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Abstract
We study temporal fair division, whereby a set1

of agents are allocated a (possibly different) set2

of goods on each day for a period of days. We3

study this setting, as well as a number of its spe-4

cial cases formed by the restrictions to two agents,5

same goods on each day, identical preferences, or6

combinations thereof, and chart out the landscape7

of achieving two types of fairness guarantees si-8

multaneously: fairness on each day (per day) and9

fairness over time (up to each day, or the weaker10

version, overall).11

In the most general setting, we prove that there12

always exists an allocation that is stochastically-13

dominant envy-free up to one good (SD-EF1) per14

day and proportional up to one good (PROP1) over-15

all, and when all the agents have identical prefer-16

ences, we show that SD-EF1 per day and SD-EF117

overall can be guaranteed. For the case of two18

agents, we prove that SD-EF1 per day and EF119

up to each day can be guaranteed using an envy20

balancing technique. We provide counterexamples21

for other combinations that establish our results as22

among the best guarantees possible, but also leave23

open some tantalizing questions.24

1 Introduction25

How to divide a set of goods amongst a set of agents fairly26

has been an enigma for centuries. There has been remarkable27

progress on this question in the last decade [Amanatidis et al.,28

2022]. In the most prominent model, there is a set of n agents29

N , each having an (additive) valuation over a set of goods M .30

The goal is to find an allocation A = (A1, . . . , An) which31

partitions M into pairwise-disjoint bundles, one allocated to32

each agent i ∈ N .33

This one-shot model fails to capture numerous real-world34

fair division scenarios in which goods are divided over time,35

e.g., food bank deliveries [Lee et al., 2019], resource alloca-36

tion in data centers [Ghodsi et al., 2013], allocation of adver-37

tising slots [Mehta et al., 2007], nurse shift scheduling [Miller38

et al., 1976], and organ transplants [Bertsimas et al., 2013].39

Compared to the one-shot setting, fair division of goods over40

time has received relatively little attention.41

Inspired by this, there has been a flurry of recent works 42

that consider online fair division, where agents or goods ar- 43

rive over time and the principal needs to make allocations in 44

an online fashion in the absence of any information regard- 45

ing future arrivals [Kash et al., 2014; Benadè et al., 2024]. 46

The limits of feasible fairness guarantees have been explored 47

under various adversary models [Zeng and Psomas, 2020; Be- 48

nadè et al., 2024]. 49

However, in practice it is rarely the case that we have ab- 50

solutely no information about the future. Significantly better 51

guarantees have been established when even partial informa- 52

tion about the future is available, either in the form of distri- 53

butional knowledge [Bogomolnaia et al., 2022] or machine- 54

generated predictions [Gkatzelis et al., 2021; Banerjee et al., 55

2022, 2023]. But this work has left a very basic question wide 56

open: How fair can we be if we had full information about the 57

future? 58

To address this, we introduce the model of temporal fair 59

division, where a set of agents N are allocated a set of goods 60

Mt on day t, over a period of days t ∈ {1, . . . , k}, and the 61

agents’ valuations over the whole set of goods M = ∪kt=1Mt 62

are available upfront. At first glance, it may seem that this is 63

just a traditional fair division problem where the set of goods 64

M needs to be divided amongst the set of agents N . The 65

twist, however, is that in temporal fair division, agents antici- 66

pate fairness to prevail not solely at the end of the entire time 67

horizon, but also at or within various interim time intervals. 68

For example, the principal may be confident, based on their 69

knowledge of the future, the allocation will eventually turn 70

out to be fair, but that may not be assurance enough to the 71

agents. 72

This leads us to seek temporal fairness notions in our tem- 73

poral fair division setting. Specifically, we take prominent 74

fairness notions from one-shot fair division, and seek them 75

on three temporal scales: 76

(1) Per day: The allocation of the set of goods Mt on each 77

day t should be fair. 78

(2a) Overall: The allocation of the whole set of goods M in 79

the end should be fair. 80

(2b) Up to each day: The allocation of the set of goods 81

∪tr=1Mr up to each day t should be fair. 82

Clearly, up to each day fairness (2b) is stronger than overall 83

fairness (2a). Solely achieving per day fairness (1) or overall 84
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Figure 1: Hierarchy of temporal fairness notions.

fairness (2a) can be reduced to one-shot fair division. Hence,85

we seek per day and overall fairness simultaneously (1+2a),86

or per day and up to each day fairness simultaneously (1+2b),87

or solely up to each day fairness (2b). Our main research88

question is to...89

...explore the limits of temporal fairness that can be90

guaranteed in temporal fair division.91

1.1 Our Results & Techniques92

We chart out the landscape of the aforementioned temporal93

fair division model in a general setting, with n agents hav-94

ing additive, heterogeneous preferences. Further, we identify95

three relevant restrictions where we can circumvent some of96

the impossibilities of the general setting, and achieve very97

strong results. Those are: (1) when there are only two agents;98

(2) when all agents have the same ordering over the goods;99

and (3) when an identical set of goods arrives each day.100

In these settings, we seek the fairness guarantees of EF1,101

SD-EF1, PROP1, and SD-PROP1 at the temporal scales of102

per day, overall, and up to each day. The various temporal103

fairness definitions are depicted in Figure 1, with arrows in-104

dicating logical implications. We discover several surprising105

results, and develop novel algorithmic tools along the way,106

which may be of independent interest.107

In Section 3, we present an algorithm for finding tempo-108

rally fair allocations in our most general setting. Specifically,109

we show how to obtain an allocation that is PROP1 overall,110

and SD-EF1 per day in polynomial time (Theorem 1).111

In Sections 4 to 6, we look at the restricted settings of112

two agents, identical orderings, and identical days, respec-113

tively. In these settings, we provide algorithms that give very114

strong fairness guarantees that are impossible in the general115

case (Theorems 3, 7 and 9), while also showing which fair-116

ness desiderata are still too strong even after applying these117

restrictions (Theorems 4, 5 and 8). In these restricted set-118

tings, we provide a near complete picture of what is possible,119

while leaving open some interesting questions, particularly120

surrounding the powerful notion of “up to each day” fairness.121

Most of our results, along with several open questions, are122

summarized in Table 1.123

1.2 Related Work124

Our temporal fair division model is related to (but separate125

from) several fair division models studied in the literature.126

We include the most relevant ones here, and include a more127

in-depth look at the literature in the Appendix A128

Repeated fair division. The repeated fair division model 129

of Igarashi et al. [2024], which is the case of identical days 130

in our more general model, is the most closely related to our 131

work. Some of their results are for two agents (still with iden- 132

tical days). As will be seen in Section 4, this is where the 133

strongest guarantees from Figure 1 of SD-EF1 per day and 134

SD-EF1 up to each day can be achieved simultaneously. This 135

result is the only overlap between our works, and we present it 136

again because we obtain a shorter proof with a much simpler 137

algorithm. The rest of their results with two or more than two 138

agents seek exact fairness guarantees, such as (exact) envy- 139

freeness overall, in limited cases such as when the number of 140

days is a multiple of the number of agents. 141

Online fair division. In the online fair division model, goods 142

arrive one by one and must be irrevocably allocated to an 143

agent upon arrival with no knowledge of agent preferences 144

over the goods to arrive later. Typically, one seeks to maintain 145

a certain level of fairness. Clearly, any online fair division al- 146

gorithm can be simulated in our temporal fair division model 147

to achieve the same guarantee up to each day. One online fair 148

division paper of particular note to this research is He et al. 149

[2019]. This paper introduced the “Informed Model” of on- 150

line fair division, where irrevocable allocation decisions must 151

be made as goods arrive one at a time in adversarial order, but 152

the allocation algorithm is given all goods and the order they 153

will arrive in advance. The main goal in the informed model 154

is to achieve an allocation that remains EF1 after each good 155

is allocated. Clearly, this is equivalent to achieving EF1 up to 156

each day in Temporal Fair Division when each day only con- 157

tains a single good. He et al. concludes that it is impossible 158

to allocate the goods in such a way that EF1 is always main- 159

tained. By corollary, EF1 up to each day is also infeasible. 160

Constrained fair division. Seeking fair allocations over a 161

set of goods that remain fair when only looking at the goods 162

from a single “day” can also be modeled as a constraint on 163

the space of feasible allocations, and the question becomes 164

whether there is a constrained allocation that still achieves 165

the desired fairness guarantee. This model of constrained fair 166

division has also been studied in the literature. Biswas and 167

Barman [2018] study a model with cardinality constraints. 168

Cardinality constraints (partition matroid constraints) have 169

been generalized to matroid constraints, and the existence of 170

an EF1 allocation subject to matroid feasibility constraints 171

is a major open question [Biswas and Barman, 2018; Dror 172

et al., 2023]. Finally, the bihierarchy framework of Budish 173

et al. [2013] can also be viewed as a method for finding a 174

constrained allocation, which we use in some of our results. 175

Although, our most interesting results deal with sets of con- 176

straints that go beyond bihierarchies. 177

Temporal fairness in social choice. While we look at 178

temporal fairness applied to the allocation of indivisible re- 179

sources, the idea of temporal fairness has been explored in 180

other areas of social choice theory. See the work of Elkind et 181

al. [2024b] for a detailed look at temporal multi-winner vot- 182

ing, and for a synopsis of other papers that look at fairness 183

over time. Also, Alamdari et al. [2024] present a model of 184

temporal fairness for a very general decision making setting. 185



Up to each day Overall
SD-EF1 EF1 SD-EF1 SD-PROP1 EF1 PROP1

General Setting
SD-EF1 Per Day X X X ? ? ✓ (Thm 1)
EF1 Per Day X X X ? ? ✓
∅ X X [He et al., 2019] ✓ [Aziz, 2020] ✓ ✓ ✓
Two Agents
SD-EF1 Per Day X ✓(Thm 3) X ? ✓ ✓
EF1 Per Day X ✓ X (Thm 5) ? ✓ ✓
∅ X (Thm 4) ✓ ✓ ✓ ✓ ✓
Identical Orderings
SD-EF1 Per Day X ? ✓(Thm 7) ✓ ✓ ✓
EF1 Per Day X ? ✓ ✓ ✓ ✓
∅ X (Thm 8) ? ✓ ✓ ✓ ✓
Identical Days
SD-EF1 Per Day X ? ? ✓ (Thm 9) ? ✓
EF1 Per Day X ? ? ✓ ? ✓
∅ X (Thm 8) ? ✓ ✓ ✓ ✓

Table 1: Possibilities, impossibilities, and open questions in temporal fair division. ✓indicates a possibility result. X indicates an impossi-
bility. ? indicates an open question. Green highlights indicate the main results of this paper; non-highlighted cells are either open, already
known, or implied by other results.

Finally, contemporarily to and independently of our work,186

Elkind et al. [2024a] also study the same temporal fair divi-187

sion model as ours, but their results have no overlap with ours.188

In particular, they focus primarily on EF1 up to each day,189

achieving it for several special cases of restricted instances.190

2 Preliminaries191

2.1 Model192

For any r ∈ N, define [r] ≜ {1, 2, . . . , r}. A multiset is a set193

that allows repetitions.194

Agents, goods, and valuations. Let N = [n] be a set of195

agents who are allocated a set of goods on each day over k196

consecutive days. For t ∈ [k], denote by Mt the set of goods197

to be allocated on day t, M t = ∪r∈[t]Mr the set of goods198

up to day t, and M = Mk = ∪t∈[k]Mt the set of all goods.199

We can view (M1, . . . ,Mk) as a partition of M . Each agent200

i ∈ N has an additive valuation function vi : 2M → R⩾0,201

where vi({g}) (henceforth, with a slight abuse of notation,202

written as vi(g)) is her utility for receiving good g ∈ M203

and vi(S) =
∑

g∈S vi(g) for all S ⊆ M . Collectively,204

(N, (M1, . . . ,Mk), {vi}i∈N ) form an instance of temporal205

fair division. An instance with k = 1 is a (regular) fair di-206

vision instance, so a temporal fair division instance can be207

viewed as a sequence of fair division instances in which the208

same agents participate. We will always assume that an al-209

gorithm to solve a temporal fair division problem is given the210

entire instance as input, i.e. it knows the entire set of goods211

and what day those goods will arrive upfront.212

Preferences. Define ≽i (resp., ≻i) as the weak (resp., strict)213

ordering over the goods in M induced by vi, where, for all214

g, g′ ∈ M , g ≽i g
′ if and only if vi(g) ⩾ vi(g

′) and g ≻i g
′ 215

if and only if vi(g) > vi(g
′). For all S ⊆ M and all r ∈ N, 216

define Ti(S, r) to be the r most preferred goods among the 217

goods in S according to the ordering ≽i; all ties are broken 218

consistently across i, S, and r.1 219

Allocations. An allocation A = (A1, . . . , An) is a partition 220

of M into n pairwise-disjoint bundles, where Ai is the bundle 221

allocated to agent i. For S ⊆ M , let AS = (AS,1, . . . , AS,n) 222

be the allocation of the goods in S that is induced by A (i.e., 223

for each good g ∈ M and agent i ∈ N , g ∈ AS,i if and only 224

if g ∈ S and g ∈ Ai). For t ∈ [k], we refer to AMt as the 225

allocation on day t and AMt
as the allocation up to day t. 226

Restrictions. We study three restrictions of this general 227

setup (and their combinations). 228

1. Two agents: |N | = 2. 229

2. Identical valuations/orderings: Under identical valua- 230

tions, vi = v for all agents i ∈ N . Under identical 231

orderings, ≽i=≽ for all agents i ∈ N . Here, we sim- 232

ply write v, ≽, and T (S, r), skipping the agent in the 233

subscript. For this case, our results deal with desiderata 234

which depend only on the orderings; thus, no distinction 235

between valuations and orderings is necessary.2 236

1That is, we use an arbitrary global ordering over M as the
tiebreaker to convert the weak ordering ≽i of every agent i ∈ N
into her strict ordering over M , and compute all Ti(S, r)-s accord-
ing to these strict orderings. Our negative results do not depend on
this tie-breaking and positive results hold regardless of it.

2In other words, our positive results hold even under identical
orderings (weaker restriction), while our negative results hold even
under identical valuations (stronger restriction).



3. Identical days: Informally, copies of the same goods are237

allocated on each day. Formally, for all days t, t′ ∈ [k],238

there is a bijection f : Mt → Mt′ such that vi(g) =239

vi(f(g)) for all agents i ∈ N and goods g ∈Mt.240

2.2 Fairness Desiderata241

We first introduce the main desiderata we will be studying.242

Later, we will introduce their temporal extensions. Other243

notions referred to in specific sections will be introduced244

therein.245

Definition 1 (Envy-Freeness Up to One Good (EF1)). An al-246

location A of a set of goods S is envy-free up to one good247

(EF1) if for all i, j ∈ N with Aj ̸= ∅, there exists a g ∈ Aj248

such that vi(Ai) ⩾ vi(Aj \{g}), i.e., no agent envies another249

agent if some good from the latter agent’s bundle is removed.250

In addition to EF1, we will also introduce a weaker notion251

of measuring fairness that does not require directly compar-252

ing one agent’s bundle to another’s.253

Definition 2 (Proportionality Up to One Good (PROP1)). An254

allocation A of a set of goods S is proportional up to one255

good (PROP1) if for all i ∈ N with Ai ̸= S, there exists a256

good g ∈ S \Ai, such that vi(Ai ∪ {g}) ⩾ 1
nvi(S).257

It is well known that EF1 is a stronger notion than PROP1258

[Conitzer et al., 2017].259

Given a set of goods S and a good g ∈ S, define260

an agent i’s top-set with respect to S as Hi(S, g) =261

{g′ ∈ S : g′ ≽i g}. When given only a weak ordering ≽i262

over a set of goods S, we can compare two bundles X,Y ⊆ S263

using the stochastic dominance (SD) relation: X ≽SD
i Y if264

for all g ∈ S, |X ∩Hi(S, g)| ⩾ |Y ∩Hi(S, g)|. That is, X265

has at least as many goods weakly preferred to any good as Y266

has. It is known that X ≽SD
i Y if and only if vi(X) ⩾ vi(Y )267

for all (additive) valuations vi over S that would induce ≽i.268

Hence, using the SD comparison in the EF1 definition yields269

its stronger counterpart, which has also been studied exten-270

sively [Aziz et al., 2015; Freeman et al., 2021; Aziz et al.,271

2023].272

Definition 3 (SD-EF1). An allocation A of a set of goods S is273

stochastically-dominant envy-free up to one good (SD-EF1) if274

for all i, j ∈ N with Aj ̸= ∅, there exists a g ∈ Aj such that275

Ai ≽SD
i Aj \ {g}.276

We also introduce a stochastic dominance extension of277

PROP1.278

Definition 4 (SD-PROP1). An allocation A of a set of goods279

S is stochastically-dominant proportional up to one good280

(SD-PROP1) if, for all i ∈ N with Ai ̸= S, there exists a281

g ∈ S \Ai such that |(Ai∪{g})∩Hi(S, g
′)| ⩾ ⌈|Hi(S,g

′)|/n⌉282

for all g′ ∈ S.283

Informally, Ai, after adding at most one good to it, must284

contain at least ⌈k/n⌉ goods among the k most preferred285

goods of agent i in S, for each k ∈ [|S|].286

Just as EF1 implies PROP1, we have that SD-EF1 im-287

plies SD-PROP1, and similarly to SD-EF1, if an allocation288

A is SD-PROP1 for certain orderings {≽i}i∈N , then A will289

be PROP1 for any additive valuation functions that induce290

{≽i}i∈N . Both these facts are proven in the Appendix B.291

2.3 Temporal Fairness 292

In a temporal fair division instance given by a set of goods 293

M partitioned as (M1, . . . ,Mk) across k days, we can ask 294

for fairness to hold at different levels of granularity, yielding 295

various temporal extensions of the fairness desiderata intro- 296

duced above. These extensions also apply to any other type 297

of desiderata (e.g., efficiency). 298

Definition 5 (Per Day Fairness). For desideratum X , alloca- 299

tion A satisfies X per day if AMt
satisfies X for all t ∈ [k]. 300

Definition 6 (Overall Fairness). For desideratum X , alloca- 301

tion A satisfies X overall if AM = A satisfies X . 302

Definition 7 (Up To Each Day Fairness). For desideratum X , 303

allocation A satisfies X up to each day if AMt
satisfies X for 304

all t ∈ [k]. 305

Note that ‘up to each day’ is a strengthening of ‘overall’, 306

while ‘per day’ is incomparable to those two. Plugging in 307

our fairness desiderata into these three temporal extensions 308

gives us the hierarchy of fairness guarantees depicted in Fig- 309

ure 1. Because SD-EF1 is achievable for (regular) fair divi- 310

sion (e.g., via a simple round-robin procedure [Caragiannis 311

et al., 2019]), SD-EF1 per day and SD-EF1 overall are both 312

individually achievable, implying the same for EF1, PROP1, 313

and SD-PROP1. 314

3 General Preferences 315

In this section, we present temporal fair division results in the 316

most general setting: an arbitrary set of goods arrive each day, 317

and each agent has arbitrary additive preferences over them. 318

Let us present our main result for this general setting. 319

Theorem 1. For any temporal fair division instance, an allo- 320

cation that is SD-EF1 per day and PROP1 overall exists and 321

can be computed in polynomial time. 322

We find such an allocation using Algorithm 1. The deriva- 323

tion of Theorem 1 can be divided into three conceptual steps. 324

Identical ordering transformation. Algorithm 1 begins 325

by creating an auxiliary temporal fair division instance as 326

follows. For each day t, it creates a new instance for that 327

day with a set of goods M ′
t and valuations v′ such that 328

agents have identical orderings but with the same set of 329

utility values as they had previously. More formally, let 330

M ′
t = {g′t,1, . . . , g′t,|Mt|}. Then, for each agent i ∈ N , 331

v′i(g
′
t,1) ⩾ v′i(g

′
t,2) . . . ⩾ v′i(g

′
t,|M ′

t|
) (common ordering) 332

and there exists a bijection oi,t between Mt and M ′
t such 333

that vi(g) = v′i(oi,t(g)) for all g ∈ Mt (same utility val- 334

ues). This technique has been used previously for designing 335

algorithms to achieve (approximate) maximin share fairness 336

(MMS) [Bouveret and Lemaı̂tre, 2014], but we use it with a 337

novel and nontrivial analysis to ensure PROP1. 338

Connection to cardinality constraints. Algorithm 1 in- 339

vokes a key subroutine due to Biswas and Barman [2018] that 340

returns an EF1 allocation subject to cardinality constraints 341

summarized below. 342

Theorem 2 (Theorem 1 of [Biswas and Barman, 2018]). 343

Given p disjoint sets of goods C1, . . . , Cp and n agents with 344



Algorithm 1 SD-EF1 per day + PROP1 Overall
1: // Identical Ordering Transformation
2: v′i = ∅ for all i ∈ N
3: for t ∈ [k] do
4: M ′

t ← {g′t,1, . . . , g′t,|Mt|}
5: for i ∈ N do
6: oi,t be the goods Mt in non-increasing order of vi
7: v′i(g

′
t,j)← vi(oi,t(j)) for all j ∈ [|Mt|]

8: end for
9: end for

10: // Invoking EF1 with Cardinality Constraints algorithm of
Biswas and Barman [2018]

11: for t ∈ [k] do
12: Partition M ′

t into groups of size n (last one may be
smaller than n) as follows: Ct,1 ← {g′t,1, . . . , g′t,n},
Ct,2 ← {g′t,n+1, . . . , g

′
t,2n}, . . ., Ct,⌈|M ′

t|/n⌉ ←
{g′t,(⌈|M ′

t|/n⌉−1)n+1, . . . g
′
t,|M ′

t|
}

13: end for
14: A′ ← BiswasBarmanCC(

⋃
t∈[k]

⋃
j∈[⌈|M ′

t|/n⌉]
Ct,j , v

′)

15: // Final Allocation with Daily Picking Sequences based on A′

16: A← ∅
17: for t ∈ [k] do
18: for j ∈ [|Mt|] do
19: i← Agent allocated g′t,j in A′

20: g ← i’s favourite unallocated good from Mt

21: Ai ← Ai ∪ {g}
22: end for
23: end for
24: return A

heterogeneous additive valuations, there always exists an345

EF1 allocation A such that ⌊|Cℓ|/n⌋ ⩽ |Ai∩Cℓ| ⩽ ⌈|Cℓ|/n⌉346

for every agent i ∈ N and ℓ ∈ [p], and such an allocation can347

be computed in polynomial time.348

Algorithm 1 invokes the algorithm of Theorem 2 on the fol-349

lowing instance. Fix a day t. Recall that agents have identical350

ranked preferences for M ′
t given as g′t,1 ≽ . . . ≽ g′t,|M ′

t|
. Di-351

vide M ′
t into groups of size n in the decreasing order of value,352

breaking ties arbitrarily and letting the last group have possi-353

bly fewer than n goods: that is, let Ct,1 = {g′t,1, . . . , g′t,n},354

Ct,2 = {g′t,n+1, . . . , g
′
t,2n}, and so on. By Theorem 2, we355

find an allocation A′ that is an EF1 allocation for
⋃

t∈[k] M
′
t356

and v′, and that each agent is allocated at most one good from357

Ct,j for all t and j.358

Final Allocation. Algorithm 1 then takes the allocation A′359

and, for each day M ′
t = {g′t,1, . . . , g′t,|M ′

t|
}, allocates Mt360

through a “serial dictatorship” with the picking sequence de-361

rived from A′. First, the agent that is allocated g′t,1 in A′362

will pick their most favourite good from Mt (the original set363

of goods for day t); next, the owner of g′t,2 picks their most364

favourite good among the remaining goods of Mt; and so on.365

We now prove that the resulting allocation A is SD-EF1 per366

day and PROP1 overall.367

Lemma 1. Algorithm 1 returns an allocation that is SD-EF1368

per day. 369

Proof sketch. In the picking sequence for each day t, due to 370

partitioning of the goods Ct,1, . . . , Ct,⌈|M ′
t|/n⌉ and the prop- 371

erty that A′ satisfies the “at most one per group” requirement, 372

each agent appears exactly once in the first n positions, once 373

in the next n positions, and so on. Additionally, each agent 374

appears at most once among the last |Mt| mod n positions. 375

Such a picking order is known as “recursively-balanced”, and 376

is known to yield SD-EF1 [Aziz, 2020]. A detailed proof ap- 377

pears in Appendix C. 378

To prove that A is PROP1 overall, we use the follow- 379

ing technical lemma, the proof of which appears in the Ap- 380

pendix C. 381

Lemma 2. Let V be a multiset of m real values, and A = 382

{a1, . . . , ak} and A′ = {a′1, . . . , a′k} be two subsets of V 383

with equal size such that aj ⩾ a′j for all j ∈ [k]. Let g = 384

max{x : x ∈ V \A} and g′ = max{x : x ∈ V \A′}. Then, 385

there exists a bijection z from A ∪ {g} to A′ ∪ {g′} such that 386

x ⩾ z(x) for all x ∈ A ∪ {g}. 387

Lemma 3. Algorithm 1 returns an allocation that is PROP1 388

overall. 389

Proof. Fix an agent i ∈ N . Take a day t ∈ [k]. Rename the 390

goods so that A′
i ∩M ′

t = {g′1, . . . , g′|A′
i∩M ′

t|
} are the goods 391

that i is allocated in A′ in a non-increasing order of v′i. Simi- 392

larly, let Ai ∩Mt = {g1, . . . , g|Ai∩Mt|} be the goods i picks 393

according to the picking sequence in order. That is, g1 is the 394

good picked corresponding to g′1, g2 corresponding to g′2, and 395

so on. 396

Towards invoking Lemma 2, a helpful observation is that 397

vi(gj) ⩾ v′i(g
′
j) for all j ∈ [|Ai ∩Mt|]. Suppose g′j is the 398

r-th preferred good among M ′
t . Since Mt and M ′

t share the 399

same multiset of utility values for i, and gj is the top pick of 400

i when r − 1 goods are picked, gj is at least as good as i’s 401

r-th most preferred good among Mt (and hence, M ′
t). This 402

argument, combined across all days, implies existence of a 403

bijection zi : Ai → A′
i such that vi(g) ⩾ v′i(zi(g)) for all 404

g ∈ Ai. 405

By invoking Lemma 2 with A ← Ai and A′ ← A′
i over 406

the multiset V being i’s utility values, we have that 407

vi(Ai) + max
g/∈Ai

vi(g) ⩾ v′i(A
′
i) + max

g/∈A′
i

v′i(g)

Every EF1 allocation is also PROP1 [Conitzer et al., 2017], 408

therefore, since A′ is EF1 (Theorem 2), we have that 409

v′i(A
′
i) + max

g/∈A′
i

v′i(g) ⩾
1

n
v′i(M

′) =
1

n
vi(M),

the last equality being true from the way we constructed 410

M ′. Combining the two inequalities above, we get vi(Ai) + 411

maxg/∈Ai
vi(g) ⩾ 1

nvi(M). Thus, A is PROP1. 412

It is worth noting that PROP1 is not a monotonic property, 413

i.e., if vi(Ai) ⩾ vi(A
′
i) and A′

i is PROP1, it is possible that 414

Ai is not PROP1 (as the best good for i in M \ Ai could be 415

worth less than the best good in M \ A′
i). This is why we 416

needed to use a more involved argument in Lemmas 2 and 3. 417



4 Two Agents418

In this section, we consider temporal fair division with two419

agents. We provide a complete picture of temporal fairness420

notions that can be guaranteed in this case. We establish a421

strong positive result, then show that it is the best possible by422

producing counterexamples for stronger desiderata.423

4.1 Possibilities424

Our main goal in this section is to show that SD-EF1 per day425

and EF1 up to each day can be achieved for two agents. We426

begin by introducing an envy-balancing lemma, a powerful427

tool for finding temporal allocations to two agents. We later428

use this lemma to derive not only the aforementioned guaran-429

tee, but also other appealing guarantees.430

Definition 8 (Cancelling Allocations). We say that alloca-431

tions B and B′ of a set of goods S to two agents cancel out if432

vi(Bi) + vi(B
′
i) ⩾ vi(B3−i) + vi(B

′
3−i),∀i ∈ [2]. In words,433

they cancel out if hypothetically allocating two copies of each434

good in S, one according to B and the other according to B′,435

achieves (exact) envy-freeness.436

Lemma 4 (Envy-Balancing Lemma). Suppose that for each437

day t ∈ [k], we are given two EF1 allocations Bt and B′
t of438

the set of goods Mt that cancel out. Then, we can compute, in439

polynomial time, an allocation A of the set of all goods M =440

∪t∈[k]Mt that is EF1 up to each day and AMt
∈ {Bt, B

′
t}441

for each day t ∈ [k].442

Note that the lemma achieves EF1 up to each day while not443

only retaining the EF1 per day property of the input alloca-444

tions, but in fact by using exactly one of the two input allo-445

cations on each day. Thus, if the per day allocations given446

as input satisfy properties stronger than EF1, those properties447

are also retained per day; this is important as we will use this448

lemma to derive such stronger per day guarantees.449

We include the proof of the lemma in Appendix D. At a450

high level, it works by realizing that when two allocations451

cancel out, we know that both agents have at least one of the452

two allocations where they feel no envy (they like the bun-453

dle they were given more than the bundle given to the other454

agent). With this in mind, we can carefully choose which al-455

location to assign on each day, in such a way that whenever456

an agent is feeling too much envy, we can give them their457

preferred allocation on that day, always keeping envy levels458

“balanced” after each time-step.459

For readers familiar with the “informed” model of online460

fair division from He et al. [2019], this can be seen as a gen-461

eralization of their two agent algorithm. While they achieve462

EF1 up to each day while allocating a single good during463

each time step, we provide a similar guarantee while allocat-464

ing batches of goods and simultaneously maintaining fairness465

over the batches.466

We are now ready to show that the pair of allocations re-467

quired by the envy-balancing lemma — both satisfying EF1468

and cancelling each other out — exists and can be com-469

puted in polynomial time. In fact, we find a single parti-470

tion (Bt,1, Bt,2) of the goods in Mt such that both Bt =471

(Bt,1, Bt,2) and B′
t = (Bt,2, Bt,1) satisfy the stronger prop-472

erty of SD-EF1.473

Lemma 5. Given the preferences of two agents over a 474

set of goods Mt, one can efficiently compute a partition 475

(Bt,1, Bt,2) of Mt such that both Bt = (Bt,1, Bt,2) and 476

B′
t = (Bt,2, Bt,1) are SD-EF1 allocations. 477

We can plug these allocations into the envy-balancing 478

lemma (Lemma 4) to get our desired main result. 479

Theorem 3. For temporal fair division with n = 2 agents, 480

an allocation that is SD-EF1 per day and EF1 up to each day 481

exists and can be computed in polynomial time. 482

We include both the proofs for Lemma 5 and Theorem 3 483

in Appendix D. For the interested reader, we also include 484

some notes on the connection between Lemma 5 and the well- 485

known Bihierarchy Theorem from Budish et al. [2013], as 486

well as how to achieve other fairness notions per day while 487

using the envy-balancing lemma, such as EFX and EF1+PO. 488

4.2 Impossibilities 489

We have shown that when there are only two agents, the 490

strong guarantee of EF1 up to each day can be obtained along 491

with the guarantee of SD-EF1 per day. However, one wonders 492

if even stronger guarantees are possible, such as strengthen- 493

ing EF1 up to each day to SD-EF1 up to each day. We find 494

that not only is this strengthening impossible, but even if we 495

relax SD-EF1 up to each day to SD-EF1 overall, it is impos- 496

sible to achieve alongside EF1 per day. Together, these two 497

impossibility results prove that our guarantee of SD-EF1 per 498

day and EF1 up to each day from Theorem 3 is the strongest 499

possible in the hierarchy shown in Figure 1. We include the 500

counterexamples proving both these claims in Appendix D. 501

Theorem 4. For temporal fair division with n = 2 agents, 502

SD-EF1 up to each day cannot be guaranteed. 503

Theorem 5. For temporal fair division with n = 2 agents, 504

EF1 per day and SD-EF1 overall cannot be guaranteed si- 505

multaneously. 506

4.3 Two Agents and Further Restrictions 507

As the final part of this section, we note that when further re- 508

strictions are placed on two-agent instances, we receive even 509

stronger results. Particularly, in Appendix D, we prove and 510

provide a discussion of the following theorem. 511

Theorem 6. For temporal fair division with n = 2 agents 512

and identical days, an allocation that is SD-EF1 per day, SD- 513

EF1 up to each day, and SD-EF up to each even day exists 514

and can be computed in polynomial time. 515

5 Identical Orderings 516

We next look at instances where agents have identical order- 517

ings over all goods in M . Not only are results in this setting 518

practically useful, as there many real life scenarios where par- 519

ticipants agree on the ordinal ranking of goods, but results 520

under identical orderings are also very technically useful. As 521

can be seen from our main result in Section 3, reducing a 522

general setting to one where agents have similar orderings 523

over the goods can lead to fairness guarantees in the origi- 524

nal setting. We will show in future sections that the possibil- 525

ity results we develop here can be applied as black-boxes to 526



achieve strong results in scenarios where agents have hetero-527

geneous orderings.528

Possibilities. Our main result for the case of identical order-529

ings is the following theorem:530

Theorem 7. For temporal fair division with identical order-531

ings, an allocation that is SD-EF1 per day and SD-EF1 over-532

all exists and can be computed in polynomial time.533

We provide a detailed proof of Theorem 7 in the Ap-534

pendix E. Intuitively, we accomplish this by creating two par-535

titions over the set of goods M , labeled P1 and P2, which are536

defined below.537

P1 =

{
T (Mt, nr) \ T (Mt, n(r − 1)) : r ∈

[⌈ |Mt|
n

⌉]
, t ∈ [k]

}
,

P2 =

{
T (M,nr) \ T (M,n(r − 1)) : r ∈

[⌈ |M |
n

⌉]}
.

In words, P2 splits the entire set of goods M into the agents’538

most preferred n goods, their next most preferred n goods,539

etc. P1 does a similar partitioning over M , but does the540

partitioning separately for each day. It is known that when541

agents have identical orderings, guaranteeing that each agent542

receives 1 good from their n favourite goods, 1 good from543

their next n favourite goods, etc. will guarantee an SD-EF1544

allocation. We prove that it is possible to construct an allo-545

cation where each agent gets exactly 1 good from each set in546

P1 and from each set in P2, thereby ensuring SD-EF1 per day547

and overall.548

To an initiated reader, the problem of finding an allocation549

that meets the above constraints may be immediately reminis-550

cent of the bihierarchy framework of Budish et al. [2013]. We551

require that from each set of (at most) n goods out of a fam-552

ily of sets, each agent receives (at most) one good. The sets553

produced by each desideratum are mutually non-overlapping,554

forming a “hierarchy”, but the sets produced by one desider-555

atum can be overlapping with those produced by the other,556

resulting in two different hierarchies. However, the prob-557

lem is that with n > 2 agents, we have a third set of con-558

straints: each good must be assigned to (exactly) one agent.559

This forms a third hierarchy (which cannot be assimilated into560

either of the two previous hierarchies), preventing one from561

applying the bihierarchy framework.562

Impossibilities. In the case of 2 agents, imposing the ad-563

ditional restriction of identical days allowed for very strong564

results, making it possible to satisfy SD-EF1 per day and SD-565

EF1 up to each day. This is unfortunately not the case when566

the identical days restriction is imposed in addition to iden-567

tical preferences. We show via a fascinating counterexample568

in Appendix E that even when an instance has identical pref-569

erences and identical days, it is not always possible to even570

achieve SD-EF1 up to each day by itself.571

Theorem 8. For temporal fair division with identical days572

and identical preferences, SD-EF1 up to each day cannot be573

guaranteed.574

6 Identical Days575

In Section 3, we showed that in the general model, we can576

achieve SD-EF1 per day and PROP1 overall. In this section,577

we will show if we assume the additional restriction that the 578

sets of goods which arrive on each day are identical, then a 579

slightly stronger guarantee can be achieved overall. 580

Theorem 9. For any temporal fair division instance with 581

identical days, it is possible to find an allocation that is SD- 582

EF1 per day and SD-PROP1 overall in polynomial time. 583

To achieve these guarantees, we use an algorithm that is al- 584

most identical to Algorithm 1, the algorithm which was used 585

to achieve SD-EF1 per day and PROP1 overall in the general 586

case, but with one major change. 587

Algorithm 1 first finds an EF1 overall allocation in a re- 588

duced version of the problem where agents have identical 589

orderings over all the goods on each day, and uses that to 590

construct an allocation in the original instance that is PROP1 591

overall. The key insight that can be leveraged to get stronger 592

guarantees in this less general setting is that when we have 593

identical days, we know that the output of the “Identical Or- 594

dering Transformation” from Algorithm 1 will result in an 595

instance where all agents have identical orderings over the 596

entire set of goods M , not just over the goods from each in- 597

dividual day. This stronger guarantee from the Identical Or- 598

dering Transformation allows us to use Theorem 7 to find an 599

SD-EF1 per day and SD-EF1 overall allocation over the re- 600

duced instance (rather than the algorithm of Biswas and Bar- 601

man [2018] which only guarantees EF1 overall). We can then 602

use this allocation as the basis for the picking order that Algo- 603

rithm 1 uses to construct the final allocation over the original 604

instance. We include a detailed proof of Theorem 9 in Ap- 605

pendix F, including why an SD-EF1 allocation over the iden- 606

tical orderings instance will lead to a SD-PROP1 allocation 607

in the original instance. 608

7 Discussion 609

In this work, we are able to find possibility and impossibil- 610

ity results that give a picture of what can be achieved in the 611

temporal fair division model. This picture is quite clear when 612

focusing on special cases such as two agents or identical or- 613

derings. However, we still leave many questions open for 614

future work. All of the entries in Table 1 marked by a “?” 615

remain open. The most interesting question in the general 616

setting is: 617

Open Question: In temporal fair division, does an
allocation that is SD-EF1 (or EF1) per day and EF1
overall always exist?

618

Other interesting open questions include the existence of 619

EF1 up to each day under identical orderings or identical 620

days, and the existence of (SD-)EF1 per day and (SD-)EF1 621

overall under identical days. 622

Finally, it would be an interesting further direction to take 623

a more abstract view of the temporal fair division model. In 624

Appendix G, we introduce a generalized model of temporal 625

fair division, where a fair allocation must be found simultane- 626

ously over a set of goods, and over each set in a collection of 627

subsets of those goods. It would be very interesting to explore 628

this interpretation of our model further. 629
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Appendix743

A Additional Related Work744

Repeated (or many-to-many) matching. Both our works are inspired by the earlier work of Gollapudi et al. [2020], who745

consider the repeated two-sided matching problem, where there are n agents on each side of a two-sided market with agents746

on each side having preferences over those on the other side, and the goal is to compute a perfect matching on each day over747

a period of days. They also seek guarantees such as EF1 up to each day. However, their positive results are only for binary748

valuations, and they leave achieving EF1 (for both sides) up to each day for general additive valuations as an open question.749

Finally, note that repeated perfect matching effectively produces a many-to-many matching. Freeman et al. [2021] study how750

to achieve EF1 (for both sides) in this setting, which can be viewed as an EF1 overall guarantee. They show how to achieve751

it when agents on each side have identical preferences, but leave it open for the case of general additive valuations. Note that752

unlike in fair division, EF1 overall is not straightforward in their case because EF1 needs to be achieved for agents on both753

sides simultaneously.754

Online Fair Division In addition to the online fair division work mentioned in the main body, Benadè et al. [2024] show755

that O(
√
k log n) envy can be maintained up to k days, and also point out that randomized algorithms may have much greater756

power against a nonadaptive adversary, who sets the full instance before the algorithm starts making random choices, with no757

super-constant envy lower bound known for this case. Online fair division with a nonadaptive adversary is still a stronger model758

than temporal fair division due to the fact that the algorithm does not have knowledge of what goods will arrive in future time759

periods.760

Constrained fair division. We remarked that achieving an overall fairness guarantee can be reduced to the one-shot fair761

division model, taking an instance with the set of all goods M . When we additionally seek a per-day fairness guarantee, this762

can be modeled as a constraint on the space of feasible allocations, and the question becomes whether there is a constrained763

allocation that still achieves the desired fairness guarantee. This model of constrained fair division has also been studied in764

the literature. Biswas and Barman [2018] study a model with cardinality constraints, where M is partitioned into categories765

(C1, . . . , Cp) and an allocation A is feasible only if |Ai ∩ Cℓ| ⩽ ⌈|Cℓ|/n⌉ for all i, ℓ. That is, the allocation should divide766

the goods from each category as evenly as possible (in a “balanced” manner). As we remark in Section 5, when agents have767

identical orderings over the goods, the SD-EF1 per day constraint can be reduced to a cardinality constraint, immediately768

yielding an allocation that is SD-EF1 per day and EF1 overall. However, for this case, we are able to achieve the stronger769

guarantee of SD-EF1 per day and SD-EF1 overall. The algorithm of Biswas and Barman [2018] relies on the envy-cycle770

elimination technique of Lipton et al. [2004] at the overall scale, which is very much reliant on the exact cardinal values, and771

hence, fails to achieve SD-EF1 overall. We are able to make a better algorithm, round robin, work via a non-trivial connection772

to the strong perfect graph theorem. Cardinality constraints (partition matroid constraints) have been generalized to matroid773

constraints, and the existence of an EF1 allocation subject to matroid feasibility constraints is a major open question [Biswas774

and Barman, 2018; Dror et al., 2023]. For further discussion, see Section 7. Finally, the bihierarchy framework of Budish et al.775

[2013] can also be viewed as a method for finding a constrained allocation, which we use in some of our results. Although, our776

most interesting results deal with sets of constraints that go beyond bihierarchies.777

B Missing Proofs from Section 2778

B.1 Properties of SD-EF1 Allocations779

We will begin by noting some useful properties of SD-EF1 allocations. Specifically, in Section 2, we establish the function780

Ti(S, r), which returns agent i’s top r ordered goods from a set S, breaking ties according to some arbitrary rule consistent781

across all agents. In contrast, the definitions for SD-EF1 and SD-PROP1 are based around sets of the form Hi(S, g) =782

{g′ ∈ S : g′ ≽i g}, which returns all goods from S that are weakly preferred to g. As will be seen in other proofs in this783

Appendix, it is often very useful to be able to look at a set of exactly size r of some agent’s top goods, which the sets Hi(S, g)784

do not allow for. Below, we will show relations between the Ti(S, r) function, and the SD-EF1 definition, that allows us to785

often use it without loss of generality when proving statements about SD-EF1 and SD-PROP1, vastly simplifying many of our786

proofs.787

Observation 1. For any agent i ∈ N and good g ∈ S, if |Hi(S, g)| = r, then Ti(S, r) = Hi(S, g), regardless of the arbitrary788

tie-breaking order dictated by Ti.789

Proof. This follows from the fact that agent i’s ordering ≽i over the goods in S will be transitive. |Hi(S, g)| = r means that790

there are exactly r goods that i weakly prefers to g. It must be the case that for any good g+ ∈ Hi(S, g), g− ∈ S \Hi(S, g),791

we must have that g+ ≻i g
−. If there were some goods g+ ∈ Hi(S, g), g− ∈ S \Hi(S, g) such that g− ≽i g

+, then by the792

transitivity of i’s ordering, we know that g− ≽i g
+ ≽i g is true, contradicting that fact that g− ∈ S \Hi(S, g).793

Therefore, when |Hi(S, g)| = r, we know that there are r goods in S that agent i strictly prefers to all other goods in S. It is794

clear that Ti(S, r) will return exactly those goods, and will not need to use its tie-breaking order in this case.795



With this observation in mind, we can now list several necessary and sufficient conditions for an allocation to be SD-EF1, 796

which relate it directly to the Ti function. 797

Proposition 1. Let A be an allocation of a set of goods S. 798

• (Sufficiency) If |Ai ∩ Ti(S, r)| ⩾ |Aj ∩ Ti(S, r)| − 1 for all i ∈ N and r ∈ [|S|], then A is SD-EF1. If n = 2, the 799

condition can be written as |Ai ∩ Ti(S, r)| ⩾ ⌊r/n⌋. If Ti(S, r) = Tj(S, r) for all i, j ∈ N , the condition can be written 800

as |Ai ∩ Ti(S, r)| ∈ {⌊r/n⌋ , ⌈r/n⌉}. 801

• (Necessity) If A is SD-EF1, then |Ai ∩ Ti(S, r)| ⩾ ⌊r/n⌋ for all i ∈ N and r ∈ [|S|] conditioned on g ≻i g′ for all 802

g ∈ Ti(S, r) and g′ ∈ S \ Ti(S, r). Further, if Ti(S, r) = Tj(S, r) for all i, j ∈ N , then the condition can be written as 803

|Ai ∩ Ti(S, r)| ∈ {⌊r/n⌋ , ⌈r/n⌉}. 804

Proof. Below are the proofs for both the sufficiency and necessity conditions: 805

• (Sufficiency) 806

General Case Assume that some agent i has the ordering g1 ≽i g2 . . . ≽i gs over the set of goods S, where some 807

preferences may be strict. For contradiction, assume that for all r ∈ [|S|] and j ∈ N , |Ai ∩ Ti(S, r)| ⩾ |Aj ∩ Ti(S, r)|−1, 808

but for some g ∈ S and j ∈ N , we have |Ai ∩Hi(S, g)| < |(Aj \ {gj}) ∩Hi(S, g)|, where gj is agent i’s most preferred 809

good from Aj . 810

Let |Hi(S, g)| = r′. Then from Observation 1, we know that Ti(S, r
′) = Hi(S, g), and from our assumption, we know that 811

|Ai ∩ Ti(S, r
′)| ⩾ |Aj ∩ Ti(S, r

′)| − 1. Note that this is equivalent to saying that |Ai ∩Hi(S, g)| ⩾ |Aj ∩Hi(S, g)| − 1. 812

To get the contradiction, we just need to notice that |(Aj \ {g∗}) ∩Hi(S, g)| ⩾ |Aj ∩Hi(S, g)| − 1 for all g∗ ∈ Aj , 813

since if g∗ ∈ Hi(S, g), then we have |(Aj \ {g∗}) ∩Hi(S, g)| = |Aj ∩Hi(S, g)| − 1, and otherwise we have 814

|(Aj \ {g∗}) ∩Hi(S, g)| = |Aj ∩Hi(S, g)|. 815

2 Agents For the case of 2 agents (Agent i and Agent j), it is sufficient to notice that |Ai ∩ Ti(S, r)| ⩾ ⌊r/2⌋ implies 816

that |Aj ∩ Ti(S, r)| ⩽ ⌈r/2⌉, since Aj = S \ Ai when there are two agents. Since ⌊r/2⌋ ⩾ ⌈r/2⌉ − 1, this gives us that 817

|Ai ∩ Ti(S, r)| ⩾ |Aj ∩ Ti(S, r)| − 1 for all i, j ∈ N and r ∈ [|S|], which we know implies SD-EF1. 818

Identical Orderings Finally, in this case, we can see that for all i ∈ N , r ∈ [|S|], |Ai ∩ Ti(S, r)| ∈ {⌊r/n⌋ , ⌈r/n⌉} 819

implies that |Ai ∩ Ti(S, r)| ⩾ |Aj ∩ Ti(S, r)| − 1. This is due to the fact that since Ti(S, r) = Tj(S, r) for all i, j, we 820

must have that |Ai ∩ Ti(S, r)| ⩾ ⌊r/n⌋ and |Aj ∩ Ti(S, r)| ⩽ ⌈r/n⌉. 821

• (Necessity) 822

General Case For contradiction, assume this is false. There is some allocation A over a set of goods S, some agent i and 823

some r ∈ [|S|] such that A is SD-EF1 and |Ai ∩ Ti(S, r)| < ⌊r/n⌋, and for all goods g ∈ Ti(S, r), g′ ∈ S \ Ti(S, r), 824

g ≻i g
′. Assume that agent i has the following order over the goods in S, g1 ≽i g2 . . . ≽i gs where some of the preferences 825

may be strict. 826

Let g∗ be the good in Ti(S, r) that is not strictly preferred to any other good in Ti(S, r). Since agent i strictly prefers all 827

goods in Ti(S, r) to all goods that are not, we must have that |Hi(S, g
∗)| = r, and thus by Observation 1, Ti(S, r) = 828

Hi(S, g
∗). Therefore, we have that |Ai ∩Hi(S, g

∗)| < ⌊r/n⌋. 829

When |Ai ∩Hi(S, g
∗)| < ⌊r/n⌋, note that by the fact that every good must be allocated to one of the n agents, there 830

must exist some j ∈ N such that |Aj ∩Hi(S, g
∗)| ⩾ ⌊r/n⌋+ 1. This means that for this j, we have |Ai ∩Hi(S, g

∗)| < 831

|Aj ∩Hi(S, g
∗)| − 1. But that means that for any gj ∈ Aj , we must have |Ai ∩Hi(S, g

∗)| < |(Aj \ {gj}) ∩Hi(S, g
∗)|, 832

contradicting the fact that A is SD-EF1. 833

Identical Orderings In the case where agents have identical orderings over the goods, it can be seen that |Ai ∩ Ti(S, r)| ∈ 834

{⌊r/n⌋ , ⌈r/n⌉} follows as a consequence of the necessity statement in the general case. When every agent gets at least 835

items ⌊r/n⌋ of some set of size r, there must be some agent i who gets exactly ⌊r/n⌋ items from the set. When n divides 836

r, then each agent getting at least ⌊r/n⌋ goods implies that each agent gets exactly r/n = ⌈r/n⌉ goods. Otherwise, we 837

will have ⌊r/n⌋ = ⌈r/n⌉ − 1, and therefore, there can be no other agent j such that |Aj ∩ T (S, r)| > ⌈r/n⌉, or else it 838

would immediately follow that |Ai ∩Hi(S, g
∗)| < |(Aj \ {gj}) ∩Hi(S, g

∗)| for some g∗, and all gj ∈ Aj . 839

840

B.2 Properties of SD-PROP1 841

Here we formalize the fact that SD-EF1 implies SD-PROP1, and that SD-PROP1 implies PROP1, which completes the heredi- 842

tary relationships of desiderata shown in Figure 1. 843

Proposition 2. If an allocation A over a set of goods S is SD-EF1, then it will also be SD-PROP1. 844



Proof. Assume that this is false, and for some allocation A over a set of goods S, we have that A is SD-EF1, but for some845

i ∈ N and some g∗ ∈ S, we have that |Ai ∩Hi(M, g∗)| < ⌊|Hi(S,g
∗)|/n⌋.846

Note that since every good must be allocated to some agent, if |Ai ∩Hi(S, g
∗)| < ⌊|Hi(S,g

∗)|/n⌋ were true, then there must847

be some other agent j ∈ N such that |Aj ∩Hi(S, g
∗)| ⩾ ⌊|Hi(S,g

∗)|/n⌋+1. This would directly imply that |Ai ∩Hi(S, g
∗)| <848

|Aj ∩Hi(S, g
∗)| − 1, so clearly |Ai ∩Hi(S, g

∗)| < |(Aj \ {gj}) ∩Hi(S, g
∗)| for any gj ∈ Aj . This contradicts the fact that849

A is SD-EF1.850

Proposition 3. If an allocation A over a set of goods S is SD-PROP1, then it will also be PROP1.851

Proof. Assume that some agent i has the ordering g1 ≽i g2 . . . ≽i g|S| over the set of goods S, where some preferences may852

be strict, and ties are broken based on the the tie-breaking ordering of the function Ti.853

Define the bundle Pi = {g1, gn+1, g2n+1, . . .}. It must be the case that vi(Pi) ⩾ 1
nvi(S). To see this, partition S into disjoint854

subsets of size n in the form of C1 = {g1, . . . , gn} , C2 = {gn+1, g2n} , C3 = {g2n+1, g3n}, and so on. Notice that in each855

subset C, there is a single good in g ∈ Pi ∩ C, and that good is weakly preferred to all other goods in C. Thus for each C, we856

must have that vi(g) ⩾ 1
nvi(C). Summing over all subsets we get our desired inequality.857

Next, notice that for any g ∈ S, |Ai ∩Hi(S, g)| ⩾ ⌊|Hi(S,g)|/n⌋ implies that |(Ai ∪ {g∗}) ∩Hi(M, g)| ⩾ ⌈|Hi(S,g)|/n⌉,858

where g∗ is agent i’s most preferred good in S \ Ai. This is because if |Ai ∩Hi(S, g)| ⩽ ⌈|Hi(S,g)|/n⌉ were true, then there859

would need to be some good g′ such that g′ ∈ Hi(S, g) and g′ ̸∈ Ai. Since g∗ is i’s most preferred good that is not in Ai, then860

we know that g∗ ≽i g
′, and thus g∗ ∈ Hi(S, g).861

To complete the proof, we will show that Ai ∪ {g∗} ≽SD
i Pi, where g∗ is agent i’s most preferred good from S \ Ai. For862

contradiction, assume this were false, and that for some g ∈ S, |(Ai ∪ {g∗}) ∩Hi(S, g)| < {Pi ∩Hi(S, g)}. Let |Hi(S, g)| =863

r. By Observation 1, we must have that Hi(S, g) = Ti(S, r) = {g1, . . . , gr}. Because of the way that we constructed Pi,864

we know that there cannot be more than ⌈r/n⌉ = ⌈|Hi(S,g)|/n⌉ goods from Pi in {g1, . . . , gr}. However, since we know that865

A is SD-PROP1, it must be the case that |(Ai ∪ {g∗}) ∩Hi(S, g)| ⩾ ⌈|Hi(S,g)|/n⌉, giving a contradiction, and showing that866

Ai ∪ {g∗} ≽SD
i Pi.867

This tells us that vi(Ai ∪ {g∗}) ⩾ vi(Pi) ⩾ 1
nvi(S) for any i ∈ N .868

Note that since SD-PROP1 only considers agents’ orderings over the goods in M , the above proposition implies that an869

allocation that is SD-PROP1 for a set of orderings, is guaranteed to be PROP1 on any set of valuation function that induce those870

orderings.871

C Missing Proofs from Section 3872

C.1 Proof of Lemma 1873

Proof of Lemma 1. Let A be the allocation returned by Algorithm 1. Due to Proposition 1, to prove that A is SD-EF1 per-day,874

it is sufficient to show that |AMt,i ∩ Ti(Mt, r)| ⩾ |AMt,j ∩ Ti(Mt, r)| − 1 for all i, j ∈ N , t ∈ [k], and r ∈ [|Mt|].875

Let A′ represent the allocation that the algorithm finds for the identical orderings transformation instance. In each day t ∈ [k],876

we have that M ′
t is partitioned into sets Ct,1 = {g′t,1, . . . , g′t,n}, Ct,2 = {g′t,n+1, . . . , g

′
t,2n}, and so on, in order of utility value.877

Without loss of generality, assume that the ordering of the labeling of the goods is also consistent with the tie-break ordering878

of Ti. The allocation A′
M ′

t
will guarantee that no agent receives more than 1 good from each set Ct,l for all l. Note that this879

will imply that for all i ∈ N and r ∈ [|M ′
t |], we will have |A′

i ∩ T (M ′
t , r)| ∈ {⌊r/n⌋ , ⌈r/n⌉}. By the sufficiency condition of880

Proposition 1, this means that A′
M ′

t
will be SD-EF1.881

Next, Algorithm 1 uses a picking order procedure to construct the final allocation AMt from A′
M ′

t
. It can be seen that each882

agent is assigned exactly one “pick” over the goods in Mt for each good they received in the allocation A′
M ′

t
, with the ordering883

of these picks corresponding to the ordering of M ′
t induced by the Ti function. Therefore, we know that for any r ∈ [|Mt|],884

after the rth pick of the procedure, each agent will have received either ⌊r/n⌋ or ⌈r/n⌉ picks. It can also be seen that after the885

rth pick of the procedure, |Ai ∩ Ti(Mt, r)| ⩾ ⌊r/n⌋ will be true for each agent i. This is because at each pick r, the picking886

agent will select their most preferred good from Mt that has not yet been picked. After pick r, only r goods from Mt have been887

assigned, and |Ti(Mt, r)| = r, so each of an agent’s picks up to and including the rth overall pick of the procedure will all have888

been used to select an item from their top r goods from Mt.889

For contradiction, assume our original claim is not true, the allocation on some day is not SD-EF1, and therefore, there exists890

some agents i, j ∈ N , some day t ∈ [k], and some r ∈ [|Mt|], such that |AMt,i ∩ Ti(Mt, r)| < |AMt,j ∩ Ti(Mt, r)| − 1.891

Let r′ be the last pick in the picking sequence where agent j picked a good from Ti(Mt, r). We know that |A′
i ∩ T (M ′

t , r
′)| ∈892

{⌊r′/n⌋ , ⌈r′/n⌉}, so agent i must have received at least ⌊r′/n⌋ picks prior to pick r′, and each of those picks must have been893

used to select a good from Ti(Mt, r) (Agent i would never have used one of these picks to select a good not from Ti(Mt, r),894

since we know there was at least one good from Ti(Mt, r) available, the good that agent j selected with pick r′). Similarly,895

we know that
∣∣A′

j ∩ T (M ′
t , r

′)
∣∣ ∈ {⌊r′/n⌋ , ⌈r′/n⌉}, so agent j could only have had a maximum of ⌈r′/n⌉ picks up to and896

including the r′th overall pick. Since r′ is the last pick where agent j selected a good from Ti(Mt, r), that means Aj can only897

contain at most ⌈r′/n⌉ goods from Ti(Mt, r). This gives us a contradiction since ⌊r′/n⌋ ⩾ ⌈r′/n⌉ − 1.898



Algorithm 2 Envy-Balancing Algorithm
Input for t ∈ [k], a pair of allocations (B1

t , B
2
t ) of the set of goods Mt that cancel out, with labels assigned in such a way

that if neither of the allocations is Envy-Free, then v1(B
1
t,1)− v1(B

1
t,2) ⩾ 0 and v2(B

2
t,2)− v2(B

2
t,1) ⩾ 0.

Output An allocation A of the set of goods M = ∪t∈[k]Mt

F ← ∅, S ← ∅, e1 ← 0, e2 ← 0
for t ∈ [k] do

if v1(B1
t,1) ⩾ v1(B

1
t,2) ∧ v2(B

1
t,2) ⩾ v2(B

1
t,1) then

F ← F ∪ {Bt}
else if v1(B2

t,1) ⩾ v1(B
2
t,2) ∧ v2(B

2
t,2) ⩾ v2(B

2
t,1) then

F ← F ∪ {B′
t}

else
if e1 ⩽ 0 then

S ← S ∪ {B1
t }

e1 ← e1 + (v1(B
1
t,1)− v1(B

1
t,2))

e2 ← e2 + (v2(B
1
t,2)− v2(B

1
t,1))

else
S ← S ∪ {B2

t }
e1 ← e1 + (v1(B

2
t,1)− v1(B

2
t,2))

e2 ← e2 + (v2(B
2
t,2)− v2(B

2
t,1))

end if
end if
if e1 ⩾ 0 ∧ e2 ⩾ 0 then

F ← F ∪ S
S ← ∅, e1 ← 0, e2 ← 0

else if e1 ⩽ 0 ∧ e2 ⩽ 0 then
F ← F ∪ SWAP(S)
S ← ∅, e1 ← 0, e2 ← 0

end if
end for
F ← F ∪ S
A← allocation in which Mt is allocated according to the allocation of Mt in F , for each t ∈ [k]
return A

C.2 Proof of Lemma 2 899

Proof of Lemma 2. In the case where g ⩾ g′, then z can be constructed by simply mapping g to g′ and aj to a′j for all j ∈ [k]. 900

Now, the case where g < g′. Suppose g is the rth element of V (ties broken such that g is ranked lowest possible). Since 901

g is the maximum among V \ A, the first r − 1 elements of V are should be in A. Therefore, {a1, . . . , ar−1} ∪ {g} are the 902

top r elements of V , and we can simply create a bijection from those elements to {a′1, . . . a′r−1} ∪ {g′} as desired. For the 903

remaining k − r bottom ranks of both A and A′, we simply use z(aj) = a′j since we know from the statement that aj ⩾ a′j , 904

which completes the proof. 905

D Missing Proofs from Section 4 906

D.1 Proof of Lemma 4 907

Proof of Lemma 4. For any allocation A, we will use the following language to describe the agents’ relative valuations of their 908

bundles compared to the other agent: 909

• For any allocation A where vi(A3−i) > vi(Ai) for some agent i ∈ {1, 2}, the negative value vi(Ai) − vi(A3−i) will be 910

refereed to as the “Envy” felt by Agent i in A. 911

• Similarly, for any allocation A where vi(Ai) > vi(A3−i) for some agent i ∈ {1, 2}, the positive value vi(Ai)− vi(A3−i) 912

will be referred to as the “surplus utility” that the respective agents feels in A. 913

For each t ∈ [k], let B1
t , B

2
t be two allocations over Mt that are both EF1 and cancel out. Since these allocations cancel out, 914

we can make the following assumption without loss of generality: 915

For every day t, If neither of B1
t or B2

t are envy-free, then without loss of generality, we say that 916

v1(B
1
t,1) > v1(B

1
t,2)



917

v2(B
1
t,1) > v2(B

1
t,2)

918

v1(B
2
t,1) < v1(B

2
t,2)

919

v2(B
2
t,1) < v1(B

2
t,2)

This is due to the fact that the allocations canceling out allows us to know that exactly one agent feels envy in each allocation920

(if they both felt envy in some allocation then the other allocation would have to be envy free in order to cancel out), and the921

same agent cannot feel envy in both allocations (or else their envy would clearly not cancel out). For simplicity we assume922

that in this case, Agent 2 always feels envy in B1
t , and Agent 1 always feels envy in B2

t . B1
t can be thought of as Agent 1’s923

“preferred” allocation, and B2
t as Agent 2’s “preferred” allocation. We can further conclude that the equalities in each agent’s924

preferred allocation must be strict, since if any agent was indifferent between the bundles of one allocation, they could not feel925

any envy in the other allocation, so therefore one of the two allocations would need to be envy-free.926

Algorithm 1 functions by examining each day in order, and picking one allocation from each day’s pair. When the algorithm927

selects an allocation for some day, it puts it into one of two sets. F is the “Final” set. If an allocation is put into F , that means928

that it will be in the final allocation returned by the Algorithm. S is the “Swap” set. If an allocation is put into S, that means929

that it may be changed at some point in the future. Specifically, the algorithm may perform a SWAP on S. This means that for930

every day t ∈ [k], if an allocation from day t is in S, that allocation will be replaced with the other allocation from day t that is931

not in S. We will refer to St and Ft as the contents of the sets S and F directly after iteration t of the algorithm has completed,932

and will refer to SWAP(S) as the contents of S if a SWAP were performed on it. With slight abuse of notation, for any set T933

containing allocations over some days, we will refer to AT as the allocation induced by combining all the per-day allocations934

in T .935

Clearly Algorithm 1 will produce an allocation that is EF1 Per-Day. We will show that it also produces an allocation that is936

EF1 up to each day.937

To do this, we will first note that for both agents i ∈ {1, 2}, for any possible set S during the runtime of the algorithm, if an938

agent feels envy in the allocation AS , then they will not feel envy in the allocation ASWAP(S). This follows from the fact that939

performing a SWAP on S involves replacing each allocation in B ∈ S with an allocation that cancels out B. let D ⊆ [k] be a940

set of days such that S contains an allocation Bt for each day t ∈ D. Let D+ be the days where the allocation Bt ∈ S is agent941

i’s preferred allocation, and D− = D \D+. From the fact that we know the pair of allocations (Bi
t, B

3−i
t ) on each day cancels942

out, we have:943 ∑
t∈D+

(vi(B
i
t,i)− vi(B

i
t,3−i)) ⩾

∑
t∈D+

(vi(B
3−i
t,3−i)− vi(B

3−i
t,i ))

944 ∑
t∈D−

(vi(B
3−i
t,3−i)− vi(B

3−i
t,i )) ⩽

∑
t∈D−

(vi(B
i
t,i)− vi(B

i
t,3−i))

together gives us the following implication:945

vi(AS,i)− vi(AS,3−i) =
∑
t∈D+

(vi(B
i
t,i)− vi(B

i
t,3−i))−

∑
t∈D−

(vi(B
3−i
t,3−i)− vi(B

3−i
t,i )) ⩽ 0

implies946

vi(ASWAP(S),i)− vi(ASWAP(S),3−i) =
∑
t∈D−

(vi(B
i
t,i)− vi(B

i
t,3−1i))−

∑
t∈D+

(vi(B
3−i
t,3−i)− vi(B

3−i
t,i )) ⩾ 0

Along with the above facts, proving the following inductive hypothesis will be sufficient to show that the allocation returned947

by Algorithm 1 will be EF1 up to each day:948

For all t ∈ [k], if the following conditions hold after the (t− 1)th iteration of the algorithm, they will hold at the tth iteration.949

• AFt is an envy-free allocation.950

• ASt
is an EF1 allocation.951

• ASWAP(St) is an EF1 allocation.952

We will show this by analyzing each possible state the algorithm can be in after some iteration t.953

First, we will show that this holds for some obvious cases.954

• Day t has an EF Allocation When the pair (B1
t , B

2
t ) for some day t contains an EF allocation, then the algorithm simply955

adds that allocation to F . This clearly maintains the envy-freeness of Ft, and the contents of St will be the same as St−1.956



• During iteration t, some allocation Bi
t is added to S that causes neither agent to feel envy over ASt−1∪{Bi

t} Directly 957

after Bi
t has been added to S, AS will be an Envy-Free allocation, and the algorithm will move the entire current contents 958

of S to F . AFt
will remain EF since the algorithm is adding an EF allocation to it, and ASt

, ASWAP(St) will trivially meet 959

their conditions since St will be empty. 960

• During iteration t, an allocation Bi
t is added to S that causes both agents to feel envy over ASt−1∪{Bi

t} Similarly to 961

above, directly after Bi
t has been added to S, both agents will either feel envy in AS , or will be indifferent between the two 962

bundles in AS . In this case, the algorithm will perform a SWAP on S. The allocation induced by this newly swapped S 963

will be Envy-Free. The algorithm will then move the contents of S to F . AFt , ASt , and ASWAP(St) will meet the required 964

conditions for the same reasons as in the case above. 965

• St−1 = ∅ Finally, in the case where S is empty at the beginning of iteration t, and there is no EF allocation over Mt, the 966

algorithm will add the allocation B1
t to S. AFt

will be EF since it was not altered, ASt
will be EF1 since B1

t is EF1, and 967

SWAP(ASt
) will be EF1 since B2

t is EF1. 968

From this, whenever the algorithm executes iteration t and was not in one of the above cases, we can conclude the following: 969

• Neither of B1
t or B2

t are envy-free. 970

• St−1 was not empty. Since we know that during iteration t − 1, if an allocation is added to S that makes both agent feel 971

envy or both agents have surplus utility, then St−1 would be empty, so we can also conclude that exactly one agent must 972

feel envy in ASt−1 , and the other must feel surplus utility (notably, neither agent can be indifferent between the bundles). 973

• St will not be empty. From this, we can conclude that exactly one agent must feel envy in ASt
, while the other feels 974

surplus utility. It also allows us to conclude that a SWAP was not performed in iteration t, as a SWAP is always proceeded 975

with moving the contents of S to T . 976

We can show that in this case as well, the inductive step holds. 977

In this case, there will be one agent i ∈ {1, 2} who feels envy in ASt−1
, while the other agent feels surplus utility. During 978

iteration t, the algorithm will select Agent i’s preferred allocation Bi
t , and add it to S. By our hypothesis, we have that 979

ASt−1
is EF1, so there must be some good g ∈ ASt−1,3−i that can be taken away to eliminate all Agent i’s envy. Because 980

we add in Agent i’s preferred allocation from day t, we know that vi(ASt,i) − vi(ASt,3−i) > v1(ASt−1,i
) − v1(ASt−1,3−i

), 981

meaning that ASt
must still be EF1 with respect to Agent i, as we can still remove g from ASt,3−i to eliminate all envy. 982

We can also show that ASt
will be EF1 with respect to Agent 3 − i. Since Bi

t is Agent 3 − i’s unpreferred allocation, we 983

have that v3−i(ASt,3−i) − v3−i(ASt,i) < v3−i(ASt−1,3−i) − v3−i(ASt−1,i). However, since we know that Bi
t is EF1, we 984

know that there exists some g ∈ Bi
t,i such that v3−i(Bt,3−i) ⩾ v3−i(Bt,i) − v3−i(g). Combining this with the fact that 985

v3−i(ASt−1,3−i) > v3−i(ASt−1,i), we get that v3−i(ASt−1,3−i) + v3−i(Bt,3−i) > v3−i(ASt−1,i) + v3−i(Bt,i) − v3−i(g). 986

Since we know that g ∈ ASt,i, this gives us EF1 as desired. 987

The proof that ASWAP(St) can be done similarly. Notice that SWAP(St) will be equal to SWAP(St−1) ∪ {B3−i
t }. We know 988

ASWAP(St−1) will be EF1, and in ASWAP(St−1), we know that agent i will feel surplus utility. Agent 3 − i may feel envy in 989

SWAP(St−1), but since B3−i
t is their preferred bundle, they cannot be the reason why ASWAP(St) is not EF1, as the envy they 990

feel in ASWAP(St−1) strictly decreases from the envy they feel in ASWAP(St) = ASWAP(St−1)∪{B3−i
t }. Agent i cannot be the 991

reason why ASWAP(St) is not EF1, since there must be some good g ∈ B3−1
t that will eliminate all of agent i’s envy over 992

ASWAP(St) when removed. 993

We also know that AFt will be EF since we have AFt = AFt−1 . In the base case, both S and F will be empty at the beginning 994

of the algorithm, thus all the conditions in the inductive statement will trivially be true. 995

Finally, note that this inductive statement being true implies that the final allocation will be EF1 up to each day. This is 996

due to the fact that in the final allocation A outputted by the algorithm, for any t ∈ [k], it must be true that the allocation 997

AMt
∈
{
AFt∪St

, AFt∪SWAP(St)

}
. This is due to the fact that the only operation that can be performed on S is a SWAP, and the 998

algorithm only ever moves the entirety of S into F , never just part of it. Due to the fact that we know AFt
will be EF and ASt

999

and ASWAP(St) must be EF1, we know that AMt
must be EF1 as well. 1000

D.2 Proof of Lemma 5 1001

Proof of Lemma 5. Draw a graph G = (Mt, E) with the goods in Mt as the nodes. For each agent i ∈ [2] and r ∈ [
⌊
|Mt|
2

⌋
], 1002

draw an edge between the two goods in Ti(Mt, 2r) \ Ti(Mt, 2(r − 1)). The edges added for each agent form a matching, so 1003

this graph is a union of two matchings, and hence, a bipartite graph. Thus, it admits a 2-coloring c : Mt → {1, 2}, which can 1004

be computed efficiently. Define Bt = (Bt,1, Bt,2), where Bt,i = {g ∈Mt : c(g) = i} for each i ∈ [2]. 1005

Note that due to the way we added the edges, each agent i ∈ [2] receives exactly r of her 2r most favorite goods, for each 1006

r ∈ [
⌊
|Mt|
2

⌋
]. This meets the sufficiency condition from Proposition 1, implying that Bt is SD-EF1. 1007

It is easy to see that the same reasoning also shows B′
t = (Bt,2, Bt,1) is also SD-EF1. 1008



For readers familiar with the bihierarchy matrix decomposition theorem of Budish et al. [2013], it is worth remarking that1009

Lemma 5 can also be derived as a corollary. Specifically, we can define a binary variable xg ∈ {0, 1} to indicate whether good1010

g should be allocated to agent 1 (with 1−xg denoting whether it should be allocated to agent 2, and write the set of constraints:1011

∀r ∈
[⌊
|Mt|
2

⌋]
:
∑

g∈T1(Mt,2r)\T1(Mt,2(r−1)) xg = 1,

∀r ∈
[⌊
|Mt|
2

⌋]
:
∑

g∈T2(Mt,2r)\T2(Mt,2(r−1))(1− xg) = 1.

It is easy to notice that this constraint set forms a “bihierarchy”, and since it admits a fractional solution (xg = 1/2 for all g),1012

the result of Budish et al. [2013] implies the existence and polynomial-time computability of an integral allocation satisfying1013

them, which is what we need. However, we provide a more direct proof for our specific constraint set because it is simpler to1014

understand and leads to a faster algorithm.1015

D.3 Proof of Theorem 31016

Proof of Theorem 3. Consider the allocations Bt and B′
t generated by Lemma 5. Each is SD-EF1 and because they use the1017

same partition of Mt into bundles but do the opposite assignments, they trivially cancel out. Thus, due to Lemma 4, these can1018

be combined to compute an allocation that is SD-EF1 per day and EF1 up to each day.1019

D.4 Other Fairness Desiderata that can be guaranteed by the Envy-Balancing Lemma1020

In the main body of the paper, we remarked that if one can always find two allocations over each day Mt that cancel out, and1021

satisfy some fairness desiderata that implies EF1, then one can find an allocation over the entire set of goods that satisfies that1022

desiderata per day, along with EF1 up to each day. We showed that it is always possible to find such a pair of allocations that1023

satisfies SD-EF1. Below, we will show the same for two other interesting strengthenings of EF1.1024

Definition 9 (Envy-Freeness Up to Any Good (EFX)). An allocation A of a set of goods S is envy-free up to any good (EFX)1025

if for all i, j ∈ N and g ∈ Aj , vi(Ai) ⩾ vi(Aj \ {g}).1026

Theorem 10. For temporal fair division with n = 2 agents, an allocation that is EFX per day and EF1 up to each day exists.1027

Proof. Due to Lemma 4, it is sufficient to prove that for any day t, there exist EFX allocations Bt and B′
t of the goods in Mt1028

that cancel out.1029

We use the CUTANDCHOOSE++algorithm of Plaut and Roughgarden [2018, Algorithm 4.2] to produce the required two1030

EFX allocations and show that they cancel out. Because their algorithm has a simpler description for additive valuations (which1031

we focus on), we explicitly describe the construction here. Allocation Bt is constructed as follows.1032

1. Find a partition (P,Q) of Mt that minimizes |v1(P )− v1(Q)|. With loss of generality, assume that v1(P ) ⩾ v1(Q).1033

2. If there are any goods g ∈ P such that v1(g) = 0, move them to Q. Note that this does not change v1(P ) or v1(Q).1034

3. Allow agent 2 to pick their preferred bundle, and assign the other bundle to agent 1.1035

Allocation B′
t is computed similarly, but reversing the roles of agents 1 (who picks) and agent 2 (who cuts).1036

Plaut and Roughgarden [2018, Theorem 4.3] show that the resulting allocations, Bt and B′
t are EFX. It remains to show that1037

they cancel out. Due to symmetry, we simply need to argue the cancellation for agent 1, i.e.,1038

v1(Bt,1) + v1(B
′
t,1) ⩾ v1(Bt,2) + v1(B

′
t,2)⇔ v1(B

′
t,1)− v1(B

′
t,2) ⩾ v1(Bt,2)− v1(Bt,1).

Note that v1(B′
t,1) − v1(B

′
t,2) ⩾ 0 because agent 1 picks their favorite out of the two bundles in B′

t. Further, |v1(B′
t,1) −1039

v1(B
′
t,2)| ⩾ |v1(Bt,1) − v1(Bt,2)| because (Bt,1, Bt,2) is the partition that minimizes the difference between agent 1’s value1040

for the two bundles. Putting the two together, we get the desired result.1041

Next, we derive the same result for EF1+PO. Interestingly, we use the two cancelling EFX allocations produced for the1042

previous result in order to show the existence of two cancelling EF1+PO allocations. This requires adding a minor tie-breaking1043

rule to the procedure for computing these EFX allocations (the CUTANDCHOOSE++algorithm due to Plaut and Roughgarden1044

[2018]): when the chooser (agent 2 in Bt) is indifferent between the two bundles but the cutter (agent 1 in Bt) is not, the1045

chooser must pick the bundle the cutter values less. An interested reader can note that the allocations would have remained1046

EFX even if we had introduced this tie-breaking in the proof of Theorem 10, but it was not needed there.1047

Definition 10 (Pareto Optimality (PO)). An allocation A of a set of goods S is Pareto optimal (PO) if there is no allocation A′1048

such that vi(A′
i) ⩾ vi(Ai) for all i ∈ N and at least one inequality is strict.1049

Theorem 11. For temporal fair division with n = 2 agents, an allocation that is EF1+PO per day and EF1 up to each day1050

exists.1051



Proof. Due to Lemma 4, it is sufficient to prove that for any day t, there exist EF1+PO allocations Bt and B′
t of the goods in 1052

Mt that cancel out. 1053

We claim that for any day t, the existence of 2 EFX allocations that cancel out implies the existence of 2 EF1+PO allocations 1054

that cancel out. For contradiction, assume this were false, and for some instance there are not 2 EF1+PO allocations that cancel 1055

out. 1056

Let the allocation Bt be the allocation that was constructed by the process in Theorem 10, where the bundles are chosen 1057

according to agent 1’s valuations, and agent 2 picks their preferred bundle. We know that in this allocation, v2(Bt,2) ⩾ v2(Bt,1), 1058

and for all g ∈ Bt,2, v1(Bt,1) ⩾ v1(Bt,2 \ {g}). If Bt is a PO allocation, then we do not have to deal with it further, otherwise, 1059

we know that there exists some P ⊆ Bt,1, Q ⊆ Bt,2, such that the allocation ((Bt,1 \ P ) ∪Q, (Bt,2 \Q) ∪ P ) is PO, and that 1060

v1((Bt,1 \ P ) ∪Q) ⩾ v1(Bt,1) and v2((Bt,2 \Q) ∪ P ) ⩾ v2(Bt,2). 1061

First, note that in this PO allocation Q must be a strict subset of Bt,2. If this were not true, then v2((Bt,2\Q)∪P ) ⩾ v2(Bt,2) 1062

would tell us that v2(Bt,1) ⩾ v2(P ) ⩾ v2(Bt,2), with the first inequality being due to the fact that P ⊆ Bt,1. By the process 1063

used to construct Bt, we already know that v2(Bt,2) ⩾ v2(Bt,1), meaning v2(Bt,2) = v2(Bt,1), and by the tie-breaking 1064

mechanism in the cut-and-choose algorithm, this would mean that ((Bt,1 \ P ) ∪ Q, (Bt,2 \ Q) ∪ P ) must be an EF+PO 1065

allocation. This would lead to a contradiction, since 2 copies of any EF allocation clearly cancel out. 1066

Therefore, we must have that Q ⊂ Bt,2. Due to this, we know that there will be some good g such that g ∈ (Bt,2 \Q) ∪ P 1067

and g ∈ Bt,2. After the reallocation, we know that no agent was made worse off, so it will be the case that Agent 2 will not 1068

feel envy in the new PO allocation. We know that ((Bt,1 \ P ) ∪ Q, (Bt,2 \ Q) ∪ P ) cannot be an EF allocation (by the logic 1069

from the above paragraph this would lead to contradiction), so we know that Agent 1 does feel envy in the PO allocation. Since 1070

Bt is EFX, we know that for all g′ ∈ Bt,2, we have that v1(Bt,1) ⩾ v1(Bt,2) − v1(g
′). Since we only have 2 agents, we have 1071

that v1(Bt,2) = v1(Mt) − v1(Bt,1), and thus v1(g′) ⩾ v1(Mt) − 2v1(Bt,1) for all g′ ∈ Bt,2. Therefore, due to the fact that 1072

v1((Bt,1 \ P ) ∪ Q) ⩾ v1(Bt,1), we have that v1(g) ⩾ v1(M
′) − 2v1((Bt,1 \ P ) ∪ Q), which can be rearranged back into 1073

v1((Bt,1 \ P ) ∪Q) ⩾ v1((Bt,2 \Q) ∪ P )− v1(g), showing that this PO allocation is also EF1. 1074

We can symmetrically repeat this procedure with the other EFX allocation B′
t where the bundles are selected according to 1075

Agent 2’s valuations and Agent 1 chooses their preferred bundle. Since our PO reallocation can only increase the utility of both 1076

agents (and thus lessen their envy), we can conclude that if the original EFX allocations cancel out, the corresponding EF1+PO 1077

allocations also cancel out, giving a contradiction. 1078

We note that while we provided a polynomial-time algorithm in Theorem 3 for achieving SD-EF1 per day and EF1 up to each 1079

day result, the constructions in Theorems 10 and 11 for achieving EFX or EF1+PO per day are not efficient because they rely 1080

on partitioning a set of numbers into two subsets with near-equal sum. This is NP-hard because PARTITION (which requires 1081

exactly equal sum) can be trivially reduced to it. This raises the following interesting open question: 1082

Open Question 2: For temporal fair division with n = 2 agents, can EFX or EF1+PO per day and EF1 up to each day
be achieved in polynomial time?

1083

D.5 Proof of Theorem 4 1084

Proof of Theorem 4. Consider the following instance in which four goods arrive over three days: M1 = {g1, g4}, M2 = {g3}, 1085

and M3 = {g2}. Two agents have identical valuations given by v(g1) = 4, v(g2) = 3, v(g3) = 2, and v(g4) = 1 (since we 1086

seek SD-EF1, only the fact that the agents strictly prefer g1 ≻ g2 ≻ g3 ≻ g4 matters). 1087

For an allocation A to be SD-EF1 up to each day, AMt
must be SD-EF1 for each t ∈ [3], where M1 = {g1, g4} ,M2 = 1088

{g1, g3, g4}, and M3 = M = {g1, g2, g3, g4}. 1089

By the necessity condition of Proposition 1, we can make the following claims: 1090

• For AM1
to be SD-EF1, g1 and g4 must be given to different agents. 1091

• For AM2
to be SD-EF1, g1 and g3 must be given to different agents. 1092

• For AM3
to be SD-EF1, the two goods in T (M, 2) = {g1, g2}must be allocated to different agents. Since each agent must 1093

also get 2 goods from T (M, 4) = M , it follows that g3 and g4 must also be allocated to different agents. 1094

We now have the requirements that g1, g3, and g4 must all be pairwise given to different agents, which is impossible since 1095

there are only two agents. Hence, in this instance, there is no allocation that is SD-EF1 up to each day. 1096

D.6 Proof of Theorem 5 1097

Proof. Consider the following instance, in which eight goods arrive over three days: M1 = {g1, g5, g7}, M2 = {g2, g4, g6}, 1098

and M3 = {g3, g8}. The valuations are as follows: 1099

v1(g1) = 8 v1(g2) = 7 v1(g3) = 6 v1(g4) = 5 v1(g5) = 4 v1(g6) = 3 v1(g7) = 2 v1(g8) = 1
v2(g2) = 8 v2(g3) = 7 v2(g1) = 6 v2(g4) = 5 v2(g6) = 4 v2(g8) = 3 v2(g5) = 2 v2(g7) = 1



Notice that although each agent has a different strict ordering over M , their orderings restricted to the goods in any day Mt1100

are identical. Since there are only 2 or 3 goods given on any day and each agent has strict preferences over them, for allocation1101

AMt
to be EF1, the same agent cannot receive both the items from T (Mt, 2) (otherwise, the other agent, who receives at most1102

one good from Mt that they value strictly less than each good in T (Mt, 2), would envy them even after the removal of one of1103

the goods).1104

Thus, EF1 per day requires that among the pairs of goods (g1, g5), (g2, g4), and (g3, g8), the two goods in each pair go to1105

different agents.1106

Now consider what is required in order for the allocation AM to be SD-EF1 overall while adhering to these constraints.1107

Since both agents have strict preferences over the goods, by the necessity condition of Proposition 1, we can say that for both1108

i ∈ {1, 2}, |AM,i ∩ Ti(M, r)| ⩾ ⌊r/n⌋ must be true for all r ∈ [|M |].1109

This means that each agent must receive at least one of their top 2 goods. Specifically, agent 1 must receive one of T1(M, 2) =1110

{g1, g2}, and agent 2 must receive at least one of T2(M, 2) = {g2, g3}.1111

It also means that each agent must receive at least 2 of their top 4 goods. Observe that Ti(M, 4) = {g1, g2, g3, g4} for both1112

agents, so, in order to satisfy this, each agent must receive exactly 2 goods from {g1, g2, g3, g4}.1113

Notice that under these restrictions, in any allocation where agent 1 receives g2, they cannot receive g3 (or they would have1114

both of agent 2’s top 2 goods) or g4 (due to the per day constraints). Since the allocation over the top 4 goods must be balanced1115

(each agent receiving exactly two of them), the only possible allocation AT1(M,4) in this scenario would be ({g1, g2}, {g3, g4}).1116

Using the same logic, when agent 2 receives g2, the only possible allocation is ({g1, g4}, {g2, g3}). Since one of the agents1117

must be given g2, these are the only two ways that the top 4 goods can be allocated. Note that in both of these allocations, agent1118

1 gets g1 and agent 2 gets g3.1119

Finally, consider how the remaining goods {g5, g6, g7, g8} must be allocated to guarantee SD-EF1 overall. Each agent must1120

receive at least 3 of their top 6 goods, and since we know that each agent has exactly 2 of their top 4 goods, that means that1121

agent 1 must receive at least one of {g5, g6}, and agent 2 must receive at least one of {g6, g8}. Since we know that agent 1 must1122

be allocated g1, the per-day constraints say they cannot receive g5, so they must receive g6. Similarly, agent 2 is known to have1123

g3, so they cannot receive g8, which means they must also receive g6, which is a contradiction. Hence, in this instance, there is1124

no allocation that is EF1 per day and SD-EF1 overall.1125

D.7 Two Agents and Identical Days1126

In this section, we briefly discuss the implications of our results so far for the special case where we have two agents and1127

identical days. Recall that Igarashi et al. [2024] focus only on the case of identical days and many of their results hold for only1128

two agents. In particular, they show that an allocation that is EF1 per day and (exact) EF overall exists and can be computed in1129

polynomial time when the number of days k is even.1130

We prove a slightly stronger result via a much simpler technique, albeit only for allocating goods while their result is for1131

allocating a mixture of goods and chores.1132

Theorem 12. For temporal fair division with n = 2 agents and identical days, an allocation that is SD-EF1 per day, SD-EF11133

up to each day, and SD-EF up to each even day exists and can be computed in polynomial time.1134

Proof of Theorem 6. Consider the set of goods M1 on day 1 (each day has a set of goods identical to this). Consider the two1135

allocations B = (B1, B2) and B′ = (B2, B1) produced in Lemma 5 such that both B and B′ are SD-EF1 allocations of M1.1136

The desired allocation is one that uses B on every odd day and B′ on every even day. Clearly, SD-EF1 per day is satisfied.1137

Since the allocations completely cancel out after every even day (each agent has exactly the same number of copies of each1138

good), we get SD-EF1 up to each day and SD-EF up to each even day.1139

E Missing Proofs from Section 51140

E.1 Proof of Theorem 71141

Proof of Theorem 7. Start by constructing two set families, P1 and P2.1142

P1 = {T (Mt, nr) \ T (Mt, n(r − 1)) : r ∈
[⌈
|Mt|
n

⌉]
, t ∈ [k]},

P2 = {T (M,nr) \ T (M,n(r − 1)) : r ∈
[⌈
|M |
n

⌉]
}.

In words, P2 splits the entire set of goods M into the agents’ most preferred n goods, their next most preferred n goods, etc.1143

P1 does a similar partitioning, but splits the goods from each day separately.1144

Because preferences orderings of all agents are identical, we can use the sufficiency condition Proposition 1, which states1145

that if for all i ∈ N and r ∈ [|M |], |Ai ∩ Ti(M, r)| ∈ {⌊r/n⌋ , ⌈r/n⌉} implies SD-EF1 overall. Clearly, if each agent receives1146

at most 1 good from each set in P2, this will be true. Similarly, if each agent receives at most 1 good from each set in P1,1147



then for all i ∈ N , t ∈ [k], and r ∈ [|Mt|], we would have |Ai ∩ Ti(Mt, r)| ∈ {⌊r/n⌋ , ⌈r/n⌉}, implying SD-EF1 per day. 1148

Therefore, any allocation which gives each agent at most 1 good from each of the sets in P1 ∪ P2 will be SD-EF1 per day and 1149

SD-EF1 overall. Our goal is to find an allocation that meets these constraints. 1150

We will first start by adjusting the structure of the set families slightly to make the problem easier to work with. Note that it 1151

must be the case that |P1| ⩾ |P2|. P2 will contain ⌈m/n⌉ sets. ⌊m/n⌋ set of exactly n goods, and if m/n is not an integer, then 1152

1 additional set will be included containing the remaining goods. P1 will contain at least ⌈m/n⌉ sets, since it will be a disjoint 1153

partition of all the goods in m, with each set having a maximum set size of n, but may contain up to k sets with size less than 1154

n due to the fact that it is partitioning each day individually. 1155

First, we will create |P1| − |P2| empty sets and place them in P2. This makes sure that P1 and P2 have the same number of 1156

sets. Then, if |P1| > m
n , we will create n|P1| −m dummy goods (goods with 0 value to every agent), place each dummy good 1157

into a set from P1 and P2 in such a way that all |P1| sets in both families contain exactly n goods each. Note that the restriction 1158

that each agent must receive no more than 1 good from each of these updated families creates is a stronger constraint than what 1159

is needed to guarantee SD-EF1. Any allocations that meets the constraints on the updated set families can be clearly shown 1160

to meet the original SD-EF1 constraints simply by removing all the dummy goods. After these updates, both P1 and P2 will 1161

contain the same number of sets, and the size of every set in both families will be exactly n. 1162

Next, construct a graph where each set from P1 or P2 is a vertex, and put an edge between two sets in P1 and P2 if they share 1163

a good (there can be multiple edges between vertices). Label each edge to correspond to the good it represents. Since both P1 1164

and P2 are disjoint partitions over the set of goods M + “the dummy goods”, there will be no edge between two sets from the 1165

same family, making this a bipartite graph where each vertex has a degree of exactly n. Therefore, this bipartite graph can be 1166

deconstructed into n perfect matching. Let each of these matchings denote a bundle of the items corresponding to the edges in 1167

that matching. These n bundles will form a disjoint partition over the full set of goods M , and each bundle will contain at most 1168

1 good from each set in P1 ∪ P2. 1169

Since there are n bundles, we can create an allocation by assigning each one arbitrarily to an agent. Any allocation formed 1170

this way will meet the constraints for both P1 and P2, and thus will be be SD-EF1 per day and SD-EF1 overall. 1171

E.2 Proof of Theorem 8 1172

Proof of Theorem 8. Consider the following instance in which twenty-four goods arrive over four identical days: Mt = 1173

{g1,t, g2,t, g3,t, g4,t, g5,t, g6,t} for all t ∈ [4]. Twelve agents have identical valuations given by v(g1,t) = 6, v(g2,t) = 5, 1174

v(g3,t) = 4, v(g4,t) = 3, v(g5,t) = 2, v(g6,t) = 1 (since we seek SD-EF1, it only matters that the agents strictly pre- 1175

fer g1,t ≻ g2,t ≻ g3,t ≻ g4,t ≻ g5,t ≻ g6,t for all t ∈ [4], and are indifferent between any two goods gl,t, gl,t′ for all 1176

l ∈ [6], t, t′ ∈ [4]. 1177

Consider how the requirement of SD-EF1 up to each day restricts how each good can be allocated: 1178

• The bundle M2 will contain 12 goods. By the necessity condition of Proposition 1, we know for AM2
to satisfy SD-EF1, 1179

it must be the case that each Agent receives exactly 1 good from T (M2, 12) = M2. 1180

• For AM3
to be SD-EF1, it must be the case that each agent receives exactly 1 of the goods in T (M3, 12). This is because 1181

T (M3, 12) will contain goods g1,t, g2,t, g3,t, g4,t for all t ∈ [3]. The next good in the agents’ ordering will be a copy of 1182

g5,t for some t, so all the goods in T (M3, 12) are strictly preferred over the remaining goods in M3 \ T (M3, 12). 1183

• For AM4
to be SD-EF1, it must be the case that each agent gets exactly 1 of the goods in T (M4, 12). This is because 1184

T (M4, 12) will contain goods g1,t, g2,t, g3,t for all t ∈ [4]. Similar to the previous case, the next good in the agents’ 1185

ordering will be a copy of g4,t for some t, so it must be the case that all the goods in T (M4, 12) are strictly preferred over 1186

the remaining goods in M4 \ T (M4, 12). Since there are 24 total goods in M4, we can also say that each agent must 1187

receive exactly 2 goods from the set T (M4, 24) = M4 . Since no agent can have more than 1 good from T (M4, 12), the 1188

only way to satisfy this condition is to give each agent exactly 1 good from T (M4, 24) \ T (M4, 12). 1189

Figure 2 makes these restrictions clear. The restrictions over M2 are shown in Blue, M3 in Green, and M4 in Red. Each 1190

box represents a group of 12 goods that all must go different agents. Notice that the good g4,3 is contained in a restriction from 1191

M3 and M4. Due to its M3 restriction, it cannot be given to an agent that has been assigned a good from T (M2, 8). Due to 1192

its M4 restriction, it cannot be given to an agent that been assigned a good from T (M, 12) \ T (M2, 6). However, these two 1193

groups together make up the entire set of goods M2, which contains 12 goods, each assigned to one of the 12 agents. So there 1194

is no agent we can assign g4,3 to that will lead to the satisfaction of SD-EF1 for AM2
, AM3

and AM4
. 1195

F Missing Proofs from Section 6 1196

F.1 Helper Lemmas for Proving Theorem 9 1197

Lemma 6. For any instance with identical days, the identical orderings transformation described in Algorithm 1 will produce 1198

an instance where all agents have identical orderings overall. 1199



t = 1 t = 2 t = 3 t = 4

g1 1 7 / /

g2 2 8 / /

g3 3 9 / /

g4 4 10 / /

g5 5 11 / /

g6 6 12 / /

Figure 2: Restrictions Placed on the Allocation by SD-EF1 Up To Any Day

Proof. Let M ′ represent the full set of goods in the identical orderings transformation instance, and for each agent i, let1200

v′i be i’s valuations over M ′. Due to the original instance having identical days, we know that for each pair of days t, t′1201

there must be a bijection f : Mt → Mt′ such that for each g ∈ Mt and each i ∈ N , vi(g) = vi(f(g)). By the way1202

we constructed the identical orderings transformation instance, we know that there must be an analogous bijection in the1203

transformed instance f ′ : M ′
t → M ′

t′ . Let M ′
t =

{
gt,1, . . . , gt,|M ′

t|
}

, where for each r, r′ ∈ [|Mt|] with r′ ⩾ r, we have1204

that gt,r ≽ gt,r′ for all agents. Without loss of generality, we can assume that the labeling on each day is consistent, and1205

for each day t, t′, the bijection f ′ maps gt,r to gt′,r for all r ∈ [|Mt|]. Therefore, can assume that the overall ordering of1206

g1,1 ≽i g1, 2 ≽i . . . ≽i g1,k ≽i g2,1 ≽i . . . ≽i g|Mk|,k must hold.1207

Lemma 7. The algorithm described in Section 6 achieves SD-PROP1 Overall.1208

Proof. This proof involves reasoning with two separate bijections. The first is oi : M →M ′, which is the bijection formed by1209

creating the identical ordering transformation in Algorithm 1. In this bijection, we have that vi(g) = v′i(oi(g)) for each i ∈ N1210

and g ∈M , which implies that vi(M) = v′i(M
′) for all i, and that the utility vectors formed by taking all of i’s utilities for M1211

and M ′, and ordering them non-increasingly, will both be identical. The second is z : Ai ∪ {gi} → A′
i ∪ {g′i}, where Ai and1212

A′
i are the bundles that i receives in the final allocation and the identical orderings transformation allocation of Algorithm 11213

respectively, and gi, g
′
i are agent i’s favourite good that they are not allocated in each of those allocations. In this bijection, we1214

will have that vi(g) ⩾ v′i(z(g)) for all i ∈ N and g ∈ Ai ∪ {gi}, implying that vi(Ai ∪ {gi}) ⩾ v′i(A
′
i ∪ {g′i}).1215

Since SD-EF1 implies EF1, and the allocation found over the transformed preferences reduction by this algorithm will be1216

SD-EF1 overall, it is easy to see that we can invoke the same logic from Lemma 2 and Lemma 3 to show that this allocation1217

is PROP1 overall. To show that the allocation is in fact SD-PROP1 overall, we can do a more detailed analysis on the proof1218

technique from Lemma 3. Consider the set of goods M∗ = M ∪M ′ and each agent i’s ordering over M∗ that is induced by1219

their valuation functions vi and v′i. We note that when considering the set M∗, the bijection from Lemma 3 not only shows that1220

vi(Ai∪{gi}) ⩾ v′i(A
′
i∪{g′i}), but also allows us to conclude the stronger claim that Ai∪{gi} ≽SD

i A′
i∪{g′i}. This is because1221

for each pair of items g∗, z(g∗), if we have that vi(g∗) ⩾ v′i(z(g
∗)), then we must also have g∗ ≽i z(g

∗).1222

Next, note that for each agent i ∈ N , and each g ∈M , we must have that Hi(M
′, oi(g)) = {oi(g′) : g′ ∈ Hi(M, g)}, since1223

clearly, Hi(M
′, o(g)) can be thought of as the set of all goods g∗ ∈ M ′ such that g∗ ≽i oi(g), and similarly, Hi(M, g) is the1224

set of goods g∗ ∈ M such that g∗ ≽i g. From our definition of oi, we have that for any g∗ ∈ M , vi(g∗) ⩾ vi(g) if and only if1225

v′i(oi(g
∗)) ⩾ v′(oi(g)).1226

With this, we can conclude that |Hi(M, g)| = |Hi(M
′, oi(g))|, and also that |(Ai ∪ {gi}) ∩Hi(M, g)| ⩾1227

|(A′
i ∪ {g′i}) ∩Hi(M

′, oi(g))| for all goods g ∈ M . The second statement follows from the fact that for any g∗ ∈ Ai ∪ {gi},1228

if z(g∗) ∈ Hi(M
′, oi(g)), then g∗ ∈ Hi(M, g) must be true as well, since we have that vi(g

∗) ⩾ v′i(z(g
∗)), and1229

vi(g) = v′i(oi(g)).1230

We know that A′
i is SD-EF1, implying it is SD-PROP1 by Proposition 2. Therefore, for all g ∈ M , we have that1231

|(Ai ∪ {gi}) ∩Hi(M, g)| ⩾ |(A′
i ∪ {g′i} ∩Hi(M

′, oi(g))| ⩾
⌈|Hi(M

′,oi(g))|/n
⌉
= ⌈|Hi(M,g)|/n⌉, allowing us to conclude1232

that A is SD-PROP1.1233

F.2 Proof of Theorem 91234

Proof of Theorem 9. From Lemma 6, it is known that the identical days reduction will construct an instance where each agent1235

has the same overall ordering for the full set of goods M ′. This means that by the results of Theorem 7, an allocation A′ over1236

M ′ can be found that is SD-EF1 per day and SD-EF1 overall in polynomial time.1237

Using identical logic from Lemma 1, constructing the final allocation A by running the picking order construction procedure1238

from Algorithm 1 on A′ will result in an allocation that is SD-EF1 per day, since A′ is SD-EF1 per day.1239

Finally, from Lemma 7, we know that A will also be SD-PROP1 overall, completing the proof.1240



G Laminar Fair Division 1241

For any set of goods M , a collection L of subsets of M is a Laminar Set Family over M if for every pair of subsets S, T ∈ L, 1242

we have that either S ∩ T = ∅, S ⊂ T , or T ⊂ S. 1243

For each set S ∈ L, let D(S) : L → 2L be a function returning each set S′ ∈ L such that S′ ⊂ S. Let C(S) : L → 2L be 1244

the function returning every maximal set of D(S) (every set in D(S) that is not contained in some other set from D(S)). 1245

We can say that a laminar set family L over M is Complete if and only if the following conditions hold: 1246

• The set M is an element of L. 1247

• For every set S ∈ L, either D(S) = ∅, or ∪S′∈D(S) = S. 1248

We will assume that all laminar sets families we deal with in our setting are complete. This can be assumed without loss of 1249

generality, as any laminar set L over a set of goods M that is not complete can be “completed” through the following simple 1250

procedure: 1251

• If the full set of goods M is not in L, add M to L. 1252

• For every set S ∈ L, if 0 < | ∪S′∈D(S) | < |S|, then create a new set S∗ = S \ ∪S′∈D(S) and add it to L. 1253

After the above steps, L will remain a laminar set family. L will clearly remain laminar after the addition of M since every 1254

other set in L will be a strict subset of M . L will also remain laminar after the addition of each of the S∗ sets, since the 1255

definition of laminar families ensures that if none of the sets in L that are subsets of a set S contain some good g, then the only 1256

other sets in the family that can contain g are strict supersets of S. Therefore, the S∗ that the completion process adds to L will 1257

be a strict subset of S, and thus a strict subset of all the sets containing g. 1258

Note that in any complete laminar set family L, and any S ∈ L, C(S) will either be empty, or will form a complete disjoint 1259

partitioning of S. If this were not true, then we would have that C(S) ̸= ∅, which implies that D(S) ̸= ∅. We would also 1260

have that ∪S′∈C(S) ⊂ S and ∪S′∈D(S) = S. Clearly, every good g ∈ ∪S′∈D(S) must appear in some maximal set from D(S), 1261

giving a contradiction. The fact that all the sets in C(S) will be disjoint follows immediately from the definition of a laminar 1262

set family and from the fact that each set S′ ∈ C(S) is maximal in D(S). 1263

One can think of the structure of a complete laminar set family L as a tree where each subset is a node. M is the root node 1264

of the tree. For any set S ∈ L, D(S) are the descendants on S, and C(S) are the children of S. The Leaf sets of L are any 1265

sets S ∈ L who has no descendants (i.e. D(S) = ∅). Thinking of complete Laminar Set Families in this way will allow us 1266

to topographically sort the sets. Particularly, thinking of L as a directed tree where there is a directed edge going from each 1267

child to its parent, then a topographical sorting of L will result in no set S ∈ L appearing in the ordering before any of its 1268

descendants. 1269

Now, consider the following problem. A school district has received a new shipment of supplies and must distribute them 1270

between the schools under their jurisdiction. Each item is used for a different subject (there are microscopes for the biology 1271

lab, instruments for music class, easels and paint for art class, etc.), and each school has different preferences over the items. 1272

The district wants to find an allocation that is fair among the schools, but also wants to make sure that the allocations are fair 1273

with respect to each individual subject. For example, the district may be able to construct an EF1 allocation by giving all the 1274

biology supplies to one school, and all the art supplies to another school, but that would be extremely unfair to the individual 1275

departments within those schools. Interestingly, this problem is identical to finding an allocation over a temporal instance that 1276

is fair per day and fair overall, since both are in essence looking at a pairwise-disjoint partition of some set of items M , and 1277

finding an allocation that is fair with respect to M , and remains fair when only looking at any of the sets in the partition. 1278

Up until this point, the best way to solve such a problem would be existing algorithms for constrained fair division, such as 1279

the cardinality constraint algorithm of [Biswas and Barman, 2018]. This algorithm would guarantee an EF1 overall allocation, 1280

while also guaranteeing that each school got a balanced number of items from each subject, but it gives no guarantee that the 1281

goods from each subject will be allocated fairly according to the valuation functions of each of the schools. While our solution, 1282

Algorithm 1, only achieves PROP1 overall, it achieves the very strong SD-EF1 fairness guarantee for each subject, making 1283

it arguably a more desirable algorithm for use cases such as this. When there are 2 agents, or when all agents’ orderings are 1284

identical, then we get strictly better guarantees, since we can still achieve SD-EF1 per day (which implies balancedness), while 1285

also achieving EF1 overall. 1286

While the “per day” and “overall” desiderata translate very well into this broader interpretation of the temporal fair- 1287

ness model, our other definition, “up to each day” does not. This is because “up to each day” implicitly assumes that 1288

there is some ordering over the sets of goods in the partition. One intuitive way to extend this concept is with lam- 1289

inar set families. In the school district example, the sets of items where fairness is required could be something like 1290

{Biology,Chemistry,Drawing,Music,Science,Arts}, where Biology and Chemistry are subsets of Science and Drawing and 1291

Music are subsets of Arts. 1292

With this in mind, we can introduce a new concept of fairness, which generalizes “up to each day” and is more compatible 1293

with this abstract view of temporal fair division. 1294

Definition 11 (Laminar Fairness). For desideratum X , allocation A is Laminar X with respect to some laminar set family L if 1295

AS satisfies X for all S ∈ L. 1296



It can be seen that achieving both “up to each day” and “per day” fairness is a special case of Laminar Fairness. Figure 31297

shows the laminar family induced by these constraints.1298

M1 M3M2

M1 ∪M2

M = M1 ∪M2 ∪M3

Figure 3: Representation of the “up to each day” and “per day” constraints for three days as a laminar set family. An allocation that is EF1
up to each day and EF1 per day would be an allocation that is EF1 with respect to every set in this family. To just represent the “up to each
day” constraints, only the sets M1, M1 ∪M2 and M1 ∪M2 ∪M3 would be required.

We present an upgrade to our two agent Envy-Balancing algorithm from Lemma 4 that allows us to find EF1 allocations with1299

respect to any laminar set family, a strictly stronger guarantee than simply finding allocations that are EF1 up to each day.1300

Theorem 13. Given 2 agents, a set of goods M , and a laminar set family L over M , it is possible to find an allocation to those1301

agents that is Laminar EF1 with respect to L.1302

Proof. We begin by introducing a slight adaptation of the Envy-Balancing algorithm from Lemma 4, which will serve as the1303

basis for our algorithm to give the stronger guarantee of laminar fairness. We will use the notation introduced in the proof of1304

Lemma 4 to descibe the behaviour of the algorithm.1305

At the end of the Algorithm 2, the allocation A induced by F ∪ S is returned as the final allocation. A is an EF1 allocation1306

since we know that AF is an EF allocation and AS is EF1. Note that AF∪SWAP(S) would also be an EF1 allocation for the same1307

reason (The proof of Lemma 4 shows that at every point in Algorithm 2, both AS and ASWAP(S) are EF1 allocations). Also note1308

that the two allocations AF∪S and AF∪SWAP(S) will cancel out. This is because we know that neither agent feel envy in AF ,1309

and we also know that AS , and ASWAP(S) will cancel out for both i ∈ {1, 2}, due to the fact that a SWAP will involve replacing1310

every allocation in S with an allocation that cancels it out, so the sum of all these allocations must also cancel out.1311

We will use this fact in order to construct Algorithm 3, named EnvyBalancing++. This algorithm takes as input a set of1312

goods S, and a partitioning C over the goods in S. If the partitioning is empty, then EnvyBalancing++ simply returns 2 EF11313

allocations over S that cancel out, using any of the methods introduced in Section 4 to do so. Otherwise, if C is a complete and1314

disjoint partition of S, then EnvyBalancing++ runs Algorithm 2 on the input, but returns both AF∪S and AF∪SWAP(S) as the1315

final allocations.1316

Algorithm 4 takes in a laminar set family L, and finds an allocation that is Laminar EF1 with respect to L by the following1317

process:1318

• Sort the sets from L topographically such that no set appears in the order before any of its descendants.1319

• Run EnvyBalancing++ on each set S ∈ L in the topographical order, with the partitioning of S being giving by the pairs1320

of allocations the algorithm has already found for each of the children of S. If S is a leaf set, then C(S) = ∅, and the1321

algorithm will return two arbitrary EF1 allocations over S that cancel out. Otherwise, two allocations generated by the1322

Envy-Balancing algorithm will be returned.1323

• As the final output, return the 2 allocations over M , which will be the last set from L ordered topographically. Each of1324

these allocations are guaranteed to be EF1 with respect to every set S ∈ L.1325

We will prove the following inductive statement: For any set S ∈ L, if the algorithm found 2 allocations for each child1326

S′ ∈ C(S) that are EF1 with respect to S′ and all the descendants of S′, then the algorithm will find 2 allocations over S that1327

are EF1 with respect to S and all descendants of S.1328

We will first start with the case where S is not a Leaf set. Since the algorithm visits each descendant of S prior to visiting S,1329

it will have already found 2 allocations for every set S′ ∈ C(S). If the hypothesis holds, then each of these pairs of allocations1330

will cancel out, will be EF1 with respect to S′, and will be EF1 with respect to every descendent of S′. The algorithm will use1331

these allocations as input to EnvyBalancing++. Since we are assuming that L is a complete laminar set family, the children of1332

S will make a complete and disjoint partition of S. We know that EnvyBalancing++ will output two allocations over S that1333

cancel out and are EF1 over S. Further, we know that both allocations will be EF1 with respect to all descendants of S due1334



to the fact that the fact that the Envy-Balancing algorithm constructs its allocations by picking one of the inputted allocations 1335

from each of its children, which are known to be EF1 with respect to all their descendants from the hypothesis. 1336

If S is a Leaf set, the algorithm uses any arbitrary method to find the two allocations for S. These allocations will be EF1 1337

with respect to S, and since leaf sets do not have any descendants, they will vacuously be EF1 with respect to all descendants 1338

as well. This proves the base case and completes the argument. 1339

Finally, note that the topographical sorting of the sets runs in polynomial-time in the number of elements in the tree it is 1340

traversing, and it is well-known that every laminar set family with a ground set M can have at most 2|M | − 1 members. This 1341

together with the fact that EnvyBalancing++ runs in poly(m) time allows us to conclude that the entire procedure will be 1342

poly(m). 1343

We give the proof of this lemma in Appendix G. 1344

Unfortunately, for the general case, laminar fairness will not always be possible. Since the “up to each day” constraint can 1345

be modeled as a laminar set family, all of the impossibility results for “up to each day” also hold for laminar fairness. 1346

Algorithm 3 EnvyBalancing++
Input for t ∈ [k], a pair of allocations (B1

t , B
2
t ) of the set of goods Mt that cancel out, with labels assigned in such a way

that if neither of the allocations is Envy-Free, then v1(B
1
t,1)− v1(B

1
t,2) ⩾ 0 and v2(B

2
t,2)− v2(B

2
t,1) ⩾ 0.

Output An allocation A of the set of goods M = ∪t∈[k]Mt

if C = ∅ then
(A,A′)← Two EF1 allocations of S that cancel out, determined by some arbitrary subroutine

else
F ← ∅, S ← ∅, e1 ← 0, e2 ← 0
for t ∈ [k] do

if v1(B1
t,1) ⩾ v1(B

1
t,2) ∧ v2(B

1
t,2) ⩾ v2(B

1
t,1) then

F ← F ∪ {Bt}
else if v1(B2

t,1) ⩾ v1(B
2
t,2) ∧ v2(B

2
t,2) ⩾ v2(B

2
t,1) then

F ← F ∪ {B′
t}

else
if e1 ⩽ 0 then
S ← S ∪ {B1

t }
e1 ← e1 + (v1(B

1
t,1)− v1(B

1
t,2))

e2 ← e2 + (v2(B
1
t,2)− v2(B

1
t,1))

else
S ← S ∪ {B2

t }
e1 ← e1 + (v1(B

2
t,1)− v1(B

2
t,2))

e2 ← e2 + (v2(B
2
t,2)− v2(B

2
t,1))

end if
end if
if e1 ⩾ 0 ∧ e2 ⩾ 0 then

F ← F ∪ S
S ← ∅, e1 ← 0, e2 ← 0

else if e1 ⩽ 0 ∧ e2 ⩽ 0 then
F ← F ∪ SWAP(S)
S ← ∅, e1 ← 0, e2 ← 0

end if
end for
A← allocation in which Mt is allocated according to the allocation of Mt in F ∪ S, for each t ∈ [k]
A′ ← allocation in which Mt is allocated according to the allocation of Mt in F ∪ SWAP(S), for each t ∈ [k]

end if
return (A,A′)



Algorithm 4 Laminar Envy-Balancing Algorithm
Input A Laminar Set L Output An allocation A of the set of goods M = ∪S∈L
T ← (S1, S2, . . . , S|L|) (A topographical ordering the sets in L)
∀S ∈ L, BS ← ∅
for t ∈ [|L|] do
(B1

S , B
2
S)← EnvyBalancing++(St, {BS′ : S′ ∈ C(St)})

BSt
= (B1

S , B
2
S)

end for
return BS|L|
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