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Abstract

Large Language Models (LLMs) excel in gen-
eral domains but lack specialized knowledge.
Existing methods use external annotated data
to enhance LLMs, which is resource-intensive.
We propose a novel framework for LLM’s
self-evolution in specialized domains using
ontology-driven knowledge extraction and en-
hancement. We introduce BeliefConf, a metric
to quantify the model’s confidence in knowl-
edge paths, and our method of the Automated
Path Annotation Mechanism (APAM) helps
identify Enhanced Paths for targeted training.
Experiments show that our method outperforms
the base model (Llama3-8B-instruct) on 3 out
of 6 medical datasets (PubMedQA, MedQA,
USMLE-stepl) and achieves state-of-the-art
performance on PubMedQA without external
training data, surpassing models like Llama3-
Med42-8B.

1 Introduction

Current Large Language Models (LLMs) have
demonstrated remarkable capabilities in general
domains(Wang et al., 2024). While these models
also exhibit some proficiency in handling special-
ized questions, they still lack sufficient knowledge
in professional domains(Ling et al., 2023).

Many existing methods enhance LLMs by inject-
ing domain-specific knowledge (Christophe et al.,
2024; Gururajan et al., 2024) into fine-tuning pre-
trained models. However, these approaches re-
quire extensive annotated data from specialized do-
mains, which is both labor-intensive and resource-
consuming.

In general domains, model’s self-evolution has
garnered growing attention from researchers lately
due to its independence from external supervised
data(Tao et al., 2024). Researchers have proposed
various methods to make models generate and an-
notate training data autonomously based on specific
priciples, such as consistency(Wang et al., 2023a;

Madaan et al., 2023), multi-step reasoning(Yu et al.,
2024), or ethical requirement integration(Sun et al.,
2023). However, these principles and the their as-
sociated evolution objectives tend to be too general-
ized, making them unsuitable for highly specialized
fields demanding rigorous professional knowledge
and conceptual understanding.

Recent research (Liu et al., 2025) suggests that
improving models’ understanding of domain on-
tologies can greatly enhance their performance in
specialized fields, which inspires us to consider the
possibility of leveraging ontology to enable mod-
els’ self-evolution in specialized domains. This
is because Ontologies inherently incorporate built-
in rules and inconsistency detection mechanisms,
making them a powerful tool for structuring and
validating domain-specific knowledge. If we can
extract knowledge within models into an explict
ontology, we can utilize these ontology rules to
extrapolate on knowledge and detect inconsisten-
cies within them. Furthermore, ontologies are rich
in concepts and their interrelationships, with each
knowledge path clearly represented in a triple for-
mat (subject-predicate-object). This structured rep-
resentation allows for precise identification and
enhancement of weak or incomplete domain knowl-
edge in a point-to-point manner, addressing the spe-
cific evolutionary needs of models in specialized
domains.

Specifically, in our method, we first extract
model’s internal knowledge in domains into an ex-
plicit ontology. We then automatically identify
which parts of this ontology require updates us-
ing our Automated Path Annotation Mechanism
(APAM). APAM consists of two main steps. First,
we annotate reliable paths within the extracted on-
tology, based on the assumption that a knowledge
path is more likely to be reliable if a majority of
its supporting paths exist within the model. During
the process, We introduce a novel metric called
BeliefConf to quantify model’s confidence in each



knowledge path. Second, we infer new paths based
on the reliable paths and verify whether these in-
ferred paths are also recognized by the model. If
not, we consider the situation as inconsistency and
classify them as enhanced paths then generate tar-
geted training corpora to improve the model’s fa-
miliarity towards these paths.

We conducted experiments in the medical do-
main, using Llama3-8B-instruct(Dubey et al.,
2024) as the base model and fine-tuning it with
our proposed method. We compared our approach
against the base model as well as other domain-
specific models fine-tuned from Llama3-8B by
external domain corpus. Results show that our
method outperforms the base model on 3 out of 6
medical evaluation datasets, PubMedQA(Jin et al.,
2019), MedQA(Jin et al., 2020), and USMLE-
stepl(Han et al., 2023), and significantly surpasses
all baseline models on the PubMedQA dataset,
including Llama3-Med42-8B(Christophe et al.,
2024), which is fine-tuned on external data and
achieves the best performance on the remaining
datasets.

Our main contributions are as follows:

(1) We introduce BeliefConf, a novel metric
to quantify model’s confidence towards specific
knowledge path.

(2) We design the method of APAM (Automated
Path Annotation Mechanism) based on comprehen-
sive therotical analysis. Both our preliminary ex-
periments and final experimental results validate
the effectiveness of this mechanism, demonstrat-
ing its capability to enable LLMs’ self-evolution
without relying on external supervision.

(3) We propose an efficient framework for
ontology-based self-evolution of LLMs in special-
ized domain, validated through our experiments in
the medical domain.

2 Preliminary

2.1 Ontology

Ontology is a type of structured framework that
captures concepts, their interconnections, and rules
within a specific domain which enables a shared un-
derstanding of a domain’s knowledge. It has been
widely applied in the semantic web and knowl-
edge management systems. Three core compo-
nents in ontologies are: (1) Concepts: represent-
ing entities or categories within a domain. For
example, in a medical ontology, concepts might
include "Cell", "Symptom" and "Treatment." (2)

Relationships: Relationships define how concepts
are interconnected. The most common and im-
portant relationships in ontologies are: Hyponymy
(Is-subclass-of): This represents a hierarchical, sub-
class relationship. For instance, "Muscle Cell" is a
subclass of "Cell" ." Synonymy (Is-synonym-of):
This indicates that two concepts are semantically
equivalent. For example, "Muscle Cell" and "Mus-
cle Fiber" are synonyms. (3) Axioms (Rules): On-
tologies are equipped with built-in rules which en-
able automated reasoning and consistency checking
within knowledge graphs. For example: If (Con-
cept A, Is-subclass-of, Concept B) and (Concept
B Is-subclass-of Concept C), then it logically fol-
lows that (Concept A, Is-subclass-of, Concept C).
However, if the ontology also includes (Concept
A Is-Not-A-subclass-of, Concept C), this creates
a conflict with the previously inferred relationship.
Such rules allow ontologies to automatically detect
and resolve inconsistencies, ensuring the integrity
of the knowledge graph. This capability is par-
ticularly valuable in large-scale knowledge bases,
where manual verification would be impractical.

2.2 Perplexity

Model perplexity plays a critical role in our cal-
culation of BeliefConf. This metric quantifies the
uncertainty of a probabilistic model in its predic-
tions, where lower perplexity values correspond
to higher prediction accuracy, while higher values
indicate poorer performance. Formally, perplexity
is defined as the exponential of the cross-entropy
between the true distribution:

Perplezity = 2P (D

where H (p, q) is the cross-entropy between the true
distribution between the true distribution p and the
model’s predicted distribution q.

The average perplexity of a model on a dataset
serves as a proxy for evaluating how well the model
comprehends the underlying patterns in the data.
Furthermore, next-token prediction perplexity has
been adopted to gauge a model’s familiarity with
specific knowledge items (e.g., Moskvoretskii et al.,
2024, Li et al., 2024). In our framework, we lever-
age this next-token prediction perplexity to com-
pute BeliefConf, enabling targeted identification
of knowledge gaps for model refinement.
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Figure 1: Theoretical analysis of our methodology.

3 Methodology

3.1 Theoretical Analysis and Overview of our
Methodology

3.1.1 Theoretical Analysis of APAM

Without access to external annotated knowledge,
it is essential to fully leverage the domain-specific
knowledge embedded within the model, which is
learned from the pretraining stage. To utilize dif-
ferent kind of implicit knowledge critically, we
categorize three distinct pretraining scenarios, as
illustrated in Figure 1, drawing on insights from
Xu et al. (2024). As depicted in the figure, while
the majority of the corpus used during pretrain-
ing is consistent and accurate, there exists a subset
of noisy or polluting data that can undermine the
model’s confidence in certain knowledge. Addition-
ally, when the pretraining corpus lacks sufficient
coverage of certain domain knowledge, the model’s
confidence in such knowledge tends to be low.

However, we can infer that if multiple detected
paths (represented by the green arrows in the fig-
ure) consistently support a particular direction, the
likelihood of that direction being correct increases,
even in the presence of a few conflicting or incor-
rect paths. This observation forms the basis of
our proposed method, APAM (Automated Path
Annotation Mechanism).

3.1.2 Overview of our pipeline

Our approach involves the following steps: First,
we quantify the model’s internal confidence in each
knowledge path. Second, we identify whether there
are sufficient knowledge paths that support the
same conclusion, labeling such paths as reliable

paths. Next, we infer new paths based on these
reliable paths and evaluate whether the model is
already familiar with them. If the model lacks fa-
miliarity with these inferred paths, we hypothesize
that the model may be encountering either Situation
2 or Situation 3 (as defined in Figure 1), which dis-
rupts its ability to accurately judge the reliability of
these paths. We classify such paths—those inferred
from reliable paths but unfamiliar to the model—as
enhanced paths. Finally, we generate targeted train-
ing corpora based on these enhanced paths to refine
and improve the model’s performance.

3.2 Step 1: Extracting Domain Ontology
Framework from original Model

In our methods, we first extract domain ontology
from original model, which reflects the model’s
original belief towards domain concepts and their
relationships.

To initiate the generation of the ontology, we
manually select seven root concepts in the medical
field from the Unified Medical Language System
(UMLS)'. These root concepts are "Antibiotic",
"Bacterium"”, "Cell", "Hormone", "Tissue", "Verte-
brate", and "Vitamin", which are chosen based on
their suitability in terms of hierarchical depth and
the desired scale of the ontology nodes.

We meticulously design a prompt template as
shown in Figure 2 that instructs the model to itera-
tively generate subclasses and their corresponding
synonyms, starting from the concepts at the previ-
ous layer. Specifically, the zeroth-layer concepts
are the root nodes manually selected in the previ-
ous step, while the first- and second-layer concepts
are automatically generated by the model based on
these roots. These generated concepts then serve
as parent nodes for the second- and third-layer con-
cepts, respectively.

To facilitate subsequent processing, we classify
the generated nodes according to their layer and
generation source(i.e., whether they are derived as
subclasses or synonyms), then organize them into
a four-level Ontology tree. The edges within the
tree are classified into two types: "subclass" edges
and "synonym" edges. For a detailed illustration
of the node types and the overall structure of the
ontology tree, please refer to Figure 3.

1https://www.nlm.nih.gov/research/umls/index.
html
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Figure 2: The framework of our method.
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Figure 3: Abstract form of the ontology tree and node
classification.

3.3 Step 2: APAM (Automated Path
Annotation Mechanism)

3.3.1 Calculation of BeliefConf

Through the generation of the ontology, we can
only grip a rough understanding of model’s inter-
nal domain knowledge system (which may also
suffer from hallucination issues in the one-off gen-
eration). However, as illustrated in Section 3.1,
the model’s level of certainty regarding specific
knowledge is critically important. To support the
following process of APAM, it is essential for us
to obtain a quantitative measure of this certainty.
Thus, we introduce the metric called BeliefConf,
and we calculate BeliefConf of every edge in the
generated ontology tree.

Preparation for Calculating BeliefConf: Com-
puting the Perplexity of Each Path Perplexity
is a widely used metric serving as an indicator of
the model’s certainty in predicting the next token.
We leverage this metric to evaluate the model’s
confidence towards every knowledge paths in the
Ontology Tree constructed in the previous step.

To mitigate the potential influence of different
hypernym-hyponym concepts within a sentence on
the overall perplexity, we adopt a next-token pre-
diction approach for perplexity calculation. Specif-
ically, we design two types of prompts: one repre-
senting "Support" and the other "Against" . These
prompts are identical in structure, differing only in
the final token of the Answer section—"True" for
the "Support" prompt and "False" for the "Against"
prompt.

Intuitively, by comparing the perplexity of the
final token in the "Support" and "Against" prompts,
we can infer the model’s belief towards a given
piece of knowledge.

Precise Definition of BeliefConf To compare the
model’s confidence levels across different pieces of
knowledge, we assume that when the smaller per-
plexity between the "True" and "False" options is
even smaller, or the larger perplexity is even larger,
or when the gap between the "True" and "False" per-
plexities(ppl) is wider, it indicates that the model
has a better understanding of the relationship and
greater confidence in judging the correctness of the
knowledge.

Based on this intuition, we calculate the min-
imum, maximum, and difference values of the



true_ppl and false_ppl, and propose the following
three definitions of JC(Judge Confidence):

JC in = min(true_ppl, false_ppl)  (2)
JCnaz = max(true_ppl, false_ppl) (3)

JCqirs = |(true_ppl — false_ppl)|  (4)

The definition of Judge Confidence solely re-
flects the model’s confidence in judging a particular
piece of knowledge. To determine the model’s final
qualitative judgment—whether the knowledge is
"true" or "false"—we further compare the differ-
ence between true_ppl and false_ppl. In the selec-
tion of reliable paths, only those short paths where
the Judge Confidence exceeds a predefined thresh-
old and the model’s final qualitative judgment is
"true" can form "strongly supportive" edges, which
are eligible to connect into a coherent path. Con-
versely, "strongly opposed" edges, which exhibit
high Judge Confidence but are ultimately judged as
"false," cannot be included in the construction of
long paths.

Building on this, we introduce a precise defini-
tion of BeliefConf, which quantifies the model’s
degree of support for a given piece of knowledge.
As detailed in Section 3.1, when both the Belief-
Conf of two short paths and the BeliefConf of the
long path they form all exceed the threshold, we
designate the long path as a Reliable Path. How-
ever, if the BeliefConf of the long path formed by
two short paths (marked as Reliable Paths) falls
below the threshold, we infer that the model lacks
sufficient familiarity with the concepts involved in
the path. In such cases, we label the long path as
an Enhanced Path.

It is worth noting that to further validate the ra-
tionality of the BeliefConf calculation, we sampled
700 paths each for three calculation methods: min,
max, and minus, and used GPT-40-mini to evaluate
the model’s judgment accuracy. The results show
a positive correlation between BeliefConf and the
model’s accuracy.

1 .
o m,zfsupport > 0;
BCmin = { — 70, ifsupport < 0. )
_ Jcmaza ifsupport > 0;
BCmaz = { —JCmaz, i fsupport < 0. ©)
BC..  — JCminus, 1.f support > 0;
s ) —=JCominus, 1f support < 0.
@)

3.3.2 Threshold Setting

After defining the evaluation metric BeliefConf
to assess the model’s endorsement of a path, it is
necessary to establish a threshold. This threshold
allows us to label long paths as Reliable Paths when
the BeliefConf of its constituent short paths and the
long path itself exceeds the threshold. Additionally,
for knowledge edges that are logically inferred by
reliable paths but fall below the threshold, we mark
them enhanced paths and make targeted improve-
ments.

Based on intuition and preliminary experiments,
we observe that stricter threshold settings lead to
higher factual accuracy of the filtered knowledge
but simultaneously reduce the number of training
knowledge retained. In this study, we balance the
trade-off between the sufficiency of training in-
stances and the accuracy of the knowledge by con-
sidering six threshold calculation methods: the top
10%, 20%, 30%, 40%, and 50% quantile values,
as well as the mean value. We show the trade-off
details in the appendix.

3.3.3 Filtering Modes for Reliable Paths and
Enhanced Paths

As described in previous sections, we have obtained
a four-level Ontology structure containing multiple
concepts through Step 1, as illustrated in Figure 3.
Additionally, through Step 2, we have calculated
the BeliefConf for each edge in the structure. In
the following, we will apply threshold filtering to
identify Reliable Paths and Enhanced Paths within
this structure.

Reliable Path Filtering In order to identify suf-
ficient knowledge paths for training, we aim to
obtain one-hop hyponym-hypernym relationships
as Reliable Path. To achieve this, we leverage syn-
onyms to serve as the second short-path edge.

As illustrated in Figure 4, for the hypernym node
1, the model generates the hyponym node 2, along
with several synonym nodes of node 2 (i.e., nodes
2.1, 2.2, and 2.3). We first identify hyponym edges
(green arrow in the left part of the figure, connect-
ing node 1 and node 2 where the BeliefConf of
the hypernym-hyponym relationship exceeds the
threshold. Next, among all co-hyponym relation-
ships of node 2, we locate synonym edges (double
green lines in the right part, connecting node 2
and node 2.1) where the BeliefConf also exceeds
the threshold. Finally, we manually add an edge
connecting node 1 and node 2.1, referred to as a
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"manual subclass" edge.

It is important to note that the addition of the
"manual subclass" edge is based on ontology rule:
(Concept B, is a subclass of, Concept A), (Concept
C, is a synonym of, Concept B) — (Concept C, is a
subclass of, Concept A). Although this edge is not
directly generated by the model, we can infer the
implicit hypernym-hyponym relationship between
these concepts using Ontology rules. We then cal-
culate the BeliefConf for this "manual subclass"
edge using the aforementioned method.

If the BeliefConf of this "manual subclass" edge
exceeds the threshold, which means that the Be-
liefConf of all edges connecting nodes 1, 2, and
2.1 is above the threshold, we label the one-hop
hypernym-hyponym relationship (1 — 2) as a Reli-
able Path.

Enhanced Path Filtering After labeling several
one-hop hypernym-hyponym relationships as Reli-
able Paths, we identify the following two-hop long
paths formed by the chaining of two Reliable Paths:
1—4,2— 8,and 3 — 12 (See in Figure 5). We
then evaluate whether the BeliefConf of these long
paths falls below the predefined threshold. If it
does, we label them as Enhanced Paths that require
supplementation.

3.4 Step3: Fine-tuning Corpus Generation

3.4.1 Fine-tuning Settings

Currently, we have identified the edges that re-
quire enhancement, referred to as Enhanced Paths.
We hypothesize that the model is less familiar
with the concepts and hypernym-hyponym relation-
ships involved in these edges. Based on previous
work(Zhang et al., 2024), we recognize the impor-
tance of the naturalness and richness of training
corpora. Therefore, we have designed five con-
textualized template prompts(See in Figure 2) for
corpus generation, into which the concepts associ-
ated with the Enhanced Paths are inserted. These
template prompts not only address the relationships
between concepts but also explore the characteris-
tics of the concepts themselves, such as their struc-
ture or function, to simultaneously improve the
model’s understanding of both the relationships be-
tween concepts and the concepts themselves. Ad-
ditionally, previous research(Tao et al., 2024) has
demonstrated that language models can efficiently
self-evolve through self-generated corpus. Thus,
we allow the model to generate answers to these
prompts itself, and these self-generated responses
are then used for the model’s self-training.

Our question templates are exhibited in Figure
2:

We designed two fine-tuning scenarios: Reflec-
tion Mode without ontology hint and Reference
Mode with ontology as hint in the prompt for cor-
pus generation.

3.4.2 Reflection Mode without ontology hint

In this scenario, the model is directly provided with
the aforementioned question templates as input and
is asked to generate responses by using its existing
knowledge. This process requires the model to
reorganize and reflect on these unfamiliar concepts
independently.

3.4.3 Reference Mode with ontology as hint

This setup appends a Hint containing the Enhanced
Path to the question template. The goal is to assist
the model in reflecting on these concepts by provid-
ing references. To avoid potential negative impacts
from incorrect paths, we implement a friendly re-
minder, "You can consider these relationships as
follows, but please ignore them if they are unnec-
essary." before the ontology hint.

The fine-tuning corpus format for each scenario
is showed in Figure 2.



Medical

Model

PubMedQA MedQA MedMCQA USMLE- stepl USMLE- step2 USMLE- step2  Average
Llama3-8b-instruct 674 493 49.2 56.4 50.5 60.7 55.6
Llama3-Aloe-8B-Alpha 65.8 35.6 40.5 394 40.4 45.1 44.5
Llama3-Med42-8B 66.5 56.2 56.9 61.7 60.1 65.6 61.2
jsl-MedLlama-3-8B-v2.0 59.5 244 42.6 24.5 22.0 23.0 32.7
ours 69.8 52.1 48.3 57.4 50.5 59.8 56.4

Table 1: Main results.

4 Experiments

4.1 Experimental Setup

Given its broad applicability and significance, we
select the medical domain for experiments.

Dataset and Metrics. Following previous exper-
iments(Liu et al., 2025; Christophe et al., 2024),
we select several representative medical-domain
datasets and comprehensively evaluate the model’s
performance across various medical tasks.. These
include: PubMedQA, MedQA, MedMCQA (Pal
et al., 2022) and USMLE step1-3 datasets. In the
ablation study, we also use Imharness? to evaluate
model’s ability on PubMedQA and MMLU.

Baselines. We compare our approach against sev-
eral models fine-tuned from the same base model,
LLaMA3-8B-Instruct, including Aloe(Gururajan
et al., 2024), Med42-v2-8B, and jsl-MedLlama-
3-8B-v2.0°. Additionally, we include the base-
line LLaMA3-8B-Instruct model for compari-
son. In the ablation study, we also use Taxol-
lama(Moskvoretskii et al., 2024) as a baseline,
which injects ontology paths directly into the model
without generating additional training corpora.

Implementation and Variants of our model.
We use LLaMA3-8B-Instruct as the foundation
model for self-evolution. Fine-tuning is conducted
using the Llamafactory(Zheng et al., 2024) frame-
work, with the LoRA (Low-Rank Adaptation)
method for parameter-efficient training. All ex-
periments are performed on NVIDIA A800 80GB
GPUs, with a learning rate of Se-5, trained for 3
epochs using a cosine scheduler.

By adopting different BeliefConf and threshold
settings, the number of ReliablePath and Enhan-
cePath instances, as well as the their estimated
accuracy varies, which impacts the model’s per-
formance. In Table 1, we report the results of the

Zhttps://github.com/EleutherAl/
Im-evaluation-harness

3https://https://huggingface.co/johnsnowlabs/
JSL-MedL1lama-3-8B-v2.0

pathtype traintype pubmedqa mmlu
Llama3-8b-instruct 74.6 63.84
withonto 76.0 63.40
Enhanced Path  withoutonto ~ 75.2 63.67
taxollama 74.6 63.76
withonto 74.6 63.69
Convinced Path withoutonto ~ 74.6 63.82
taxollama 74.2 63.57

Table 2: Ablation study on different path types and
training corpus.

best-performing model variant. This model uses a
threshold setting of 50th percentile and is trained
on a total of 11000 data instances. In the ablation
study, we explore other threshold settings and their
effects on performance. Beyond EnhancePath, we
further investigate the impact of training with paths
that the model is already familiar with (i.e., paths
with BeliefConf above the threshold).

4.2 Main Result

As illustrated in Table 1, our model achieves an av-
erage score of 56.4, ranking second overall among
the compared models. It demonstrates competitive
performance across multiple tasks, particularly ex-
celling in PubMedQA (69.8) and USMLE-stepl
(57.4). However, there is room for improvement in
tasks like MedMCQA (48.3), where it falls slightly
behind the top-performing model. Although our
model lags behind Med42, which is fine-tuned on
a large corpus, on most datasets, it outperforms
the base model on 3 out of 6 datasets and achieves
comparable performance to the base model on the
USMLE-Step2 dataset. Notably, our model sur-
passes Med42 on the PubMedQA, achieving the
best performance without relying on external data.
This confirms the effectiveness of our approach.

4.3 Further Analysis

Model’s Familiarity with the Supplemented
Paths To investigate whether addressing the unfa-
miliarity of Enhanced Paths improves the model’s
performance, we define Convinced Paths as long
paths where both the long path and its two con-
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stituent short paths have BeliefConf values exceed-
ing the threshold. We set a threshold such that the
number of Enhanced Paths and Convinced Paths
is equal. The results in Table 2 demonstrate that
models trained with Enhanced Paths exhibit signif-
icantly better performance than those trained with
Convinced Paths. This highlights the effectiveness
of point-to-point knowledge correction in address-
ing the model’s knowledge gaps.

Different Modes of Corpus Generation We ex-
perimented with different modes of corpus gen-
eration, as described earlier. The results for one
threshold combination are presented in Table 2.
They show that when Enhanced Paths are used,
models fine-tuned with reference mode perform
significantly better than those fine-tuned with re-
flection mode. In contrast, for Convinced Paths,
there is no significant difference between the two
modes. This aligns with our intuition: Enhanced
Paths represent knowledge the model is unfamiliar
with, so providing additional context (via ontology
hints) is beneficial, whereas Convinced Paths rep-
resent knowledge the model is already confident
about, making additional context less impactful.

However, when evaluating the models on the
MMLU dataset, we observe that all fine-tuned mod-
els exhibit a decline in performance. Notably, mod-
els trained reflection-mode corpus show a smaller
decline, suggesting that injecting unfamiliar infor-
mation via with-ontology prompts may slightly hin-
der the model’s general capability.

Ablation Study of Corpus Generation We also
compared our method with TaxoLLaMA in Table 2.
The performance gap using Taxollama between
Enhanced Paths and Convinced Paths aligns with
our findings. However, models trained with Tax-
oLLaMA perform weaker than our models even
though the number of paths was controlled to be
the same, likely due to differences in the quantity
and quality of the generated corpora.

5 Related Works

Domain Fine-Tuning Models. Domain Fine-
Tuning Models refer to the process of further train-
ing pre-trained models on domain-specific data to
adapt them to the tasks and linguistic character-
istics of the target domain. This approach com-
bines the general knowledge of pre-trained mod-
els with domain-specific expertise, significantly
enhancing their performance on specialized tasks.

While different training strategies—such as Full
Fine-Tuning or Low-Rank Adaptation —may be
employed, most models rely on large-scale domain-
specific datasets for optimization(Gururajan et al.,
2024; Christophe et al., 2024). For example, Aloe
uses 348K medical QA pairs from 20+ sources,
430K synthetic medical QA pairs and 122K high-
quality general-domain samples for fine-tuning.

Self-evolution of LLM. Model Self-Evolution
refers to the process of leveraging large language
models (LLMs) to autonomously generate high-
quality training data without relying on external an-
notations, effectively mitigating domain data spar-
sity issues while reducing resource costs such as
human effort. To achieve robust self-evolution, two
critical challenges must be addressed: Firstly, How
to automatically identify knowledge requiring self-
improvement. Secondly, How to determine which
generated data is of higher quality in the absence
of external labels, and enable the model to learn
from it. For the first challenge: Wang et al., 2023b
guides models to generate their own task instruc-
tions and corresponding responses, thereby enhanc-
ing their ability to handle such instructions. For the
second challenge, many approaches involve defin-
ing human-crafted principles to guide the model
in selecting higher-quality knowledge. For exam-
ple, Huang et al., 2023,Wang et al., 2023a,Madaan
et al., 2023)prioritize consistency. Sun et al., 2023
guides models to generate outputs adhering to pre-
defined criteria such as ethics or informativeness ,
and Yu et al., 2024 employs chain-of-thought (CoT)
reasoning to introduce higher quality answers.

6 Conclusion

We propose a framework for ontology-based self-
evolution of LLMs, leveraging the Automated Path
Annotation Mechanism (APAM) and the Belief-
Conf metric to enhance domain-specific knowl-
edge without external supervision. Experiments in
the medical domain show our method outperforms
the base model (Llama3-8B-instruct) on 3 out of
6 datasets (PubMedQA, MedQA, and USMLE-
stepl) and achieves state-of-the-art performance on
PubMedQA. This work bridges LLMs with sym-
bolic reasoning-based knowledge graphs, enabling
models’s self-evolution in specialized domains. In
the future, we aim to introduce more robust path
annotation patterns into this framework and we
hope that this framework can be adapted to more
domains suited for ontology-based approaches.



Limitations

Limitations in Feature Recognition and Comple-
tion Patterns Due to time constraints, we have
only focused on completing two-hop hyponymy
relations. In practice, the same approach could
be applied to obtain reliable paths for synonyms,
thereby enhancing one-hop hypernymy-hyponymy
relations, among others. Additionally, the model’s
understanding of a particular piece of knowledge
may depend on more features, such as the famil-
iarity of neighboring edges or the conceptual prox-
imity of related terms. This paper, however, only
considers a single feature: the perplexity of one-
hop paths. We have conducted only preliminary
experiments on feature recognition and completion
patterns to explore the feasibility of a framework
for model self-evolution using Ontology. More
comprehensive experiments will be reserved for
future work.

Potential Error Risks Since this method aims to
achieve model self-evolution without external su-
pervision, there is an inevitable risk of introducing
incorrect knowledge when applying fine-tuning set-
tings with referenced model reflection. Although
we have implemented a Reliable Path safeguard
system and a fine-tuning corpus generation method
with cautionary prompts to minimize potential er-
rors, there is no guarantee of the complete correct-
ness of unsupervised data. In future research, we
will conduct a more detailed analysis of how risky
or erroneous Paths might affect model performance
and explore ways to enhance the model’s ability to
mitigate such risks.

Broader Applicability Currently, we have only
explored the applicability of this method in medical
domain. And we have utilized only two common
types of relations in ontology: "is-subclass-of" and
"is-synonym-of." In more specialized or even gen-
eral domains, there exist similar or more diverse
explicit relational rules. The application of the pro-
posed approach in these domains will be left for
future research.
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A The distribution of BeliefConf

The distribution of BeliefConf We evaluated the dis-
tributions of BeliefConf (max), BeliefConf (min),
and BeliefConf (minus) across over thirty thousand
hyponymy and synonymy relations. The illustra-
tive distributions are presented in Figures 6, 7, and
8.

B Hyperparameter Analysis for Reliable
Edge Threshold Filtering.

In Table 3, we present the evaluation results of re-
liable path quantities and GPT-40-mini’s accuracy
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rates corresponding to several threshold filtering

combinations.
Threshold Num of Reliable Path Estimated Accuracy
combol 1909 82.3%
combo2 3759 75.3%
combo3 3424 74%
combo4 6903 66%
Table 3: Hyperparameter analysis on threshold.
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