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Abstract001

Large Language Models (LLMs) excel in gen-002
eral domains but lack specialized knowledge.003
Existing methods use external annotated data004
to enhance LLMs, which is resource-intensive.005
We propose a novel framework for LLM’s006
self-evolution in specialized domains using007
ontology-driven knowledge extraction and en-008
hancement. We introduce BeliefConf, a metric009
to quantify the model’s confidence in knowl-010
edge paths, and our method of the Automated011
Path Annotation Mechanism (APAM) helps012
identify Enhanced Paths for targeted training.013
Experiments show that our method outperforms014
the base model (Llama3-8B-instruct) on 3 out015
of 6 medical datasets (PubMedQA, MedQA,016
USMLE-step1) and achieves state-of-the-art017
performance on PubMedQA without external018
training data, surpassing models like Llama3-019
Med42-8B.020

1 Introduction021

Current Large Language Models (LLMs) have022

demonstrated remarkable capabilities in general023

domains(Wang et al., 2024). While these models024

also exhibit some proficiency in handling special-025

ized questions, they still lack sufficient knowledge026

in professional domains(Ling et al., 2023).027

Many existing methods enhance LLMs by inject-028

ing domain-specific knowledge (Christophe et al.,029

2024; Gururajan et al., 2024) into fine-tuning pre-030

trained models. However, these approaches re-031

quire extensive annotated data from specialized do-032

mains, which is both labor-intensive and resource-033

consuming.034

In general domains, model’s self-evolution has035

garnered growing attention from researchers lately036

due to its independence from external supervised037

data(Tao et al., 2024). Researchers have proposed038

various methods to make models generate and an-039

notate training data autonomously based on specific040

priciples, such as consistency(Wang et al., 2023a;041

Madaan et al., 2023), multi-step reasoning(Yu et al., 042

2024), or ethical requirement integration(Sun et al., 043

2023). However, these principles and the their as- 044

sociated evolution objectives tend to be too general- 045

ized, making them unsuitable for highly specialized 046

fields demanding rigorous professional knowledge 047

and conceptual understanding. 048

Recent research (Liu et al., 2025) suggests that 049

improving models’ understanding of domain on- 050

tologies can greatly enhance their performance in 051

specialized fields, which inspires us to consider the 052

possibility of leveraging ontology to enable mod- 053

els’ self-evolution in specialized domains. This 054

is because Ontologies inherently incorporate built- 055

in rules and inconsistency detection mechanisms, 056

making them a powerful tool for structuring and 057

validating domain-specific knowledge. If we can 058

extract knowledge within models into an explict 059

ontology, we can utilize these ontology rules to 060

extrapolate on knowledge and detect inconsisten- 061

cies within them. Furthermore, ontologies are rich 062

in concepts and their interrelationships, with each 063

knowledge path clearly represented in a triple for- 064

mat (subject-predicate-object). This structured rep- 065

resentation allows for precise identification and 066

enhancement of weak or incomplete domain knowl- 067

edge in a point-to-point manner, addressing the spe- 068

cific evolutionary needs of models in specialized 069

domains. 070

Specifically, in our method, we first extract 071

model’s internal knowledge in domains into an ex- 072

plicit ontology. We then automatically identify 073

which parts of this ontology require updates us- 074

ing our Automated Path Annotation Mechanism 075

(APAM). APAM consists of two main steps. First, 076

we annotate reliable paths within the extracted on- 077

tology, based on the assumption that a knowledge 078

path is more likely to be reliable if a majority of 079

its supporting paths exist within the model. During 080

the process, We introduce a novel metric called 081

BeliefConf to quantify model’s confidence in each 082
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knowledge path. Second, we infer new paths based083

on the reliable paths and verify whether these in-084

ferred paths are also recognized by the model. If085

not, we consider the situation as inconsistency and086

classify them as enhanced paths then generate tar-087

geted training corpora to improve the model’s fa-088

miliarity towards these paths.089

We conducted experiments in the medical do-090

main, using Llama3-8B-instruct(Dubey et al.,091

2024) as the base model and fine-tuning it with092

our proposed method. We compared our approach093

against the base model as well as other domain-094

specific models fine-tuned from Llama3-8B by095

external domain corpus. Results show that our096

method outperforms the base model on 3 out of 6097

medical evaluation datasets, PubMedQA(Jin et al.,098

2019), MedQA(Jin et al., 2020), and USMLE-099

step1(Han et al., 2023), and significantly surpasses100

all baseline models on the PubMedQA dataset,101

including Llama3-Med42-8B(Christophe et al.,102

2024), which is fine-tuned on external data and103

achieves the best performance on the remaining104

datasets.105

Our main contributions are as follows:106

(1) We introduce BeliefConf, a novel metric107

to quantify model’s confidence towards specific108

knowledge path.109

(2) We design the method of APAM (Automated110

Path Annotation Mechanism) based on comprehen-111

sive therotical analysis. Both our preliminary ex-112

periments and final experimental results validate113

the effectiveness of this mechanism, demonstrat-114

ing its capability to enable LLMs’ self-evolution115

without relying on external supervision.116

(3) We propose an efficient framework for117

ontology-based self-evolution of LLMs in special-118

ized domain, validated through our experiments in119

the medical domain.120

2 Preliminary121

2.1 Ontology122

Ontology is a type of structured framework that123

captures concepts, their interconnections, and rules124

within a specific domain which enables a shared un-125

derstanding of a domain’s knowledge. It has been126

widely applied in the semantic web and knowl-127

edge management systems. Three core compo-128

nents in ontologies are: (1) Concepts: represent-129

ing entities or categories within a domain. For130

example, in a medical ontology, concepts might131

include "Cell", "Symptom" and "Treatment." (2)132

Relationships: Relationships define how concepts 133

are interconnected. The most common and im- 134

portant relationships in ontologies are: Hyponymy 135

(Is-subclass-of): This represents a hierarchical, sub- 136

class relationship. For instance, "Muscle Cell" is a 137

subclass of "Cell" ." Synonymy (Is-synonym-of): 138

This indicates that two concepts are semantically 139

equivalent. For example, "Muscle Cell" and "Mus- 140

cle Fiber" are synonyms. (3) Axioms (Rules): On- 141

tologies are equipped with built-in rules which en- 142

able automated reasoning and consistency checking 143

within knowledge graphs. For example: If (Con- 144

cept A, Is-subclass-of, Concept B) and (Concept 145

B Is-subclass-of Concept C), then it logically fol- 146

lows that (Concept A, Is-subclass-of, Concept C). 147

However, if the ontology also includes (Concept 148

A Is-Not-A-subclass-of, Concept C), this creates 149

a conflict with the previously inferred relationship. 150

Such rules allow ontologies to automatically detect 151

and resolve inconsistencies, ensuring the integrity 152

of the knowledge graph. This capability is par- 153

ticularly valuable in large-scale knowledge bases, 154

where manual verification would be impractical. 155

2.2 Perplexity 156

Model perplexity plays a critical role in our cal- 157

culation of BeliefConf. This metric quantifies the 158

uncertainty of a probabilistic model in its predic- 159

tions, where lower perplexity values correspond 160

to higher prediction accuracy, while higher values 161

indicate poorer performance. Formally, perplexity 162

is defined as the exponential of the cross-entropy 163

between the true distribution: 164

Perplexity = 2H(p,q) (1) 165

where H(p, q) is the cross-entropy between the true 166

distribution between the true distribution p and the 167

model’s predicted distribution q. 168

The average perplexity of a model on a dataset 169

serves as a proxy for evaluating how well the model 170

comprehends the underlying patterns in the data. 171

Furthermore, next-token prediction perplexity has 172

been adopted to gauge a model’s familiarity with 173

specific knowledge items (e.g., Moskvoretskii et al., 174

2024, Li et al., 2024). In our framework, we lever- 175

age this next-token prediction perplexity to com- 176

pute BeliefConf, enabling targeted identification 177

of knowledge gaps for model refinement. 178
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Figure 1: Theoretical analysis of our methodology.

3 Methodology179

3.1 Theoretical Analysis and Overview of our180

Methodology181

3.1.1 Theoretical Analysis of APAM182

Without access to external annotated knowledge,183

it is essential to fully leverage the domain-specific184

knowledge embedded within the model, which is185

learned from the pretraining stage. To utilize dif-186

ferent kind of implicit knowledge critically, we187

categorize three distinct pretraining scenarios, as188

illustrated in Figure 1, drawing on insights from189

Xu et al. (2024). As depicted in the figure, while190

the majority of the corpus used during pretrain-191

ing is consistent and accurate, there exists a subset192

of noisy or polluting data that can undermine the193

model’s confidence in certain knowledge. Addition-194

ally, when the pretraining corpus lacks sufficient195

coverage of certain domain knowledge, the model’s196

confidence in such knowledge tends to be low.197

However, we can infer that if multiple detected198

paths (represented by the green arrows in the fig-199

ure) consistently support a particular direction, the200

likelihood of that direction being correct increases,201

even in the presence of a few conflicting or incor-202

rect paths. This observation forms the basis of203

our proposed method, APAM (Automated Path204

Annotation Mechanism).205

3.1.2 Overview of our pipeline206

Our approach involves the following steps: First,207

we quantify the model’s internal confidence in each208

knowledge path. Second, we identify whether there209

are sufficient knowledge paths that support the210

same conclusion, labeling such paths as reliable211

paths. Next, we infer new paths based on these 212

reliable paths and evaluate whether the model is 213

already familiar with them. If the model lacks fa- 214

miliarity with these inferred paths, we hypothesize 215

that the model may be encountering either Situation 216

2 or Situation 3 (as defined in Figure 1), which dis- 217

rupts its ability to accurately judge the reliability of 218

these paths. We classify such paths—those inferred 219

from reliable paths but unfamiliar to the model—as 220

enhanced paths. Finally, we generate targeted train- 221

ing corpora based on these enhanced paths to refine 222

and improve the model’s performance. 223

3.2 Step 1: Extracting Domain Ontology 224

Framework from original Model 225

In our methods, we first extract domain ontology 226

from original model, which reflects the model’s 227

original belief towards domain concepts and their 228

relationships. 229

To initiate the generation of the ontology, we 230

manually select seven root concepts in the medical 231

field from the Unified Medical Language System 232

(UMLS)1. These root concepts are "Antibiotic", 233

"Bacterium", "Cell", "Hormone", "Tissue", "Verte- 234

brate", and "Vitamin", which are chosen based on 235

their suitability in terms of hierarchical depth and 236

the desired scale of the ontology nodes. 237

We meticulously design a prompt template as 238

shown in Figure 2 that instructs the model to itera- 239

tively generate subclasses and their corresponding 240

synonyms, starting from the concepts at the previ- 241

ous layer. Specifically, the zeroth-layer concepts 242

are the root nodes manually selected in the previ- 243

ous step, while the first- and second-layer concepts 244

are automatically generated by the model based on 245

these roots. These generated concepts then serve 246

as parent nodes for the second- and third-layer con- 247

cepts, respectively. 248

To facilitate subsequent processing, we classify 249

the generated nodes according to their layer and 250

generation source(i.e., whether they are derived as 251

subclasses or synonyms), then organize them into 252

a four-level Ontology tree. The edges within the 253

tree are classified into two types: "subclass" edges 254

and "synonym" edges. For a detailed illustration 255

of the node types and the overall structure of the 256

ontology tree, please refer to Figure 3. 257

1https://www.nlm.nih.gov/research/umls/index.
html
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Figure 2: The framework of our method.

Figure 3: Abstract form of the ontology tree and node
classification.

3.3 Step 2: APAM (Automated Path258

Annotation Mechanism)259

3.3.1 Calculation of BeliefConf260

Through the generation of the ontology, we can261

only grip a rough understanding of model’s inter-262

nal domain knowledge system (which may also263

suffer from hallucination issues in the one-off gen-264

eration). However, as illustrated in Section 3.1,265

the model’s level of certainty regarding specific266

knowledge is critically important. To support the267

following process of APAM, it is essential for us268

to obtain a quantitative measure of this certainty.269

Thus, we introduce the metric called BeliefConf,270

and we calculate BeliefConf of every edge in the271

generated ontology tree.272

Preparation for Calculating BeliefConf: Com- 273

puting the Perplexity of Each Path Perplexity 274

is a widely used metric serving as an indicator of 275

the model’s certainty in predicting the next token. 276

We leverage this metric to evaluate the model’s 277

confidence towards every knowledge paths in the 278

Ontology Tree constructed in the previous step. 279

To mitigate the potential influence of different 280

hypernym-hyponym concepts within a sentence on 281

the overall perplexity, we adopt a next-token pre- 282

diction approach for perplexity calculation. Specif- 283

ically, we design two types of prompts: one repre- 284

senting "Support" and the other "Against" . These 285

prompts are identical in structure, differing only in 286

the final token of the Answer section—"True" for 287

the "Support" prompt and "False" for the "Against" 288

prompt. 289

Intuitively, by comparing the perplexity of the 290

final token in the "Support" and "Against" prompts, 291

we can infer the model’s belief towards a given 292

piece of knowledge. 293

Precise Definition of BeliefConf To compare the 294

model’s confidence levels across different pieces of 295

knowledge, we assume that when the smaller per- 296

plexity between the "True" and "False" options is 297

even smaller, or the larger perplexity is even larger, 298

or when the gap between the "True" and "False" per- 299

plexities(ppl) is wider, it indicates that the model 300

has a better understanding of the relationship and 301

greater confidence in judging the correctness of the 302

knowledge. 303

Based on this intuition, we calculate the min- 304

imum, maximum, and difference values of the 305
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true_ppl and false_ppl, and propose the following306

three definitions of JC(Judge Confidence):307

JCmin = min(true_ppl, false_ppl) (2)308
309

JCmax = max(true_ppl, false_ppl) (3)310
311

JCdiff = |(true_ppl − false_ppl)| (4)312

The definition of Judge Confidence solely re-313

flects the model’s confidence in judging a particular314

piece of knowledge. To determine the model’s final315

qualitative judgment—whether the knowledge is316

"true" or "false"—we further compare the differ-317

ence between true_ppl and false_ppl. In the selec-318

tion of reliable paths, only those short paths where319

the Judge Confidence exceeds a predefined thresh-320

old and the model’s final qualitative judgment is321

"true" can form "strongly supportive" edges, which322

are eligible to connect into a coherent path. Con-323

versely, "strongly opposed" edges, which exhibit324

high Judge Confidence but are ultimately judged as325

"false," cannot be included in the construction of326

long paths.327

Building on this, we introduce a precise defini-328

tion of BeliefConf, which quantifies the model’s329

degree of support for a given piece of knowledge.330

As detailed in Section 3.1, when both the Belief-331

Conf of two short paths and the BeliefConf of the332

long path they form all exceed the threshold, we333

designate the long path as a Reliable Path. How-334

ever, if the BeliefConf of the long path formed by335

two short paths (marked as Reliable Paths) falls336

below the threshold, we infer that the model lacks337

sufficient familiarity with the concepts involved in338

the path. In such cases, we label the long path as339

an Enhanced Path.340

It is worth noting that to further validate the ra-341

tionality of the BeliefConf calculation, we sampled342

700 paths each for three calculation methods: min,343

max, and minus, and used GPT-4o-mini to evaluate344

the model’s judgment accuracy. The results show345

a positive correlation between BeliefConf and the346

model’s accuracy.347

BCmin =

{
1

JCmin
, ifsupport > 0;

− 1
JCmin

, ifsupport < 0.
(5)348

349

BCmax =

{
JCmax, ifsupport > 0;
−JCmax, ifsupport < 0.

(6)350

351

BCminus =

{
JCminus, ifsupport > 0;
−JCminus, ifsupport < 0.

(7)352

3.3.2 Threshold Setting 353

After defining the evaluation metric BeliefConf 354

to assess the model’s endorsement of a path, it is 355

necessary to establish a threshold. This threshold 356

allows us to label long paths as Reliable Paths when 357

the BeliefConf of its constituent short paths and the 358

long path itself exceeds the threshold. Additionally, 359

for knowledge edges that are logically inferred by 360

reliable paths but fall below the threshold, we mark 361

them enhanced paths and make targeted improve- 362

ments. 363

Based on intuition and preliminary experiments, 364

we observe that stricter threshold settings lead to 365

higher factual accuracy of the filtered knowledge 366

but simultaneously reduce the number of training 367

knowledge retained. In this study, we balance the 368

trade-off between the sufficiency of training in- 369

stances and the accuracy of the knowledge by con- 370

sidering six threshold calculation methods: the top 371

10%, 20%, 30%, 40%, and 50% quantile values, 372

as well as the mean value. We show the trade-off 373

details in the appendix. 374

3.3.3 Filtering Modes for Reliable Paths and 375

Enhanced Paths 376

As described in previous sections, we have obtained 377

a four-level Ontology structure containing multiple 378

concepts through Step 1, as illustrated in Figure 3. 379

Additionally, through Step 2, we have calculated 380

the BeliefConf for each edge in the structure. In 381

the following, we will apply threshold filtering to 382

identify Reliable Paths and Enhanced Paths within 383

this structure. 384

Reliable Path Filtering In order to identify suf- 385

ficient knowledge paths for training, we aim to 386

obtain one-hop hyponym-hypernym relationships 387

as Reliable Path. To achieve this, we leverage syn- 388

onyms to serve as the second short-path edge. 389

As illustrated in Figure 4, for the hypernym node 390

1, the model generates the hyponym node 2, along 391

with several synonym nodes of node 2 (i.e., nodes 392

2.1, 2.2, and 2.3). We first identify hyponym edges 393

(green arrow in the left part of the figure, connect- 394

ing node 1 and node 2 where the BeliefConf of 395

the hypernym-hyponym relationship exceeds the 396

threshold. Next, among all co-hyponym relation- 397

ships of node 2, we locate synonym edges (double 398

green lines in the right part, connecting node 2 399

and node 2.1) where the BeliefConf also exceeds 400

the threshold. Finally, we manually add an edge 401

connecting node 1 and node 2.1, referred to as a 402
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Figure 4: Selection of reliable path.

Figure 5: Selection of enhanced path.

"manual subclass" edge.403

It is important to note that the addition of the404

"manual subclass" edge is based on ontology rule:405

(Concept B, is a subclass of, Concept A), (Concept406

C, is a synonym of, Concept B) → (Concept C, is a407

subclass of, Concept A). Although this edge is not408

directly generated by the model, we can infer the409

implicit hypernym-hyponym relationship between410

these concepts using Ontology rules. We then cal-411

culate the BeliefConf for this "manual subclass"412

edge using the aforementioned method.413

If the BeliefConf of this "manual subclass" edge414

exceeds the threshold, which means that the Be-415

liefConf of all edges connecting nodes 1, 2, and416

2.1 is above the threshold, we label the one-hop417

hypernym-hyponym relationship (1 → 2) as a Reli-418

able Path.419

Enhanced Path Filtering After labeling several420

one-hop hypernym-hyponym relationships as Reli-421

able Paths, we identify the following two-hop long422

paths formed by the chaining of two Reliable Paths:423

1 → 4, 2 → 8, and 3 → 12 (See in Figure 5). We424

then evaluate whether the BeliefConf of these long425

paths falls below the predefined threshold. If it426

does, we label them as Enhanced Paths that require427

supplementation.428

3.4 Step3: Fine-tuning Corpus Generation 429

3.4.1 Fine-tuning Settings 430

Currently, we have identified the edges that re- 431

quire enhancement, referred to as Enhanced Paths. 432

We hypothesize that the model is less familiar 433

with the concepts and hypernym-hyponym relation- 434

ships involved in these edges. Based on previous 435

work(Zhang et al., 2024), we recognize the impor- 436

tance of the naturalness and richness of training 437

corpora. Therefore, we have designed five con- 438

textualized template prompts(See in Figure 2) for 439

corpus generation, into which the concepts associ- 440

ated with the Enhanced Paths are inserted. These 441

template prompts not only address the relationships 442

between concepts but also explore the characteris- 443

tics of the concepts themselves, such as their struc- 444

ture or function, to simultaneously improve the 445

model’s understanding of both the relationships be- 446

tween concepts and the concepts themselves. Ad- 447

ditionally, previous research(Tao et al., 2024) has 448

demonstrated that language models can efficiently 449

self-evolve through self-generated corpus. Thus, 450

we allow the model to generate answers to these 451

prompts itself, and these self-generated responses 452

are then used for the model’s self-training. 453

Our question templates are exhibited in Figure 454

2: 455

We designed two fine-tuning scenarios: Reflec- 456

tion Mode without ontology hint and Reference 457

Mode with ontology as hint in the prompt for cor- 458

pus generation. 459

3.4.2 Reflection Mode without ontology hint 460

In this scenario, the model is directly provided with 461

the aforementioned question templates as input and 462

is asked to generate responses by using its existing 463

knowledge. This process requires the model to 464

reorganize and reflect on these unfamiliar concepts 465

independently. 466

3.4.3 Reference Mode with ontology as hint 467

This setup appends a Hint containing the Enhanced 468

Path to the question template. The goal is to assist 469

the model in reflecting on these concepts by provid- 470

ing references. To avoid potential negative impacts 471

from incorrect paths, we implement a friendly re- 472

minder, "You can consider these relationships as 473

follows, but please ignore them if they are unnec- 474

essary." before the ontology hint. 475

The fine-tuning corpus format for each scenario 476

is showed in Figure 2. 477
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Model Medical

PubMedQA MedQA MedMCQA USMLE- step1 USMLE- step2 USMLE- step2 Average

Llama3-8b-instruct 67.4 49.3 49.2 56.4 50.5 60.7 55.6
Llama3-Aloe-8B-Alpha 65.8 35.6 40.5 39.4 40.4 45.1 44.5
Llama3-Med42-8B 66.5 56.2 56.9 61.7 60.1 65.6 61.2
jsl-MedLlama-3-8B-v2.0 59.5 24.4 42.6 24.5 22.0 23.0 32.7
ours 69.8 52.1 48.3 57.4 50.5 59.8 56.4

Table 1: Main results.

4 Experiments478

4.1 Experimental Setup479

Given its broad applicability and significance, we480

select the medical domain for experiments.481

Dataset and Metrics. Following previous exper-482

iments(Liu et al., 2025; Christophe et al., 2024),483

we select several representative medical-domain484

datasets and comprehensively evaluate the model’s485

performance across various medical tasks.. These486

include: PubMedQA, MedQA, MedMCQA(Pal487

et al., 2022) and USMLE step1-3 datasets. In the488

ablation study, we also use lmharness2 to evaluate489

model’s ability on PubMedQA and MMLU.490

Baselines. We compare our approach against sev-491

eral models fine-tuned from the same base model,492

LLaMA3-8B-Instruct, including Aloe(Gururajan493

et al., 2024), Med42-v2-8B, and jsl-MedLlama-494

3-8B-v2.03. Additionally, we include the base-495

line LLaMA3-8B-Instruct model for compari-496

son. In the ablation study, we also use Taxol-497

lama(Moskvoretskii et al., 2024) as a baseline,498

which injects ontology paths directly into the model499

without generating additional training corpora.500

Implementation and Variants of our model.501

We use LLaMA3-8B-Instruct as the foundation502

model for self-evolution. Fine-tuning is conducted503

using the Llamafactory(Zheng et al., 2024) frame-504

work, with the LoRA (Low-Rank Adaptation)505

method for parameter-efficient training. All ex-506

periments are performed on NVIDIA A800 80GB507

GPUs, with a learning rate of 5e-5, trained for 3508

epochs using a cosine scheduler.509

By adopting different BeliefConf and threshold510

settings, the number of ReliablePath and Enhan-511

cePath instances, as well as the their estimated512

accuracy varies, which impacts the model’s per-513

formance. In Table 1, we report the results of the514

2https://github.com/EleutherAI/
lm-evaluation-harness

3https://https://huggingface.co/johnsnowlabs/
JSL-MedLlama-3-8B-v2.0

pathtype traintype pubmedqa mmlu
Llama3-8b-instruct 74.6 63.84

Enhanced Path
withonto 76.0 63.40
withoutonto 75.2 63.67
taxollama 74.6 63.76

Convinced Path
withonto 74.6 63.69
withoutonto 74.6 63.82
taxollama 74.2 63.57

Table 2: Ablation study on different path types and
training corpus.

best-performing model variant. This model uses a 515

threshold setting of 50th percentile and is trained 516

on a total of 11000 data instances. In the ablation 517

study, we explore other threshold settings and their 518

effects on performance. Beyond EnhancePath, we 519

further investigate the impact of training with paths 520

that the model is already familiar with (i.e., paths 521

with BeliefConf above the threshold). 522

4.2 Main Result 523

As illustrated in Table 1, our model achieves an av- 524

erage score of 56.4, ranking second overall among 525

the compared models. It demonstrates competitive 526

performance across multiple tasks, particularly ex- 527

celling in PubMedQA (69.8) and USMLE-step1 528

(57.4). However, there is room for improvement in 529

tasks like MedMCQA (48.3), where it falls slightly 530

behind the top-performing model. Although our 531

model lags behind Med42, which is fine-tuned on 532

a large corpus, on most datasets, it outperforms 533

the base model on 3 out of 6 datasets and achieves 534

comparable performance to the base model on the 535

USMLE-Step2 dataset. Notably, our model sur- 536

passes Med42 on the PubMedQA, achieving the 537

best performance without relying on external data. 538

This confirms the effectiveness of our approach. 539

4.3 Further Analysis 540

Model’s Familiarity with the Supplemented 541

Paths To investigate whether addressing the unfa- 542

miliarity of Enhanced Paths improves the model’s 543

performance, we define Convinced Paths as long 544

paths where both the long path and its two con- 545
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stituent short paths have BeliefConf values exceed-546

ing the threshold. We set a threshold such that the547

number of Enhanced Paths and Convinced Paths548

is equal. The results in Table 2 demonstrate that549

models trained with Enhanced Paths exhibit signif-550

icantly better performance than those trained with551

Convinced Paths. This highlights the effectiveness552

of point-to-point knowledge correction in address-553

ing the model’s knowledge gaps.554

Different Modes of Corpus Generation We ex-555

perimented with different modes of corpus gen-556

eration, as described earlier. The results for one557

threshold combination are presented in Table 2.558

They show that when Enhanced Paths are used,559

models fine-tuned with reference mode perform560

significantly better than those fine-tuned with re-561

flection mode. In contrast, for Convinced Paths,562

there is no significant difference between the two563

modes. This aligns with our intuition: Enhanced564

Paths represent knowledge the model is unfamiliar565

with, so providing additional context (via ontology566

hints) is beneficial, whereas Convinced Paths rep-567

resent knowledge the model is already confident568

about, making additional context less impactful.569

However, when evaluating the models on the570

MMLU dataset, we observe that all fine-tuned mod-571

els exhibit a decline in performance. Notably, mod-572

els trained reflection-mode corpus show a smaller573

decline, suggesting that injecting unfamiliar infor-574

mation via with-ontology prompts may slightly hin-575

der the model’s general capability.576

Ablation Study of Corpus Generation We also577

compared our method with TaxoLLaMA in Table 2.578

The performance gap using Taxollama between579

Enhanced Paths and Convinced Paths aligns with580

our findings. However, models trained with Tax-581

oLLaMA perform weaker than our models even582

though the number of paths was controlled to be583

the same, likely due to differences in the quantity584

and quality of the generated corpora.585

5 Related Works586

Domain Fine-Tuning Models. Domain Fine-587

Tuning Models refer to the process of further train-588

ing pre-trained models on domain-specific data to589

adapt them to the tasks and linguistic character-590

istics of the target domain. This approach com-591

bines the general knowledge of pre-trained mod-592

els with domain-specific expertise, significantly593

enhancing their performance on specialized tasks.594

While different training strategies—such as Full 595

Fine-Tuning or Low-Rank Adaptation —may be 596

employed, most models rely on large-scale domain- 597

specific datasets for optimization(Gururajan et al., 598

2024; Christophe et al., 2024). For example, Aloe 599

uses 348K medical QA pairs from 20+ sources, 600

430K synthetic medical QA pairs and 122K high- 601

quality general-domain samples for fine-tuning. 602

Self-evolution of LLM. Model Self-Evolution 603

refers to the process of leveraging large language 604

models (LLMs) to autonomously generate high- 605

quality training data without relying on external an- 606

notations, effectively mitigating domain data spar- 607

sity issues while reducing resource costs such as 608

human effort. To achieve robust self-evolution, two 609

critical challenges must be addressed: Firstly, How 610

to automatically identify knowledge requiring self- 611

improvement. Secondly, How to determine which 612

generated data is of higher quality in the absence 613

of external labels, and enable the model to learn 614

from it. For the first challenge: Wang et al., 2023b 615

guides models to generate their own task instruc- 616

tions and corresponding responses, thereby enhanc- 617

ing their ability to handle such instructions. For the 618

second challenge, many approaches involve defin- 619

ing human-crafted principles to guide the model 620

in selecting higher-quality knowledge. For exam- 621

ple, Huang et al., 2023,Wang et al., 2023a,Madaan 622

et al., 2023)prioritize consistency. Sun et al., 2023 623

guides models to generate outputs adhering to pre- 624

defined criteria such as ethics or informativeness , 625

and Yu et al., 2024 employs chain-of-thought (CoT) 626

reasoning to introduce higher quality answers. 627

6 Conclusion 628

We propose a framework for ontology-based self- 629

evolution of LLMs, leveraging the Automated Path 630

Annotation Mechanism (APAM) and the Belief- 631

Conf metric to enhance domain-specific knowl- 632

edge without external supervision. Experiments in 633

the medical domain show our method outperforms 634

the base model (Llama3-8B-instruct) on 3 out of 635

6 datasets (PubMedQA, MedQA, and USMLE- 636

step1) and achieves state-of-the-art performance on 637

PubMedQA. This work bridges LLMs with sym- 638

bolic reasoning-based knowledge graphs, enabling 639

models’s self-evolution in specialized domains. In 640

the future, we aim to introduce more robust path 641

annotation patterns into this framework and we 642

hope that this framework can be adapted to more 643

domains suited for ontology-based approaches. 644
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Limitations645

Limitations in Feature Recognition and Comple-646

tion Patterns Due to time constraints, we have647

only focused on completing two-hop hyponymy648

relations. In practice, the same approach could649

be applied to obtain reliable paths for synonyms,650

thereby enhancing one-hop hypernymy-hyponymy651

relations, among others. Additionally, the model’s652

understanding of a particular piece of knowledge653

may depend on more features, such as the famil-654

iarity of neighboring edges or the conceptual prox-655

imity of related terms. This paper, however, only656

considers a single feature: the perplexity of one-657

hop paths. We have conducted only preliminary658

experiments on feature recognition and completion659

patterns to explore the feasibility of a framework660

for model self-evolution using Ontology. More661

comprehensive experiments will be reserved for662

future work.663

Potential Error Risks Since this method aims to664

achieve model self-evolution without external su-665

pervision, there is an inevitable risk of introducing666

incorrect knowledge when applying fine-tuning set-667

tings with referenced model reflection. Although668

we have implemented a Reliable Path safeguard669

system and a fine-tuning corpus generation method670

with cautionary prompts to minimize potential er-671

rors, there is no guarantee of the complete correct-672

ness of unsupervised data. In future research, we673

will conduct a more detailed analysis of how risky674

or erroneous Paths might affect model performance675

and explore ways to enhance the model’s ability to676

mitigate such risks.677

Broader Applicability Currently, we have only678

explored the applicability of this method in medical679

domain. And we have utilized only two common680

types of relations in ontology: "is-subclass-of" and681

"is-synonym-of." In more specialized or even gen-682

eral domains, there exist similar or more diverse683

explicit relational rules. The application of the pro-684

posed approach in these domains will be left for685

future research.686
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A The distribution of BeliefConf 838

The distribution of BeliefConf We evaluated the dis- 839

tributions of BeliefConf (max), BeliefConf (min), 840

and BeliefConf (minus) across over thirty thousand 841

hyponymy and synonymy relations. The illustra- 842

tive distributions are presented in Figures 6, 7, and 843

8. 844

B Hyperparameter Analysis for Reliable 845

Edge Threshold Filtering. 846

In Table 3, we present the evaluation results of re- 847

liable path quantities and GPT-4o-mini’s accuracy 848

Figure 6: Distribution of Beliefmax in subordinate rela-
tionships.
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Figure 7: Distribution of Beliefmin in subordinate rela-
tionships.

Figure 8: Distribution of Beliefdiff in synonym rela-
tionships.

rates corresponding to several threshold filtering849

combinations.850

Threshold Num of Reliable Path Estimated Accuracy
combo1 1909 82.3%
combo2 3759 75.3%
combo3 3424 74%
combo4 6903 66%

Table 3: Hyperparameter analysis on threshold.
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