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Abstract

We introduce the GeneRAlized Fractional Time-space graph diffusion network1

(GRAFT), a framework combining temporal and spatial nonlocal operators on2

graphs to effectively capture long-range interactions across time and space. Lever-3

aging time-fractional diffusion processes, GRAFT encompasses a system’s full4

historical context, while the d-path Laplacian diffusion ensures extended spatial5

interactions based on shortest paths. Notably, GRAFT mitigates the over-squashing6

problem common in graph networks. Empirical results show its prowess on self-7

similar, tree-like data due to its fractal-conscious design with fractional time deriva-8

tives. We delve deeply into the mechanics of GRAFT, emphasizing its distinctive9

ability to encompass both time and space diffusion processes through a random10

walk perspective.11

1 Introduction12

Graph Neural Networks (GNNs), notably used in bioinformatics [1], finance [2], and social net-13

works [3–5], harness message passing for adaptability. Variants include the Graph Convolutional14

Networks (GCN) [3], Graph Attention Networks (GAT) [6], and GraphSAGE [7]. Incorporating neural15

ordinary differential equations (ODEs) into GNNs [8], as evidenced in GRAND [9], GRAND++ [10],16

GraphCON [11], CDE [12], and GraphBel [13], provides a novel dynamical systems perspective on17

graph feature evolution. However, GNNs often struggle with over-squashing [14] related to long-range18

interactions. For tasks dependent on long-range node interactions with distance r, the GNN layer19

count, K, should match the span of these interactions, necessitating K ≥ r layers. This results in20

a node’s receptive field growing exponentially with K, making it intricate to encapsulate the vast21

information within a fixed-length vector.22

In our study, we leverage a dynamical systems approach with a generalized fractional diffusion23

equation for graphs. In GNNs such as GRAND and GRAND++, standard diffusion equations are24

expressed as dX(t)
dt = LX(t), with L being a potential adaptive graph Laplacian and X(t) capturing25

node features. These equations highlight local characteristics in time and space. In the temporal26

context, they suggest a short-lived motion direction, translating to a memoryless Markovian graph27

random walk [10]. Spatially, the scope of particle movement is confined to neighboring nodes. In28

divergence, our generalized fractional diffusion equation emphasizes nonlocality in both temporal29

and spatial domains. Temporally, the equation embodies a non-Markovian random walk through the30

more general fractional time-order derivative Dβ with β ∈ (0, 1] (notably, when β = 1, Dβ = d
dt ).31

Spatially, it allows jumps beyond immediate neighbors using the Mellin-transformed d-path Laplacian,32

Ls. In essence, by integrating fractional calculus into our formulation, we arrive at the generalized33

diffusion equation DβX(t) = LsX(t), which reverts to the conventional form if β = 1 and s = ∞.34

Main contributions. In this paper, our prime focus is on devising a generalized fractional diffusion-35

based GNN that exudes global characteristics in both time and space domains. We christen our model36
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the GeneRAlized Fractional Time-space diffusion network (GRAFT). Our main contributions are37

summarized as follows:38

1. We introduce a generalized fractional diffusion graph neural network that manifests nonlocal39

dynamics in both time (layer-wise) and space (the graph domain).40

2. We furnish a detailed random walk interpretation of the generalized diffusion equation, wherein41

the fractional-time derivative denotes a memory-influenced jump — implying that jumps between42

consecutive layers are influenced by prior layers upon discretization — and the Mellin-transformed43

d-path Laplacian operator suggests long-range hops within the graph.44

3. We demonstrate that GRAFT can alleviate the over-squashing predicament due to its inherent45

long-range interactions. Moreover, given the link between fractional dynamics on networks and46

fractal geometry, we demonstrate GRAFT’s commendable performance on tree-structured datasets.47

2 Preliminaries and Framework48

2.1 Temporal Dynamics with Graph Neural FDEs49

There are multiple definitions for Dβ in the literature, including those by Riemann, Liouville,50

Chapman, and Caputo, which explore temporal nonlocality [15]. Note that the temporal domain in our51

paper refers to the “time” over which node feature evolves, drawing a parallel to layer analogies [8],52

different from the temporal domain in spatio-temporal GNNs like [16, 17]. In this study, we mainly53

employ the Marchaud–Weyl fractional derivative MD
α, recognized for its efficacy in elucidating the54

fading memory phenomena [18–20]. On the other hand, the Caputo derivative CD
β is favored in55

engineering contexts [21] and is used in Appendix E. Due to space considerations, a comprehensive56

discussion on these derivatives is reserved for supplementary materials.57

Definition 1 (Marchaud–Weyl Fractional Derivative). Given a scalar function f over real numbers58

and satisfying specific assumptions [22], the Marchaud–Weyl fractional derivative at point t is:59

MD
βf(t) =

β

Γ(1− β)

∫ ∞

0

f(t)− f(t− τ)

τ1+β
dτ, (1)

where Γ(·) denotes the Gamma function. For functions that are sufficiently smooth, according to [22],60

we have61

lim
β→1−

MD
βf(t) =

df(t)

dt
= lim

∆t→0

f(t+∆t)− f(t)

∆t
. (2)

It is seen from (1) that the Marchaud–Weyl fractional derivative, a nonlocal operator, accounts for the62

past values of f within the range (∞, t), indicative of its temporal memory effect. For a vector-valued63

function, the fractional derivative is defined component-wise for each dimension.64

2.2 Space-Fractional Operator: Path Laplacian65

Laplacian operators are derived from the divergence of the gradient of functions defined over the66

nodes of a graph G with node set V comprising |V| = N nodes. Given L2(V) as the Hilbert space67

of functions on V , we introduce the Mellin-transformed d-path Laplacian operator, underscoring its68

nonlocal long-range interactions over the space domain and its ties with the local Laplacian operator.69

Definition 2 (Mellin-transformed d-path Laplacian Operator). The Mellin-transformed d-path Lapla-70

cian operator in L2(V) is defined as71 (
Lsf

)
(i) :=

∑
w∈V:d(i,j)=dij

f(i)− f(j)

(dij)s
, (3)

where f ∈ L2(V), dij is the shortest path distance between node i and node j, and 0 ≤ s ≤ ∞72

represents the nonlocal parameter. Additionally, the Mellin-transformed d-path Laplacian can be73

defined as a matrix form: Ls := Ds −As, where As = [aij(s)]|V|×|V| is a d-path adjacency matrix74

by taking the shortest path distance dij into consideration with aij(s) = (dij)
−s if i ̸= j, and75

ai,j = 0 if i = j. The term (−s) represents the negative entrywise power, and Ds is the node degree76

matrix defined as: Ds := diag (As1), which is a diagonal matrix with (Ds)ii =
∑
j aij(s). Here 177

denotes the all-one vector. Furthermore, the normalized Mellin-transformed d-path Laplacian can be78

further defined as L̃s := I− Ãs with Ãs = As(Ds)
−1.79

Remark 1. The Mellin-transformed d-path Laplacian operator Ls incorporates nonlocal/long-range80

interactions between node pairs via the shortest paths connecting them. Pairs of directly-connected81

nodes in the graph interact locally with a ‘strength’ of one (dij = 1), whereas pairs of non-directly82

connected nodes (i, j) exhibit nonlocal/long-range interactions with a ‘strength’ of (dij)−s. The83

parameter s modulates the extent of these long-range interactions in the space domain, analogous to84

the role of β in the time fractional derivative MD
βX(t). Compared to the conventional Laplacian85

operator:86
Lf(v) :=

∑
(v,w)∈E

f(v)− f(w), f ∈ L2(V), (4)
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It is evident that as s→ ∞, the Mellin-transformed d-path Laplacian operator, Ls, converges to the87

standard Laplacian operator, L.88

3 Generalized Fractional Time-Space Diffusion Equation Graph Network89

Exploring the temporal and spatial nonlocal operators MD
β and Ls highlighted in Section 2, this90

section introduces GRAFT. This generalized diffusion equation on graphs enriches GNN frameworks91

beyond the conventional GRAND. We explore the GRAFT model and its random walk interpretation,92

with details on numerical solvers in Appendix E.93

3.1 Model94

GRAFT embodies a generalized fractional diffusion process on graphs. The incorporation of the95

time-fractional diffusion mechanism embeds a memory mechanism, taking into account the entire96

evolutionary history of a system rather than solely its present state. Meanwhile, the d-path Laplacian97

reflects the long-range interactions between nodes, gauged by their shortest connecting path.98

Consider an undirected graph G = (X,W), where X =
([

x(1)
]⊺
, · · · ,

[
x(N)

]⊺)⊺
∈ RN×d where99

each row x(i) ∈ Rd represents the i-th node feature vector. The N ×N matrix W := (Wij) is the100

adjacency matrix of the graph whose elements Wij indicating the edge weight between the i-th and101

j-th nodes with Wij =Wji. We set the feature updating equation as102

MD
βX(t) = −LsX(t) = −

∆∑
d=1

d−sLdX(t), (5)

where 0 < β ≤ 1 and 0 < s < ∞. Here X(t) =
([

x(1)(t)
]⊺
, . . . ,

[
x(N)(t)

]⊺)⊺
∈ RN×d is the103

features at time t with x(i)(0) = x(i) serving as the initial features for i = 1, . . . , N . It is evident104

that node features in a graph are influenced not only by their immediate neighbors but also through105

space-based long-range interactions. The coefficients, d−s, depict the rate at which these interactions106

decay based on the power law of path-length d. The parameter s is designed to be learnable.107

Remark 2. GRAFT’s dynamics, highlighted in (5), present a holistic time-space diffusion equation.108

When s→ ∞, the equation converges to Dβ
t X(t) = −LX(t), reflecting the standard graph Lapla-109

cian with just the time-fractional process and no long-range spatial interactions [23]. Meanwhile, as110

β → 1, we derive dX(t)
dt = −LsX(t), denoting the typical d-path Laplacian diffusion, focusing on111

spatial graph interactions without temporal ones [24].112

3.2 Fractional Graph Random Walk with Memory and Long range Interaction113

In this section, we provide a non-Markov graph random walk interpretation for (5), highlighting long-114

range jumps in both the temporal and spatial realms, each following a power-law decay probability.115

For clarity, without loss of generality, we interpret X(t) as a |V|-dimensional probability or mass116

concentration vector P(t) over the graph nodes V . We consider a random walker navigating over117

graph G with an infinitesimal interval of time ∆τ > 0. We assume that there is no self-loop in the118

graph topology. The dynamics of the random walk are characterized as follows:119

1. The walker is expected to wait at the current location for a random period of time. The distribution120

of waiting times, ψβ(τ), is given by a power-law function dβn−(1+β) with dβ > 0 chosen to121

ensure
∑∞
n=1 ψβ(n) = 1.122

2. Upon deciding to make a jump, the walker can either move from the current node i to node j with123

a power-law probability of (∆τ)βdβ |Γ(−β)| (dij)
−s∑

j(dij)
−s if i ̸= j. Alternatively, with a probability of124

1− (∆τ)βdβ |Γ(−β)|, it will remain at the current node i.125

It should be noted that the jump to node i itself in the second option is conceptually distinct from126

waiting at node i as per the first option, despite the resultant observation appearing identical—i.e., the127

walker remaining at the current node. Our goal is to compute Pj(t;β), the probability of the walker128

being at node j at time t. The law of total probability for the above random walk is expressed as:129

Pj(t; β)=

∞∑
n=1

[∑
i∈V
i̸=j

Pi(t−n∆τ ; β)(∆τ)βdβ |Γ(−β)|
(dij)

−s∑
j(dij)

−s
+ Pj(t− n∆τ ; β)

(
1 − (∆τ)

β
dβ |Γ(−β)|

)]
ψβ(n).

In this equation, the summation over n accounts for the possibility that the walker may have remained130

stationary for a period of t− n∆τ , with a waiting time probability of ψβ(n).131

Theorem 1. Given a specific β ∈ (0, 1) and as ∆τ → 0, we have that P(t;β) solves (5), i.e.,132

lim
∆τ→0

{
MD

βP(t;β) + LsP(t;β)
}
= 0.
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Figure 1: GRAFT’s information flow is discretized with a source
node marked in blue. Colored arrows show hop distances, linking spatial
and temporal neighbors. Layers, as referenced in Appendix E, equate
to time, while the graph depicts space. GRAFT ensures bidirectional
communication, integrating long-range space-time interactions.
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Figure 2: The fractal dim of datasets. We use the Compact-
Box-Burning algorithm in [25] to compute the log-log slope
(fractal dim) of the box size and the minimum number of boxes
needed to cover the graph.

4 Experiments133

4.1 Node Classification134

For node classification, we employed various datasets including Cora [26], Citeseer [27], Pubmed [28],135

and tree-structured datasets (Disease and Airport [29]). We processed Disease and Airport datasets136

following [29], and applied random splits [9] to the others. Our GRAFT model’s performance for137

node classification was evaluated against key GNNs baselines: Euclidean (e.g., GCN [3], GAT [6],138

and SGC [30]), Hyperbolic (e.g., HGCN [29], HGAT [31], and LGCN [32]); and as well as GIL [33],139

HamGNN [34], and graph neural Diffusions models GRAND [9] and GraphCON [35].140

In Table 1, GRAFT outperforms on citation networks and holds its own on tree-structured data,141

notably against tree-focused GNNs like HGCN, HGAT, and GIL. This prowess is credited to142

GRAFT’s fractional calculus techniques. Using the Compact-Box-Burning algorithm [25], we143

determine fractal dimensions for datasets, depicted in Fig. 2. A clear correlation in Table 1144

emerges: lower δ-hyperbolicity (indicating more tree-like graphs as per [29]) relates to higher145

fractal dimensions. According to [15, 36], fractional calculus adeptly captures heat or mass dis-146

persion in fractal mediums. The close tie between fractal dimension and fractional derivative147

order [15, 36] insinuates the optimal β in Dβ
t X(t) may uncover the graph’s inherent fractal na-148

ture. The consistent performance of GRAFT across various datasets emphasizes its adaptability149

to different levels of fractalness. In contrast, graph ODE models such as GRAND and Graph-150

CON struggle with datasets like Airport and Disease, which have higher fractal dimensions.151

Method Cora Citeseer Pubmed Airport Disease

fractal dim 1.22 0.62 2.25 2.17 2.47

δ hyperbolicity 11.0 4.5 3.5 1.0 0

MLP 57.2±1.2 58.1±1.9 72.0±1.4 77.0±1.8 50.0±0.0

GCN 81.5±1.3 71.9±1.9 77.8±2.9 81.6±0.6 69.8±0.5
GAT 81.8±1.3 71.4±1.9 78.7±2.3 81.6±0.4 70.4±0.5
SGC 82.0±1.7 70.9±1.3 76.8±1.1 81.4±2.2 82.8±0.9

HGCN 78.7±1.0 65.8±2.0 76.4±0.8 85.4±0.7 89.9±1.1
HGAT 80.9±0.8 69.2±1.0 78.0±0.5 87.5±1.0 88.7±3.4
LGCN 80.6±0.9 68.1±2.0 77.4±1.4 88.2±0.2 88.5±1.8

GIL 83.6±1.0 73.4±0.5 78.8±1.7 91.5±1.7 90.8±0.5

GRAND 83.6±1.0 73.4±0.5 78.8±1.7 80.5±9.6 74.5±3.4
GraphCON 84.2±1.3 74.2±1.7 79.4±1.3 68.6±2.1 87.5±4.1
HamGNN 82.2±0.8 72.4±0.9 78.1±0.5 96.0±0.1 91.5±2.1

GRAFT 84.4±0.7 74.6±1.8 79.7±1.8 96.6±0.6 90.7±2.7

Table 1: Node classification results(%) random train-val-test splits

Model DD PROTEINS

GCN [3] 75.63±2.95 75.11±4.51
ResGCN [37] 76.65±2.73 75.11±3.22
GCNJK [38] 73.16±5.12 75.24±4.15

DGCNN [39] 61.63±5.33 73.95±3.04
SAGPool [40] 70.52±5.48 71.89±4.03
DiffPool [41] 73.16±5.12 75.24±4.15

TwoHop [42] 74.53±5.24 75.30±4.27
GCNFA [43] OOM 74.31±4.16

GraphTrans [44] OOM 75.12±4.89

LRGNN [45] 78.18±2.02 75.39±4.04

GRAFT 79.83±5.45 76.28±3.57

Table 2: Graph Classification Results

152

153

4.2 Graph Classification154

We incorporated the DD and Proteins datasets from [46] for graph-based protein structure classifica-155

tion. Statistics for these protein graphs can be found in the supplementary material. Notably, such156

datasets assess a model’s proficiency in capturing long-range interactions [45]. As Table 2 reveals, our157

model thrives on these datasets, underscoring its adeptness at grasping long-range graph interactions.158

5 Conclusion159

We presented GRAFT, a groundbreaking framework blending temporal and spatial nonlocal operators160

for graphs. Through time-fractional diffusion and the d-path Laplacian, GRAFT addresses feature161

dynamics and the over-squashing challenge in GNNs. Our empirical results highlight its potency,162

especially with fractal-like data, marking a new avenue in GNN research.163
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A Supplementary materials362

A.1 Related work363

A.1.1 Long Range Interaction and Skip Connection364

Numerous works, including [47–50], have investigated the k-hop interaction between graph nodes365

within the context of GNN design. This is often facilitated by leveraging either a polynomial or a366

specific order of the Laplacian matrix, effectively enabling a form of random walk characterized by367

space-based long-range interactions. Such k-hop engagements have the potential to address challenges368

like over-squashing. The work on the fractional graph Laplacian by [48] employs a real order of369

the graph Laplacian to mitigate the oversmoothing issue, necessitating the use of singular value370

decomposition (SVD). A foundational comparison between the fractional graph Laplacian and the371

Mellin-transformed d-path Laplacian operator is provided in [51]. The study reveals that path-based372

diffusion consistently exhibits a reduced average commute time, potentially indicating diminished373

oversquashing, as elucidated by [52, Theorem 5.5]. The significant computational overhead introduced374

by SVD poses challenges to its applicability to large-scale graphs.375

In parallel, the incorporation of various skip or dense connections across layers, as evidenced376

in [53–56], adopts diverse memory utilization strategies. These strategies can, to an extent, be377

conceptualized as the discretization of certain fractional differential equations (FDEs). A notable378

contribution in [50] introduces an innovative layer-dependent rewiring mechanism, progressively379

encompassing high-order neighbors. Their approach, which establishes a skip connection from the380

current layer back to a preceding one, embodies a unique form of memory utilization. This contrasts381

with the memory mechanisms explored in our study.382

Our work distinctively frames a graph neural FDE approach, marked by its intrinsic nonlocal383

dynamics, both temporally (across layers) and spatially (within the graph). Note that the temporal384

domain in our paper refers to the “time” over which node feature evolves, different from the temporal385

domain in spatio-temporal GNNs like [16, 17].386

A.1.2 Fractional Calculus and Deep Learning387

The field of fractional calculus has seen a notable surge in interest recently due to its wide-ranging388

applications across various domains. These include but are not limited to, numerical analysis [57],389

viscoelastic materials [58], population growth models [59], control theory [60], signal processing [61],390

financial mathematics [62], and particularly in the representation of porous and fractal phenomena391

[63–65]. Within these contexts, fractional-order differential equations have been developed as a392

powerful extension to the conventional integer-ordered differential equations, offering a valuable393

mathematical tool for system modeling [66].394

In the landscape of deep learning, [67] introduced an innovative approach for GNN parameter opti-395

mization via fractional derivatives. This deviates from the traditional use of integer-order derivatives396

in optimization algorithms such as SGD or Adam [68]. However, the focus of [67] is fundamentally397

different from our problem formulation. While [67] uses fractional derivatives for gradient optimiza-398

tion, our emphasis is on the fractional-derivative evolution of node embeddings. In another vein, [69]399

draws from fractional calculus, specifically the L1 approximation of the fractional derivative, to400

design a densely connected neural network. This design seeks to effectively manage non-smooth data401

and counter the vanishing gradient problem. Our work is different as we introduce fractional calculus402

into graph ODE models for evolving node embeddings, making use of its non-Markovian dynamic403

process nature.404

From the vantage of physics-informed machine learning, there exists a research trajectory dedicated405

to the formulation of neural networks anchored in physical principles, specifically tailored for solving406

fractional PDEs. A trailblazing contribution in this sphere is the Fractional Physics Informed Neural407

Networks (fPINNs) [70]. Subsequent explorations, including [71,72], have expanded in this trajectory.408

We emphasize that these endeavors are distinctly different from our proposed methodology.409

Our paper introduces a graph fractional differential equation framework to update graph node410

features, positioning our research distinctly from the aforementioned works.411

A.1.3 Over-squashing412

The paper by [73] offers a geometric perspective on the bottleneck and over-squashing phenomena in413

Message Passing Neural Networks. Introducing the novel Balanced Forman curvature, they establish414
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that edges with negative curvature play a role in bottleneck formation, subsequently leading to415

over-squashing. Building on this understanding, they present a curvature-informed approach for416

graph rewiring. In [52], it is observed that increasing the network’s width can mitigate over-squashing417

but heightens the network’s sensitivity. On the other hand, enhancing the depth does not alleviate418

over-squashing and can result in vanishing gradient issues. They underscore that graph topology is419

the predominant factor in over-squashing, emphasizing its prevalence between nodes with extended420

commute times. The paper [74] adopts the total effective resistance as a metric to evaluate over-421

squashing in GNNs. The authors further expand their work by introducing an advanced rewiring422

algorithm, aimed at reducing the total effective resistance through the strategic addition of edges to423

the graph. In contrast, our research harnesses the nonlocal characteristic of the Mellin-transformed424

d-path Laplacian operator, Ls, as a novel technique to tackle the over-squashing challenge — a425

perspective not investigated by the aforementioned studies.426

A.1.4 Graph Neural ODEs427

Drawing inspiration from the pioneering work of [8], which reinterprets neural networks using428

the framework of ODEs, subsequent studies like [75–77] have ventured into the domain of graph429

neural ODEs. This paradigm treats GNNs as dynamical systems, wherein the ODE function can be430

instantiated through various architectures, including GCNs [78], GATs [79], and even Transformers431

[80]. Notably, graph neural ODEs inherit distinctive properties from dynamical system theory. For432

instance, they exhibit stability [13] and present a promising avenue to counteract the over-smoothing433

challenge [35]. In general, we have434

dX(t)

dt
= F(W,X(t)). (6)

In this representation, X(t) signifies the evolving node features, and W is the adjacency matrix of the435

graph. F serves as the dynamical ODE function tailored for graphs and can be instantiated by varied436

GNN architectures such as GCN or GAT. It is worth noting that higher-order graph ODE models437

like GraphCON [11] can be equivalently expressed in the first order by scaling or extending the438

node dimension. Our methodology uniquely utilizes non-integer ordered FDEs, pushing boundaries439

beyond the conventional integer-order ODEs.440

B DD and Protein Datasets441

Both DD and Protein Datasets are from TUDdataset [81] where the topology of the graphs in relation442

to the graph classification tasks [82, 83] has been identified to require long-range interactions. The443

statistics of these two datasets are shown in Table 3.

Dataset # Graphs # Feature # Classes Avg. # Nodes Avg. # Edges

DD 1178 89 2 384.3 715.7
Proteins 1113 3 2 39.1 72.8

Table 3: Statistics of the datasets

444

C Preliminaries and Framework445

C.1 Temporal Dynamics with Graph Neural FDEs446

Motivated by the unique modeling capabilities of FDEs [84] in elucidating physical phenomena —447

especially their adeptness at encapsulating memory over the temporal landscape and hereditary traits448

across diverse materials and processes beyond traditional ODEs [85] — we extend graph neural449

ODEs to the model:450

MD
βX(t) = F(W,X(t)), (7)

where β ∈ (0, 1] denotes the order of the fractional derivative. Interestingly, the function on the451

right-hand side, F(W,X(t)), maintains its structure as in (6). By doing so, we exploit the inherent452

temporal nonlocality and extensive range dependency features of fractional derivatives [86], rendering453
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this approach potent for modeling intricate graph-structured data with nuanced temporal dynamics.454

While multiple definitions exist for fractional derivatives, for mathematical clarity and elegance, we455

adopt the Marchaud–Weyl fractional derivative MD
β , primarily for its effectiveness in capturing the456

fading memory phenomena [18–20]. The parameter β serves to quantify the degree of memory (i.e.,457

long-range interaction in time) implicated in the feature evolution dynamics.458

Definition 3 (Marchaud–Weyl Fractional Derivative). The Marchaud–Weyl fractional derivative459

of a scalar function f , defined over the real numbers and subjected to particular assumptions, at a460

specified point t, is given as:461

MD
βf(t) =

β

Γ(1− β)

∫ ∞

0

f(t)− f(t− τ)

τ1+β
dτ, (8)

where Γ(·) denotes the Gamma function. For functions that are sufficiently smooth, according to [22],462

we have463

lim
β→1−

MD
βf(t) =

df(t)

dt
= lim

∆t→0

f(t+∆t)− f(t)

∆t
. (9)

It is seen from (8) that the Marchaud–Weyl fractional derivative, a nonlocal operator, accounts for the464

past values of f within the range (∞, t), indicative of its temporal memory effect. In the language465

of probability, a non-Markovian process’ evolution depends not only on the current state but also466

on its historical states. As β → 1− (limit from the left) in (9), the operator reverts to the traditional467

first-order derivative, representing the local rate of change of the function with respect to time,468

considering only the infinitesimally small neighborhood around the point of interest. Correspondingly,469

the non-Markovian process may degenerate to a Markovian process, as discussed in Appendix C.2.470

For a vector-valued function, the fractional derivative is defined component-wise for each dimension,471

similar to the first-order derivative.472

C.2 Non-Markovian Random Walk Interpretation473

This subsection elucidates the significance of fractional-order derivatives in the context of one-474

dimensional heat diffusion, underlining their deep association with memory-decaying random walks475

[20]. Consider a scenario where a random walker traverses the x-axis, moving within infinitesimal476

intervals of space ∆x > 0 and time ∆τ > 0. The walker moves a distance of ∆x from the starting477

point x in either direction with equal probability and pauses at each location for a random period478

of time. This introduces randomness in the waiting times between steps, echoing observations479

from several physical experiments [87]. Our objective is to determine u(x, t), which represents480

the likelihood/concentration of the walker being at position x at a given time t. The waiting time481

distribution, symbolized as ψβ(τ), is shaped by a power-law function dβn−(1+β), with dβ > 0 set482

such that
∑∞
n=1 ψβ(n) = 1. The law of total probability can be articulated as:483

u(x, t) =

∞∑
n=1

[
1

2
u(x−∆x, t− n∆τ) +

1

2
u(x+∆x, t− n∆τ)

]
ψβ(n).

Within this formulation, the terms enclosed in brackets signify the likelihood of the walker reaching484

position x from its neighboring locations, either x −∆x or x + ∆x, each at a probability of 1/2.485

The summation across n encapsulates scenarios where the walker might have been stationary for a486

duration of t− n∆τ , influenced by the waiting time probability ψβ(n). Inserting the expression for487

ψβ(n), we get:488

∞∑
n=1

u(x, t)− u(x, t− n∆τ)

(n∆τ)1+β
(∆τ) =

(∆x)2

2dβ(∆τ)β

∞∑
n=1

δ2u(x, t− n∆τ)ψβ(n).

Here, the second-order incremental quotient is articulated as:489

δ2u(x, t) =
u(x−∆x, t) + u(x+∆x, t)− 2u(x, t)

(∆x)2
.
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In the limit as ∆x,∆τ → 0 and assuming that (∆x)2

dβ(∆τ)β
→ kβ |Γ(−β)|, we obtain the time-fractional490

diffusion equation:491

MD
βu =

kβ
2
uxx. (10)

As the value of β approaches 1−, this intricate non-Markovian random walk with attenuating memory492

converges to the simpler Markovian counterpart, thus negating memory influences. As a result, (10)493

seamlessly transitions to the canonical heat diffusion equation with integer-order time derivative494

when β = 1: df(t)
dt = k1

2 uxx.495

C.3 Space-Fractional Operator: Path Laplacian496

Definition 4 (Mellin-transformed d-path Laplacian Operator). The Mellin-transformed d-path Lapla-497

cian operator in L2(V) is defined as498 (
Lsf

)
(i) :=

∑
w∈V:d(i,j)=dij

f(i)− f(j)

(dij)s
, (11)

where f ∈ L2(V), dij is the shortest path distance between node i and node j, and 0 ≤ s ≤ ∞499

represents the nonlocal parameter. Additionally, the Mellin-transformed d-path Laplacian can be500

defined as a matrix form:501

Ls := Ds −As (12)

where As = [aij(s)]|V|×|V| is a d-path adjacency matrix by taking the shortest path distance dij502

into consideration with503

aij(s) :=

{
(dij)

−s if i ̸= j,

0 if i = j,
(13)

and (−s) represents the negative entrywise power, and Ds is the node degree matrix defined as:504

Ds := diag (As1) (14)

which is a diagonal matrix with (Ds)ii =
∑
j aij(s). Here 1 denotes the all-one vector. Furthermore,505

the normalized Mellin-transformed d-path Laplacian can be further defined as L̃s := I− Ãs with506

Ãs = As(Ds)
−1.507

Moreover, the Mellin-transformed d-path Laplacian operator, Ls, can be expressed as:508

Ls =

∆∑
d=1

d−sLd = L+

∆∑
d=2

d−sLd (15)

where ∆ is the diameter of the graph, and Ld is the vanilla d-path Laplacian operator, defined as:509

Ldf(i) :=
∑

w∈V:d(i,j)=dij

f(i)− f(j), f ∈ L2(V). (16)

and L is the standard Laplacian operator:510

Lf(v) :=
∑

(v,w)∈E

f(v)− f(w), f ∈ L2(V). (17)

It is evident that setting ∆ = 1 results in graph nodes connecting only with their immediate neighbors,511

negating any long-range interactions via the standard Laplacian operator L. When ∆ > 1, graph nodes512

are influenced not just by adjacent neighbors but also by space-determined long-range interactions,513

and the coefficients d−s determine their interactions’ decay, mirroring the power law of path-length514

d. As s → ∞, the Mellin-transformed d-path Laplacian operator, Ls, converges to the standard515

Laplacian operator, L.516
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D Fractional Graph Random Walk with Memory and Long range Interaction517

Theorem 2. Given a specific β ∈ (0, 1) and as ∆τ → 0, we have that P(t;β) solves (5), i.e.,518

lim
∆τ→0

{
MD

βP(t;β) + LsP(t;β)
}
= 0.

Remark 3. At its core, this type of random walk is non-Markovian, underscoring the importance519

of the entire temporal history of the walk (temporal long-range iteration) with spatially long-range520

iterations at the same time. In contrast to traditional graph diffusion GNNs [9,10] which correspond to521

β = 1 and assume transitions between node states to be Markovian (where future states depend only522

on the present state), GRAFT accommodates non-Markovian dynamics, where future states depend on523

a continuum of past states. At the same time, GRAFT also takes space-based long-range interactions524

between the pairs of nodes with strength (dij)
−s∑

j(dij)
−s into consideration thanks to the d-path Laplacian,525

which facilitates transitions between node states to be nonlocal. This approach enables GRAFT to526

model more intricate dependencies, achieve richer representations both historically and spatially, and527

potentially enhance predictive performance. The non-Markovian nature and space-based long-range528

interactions are also evident in the numerical solution to GRAFT compared to ODE solvers used in529

GRAND.530

Recall the law of total probability for the random walk is expressed as:531

Pj(t;β)=
∞∑
n=1

[∑
i∈V
i ̸=j

Pi(t−n∆τ ;β)(∆τ)βdβ |Γ(−β)|
(dij)

−s∑
j(dij)

−s

+Pj(t− n∆τ ;β)
(
1− (∆τ)βdβ |Γ(−β)|

) ]
ψβ(n). (18)

Proof. With notice of
∑∞
n=1 ψβ0(n) = 1, we set β = β0 in (18) and subtract532 ∑∞

n=1 ψβ0(n)Pj(t− n∆τ ;β0) from both sides of (18), then (18) yields533

∞∑
n=1

(Pj(t;β0)− Pj(t− n∆τ ;β0))ψβ0(n)

=(∆τ)β0dβ0
|Γ(−β0)|

∞∑
n=1

[∑
i∈V
i ̸=j

Pi(t− n∆τ ;β0)
(dij)

−s∑
j(dij)

−s

− Pj(t− n∆τ ;β0)

]
ψβ0(n)

=(∆τ)β0dβ0 |Γ(−β0)|
∞∑
n=1

[
−L̃sP(t− n∆τ ;β0)

]
j
ψβ0(n).

Divide both sides by (∆τ)β0dβ0
|Γ(−β0)|, we have534

1

|Γ(−β0)|

∞∑
n=1

Pj(t;β0)− Pj(t− n∆τ ;β0)

(n∆τ)1+β0
∆τ =

∞∑
n=1

[
−L̃sP(t− n∆τ ;β0)

]
j
ψβ0(n).

Let ∆τ → 0 and switch the limit and the summation according to dominated convergence theorem535

(we assume the conditions are satisfied), we have536

1

|Γ(−β0)|

∫ ∞

0

Pj(t;β0)− Pj(t− τ ;β0)

τ1+β
dτ =

[
−L̃sP(t;β0)

]
j
.

Since Γ(1− β) = βΓ(−β), according to (8), we have537

MD
β0P(t;β0) = −L̃sP(t;β0).

The proof is now complete.538
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E Solving GRAFT539

The conventional graph diffusion approach (6) discussed in [9, 10, 13] aligns the time parameter t540

with GNN layers, echoing the neural ODEs’ portrayal as uninterrupted residual networks [8]. In many541

neural ODE solvers, time discretization is vital. The explicit Euler method, for instance, reduces542

neural ODEs to residual networks [8]. Despite the accuracy of adaptive step size solvers, they are543

resource-intensive [88]. In our GRAFT solution, we leverage the Caputo fractional derivative CD
β is544

utilized as:545

CD
βX(t) = F(W,X(t)), (19)

where the dynamic function F can be either −LsX(t) in (5). To derive numerical solvers for GRAFT,546

we address the complexity of fractional-order differential equations, differing from previous time547

discretization methods. Drawing from [89], we employ the fractional Adams–Bashforth–Moulton548

method and use an initial numerical solver termed "predictor" with time discretization given by549

tj = jh, where h is a small positive increment.550

X(tn) = X(0) +
1

Γ(β)

n−1∑
j=0

µj,nF(W,X(tj)), (20)

where µj,n = hβ

β

(
(n− j)β − (n− 1− j)β

)
and h = tn − tn−1 is the time discretisation. At551

each time tn, the node feature vector X(tn) is influenced through spaced-based long-range inter-552

actions with −LsX(t) and the formulation of the node feature X(tn) utilizes the full temporal553

memory {X(tj)}n−1
j=0 , which reflects the time-space-based long range iterations at the same time.554

The visualization of information flow in this discretization in shown in Fig. 1.555

Remark 4. When β = 1, this method simplifies to the Euler solver in [8, 9] as µj,n ≡ h, yielding556

X(tn) = X(tn−1) + hF(W,X(tn−1)). Thus, the solver shown in (20) can be considered as the557

fractional Euler method or fractional Adams–Bashforth method, which is a generalization of the558

Euler method used in [8, 9].559
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