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ABSTRACT

Pretrained encoder-decoder language models provide the flexibility to unify various
language scenarios into one text-to-text framework, but various recent studies raised
concerns about their inferior pretraining efficiency and effectiveness compared
to encoder only and decoder only models. In this paper, we improve the perfor-
mance of encoder-decoder language models in unifying NLP tasks by pretraining
with ELECTRA-style model-generated signals. We first show the challenges of
pretraining encoder-decoder models (such as T5) using model-generated signals,
including ill-formed target, label leakage, and training instability. We then propose
Metro-T5, a new formulation of the denoising pretraining task and multi-task learn-
ing loss for encoder-decoder models to incorporate ELECTRA-Style pretraining.
Metro-T5 outperforms T5 on a variety of language tasks in standard fine-tuning
and prompt-based zero/few-shot scenarios. Our analysis shows Metro-T5 achieves
similar generalization ability with much better efficiency, outperforming T0 (3B)
in prompt-based learning with only 8% parameters and T5 in all tasks with fewer
GPU hours. Our pretraining code and model checkpoints will be open-sourced.

1 INTRODUCTION

The pretrain-and-apply scheme has become the norm for nearly all language tasks. By pretraining
neural networks, often Transformers (Vaswani et al., 2017), with language modeling tasks (Devlin
et al., 2019), strong generalization ability is acquired in the pretrained language models (PLMs). The
benefits are observed on many downstream scenarios, for example, “natural language understanding”
(NLU), such as sequence prediction (Wang et al., 2018), and “natural language generation” (NLG),
such as abstractive summarization (Hermann et al., 2015). In addition to standard fine-tuning, PLMs
can also be used in zero-shot or few-shot scenarios where supervision labels are limited, especially
when provided with instructions and examples, i.e., in prompt-based learning (Brown et al., 2020).
NLU scenarios often employ bi-directional encoder only Transformers, e.g., BERT (Devlin et al.,
2019) and its variants (e.g., Liu et al., 2019). These encoder models allow the flexibility of attentions
patterns between all tokens in the texts and pretraining with denoising tasks. Fine-tuning from
encoder models shows strong performances on many NLU tasks (Wang et al., 2018).
NLG scenarios fit naturally with decoder only Transformers, which perform autoregressive language
modeling following natural language flow (Radford et al., 2019). The unidirectional attention patterns
in decoder models provide a near identical formulation for pretraining and language generation tasks.
Recent research also obtained more success in scaling up decoders and their strong zero/few-shot
benefits with prompt-based learning (Brown et al., 2020; Rae et al., 2021; Chowdhery et al., 2022).
Pretraining and maintaining scenario specific PLMs are challenging on various fronts. It is not only
tedious to duplicate similar pretraining workflows multiple times but also makes it complicated
to choose proper pretrained models for each task1. As the scale of pretrained language models
grew to hundreds of billions parameters (e.g., Brown et al., 2020; Chowdhery et al., 2022), it is
nearly infeasible to pretrain multiple scenario-specific language models, as each of them come with
enormous cost of computing, engineering, and energy resources (Zhang et al., 2022).
Unifying language scenarios in one pretrained model has many benefits like reduced pretraining cost,
centralized resources, to name a few. Many recent research explorations combine the benefits of

1On Sep 2022, 60K models to choose from https://huggingface.co/docs/hub/index.
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Figure 1: Prompt-based learning results of Metro-T5BASE++ versus our T5 baseline and T0 (3B) on
tasks from T0 Eval benchmark (Sanh et al., 2022). Metro-T5BASE++, with only 256 million parameters,
outperforms both our T5 baseline and T0XL with 3 billion parameters. The plots of other tasks are in
Appendix A.4.

bi-directional encoders and autoregressive decoders into one Transformer (Dong et al., 2019; Lewis
et al., 2019). One of the most promising unified PLMs is T5 (Raffel et al., 2019), where various tasks
are reformulated in the text-to-text framework and conducted by one pretrained encoder-decoder
model. However, recent research raises concerns on whether such unified models come with inferior
downstream effectiveness and scaling efficiency, compared to scenario-specific encoder and decoder
models (Wei et al., 2021; Bajaj et al., 2022; Wang et al., 2022).
In this paper, we strive to improve the unified language model by pretraining T5-style encoder-decoder
models using ELECTRA-style model-generated signals (Clark et al., 2020). Pretraining with model
generated signals provides strong efficiency and effectiveness benefits on encoder models, but our
analysis shows that its direct application to T5 leads to challenges like ill-formed task, label leakage,
and unstable training. To address these challenges, we propose a new pretraining model, Metro-T5,
that redesigns the denoising language modeling task and multi-task learning loss, thus enables the
benefits of ELECTRA-style pretraining in the unified text-to-text framework.
Our experiments on NLU (GLUE and SQuAD), NLG (CNN/DailyMail and XSum), and prompt-based
learning (T0 Eval benchmark) demonstrate the advantage of Metro-T5. It outperforms previous
unification models including BART and T5 across almost all scenarios. As a unified model, Metro-T5
achieves better or similar performance with state-of-the-art encoder and decoder only models, for
example, ELECTRA, COCO-LM, and GPT-3, on their targeted scenarios. Our analysis shows
that, without the new design in Metro-T5, the combination of ELECTRA and T5 underperforms
vanilla T5 and sometimes results in degenerate solutions. In comparison, Metro-T5 achieves strong
generalization ability with significantly better parameter efficiency. As shown in Figure 1, using only
8% parameters, Metro-T5base++ outperforms the 3 billions parameter T0 on these zero/few-shot tasks
using the same T0 prompt-based learning.

2 RELATED WORK

Besides autoregressive and bi-directional attentions, recent research explored various other attention
patterns when pretraining Transformer language models. XLNet applies the autoregressive attention
pattern on the permutation of tokens (Yang et al., 2019). UniLM applies bi-directional and autore-
gressive attention patterns on different segments of the language sequence, as an early exploration to
combine the two (Dong et al., 2019). Both BART (Lewis et al., 2019) and T5 (Raffel et al., 2019)
employ the encoder-decoder architecture and study the effectiveness of different pretraining tasks.
One motivation to pretrain encoder-decoder language models is to perform natural language under-
standing (NLU) and natural language generation (NLG) tasks with one model. Dong et al. (2019)
uses the bi-directional part of UniLM for NLU and adds in the autoregressive part for NLG. Lewis
et al. (2019) feed the input sequence into both the encoder and the decoder of BART and perform
NLU tasks using a classification head on the decoder. Raffel et al. (2019) proposes the text-to-text
framework that converts NLU tasks into generation, by directly generating the target labels, thus
unifies the format of many tasks in one framework. Zhang et al. (2020) pretrains a encoder-decoder
Transformer for text summarization using a heuristic gap-sentence-generation objective.
The text-to-text framework also covers prompt-based learning scenarios, where language models are
provided with additional contexts/examples (prompts) to perform zero-shot and few-shot tasks. The
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encoder side takes in the prompt inputs, either manually selected tokens (hard prompts) (Gao et al.,
2021), special tokens (soft prompts) (Hacohen & Weinshall, 2019), or even long demonstrations, e.g.,
in chain-of-thought prompts (Wei et al., 2022), and the decoder side generates the predictions for
zero/few-shot tasks. Finetuning the encoder-decoder language models with prompt training data from
multiple tasks also improves T5’s zero/few-shot ability on other tasks (Sanh et al., 2022)
Many observed the inferior effectiveness of unified encoder-decoders compared with encoder or
decoder only models. In prompt-based learning, decoders such as GPT-3 (Brown et al., 2020),
PaLM (Chowdhery et al., 2022), and FLAN (Wei et al., 2021) often achieve stronger zero/few-shot
accuracy. In finetuning, various techniques have been developed to improve the pretraining of bi-
direction encoders, for example, model-generated pretraining signals (Clark et al., 2020), disentangled
attentions (He et al., 2021), knowledge-enhanced pretraining (Sun et al., 2021), all lead to stronger
empirical performances on NLU than T5. The scaling efficiency of encoder-decoder models is also a
concern (Wang et al., 2022). For example, on SuperGLUE, GLaM (Du et al., 2022), a large encoder-
decoder model with mixture-of-experts, only slightly outperforms the dense encoder model (Bajaj
et al., 2022), although each expert in GLaM has ten times more parameters than the encoder.
The key source of effectiveness of many recent encoders is model generated pretraining signals,
recently referred to as METRO (Bajaj et al., 2022). Clark et al. (2020) first invented this training
mechanism in ELECTRA, which employs an auxiliary BERT to construct a corrupted text sequence
for the main model to denoise. Meng et al. (2021) and Meng et al. (2022) confirmed the advantage is
in the implicit learning curriculum from the auxiliary model’s generated pretraining signals, which
become more informative during pretraining. The benefit of METRO on encoder models also applies
to multi-lingual (Chi et al., 2021) and vision tasks (Fang et al., 2022).

3 METHOD

This section first recaps preliminaries of T5 and ELECTRA-style pretraining. Then we discuss the
challenges of combining them and address these challenges with Metro-T5.

3.1 PRELIMINARIES

Generally, language model pretraining can be abstracted as given the original text sequence Xorig,
perform certain corruption to formulate a noisy input Xnoise, and then pretrain the language model by
denoising the noisy input back to the original. For example, Masked Language Modeling (MLM)
randomly masks out a fraction of original tokens and pretrains a bi-directional encoder to recover the
original tokens (Devlin et al., 2019).

T5 Pretraining. In T5 (Raffel et al., 2019), the noisy input is constructed by randomly deleting
consecutive spans of tokens in the input, e.g., Xnoise = [xorig

1 , ..., [MASK]i:j , ...xorig
n ], with the original

tokens from position i to j replaced with a distinct special “sentinal” tokens, denoted by [MASK]i:j .
Then the pretraining task is to generate the deleted tokens using the encoder-decoder Transformer:

[xorig
1 , ..., [MASK]i:j , ...xorig

n ]
Encoder−−−−→ HEnc Decoder−−−−→ [[MASK]i:j , xorig

i , ..., xorig
j ]. (1)

It feeds Xnoise as input to the encoder of T5, and then asks the decoder to generate the deleted original
tokens after the corresponding sentinel token. The training uses standard teacher-forcing with the
decoder provided with correct tokens in all previous positions.

Text-to-Text Framework. The pretrained encoder-decoder language model is then applied to NLP
tasks in a unified text-to-text framework. T5 casts every task—including classification, question
answering, and summarization—into a text-to-text format, where the encoder is fed with the text
input and the decoder is then asked to generate the target prediction.

ELECTRA-Style Pretraining. The key idea of ELECTRA-style pretraining is the construct the
noisy input Xnoise using another auxiliary language model, i.e., by sampling tokens in the masked-out
positions, using the language modeling probability of the auxiliary model. Usually, the auxiliary is
an masked language model (Clark et al., 2020; Meng et al., 2021),

xnoise
i ∼ pMLM(x|hAux

i ), if i ∈ M;xnoise
i = xorig

i , otherwise, (2)

with M is a set of masked-out positions, often 15% of the entire sequence.
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Table 1: Examples of encoder inputs and decoder targets of different ways to configure the denoising
task. [M] denotes a shared mask token. The auxiliary MLM model predicts one token for each [M].
Grayed-out tokens are part of the target fed into the decoder but not included in pretraining loss.

Original Sentence Thank you for inviting me to your party last week

Auxiliary Model Input Thank you [M] [M] me to your party [M] week
Output Thank you for giving me to your party apple week

Main Model Input Thank you for giving me to your party apple week

Decoding Masked Tokens Only for inviting last
Target All Tokens Thank you for inviting me to your party last week

All Tokens, Masked Loss Thank you for inviting me to your party last week

Then the main Transformer encoder is pretrained to denoise the model-generated noisy input Xnoise
i .

Clark et al. (2020) originally uses the replaced token detection task (RTD), a simple binary classifica-
tion on whether each token is replaced by the auxiliary model or from the original:

Xnoise Encoder−−−−→ HEnc RTD Head−−−−−→ Y ; yi = 1(xnoise
i ̸= xorig

i ). (3)

The binary classification objective can effectively pretrains the main model for NLU tasks. However,
the pretrained model has limited language modeling capability which is necessary for NLG and many
prompt-based learning tasks. Later, Meng et al. (2021) introduces the corrective language modeling
task (CLM) that re-enabled the language modeling capacity upon the main encoder:

Xnoise Encoder−−−−→ HEnc CLM Head−−−−−−→ Xorig. (4)

The CLM task often trains together with the RTD task by multi-task learning.
ELECTRA-style models achieved strong empirical performance on a wide range of NLU tasks.
Recent studies revealed their main source of effectiveness resides in the model-generated pretraining
signals. Pretrained side-by-side with the main Transformer, the auxiliary model also gets stronger and
stronger, thus generating fewer but more confusing noises in Eq. (2). This model-generated denoising
training objective, recently referred to as METRO (Bajaj et al., 2022), significantly improves the
efficiency and generalization ability of encoder language model pretraining, as observed in variant
model scales (Bajaj et al., 2022) and application scenarios (Chi et al., 2021; Fang et al., 2022).

3.2 CHALLENGES OF PRETRAINING T5 IN ELECTRA-STYLE

A natural step to enhance T5 is to also pretrain the encoder-decoder with model-generated noises
as ELECTRA-style. A straightforward way to combine the two is to employ the auxiliary language
model to generate replacement tokens (Eq. (2)) in the masked out spans (Eq. (1)):

[xorig
1 , ..., [MASK]i:j , ...xorig

n ]
Auxiliary LM−−−−−−−→ [xorig

1 , ..., xnoise
i , ..., xnoise

j , ..., xorig
n ]; (5)

and then pretrain the encoder-decoder Transformer to denoise the corrupted input, for example, in the
RTD+CLM multi-task setup:

[xorig
1 , ..., xnoise

i , ..., xnoise
j , ..., xorig

n ]
encoder−−−−→ Henc decoder−−−−→ Hdec; (6)

[hdec
1 , ...,hdec

1+i−j ]
CLM Head−−−−−−→ [xorig

i , ..., xorig
j ]; (7)

[hdec
1 , ...,hdec

1+i−j ]
RTD Head−−−−−→ [yi, ..., yj ]; yk = 1(xnoise

k ̸= xorig
k ). (8)

However, our preliminary experiments show that this straightforward design yields unstable and
diverging pretraining runs. Many of the challenges arise from the difference between the unique
formulation of encoder-decoder language models, as we discuss next.

Ill-formed Target. In Eq. (7), the denoising is performed by the decoder, which has to learn to
select which positions to denoise first. This is much more challenging than using the encoder who
has the explicit position correlation information. In this formulation, where the target consists of
masked tokens only, it is impossible for the decoder to distinguish between the original tokens (e.g.,
xorig
1 ) or those correctly predicted by the auxiliary model in the masked positions M.
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Figure 2: The architecture of Metro-T5 using BERT as auxiliary and T5 as the main model.

Table 1 shows an example of such ill-formed target in the (masked token only) setting. The masked
tokens are "for", "inviting", and "last", but it is impossible for the model to know that it should decode
the token "for", as it is a correct token, the same as the unmasked ones (e.g. "Thank" and "you").
This ill-formed target is impossible to learn for the pretraining model.

Label Leakage. Consecutive span masking in the auxiliary model in Eq. (6) leads to label leakage.
At the k-th position during teacher-forced training, the decoder has access to the ground truth token
at k − 1. It can compare the ground truth with the input at position k − 1. If the two disagree, it is
likely the following positions are also masked out, a shortcut for the model to exploit.

Unstable Training. When pretraining encoder only models (Meng et al., 2021; Bajaj et al., 2022),
the RTD task provides an easier target for the main model and improve the optimization stability.
However, decoding RTD target is complicated. In Eq. (8), the encoder-decoder model needs connect
the information from the encoder position i to decode yi. This is more complicated than RTD
in encoder models as it requires a much longer attention path and defeats the purpose of RTD in
providing a trivial task to stabilize optimization.

3.3 METRO-T5

In the rest of this section, we first present the overview of Metro-T5, then its specific designs
that addresses the problems found in previous analysis. We also discuss its updated Transformer
architecture based on findings in recent research.
Overview. As illustrated in Figure 2, Metro-T5 also uses a BERT-style MLM encoder as the auxiliary
model and a T5-style encoder-decoder as the main model. The overall pretraining setup is:

Xorig Random Mask−−−−−−−→ [xorig
1 , . . . ,[MASK], . . . ,[MASK], . . . , xorig

n ]
Auxiliary−−−−−→ Xnoise; (9)

Xnoise Encoder−−−−→ Henc RTD Head−−−−−→ 1(xorig
i = xnoise

i ); (10)

Xnoise Encoder−−−−→ Henc Decoder−−−−→ Hdec CLM Head−−−−−−→ Xorig. (11)

In each of the three equations Metro-T5 introduces a new design to enable effective pretraining of
the encoder-decoder main model using signals generated by the auxiliary BERT encoder: Random
Masks on Auxiliary (Eq. (9)), RTD on Encoder (Eq. (10)), and Decoding Entire Origin (Eq. (11)).
Random Masks on Auxiliary. To avoid the label leakage problem, Metro-T5 rolls back to the vanilla
random mask at individual token level in Eq. (9). Specifically, with the 15% randomly sampled
masked positions M, the masked LM loss for the auxiliary is

LMLM = −Ei∈M log pMLM(xorig
i |haux

i ). (12)

RTD on Encoder. As we discussed in Section 3.2, decoding binary RTD labels with the decoder is
difficult for an encoder-decoder model. Thus Metro-T5 moves the RTD task to the encoder side:

LRTD = −E log pRTD(1(x
orig
i = xnoise

i )|henc
i ). (13)

Decoding Entire Origin. As decoding only the masked out position leads to ill-formed task, Metro-T5
changes the decoding target to the entire original sequence Xorig. It trains the encoder-decoder model
using the following corrective language modeling loss:

LCLM = −Ei∈M log pLM(xorig
i |hdec

i ). (14)
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We use two different designs compared to previous research. The first one is that we eliminated the
copy mechanism used on previous ELECTRA-style models (Meng et al., 2021), which provides a
short path for the model to direct copy tokens from its input. The second is that we only apply the
loss on masked positions M, instead of on all positions on the decoder side. This also avoids training
on the unmasked tokens which are also trivial copy-and-pastes. Both designs aim to encourage the
model to focus on learning deep language semantics, to obtain generalization ability more efficiently,
rather than learning to copy from its inputs. Table 1 shows examples of different configurations of
decoding target, including “All Tokens, Masked Loss” used in Metro-T5.
With these designs, the final pretraining objective of Metro-T5 is:

L = LMLM + λRTDLRTD + λCLMLCLM, (15)
where λRTD and λCLM are hyperparameters. Similar to ELECTRA, the auxiliary model and the main
model are trained side-by-side. Only the main model, the T5-style encoder-decoder, is used for
downstream applications, i.e., in the same text-to-text framework as vanilla T5.
Architectural Upgrades over T5. We also incorporate model architecture changes that are proved
to be beneficial in earlier works. As recent research shows only relative position embeddings are
not as effective (Luo et al., 2022), we use absolute positional embeddings combined with relative
position embedding (Meng et al., 2021). We use Post-LayerNorm instead of T5’s Pre-LayerNorm
which usually leads to better performance on downstream tasks (Bajaj et al., 2022).

4 EXPERIMENTAL SETUP

This section layouts main experiment configurations. More details can be found in Appendix A.2.

Model Architecture. The main model of Metro-T5 is similar to T5-Base (Raffel et al., 2019).
Specifically, both the encoder and decoder consist of 12 layers and a hidden dimension of 768. The
auxiliary model of Metro-T5 is a 4-layer Transformer Encoder with the same hidden size. We follow
Clark et al. (2020) and share token embeddings between the main model and the auxiliary model.

Pretraining. We consider two standard pretraining settings: base and base++. Base (Devlin et al.,
2019) is to pretrain on English Wikipedia and BookCorpus (16GB of texts) for 131 billion tokens
(512 tokens per sequence, 2,048 sequences per batch, and 125k steps). Base++ is the training
configuration first used in RoBERTa (Liu et al., 2019): pretraining on a mixed corpus of 160GB
texts, which consists of English Wikipedia, BookCorpus, OpenWebText (Gokaslan & Cohen, 2019),
CC-News (Liu et al., 2019), and STORIES (Trinh & Le, 2018), for 2.1 trillion tokens (512 tokens per
sequence, 2,048 sequences per batch, and 2M steps).

Evaluation. We evaluate pretrained models on five benchmarks: GLUE (Wang et al., 2018)
for natural language understanding, SQuAD v1.1 (Rajpurkar et al., 2016) for question-answering,
CNN/DailyMail v3.0.0 (Hermann et al., 2015) and XSum (Narayan et al., 2018) for sequence-to-
sequence natural language generation, and T0 Eval (Sanh et al., 2022) for prompt-finetuning and
zero-shot generalization. We follow standard practices (Liu et al., 2019; Meng et al., 2021) and
perform hyperparameter searches on GLUE, SQuAD, CNN/DM and XSum. We also follow Sanh
et al. (2022) and perform prompt-finetuning on three multitask mixtures, T0 Train, T0+ Train, and
T0++ Train, and evaluate each on the T0 Eval benchmark.

Baselines. The main baseline is our own T5 run, which uses the same Transformer architecture
and training data, except METRO style pretraining. Please see Appendix A.3 for implementation
details. We also compare with the reported numbers of other encoder-decoder models that unify
multiple scenarios, mainly BART (Lewis et al., 2019) and the original T5 (Raffel et al., 2019). For
reference we include the state-of-the-arts results from many scenario specific models, if applicable,
for example encoder-only ones on NLU, decoder-only ones on NLG, and also models at larger scales
when informative.

5 EVALUATION

In this section we evaluate the overall accuracy of Metro-T5 as a unified model, its ablation variants,
the effectiveness of its new designs to enable ELECTRA-Style training with T5, and the benefits of
pretraining efficiency from METRO on encoder-decoders.
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Table 2: Results on the development sets of GLUE, SQuAD v1.1, and XSum. All results are single-
task, single-model fine-tuning. The GLUE score is the average score of the eight tasks on GLUE.
Results not available in public reports are marked as "-". The question answering task (SQuAD) is
formulated as an NLG task for encoder-decoder models and NLU for encoder-only models.

NLU NLG

Task MNLI QQP QNLI SST-2 CoLA RTE MRPC STS-B GLUE SQuAD CNN/DM XSum
Metric ACC ACC ACC ACC MCC ACC ACC PCC AVG F1 R-2-F R-2-F

Base Setting: BERT Base Size, Wikipedia + Book Corpus (16GB)

BERT (Devlin et al., 2019) 84.5/- 91.3 91.7 93.2 58.9 68.6 87.3 89.5 83.1 88.5 - -
RoBERTa (Liu et al., 2019) 85.8/85.5 91.3 92.0 93.7 60.1 68.2 87.3 88.5 83.3 90.4 - -
ELECTRA (Clark et al., 2020) 86.9/86.7 91.9 92.6 93.6 66.2 75.1 88.2 89.7 85.5 90.8 - -
COCO-LM (Meng et al., 2021) 88.5/88.3 92.0 93.1 93.2 63.9 84.8 91.4 90.3 87.2 - - -
CLM Only 88.6/88.4 92.0 93.2 93.7 67.4 80.1 90.0 90.4 86.9 - -

BART (Lewis et al., 2019) 83.8/- - - - - - - - - 90.8 - -
PEGASUS (Zhang et al., 2020) - - - - - - - - - - 18.8 16.6
T5 (WikiBook) (Raffel et al., 2019) 84.4/83.5 90.9 91.9 92.8 55.5 76.9 90.8 86.5 83.7 89.7 19.3 -

T5 (Ours) 87.1/87.1 91.7 93.1 93.8 62.3 78.0 88.7 88.2 85.4 90.5 20.7 18.5
Metro-T5 88.4/87.9 92.1 93.2 94.4 68.8 82.7 90.4 90.0 87.5 90.8 20.7 18.9

Base++ Setting: BERT Base Size, Bigger Training Data, and/or More Training Steps

RoBERTa (Liu et al., 2019) 87.6/- 91.9 92.8 94.8 63.6 78.7 90.2 91.2 86.4 94.6 - -
COCO-LM (Meng et al., 2021) 90.2/90.0 92.2 94.2 94.6 67.3 87.4 91.2 91.8 88.6 - - -
UniLM v2 (Bao et al., 2020) 88.5/- 91.7 93.5 95.1 65.2 81.3 91.8 91.0 87.3 93.1 20.4 21.1
T5 (C4) (Raffel et al., 2019) 84.2/84.6 91.6 90.5 92.7 53.8 76.3 88.9 88.0 83.3 88.8 20.3 -

T5 (Ours) 89.7/89.2 91.9 94.1 95.7 61.6 83.4 90.2 90.8 87.1 92.2 21.4 20.9
Metro-T5 90.0/90.0 92.0 94.3 96.0 70.7 86.3 90.7 90.8 88.8 92.4 21.3 21.2

Table 3: Prompt learning results on the T0 Eval dataset. “Wino.”, “SC.”, and “HS” refer to Wino-
grande, StoryCloze, and hellaSwag. All reported datasets use accuracy as their metric. Italic results
are produced under the supervised setting. Others are under the zero-shot setting.

Model Params NLI Coref. Compl. WSD

RTE CB ANLI r1/r2/r3 WSC Wino. COPA SC. HS. WiC AVG

Pretraining only

GPT-3SMALL (Brown et al., 2020) 125M 47.70 0.00 33.40/33.20/33.60 59.60 52.00 66.00 63.30 33.70 0.00 38.41
GPT-3MED (Brown et al., 2020) 350M 49.80 32.10 34.20/31.90/34.00 56.70 52.10 68.00 68.50 43.60 0.00 42.81
T5+LM (Lester et al., 2021) 11B 53.03 34.34 32.89/33.76/33.82 54.09 50.65 54.88 27.00 48.16 50.30 42.99

Prompt Finetune on T0 Train

T5BASE (Ours) 226M 62.85 45.30 30.82/32.37/32.14 62.16 50.77 70.63 81.03 24.86 50.78 49.43
Metro-T5 BASE 226M 65.18 45.60 31.64/32.98/33.81 55.77 51.07 70.81 80.97 25.28 50.69 49.44

T5BASE++ (Ours) 256M 62.24 53.45 31.68/32.94/34.88 61.73 51.65 70.63 87.62 25.88 51.21 51.26
Metro-T5 BASE++ 256M 68.16 63.21 34.92/33.81/36.82 60.48 52.03 78.50 89.23 27.68 50.88 54.15

T0XL (Sanh et al., 2022) 3B 64.55 45.36 33.84/33.11/33.33 65.10 50.97 72.40 84.03 27.29 50.69 50.97

Prompt Finetune on T0+ Train

T5BASE (Ours) 226M 63.57 48.93 31.76/32.92/33.02 60.96 51.93 72.38 81.71 40.11 51.32 51.69
Metro-T5 BASE 226M 70.56 47.08 33.05/34.53/34.37 57.98 51.75 69.13 83.08 49.00 50.78 52.85

T5BASE++ (Ours) 256M 68.30 60.24 33.77/34.31/35.00 60.96 51.59 70.00 89.29 56.10 51.39 55.54
Metro-T5 BASE++ 256M 71.44 60.71 36.91/35.24/36.46 62.21 54.08 78.88 90.29 67.57 51.60 58.67

Prompt Finetune on T0++ Train

T5BASE (Ours) 226M 69.06 48.39 31.90/33.61/33.94 55.72 51.15 76.06 82.55 39.62 63.18 53.20
Metro-T5 BASE 226M 72.04 58.63 33.85/35.29/36.57 56.11 52.15 74.06 83.65 48.66 64.29 55.94

T5BASE++ (Ours) 256M 77.87 63.10 36.15/34.61/38.18 56.44 51.78 75.38 89.33 55.95 65.53 58.57
Metro-T5 BASE++ 256M 77.80 69.52 39.69/36.61/40.08 61.44 54.55 83.88 90.88 68.54 67.59 62.78

5.1 OVERALL RESULTS

We present the overall results in two groups, finetuning and prompt-based learning.

Finetuning results are listed in Table 2. Metro-T5 outperforms our own T5, which is much stronger
than the T5 checkpoints released by Google, on nearly all tasks in all settings. On NLU tasks,
it achieves comparable or slightly better performances than the strong ELECTRA-style encoder,
COCO-LM (Meng et al., 2021), especially its CLM Only version which does not use additional
contrastive pretraining. In comparison, previous encoder-decoder models, BART and T5, are quite
behind on GLUE. Metro-T5 provides the most robust effectiveness among these unification models
across all finetuning scenarios.

Prompt-based Learning results are shown in Table 3. Metro-T5 outperforms T5 (Ours) under all
four settings. With better prompt-based learning results, i.e., from T0 to T0+ and then to T0++, the
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Table 4: Performance of Metro-T5 variations on finetuning tasks. All ablations are done in the base
pretraining setting using exactly the same finetuning pipeline.

Task MNLI QQP QNLI SST-2 CoLA RTE MRPC STS-B GLUE SQuAD CNN/DM XSum

Metro-T5 88.4/87.9 92.1 93.2 94.4 68.8 82.7 90.4 90.0 87.5 90.8 20.7 18.9
w. RTD on Decoder 86.1/85.8 91.5 92.1 92.5 63.6 76.5 87.5 33.0 77.8 88.1 19.7 16.6

+ Projection Layer on CLM 87.6/86.9 91.8 92.7 92.9 63.1 77.3 88.7 88.9 85.3 89.2 20.4 17.4
w. Continuous Span Mask 87.3/86.7 92.0 92.4 93.5 69.2 81.6 89.7 89.7 86.9 90.5 20.5 18.0
w. CLM Loss on All Position 88.1/87.6 92.0 92.7 93.3 68.4 83.4 90.7 89.7 87.3 90.5 20.5 17.7
w. CLM with Copy Mechanism 88.5/88.4 92.0 93.0 93.9 67.8 82.3 90.2 90.1 87.2 90.2 20.5 17.8

T5 (Ours) 87.1/87.1 91.7 93.1 93.8 62.3 78.0 88.7 88.2 85.4 90.5 20.7 18.5
w. All-token LM loss 85.8/85.6 91.4 92.3 92.8 57.5 77.6 88.2 88.3 84.2 90.2 20.5 18.7
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Figure 3: Pretraining behaviors of different designs to pretrain T5 in ELECTRA-style.

empirical advantage of Metro-T5 becomes more significant. Notably, in the T0 setting, Metro-T5base++
outperforms T0XL which starts from the 3 billion parameter T5, 30 times more than Metro-T5 and
pretrained on much larger C4 corpus. This demonstrate that Metro-T5 achives generalization ability
with significant better parameter and pretraining efficiency.

5.2 ABLATION STUDIES

This experiment studies the influences of different design choices in Metro-T5. We use the finetuning
scenarios which are more stable for this study. The results are shown in Table 4.
Using RTD on decoder leads to much worse performance on both NLU and NLG tasks. The RTD
task on the decoder side is complex and may confuse the decoder in the multi-task setup. Using a
projection layer on the CLM head on the decoder side mitigate some of its problem but does not
resolve it. Using continuous span mask instead of random masks also leads to worse performance on
nearly all tasks. In next experiment we further study the challenges introduce by these designs.
Enabling the copy mechanism on the CLM task reduces model performance. It introduces too many
trivial copy-and-paste task that hinders the learning of actual language semantics. The same applies
to using the language modeling loss on positions, either CLM for Metro-T5 or standard language
model on T5 (Ours). Both hurts model’s generalization ability with too many trivial copying tasks.

5.3 PRETRAINING BEHAVIORS

In this experiment, we show how Metro-T5 addresses the challenges of combing T5 with ELECTRA-
style training. We mentioned these challenges in Section 3.2. We omit the “ill-formed task” challenge
where the model just does not pretrain, and Metro-T5 has to address it to provide any meaningful
results.

Avoid Label Leakage. Figure 3a shows the RTD sensitivity (true positive rate) if Metro-T5 when
using random masking on the auxiliary model versus using T5’s span masking. As discussed in
Section 3.2, span masking has label leakage, as a token after a replaced token is likely to be noise. This
leads to trivial solutions on many masked positions, as shown in the more than doubled pretraining
RTD accuracy on masked positions with Span Mask. As expected, this label leakage hurts the model
generalization ability as is shown in Table 4.
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Figure 4: Downstream performance with different pretraining GPU hours of T5base++ and Metro-
T5base++, measured on the exact training pipeline and computing environments.

Remove Training Instability. Figure 3b shows the loss on the CLM task in pretraining with the
RTD objective applied on the encoder side (Metro-T5) versus on the decoder side. The pretraining
diverged with RTD on the decoder. Adding strong gradient clipping and an additional projection layer
for the CLM task mitigates the problem. The model converges, but with much higher pretraining loss
and thus worse generalization ability in downstream tasks, as is shown in Table 4.

5.4 PRETRAINING EFFICIENCY

In this section, we study the pretraining efficiency of Metro-T5 in comparison to vanilla T5 from the
aspect of pretraining computational costs. Note that Metro-T5 uses an auxiliary model that introduces
additional computations per training step. Also, its “decoding entire original sentence” target is also
longer than T5’s target for each text sequence, resulting in a more computationally expensive decoder
during pretraining.
As a fair comparison between Metro-T5 and the T5 baseline regarding their compute-efficiency,
Figure 4 plots the downstream performance of Metro-T5base++ and T5base++ at different pretraining
time on the exact sample computing environments. Specifically, we evaluate their intermediate
checkpoints on MNLI-m, MNLI-mm, and T0++, and record their pretraining wall time, which
is the exact reflection of their pretraining computation cost. The results show that the efficiency
benefits of METRO pretraining overwhelm the increased computations per step. Metro-T5 achieves
better generalization ability than T5 at every point we measured on all three tasks. The efficient
generalization ability is also more observed in the prompt-based learning tasks including zero-shot
evaluations.

6 CONCLUSION AND FUTURE WORK

In this paper we present Metro-T5 which brings in the advantage of model-generated pretraining
signals to encoder-decoder language models, with the goal of improving the performance of unified
pretraining model on multiple language scenarios. Metro-T5 redesigns the pretraining task and
multi-task learning in T5 and ELECTRA-style models to address the challenges we observed in
combing them. Our experiments demonstrate the advantage of Metro-T5 on both finetuning and
prompt-based learning scenarios. Our analysis shows that Metro-T5 achieved strong generalization
ability with efficiency, both on the network size aspect, outperforming T0XL on T0 with only 8% of
its parameters, and the pretraining computing cost aspect, reaching better downstream performance
with fewer GPU hours than T5.
One future work direction is the scale up Metro-T5 to bigger Transformer networks and more
pretraining steps, to explore whether the benefits observed in the common research setups can adapt
to the large scale setting. It will be interesting to see whether certain emerging abilities observed
on other multi-billion parameters models will also show up in scaled up Metro-T5, earlier or later.
The unification of not only the pretraining step, but also the downstream application step, is another
interesting future research direction with prompt-based learning and scaled up models.
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REPRODUCIBILITY STATEMENT

We plan to release our code, including pretraining pipeline, and model checkpoints if this work is
accepted. We will add an internal link to the anonymous repository that is visible to reviewers and
ACs. Besides open-source, we follow the standard experimental settings, evaluate with standard
benchmarks, and use common model configurations in all our studies. We also include details of our
implementations in Section 4 and Appendix.
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A APPENDIX

A.1 DETAILS OF EVALUATION BENCHMARKS

We show the statistics of all the datasets in Table 5.

Table 5: The overview of GLUE, SQuAD v1.1, CNN/DM 3.0.0, XSum and T0. We list their
validation data size, language tasks, evaluation metrics, and domain of corpus.

Size Task Metric(s) Domain

GLUE

MNLI 19,647 Natural language inference Accuracy Misc.
QQP 40,430 Sentence similarity Accuracy Social QA
QNLI 5,463 Natural language inference Accuracy Wikipedia
SST-2 872 Sentiment analysis Accuracy Movie Reviews
CoLA 1,043 Sentence acceptability judgement Matthews Corr. Misc.
RTE 277 Natural language inference Accuracy Misc.
MRPC 408 Paraphrasing Accuracy News
STS-B 1,500 Sentence similarity Pearson Corr. Misc.

SQuAD v1.1 10,570 Question answering F1 Wikipedia

CNN/DM v3.0.0 13,368 Summarization Rouge-2-F News Articles

XSum 11,332 Summarization Rouge-2-F News Articles

T0-Eval

RTE 277 Natural language inference Accuracy
CB 56 Natural language inference Accuracy
ANLI 3,200 Natural language inference Accuracy
WSC 104 Coreference resolution Accuracy
Winogrande XL 1,267 Coreference resolution Accuracy
COPA 100 Sentence completion Accuracy
StoryCloze 2016 1,871 Sentence completion Accuracy
HellaSwag 10,042 Sentence completion Accuracy
WiC 638 Word Sense Disambiguation Accuracy

A.1.1 GLUE BENCHMARK

The details of the tasks in the GLUE benchmark are as follow:
MNLI: Multi-genre Natural Language Inference (Williams et al., 2018) contains 393K train exam-
ples obtained via crowdsourcing. The task is to predict whether a given premise sentence entails,
contradicts or neutral with respect to a given hypothesis sentence.
QQP: Question Pairs (Shankar et al., 2017) contains 364K train examples from the Quora question-
answering website. The task is to determine whether a pair of questions asked are semantically
equivalent.
QNLI: Question Natural Language Inference contains 108K train examples derived from the Stanford
Question Answering Dataset (SQuAD) (Rajpurkar et al., 2016). The task is to predict whether a
given sentence contains the answer to a given question sentence.
SST-2: Stanford Sentiment Treebank (Socher et al., 2013) contains 67K train examples extracted
from movie reviews with human-annotated sentiment scores. The tasks is to determine if the sentence
has positive or negative sentiment.
CoLA: Corpus of Linguistic Acceptability (Warstadt et al., 2019) contains 8.5K train examples from
books and journal articles on linguistic theory. The task is to determine whether a given sentence is
linguistically acceptable or not.
RTE: Recognizing Textual Entailment (Bentivogli et al., 2009; Dagan et al., 2005; Haim et al., 2006;
Giampiccolo et al., 2007) contains 2.5K train examples from textual entailment challenges. The task
is to predict whether a given premise sentence entails a given hypothesis sentence or not.
MRPC: Microsoft Research Paraphrase Corpus (Dolan & Brockett, 2005) contains 3.7K train
examples from online news sources. The task is to predict whether two sentences are semantically
equivalent or not.
STS-B: Semantic Textual Similarity (Cer et al., 2017) contains 5.8K train examples drawn from
multiple sources with human annotations on sentence pair semantic similarity. The task is to predict
how semantically similar two sentences are on a 1 to 5 scoring scale.
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Table 6: Our pretraining Hyperparameters for Metro-T5.

Parameters Base Base++

Max Steps 125K 2M
Peak Learning Rate 4e-4 2e-4
Batch Size 2,048 2,048
Warm-Up Steps 10,000 10,000
Total Steps 125,000 2,000,000
Sequence Length 512 512
Relative Position Encoding Buckets 32 32
Relative Position Encoding Max Distance 128 128
Loss multipliers (λMLM, λRTD, λCLM) (1, 50, 1) (1, 50, 1)
Adam ϵ 1e-6 1e-6
Adam (β1, β2) (0.9, 0.98) (0.9, 0.98)
Clip Norm - 2.0
Dropout 0.1 0.1
Weight Decay 0.01 0.01

A.1.2 T0-EVAL BENCHMARK

We also provide the details of all the tasks in T0-Eval:
RTE: Recognizing Textual Entailment (Bentivogli et al., 2009; Dagan et al., 2005; Haim et al., 2006;
Giampiccolo et al., 2007) comes from a series of annual competitions on textual entailment. All
datasets are combined and converted to two-class classification: entailment and not_entailment.
CB: CommitmentBank (de Marneffe et al., 2019) contains corpus of short texts in which at least one
sentence contains an embedded clause. The resulting task is framed as three-class textual entailment
on examples that are drawn from the Wall Street Journal, fiction from the British National Corpus,
and Switchboard.
ANLI: Adversarial Natural Language Inference (Nie et al., 2020) is a new large-scale NLI benchmark
dataset, collected via an iterative, adversarial human-and-model-in-the-loop procedure.
WSC: Winograd Schema Challenge (Levesque et al., 2012) is a coreference resolution dataset in
which examples consist of a sentence with a pronoun and a list of noun phrases from the sentence.
The system must determine the correct referrent of the pronoun from among the provided choices.
Winograd schemas are designed to require everyday knowledge and commonsense reasoning to solve.
Winogrande (Wino.): WinoGrande (Sakaguchi et al., 2021) is a large-scale coreference resolution
dataset of 44k problems. It is inspired by the original WSC design, but adjusted to improve both the
scale and the hardness of the dataset.
COPA: (Roemmele et al., 2011) Choice of Plausible Alternatives is a causal reasoning dataset in
which a system is given a premise sentence and must determine either the cause or effect of the
premise from two possible choices. All examples are handcrafted and focus on topics from blogs and
a photography-related encyclopedia.
StoryCloze: Story Cloze (Mostafazadeh et al., 2017) is a new commonsense reasoning framework
for evaluating story understanding, story generation, and script learning.This test requires a system to
choose the correct ending to a four-sentence story.
HellaSwag: HellaSwag (Zellers et al., 2019) is a challenge dataset for evaluating commonsense NLI
that is specially hard for state-of-the-art models, though its questions are trivial for humans (>95%
accuracy).
WiC: (Pilehvar & Camacho-Collados, 2019) Word-in-Context is a word sense disambiguation dataset
cast as binary classification of sentence pairs. Given two text snippets and a polysemous word that
appears in both sentences, the task is to determine whether the word is used with the same sense in
both sentences.

A.2 HYPERPARAMETERS FOR PRE-TRAINING AND FINETUNING

The hyperparameters used in pretraining are listed in Table 6. For the base setting, we encode
the pretraining corpus with an uncased vocabulary of 32,768 BPE tokens. For the base++ setting,
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Table 7: Hyper-parameters for fine-tuning.

Hyper-parameters

Learning Rates {1e-5, 2e-5, 3e-5, 4e-5, 5e-5}
Batch Size {16,32}
Maximum Training Epochs {2, 3, 5, 10}
Dropout 0.1
Warmup Step Rate 0.06
Weight Decay 0.1

we encode the corpus with a cased vocabulary of 64,000 BPE tokens. In pretraining, we use 15%
masking ratio for the auxiliary MLM pretraining task. We create a [MASK] symbol for each masked
token. Each token in Xnoise is sampled from the softmax distribution predicted by the auxiliary model
for each [MASK] symbol. The weight of each pretraining objective is λMLM = 1, λRTD = 50, and
λCLM = 1, following Meng et al. (2021). In both the auxiliary transformer and the main transformer,
we use shared token embeddings in the embedding layer and the language modeling head.
For GLUE, SQuAD, CNN/DM and XSum, the hyperparameter search space we use in finetuning are
listed in Table 7. In all the reported datasets, we use exactly the same hyperparameter search space
for T5 (ours), Metro-T5, and all the ablations. For T0-Eval, the hyperparameter setting is the same as
pretraining except that the peak learning rate is reduced to the 1/10 of the pretraining LR.
For all the models and ablations we implemented, we report the median results of the same set of five
different random seeds on GLUE, SQuAD and CNN/DM. We use three random seeds on XSum and
two random seeds on T0 Eval.

A.3 IMPLEMENTATION DETAILS

Implementation We implement our T5 baseline and Metro-T5 based on fairseq2. We evaluate
pretrained models on the T0 Eval benchmark using transformers3 and t-zero4. Pretraining
Metro-T5 in the Base setting takes 20.8 hours on 64x NVIDIA A100 (40GB) GPUs. Pretraining
Metro-T5 in the Base++ setting takes 159 hours on 128x NVIDIA A100 (40GB) GPUs.

Pretraining and Fine-tuning Costs. The pretraining cost of Metro-T5 is T5 (our implementation)
plus the auxiliary transformer, whose number of layers is 1/3 of the main transformer’s encoder.
Under the base setting, we pretrain Metro-T5 and T5 (ours) with 64x NVIDIA A100 GPUs (40 GB
Memory). The pretraining time is around 12h for T5 (ours) and 20.8h for Metro-T5. Under the
base++ setting, we use 128x NVIDIA A100 GPUs and the pretraining time is around one week for
both T5 (ours) and Metro-T5. In finetuning, we remove the auxiliary transformer and the RTD and
CLM heads, so the finetuning cost of Metro-T5 and T5 (ours) are the same.

Projection Heads. We have three projection heads in our model: MLM head on the auxiliary
transformer, RTD head on the main transformer’s encoder, and CLM head on the main transformer’s
decoder. Both the MLM and CLM head are a single linear transformation. We use RoBERTa-style
projection head for the RTD head, which contains a linear projection, a ReLU activation, a layer
norm and another linear projection. For the RTD on decoder (complex CLM head) ablation, we use a
RoBERTa-style head as the architecture of the CLM head.

A.4 FULL PROMPT-FINETUNING RESULTS ON T0 EVAL

Figure 5 shows full prompt-finetuning results of Metro-T5BASE++, our T5BASE++ baseline, and T0
(3B) (Sanh et al., 2022). Each boxplot shows the distribution of accuracies of each model using
various prompt templates. Each point of T0 (3B) is the median accuracy of the model on each task
reported by Sanh et al. (2022).

2https://github.com/facebookresearch/fairseq
3https://huggingface.co/docs/transformers/index
4https://github.com/bigscience-workshop/t-zero
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Figure 5: Full prompt-based learning results of Metro-T5base++ versus our T5base++ baseline and T0
(3B) on tasks from T0 benchmark (Sanh et al., 2022).

A.5 EXAMPLE OF THE CHALLENGE OF ILL-FORMED TARGET

In Section 3.2, we described the challenge of Ill-formed Target in pretraining t5 in ELECTRA-Style.
This section shows a concrete example where such ill-formed target leads to ambiguities.

Table 8: An example where ill-formed target leads to ambiguities. Each number denotes a distinct
subword token. M denotes the special token [MASK]. In “Auxiliary Model Prediction”, a token
shown in green denotes a correct prediction, where a token shown in red denotes a wrong prediction.

Sentence 1 2 3 4 5

Auxiliary Model Input 1 1 M M M 5
Auxiliary Model Prediction 2 6 4
Main Model Input 1 2 6 4 5
Main Model Target 2 3 4

Auxiliary Model Input 2 1 2 M M 5
Auxiliary Model Prediction 6 4
Main Model Input 1 2 6 4 5
Main Model Target 3 4

In Table 8, the original sentence is “1 2 3 4 5”. Using different random samples of masked
positions, we can derive two masked sequences as the input of the auxiliary model: “1 M M M 5”
and “1 2 M M 5”. The difference is whether “2” is masked or not. So the target for the decoder
corrective LM objective will be “2 3 4” and “3 4” respectively. After we have the masked input,
the auxiliary model, which is a masked language model (MLM), tries to fill masked positions with
predicted tokens “2 6 4” and “6 4” respectively. The resulting main model input is “1 2 6 4
5” for both cases, but the target is “2 3 4” for case 1 and “3 4” for case 2. This is an ambiguity
where the main model is unsure where it should begin to generate predictions: “2” or “3”.
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