod-002
els. BERT-based models are a popular choice003
for pretraining research on a low budget. How-004
ever improvements can still be made to further005
lower monetary and time investments. We pro-006
pose an approach that dynamically shortens007
the context length when a plateau, a region of008
slow loss reduction rate, is detected, then re-009
turns to the original value after the plateau is010
escaped. We show that this change forces an011
abrupt exit from the plateau, which reduces the012
time it takes to reach 90% of the final baseline013
performance by a factor of 2.014

1 Introduction015

Language models use gradient descent for opti-016

mization. These methods sometimes exhibit a rapid017

loss function decrease at the beginning of pretrain-018

ing but may slow down significantly after a rela-019

tively small number of steps (see Figure 1). The020

loss appears to plateau over a large number of steps,021

and then start decreasing again, sometimes signifi-022

cantly so (Ainsworth and Shin, 2020).023

This work provides three main contributions to024

identify, mitigate, and visualize plateaus during025

pretraining. First, in section 3.1 we propose a026

method of dynamically detecting plateaus during027

the training process. We achieve this by using a028

sliding window based technique that dynamically029

tracks the average change in loss during training.030

Second, in Section 3.2 we propose an interven-031

tion strategy that aims to escape training plateaus032

by employing a dynamic context length based033

method. This is achieved by briefly changing the034

context length of the inputs until the plateau is035

escaped, then going back to the original context036

length. Our method manages to reduce the plateau037

length significantly, leading to faster convergence.038

Third, in Section 3.3 we formulate a loss vi-039

sualization technique which focuses around im-040

Figure 1: Illustration of the dynamic context length
pretraining method compared to pretraining with a con-
stant context length. The method starts with a context
length of 512, then when a plateau is detected the con-
text length is switched to length 64. Once we exit the
plateau we switch back to the original context length.

portant stages during the training process, rather 041

than global visualizations employed in previous 042

research (Li et al., 2017; Hao et al., 2019). This 043

is achieved by visualizing around a specific check- 044

point rather than using the initial weights as an 045

origin, and by using PCA on vectors relevant to the 046

training process, i.e., checkpoints close to the ori- 047

gin point. Using the visualization we further attest 048

that our method manages to escape the plateau via 049

manipulation of the loss landscape topology. 050

In section 4 we use all three proposed techniques 051

on BERT. We find that dynamically shortening the 052

context length leads to an early plateau escape. We 053

find that loss function plateaus correspond to low 054

curvature areas in the loss landscape. 055

Beyond efficient pretraining for BERT, our 056

methodology suggests a dynamic hyperparameter 057

intervention based on the training behaviour. This 058

stands in contrast with common practice of setting 059

static hyperparameters which only change between 060

training runs. 061
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2 Background062

The learning curve plateau phenomenon is a com-063

mon occurrence during training in which the loss064

function exhibits rapid descent during initial train-065

ing steps, then the descent rate of the loss function066

substantially slows down, only to finally start an-067

other rapid descent (Park et al., 2000) (as can be068

seen in Fig. 1). This behavior has been observed069

and researched in previous studies aiming to iden-070

tify the causes of the phenomenon and find ways071

to early escape or avoid entering it (Ainsworth and072

Shin, 2020).073

Dauphin et al. (2014) have shown that sad-074

dle points are common in high dimensional non-075

convex optimization problems, rather than local076

minima. Saddle points and local minima are both077

surrounded by flat regions with minimal changes in078

the error curvature, which can slow down the error079

rate reduction of the gradient descent. For saddle080

points however the plateau can be escaped, which081

points to the need of devising methods to deal with082

that type of plateaus in a time and cost effective083

manner.084

Several works attack the plateau phenomena us-085

ing learning rate schedulers. Shi et al. (2020) have086

shown that training a model using a decreasing087

learning rate, a common scheduler practice, leads088

to faster decrease in error rate. Another learning089

rate based method was suggested by Smith (2017),090

in which they present a cyclical scheduler working091

within a band of values. Wang et al. (2022) ex-092

plained that a cyclical learning rate helps escaping093

plateaus as the increase in learning rate allows for094

rapid traversal of saddle point areas. Nagatsuka095

et al. (2021) have shown that using a curriculum096

learning method which gradually increases the in-097

put context length of a BERT model (Devlin et al.,098

2019) leads to faster convergence speed.099

To better understand the behavior around100

plateaus, we visualize the loss surface in these ar-101

eas. Visualization of loss surfaces is widely used as102

a tool to better understand the learning process of103

models. In Li et al. (2017) a number of visualiza-104

tion strategies are reviewed, with a method based105

on Principal Component Analysis (PCA) being the106

preferred method for optimization trajectory visual-107

ization. The method utilizes a 2D surface technique108

as seen in Goodfellow and Vinyals (2014); Im et al.109

(2016), with the basis for the space constructed110

from the outputs of running PCA on the weight111

vectors of the model at different stages of training.112

3 Methodology 113

In this section we describe the plateau detection 114

method (Section 3.1), describe our method for es- 115

caping a plateau using context length variation 116

(Section 3.2), and present the visualization routine 117

we used for analysing loss landscapes around areas 118

of interest, which was used to analyse the impact of 119

context length on the loss behavior (Section 3.3). 120

3.1 Plateau Detection 121

In this phase, we aim to identify when the conver- 122

gence of the training process slows down. This is 123

done dynamically in the process of the pretraining 124

run, and is agnostic to the model and data used. The 125

exact method is described in Algorithm 1. The algo- 126

rithm saves the values of the step’s loss while train- 127

ing in order to calculate the average over a moving 128

window. It then calculates the ratio between the 129

averages over a window starting 2 window sizes 130

ago and a window starting right after that (lines 131

6-9). Finally, we check whether the number of 132

steps classified as plateau in near history surpasses 133

a predefined threshold to identify the present state 134

as a plateau (line 12). This approach allows to filter 135

out noise in the detection process. 136

3.2 Dynamic Intervention 137

In order to reduce the time spent in a plateau we 138

briefly reduce the context length to a low value after 139

detecting the entrance to the plateau. This is sup- 140

ported by the results of the CR method (Wang et al., 141

2022), which show quicker convergence in smaller 142

context lengths. We achieve this by dynamically 143

changing the context length training parameter, as 144

well as tokenizing the dataset using the matching 145

context length on the fly for the required number of 146

steps. After the plateau detection method shows we 147

have exited the plateau, we switch back to the orig- 148

inal context length, since we still want to preserve 149

the model’s ability to perform on tasks requiring 150

the original large context size. Performance wise, 151

the additional tokenization time is offset by the 152

decrease in step duration due to smaller context 153

length, since less data is processed each step. 154

3.3 Visualization Methodology 155

We employ a PCA based visualization method (Li 156

et al., 2017), focusing specifically on the loss sur- 157

face around the plateau, in order to understand how 158

context length affect it. This is achieved by offset- 159

ing the trajectory and surface vectors so that the 160
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Figure 2: We compare between the baseline pretraining
loss and our method, which uses a dynamic context
length switch when a plateau is detected. The dashed
section is the part where the context length is shortened
to 64 tokens. Once we exit the plateau, the method
switches back to 512 tokens. Training with a dynamic
context length significantly reduces the plateau duration.

origin is a checkpoint on the center of the plateau.161

This puts the focus on the interesting parts as op-162

posed to visualization techniques utilizing the en-163

tire training history that give a more general in-164

sight into the training process. We then flatten165

the weights at checkpoints around the plateau area166

as an input to the PCA algorithm and retrieve the167

eigenvectors of the 2 principal components. Let168

v1, v2 be the eigenvectors, and θc be the position169

vector corresponding to the weights at the plateau170

center checkpoint after being projected to the span171

of v1, v2. The loss surface function will then be:172

f(x, y) = L(xv1 + yv2 + θc)173

where L is the model loss function.174

In order to visualize the optimization trajectory175

over the loss landscape we project each of the176

given model checkpoints during training. To177

project model weights w onto the span of v1, v2,178

we first define the matrix A =
[
v1 v2

]
, and use179

the following formula:180

181 [
x
y

]
= (A⊺A)−1A⊺w182

As v1, v2 are eigenvectors of eigenvalues calcu-183

lated by the PCA, they are orthogonal and thus A184

is invertible, justifying the above calculation. The185

visualization relies on having reasonably frequent186

checkpoints of the pretraining process. These are187

used both as inputs for the PCA process, and as188

points on the optimization trajectory.189

Algorithm 1: Plateau Detection
Input: w ∈ N - window size
loss ∈ R - current training step loss
pThresh ∈ N - plateau threshold
dThresh ∈ N - window ratio threshold
P - plateau detection history
L - loss history
Output: True if at plateau step, False

otherwise
1 L.append(loss)
2 if |L| < 2 ∗ w then
3 return False
4 else
5 // Average on previous window
6 d1 = avg(L[|L| − 2 ∗ w : |L| − w])
7 // Average on last window
8 d2 = avg(L[|L| − w : |L|])
9 d = d1/d2

10 isP lateau = d < dThresh
11 P.append(isP lateau)
12 return

sum(P [|P |−2∗w : |P |]) > pThresh
13 end if
14 §

4 Results 190

In this section we present the results of evaluating 191

our method. We find that changing the context 192

length dynamically being beneficial towards pre- 193

training optimization. Additionally shorter context 194

lengths correlated with narrower plateaus in the 195

landscape. 196

Experimental setup. We pretrain a medium 197

sized model, BERT-base-uncased, which consists 198

of 110 million parameters. We used the BookCor- 199

pus and the English Wikipedia dump (March 2022) 200

datasets to pretrain all model variations, in line with 201

the original BERT training routine. The datasets 202

were mixed together and then split using a standard 203

90/10%, with the latter portion to be used as a test 204

set in the evaluation phase. We trained all models 205

for 100K steps. A base context length of 512 to- 206

kens was used, and we change the context length 207

to 64 when reaching a plateau. To evaluate the 208

effect on performance of the above technique we 209

use the mean reciprocal rank (MRR) metric, which 210

correlates with perplexity, over masked tokens. We 211

compare MRR scores and convergence times be- 212

tween a baseline with a constant context length of 213
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512, a model trained with dynamic context length214

as described above and the curriculum method (CR)215

(Nagatsuka et al., 2021). Additional details regard-216

ing training, plateau detection and visualization217

parameters can be found in Appendix A.218

Shorter context length leads to faster conver-219

gence time. While shorter context length is faster220

per step by virtue of processing less data each it-221

eration, we additionally show that utilizing shorter222

context length leads to faster convergence time.223

This was done by pretraining 4 models with 4 dif-224

ferent context lengths: 64, 128, 256, 512. As can225

be seen in Fig. 4 in the appendix, the shorter the226

context length the faster we reach convergence. Ad-227

ditionally we can observe that the number of steps228

spent in a plateau is getting smaller together with229

smaller context length. For the smallest context230

length in the experiment - 64, we do not get stuck231

in a plateau at all.232

Dynamic context length shortens plateau dura-233

tion. By comparing loss graphs in Fig. 2, we can234

see that our method reduces the number of steps235

spent in plateau by half compared to the constant236

model, eventually leading to a ∼ 2.5x improve-237

ment in convergence time.238

In Fig. 3 we demonstrate the time optimizations239

provided by our method. At 15% of baseline train-240

ing time we can see that our method dramatically241

outperforms the other methods. In particular, uti-242

lizing our method and stopping at 20K steps yield243

an MRR score that is ∼ 85% of the maximum244

achieved, while taking ∼ 2.5x less time to train245

than the baseline equivalent, and ∼ 2x less time to246

train than the CR method. Moreover, all 3 models247

converge to a similar score, pointing to no degrada-248

tion of performance when using our method. This249

enables to pretrain for a much shorter duration250

while getting MRR scores very similar to the ones251

from a long training routine.252

The above observations give the user the free-253

dom to apply the method automatically and decide254

when to stop training on the go. Additionally, based255

on the results the gradual approach taken in the CR256

paper might be overly cautious for the task at hand,257

and a single jump between context sizes might be258

faster while maintaining quality.259

Different plateau lengths can also be observed in260

static context lengths. In order to better under-261

stand the effect of context changes on the training262

process, we used a PCA visualization method with263

Figure 3: MRR score and processing time of our ap-
proach (blue squares, dynamic context length of 512-64-
512), baseline (pink triangles, pretraining with constant
context length of 512) and the CR approach (gray dots,
context length gradually increased). Each data point is
10K steps apart from the previous one in its series. Left
and higher is better. Our method performs as good as
the CR method in later stages of training, and signif-
icantly outperforms the other methods when stopping
early.

several context lengths and investigated the dif- 264

ferences in the landscape and trajectory between 265

them, as shown in Fig. 5 in the Appendix. It can 266

be seen that the optimization trajectory remains 267

unaffected by context size changes. This points 268

mainly to the loss landscape remaining constant in 269

its general topology, with the only change being 270

to the area of the plateau around the starting point. 271

This effectively mirrors the reduction in plateau 272

length, expressed in training steps, with longer con- 273

text length correlated with more expansive plateaus 274

in the landscape. These changes are then directly 275

correlated with the convergence speed due sharper 276

gradients in earlier stages of training. 277

5 Conclusions 278

In this work we present a dynamic context length 279

pretraining method as a way to escape a detected 280

plateau early.This method leads to a convergence 281

speed faster by a factor of 2 compared to the 282

baseline. We also use a PCA based visualization 283

method to explore the effect of context length on 284

the model’s loss landscape and optimization trajec- 285

tory. The visualization shows that the trajectory 286

remains similar for all context lengths, however 287

the landscape plateau is shorter for shorter context 288

lengths, in a manner that correlates to a faster con- 289

vergence speed due to sharper gradients in earlier 290

stages of training. 291
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6 Limitations292

This work is subject to a number of limitations.293

First, the methods presented were only applied to294

the BERT model. While plateaus are reported in295

architectures other than BERT, we can provide no296

guarantee that this method will be effective when297

applied to them. Secondly, as with any empirical298

machine learning research, the hyper parameters299

chosen for the plateau detection algorithm may not300

be universal and require adjustment when ran with301

a different experimental setup.302
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A Experimental Setup Details 351

Training Details. For dataset tokenization we 352

use a the bert-base-uncased tokenizer, pretrained 353

on the same datasets used for the training data. For 354

the masked language model, we use the default 355

setting - generating 15% mask tokens and 10% 356

random tokens for each input sequence (Devlin 357

et al., 2019). 358

We trained all models for 100K steps, with a 359

batch size of 16 examples and gradient accumula- 360

tion of 2. These were chosen to emulate a batch 361

size of 32 within our resource limitations. The 362

learning rate was set to 5e-5 (Devlin et al., 2019). 363

We used 4 GPUs (either NVIDIA A6000s, 364

RTX6000s or A5000s). All hyperparameters are 365

identical in all iterations of the experiment, except 366

for the varying context length. 367

Plateau Detection Details. Using the plateau de- 368

tection algorithm described at section 3.1, we used 369

w = 500, dThresh = 1.008 and pThresh = 700. 370

These constants were the most stable out of a num- 371

ber of different configuration we tried, with other 372

configurations resulting in either late detections or 373

jittery output. 374

Visualization Details For the landscape visual- 375

ization we chose checkpoints from steps at and 376

around the plateau. For the trajectory, we chose 377

checkpoints from steps 2.5K, 5K, 7.5K, 10K, 378

12.5K, 15K and 25K. In our experiments we set 379

the range of x and y dynamically to contain all 380

projected trajectory checkpoints, which resulted in 381

range [-60,60]. We then plotted the above func- 382

tion with a resolution of 40 samples per axis, 1,600 383

sample points in total. 384

B Additional Graphs 385
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Figure 4: Comparing usage of different context lengths
in pretraining shows a consistent relation between con-
text length and plateau duration. Final loss values for
all series are very close, only the plateau exit point is
affected.
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Figure 5: Comparison of the loss landscape for different context lengths. PCA was used to compute the principal
vectors used as axes here. All 4 graphs were made with the same checkpoint as an origin point. The optimization
trajectory is described by the numbers, in ascending order. All 4 graphs exhibit a plateau in the upper right part
of the landscape, with its size decreasing as we decrease the context length. The trajectory remains very similar
between the graphs, pointing to overall topological similarity.
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