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ABSTRACT

We introduce the framework of "social learning" in the context of large language
models (LLMs), whereby models share knowledge with each other in a privacy-
aware manner using natural language. We present and evaluate two approaches
for knowledge transfer between LLMs. In the first scenario, we allow the model
to generate abstract prompts aiming to teach the task. In our second approach,
models transfer knowledge by generating synthetic examples. We evaluate these
methods across diverse datasets and quantify memorization as a proxy for privacy
loss. These techniques inspired by social learning yield promising results with low
memorization of the original data. In particular, we show that performance using
these methods is comparable to results with the use of original labels and prompts.
Our work demonstrates the viability of social learning for LLMs, establishes
baseline approaches and highlights several unexplored areas for future work.

1 INTRODUCTION

Increasingly, large language models are considered a crucial building block for agents that can
reason [27], use tools [21] and adapt to environmental cues [20, 42] for many real-world tasks. As
such, personal assistants are now commonly powered by such models [29] while larger entities, e.g.
companies, can also have their own agents. When considering networks of personal agents, the ability
to transfer information and foster collaboration is highly desirable. For instance, a spam detector can
be collaboratively maintained by sharing newly detected spam templates.

Collaboration among language models to solve complex problems involves various research areas [37],
for example task planning [15], information retrieval [11, 43] and information exchange [19]. LLMs
have shown impressive capabilities at performing novel tasks by following natural language instruc-
tions or using a limited number of examples [5, 38]. This suggests that natural language might become
a viable means of knowledge transfer for personal agents. However, a critical concern is how to ensure
the privacy of users is upheld by preventing the leakage of sensitive information between agents.

In this work, we introduce the paradigm of privacy-aware "social learning" to transfer knowledge
between LLMs. We take inspiration from the theory of social learning as defined by Bandura
& Walters [4] which proposes that new behaviors can be acquired by observing and imitating
others. Indeed, mechanisms of social learning have proven highly effective in persistent multi-agent
systems by allowing agents to benefit from the accumulated learning of others [2, 25]. The resulting
framework enables agents to generate examples and instructions tailored for task-specific information
transfer with an emphasis on safeguarding the privacy of shared examples and knowledge. We posit
that this framework is advantageous as it provides knowledge transference between models in a
human-interpretable way without sharing private data.

The key contributions of our work are (1) proposing and formalizing the concept of social learning
for LLM-driven agents; (2) suggesting baseline implementations of social learning and benchmarking
them across a diverse set of tasks and (3) establishing metrics to measure private data leakage, and
using them to demonstrate the benefits of social learning whilst preserving privacy.

2 PROBLEM SETTING & METHODS

Language models have made significant strides in generating effective responses based on instructions,
spanning domains like planning and memory [37]. However, the inclusion of private data brings forth
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Figure 1: An illustration of our social learning framework. Teachers have access to private data that
they cannot directly share. The student does not have access to such data. Instead it relies on the
teachers to create instructions or non-private examples to teach it the task. After receiving these
instructions, the student aggregates them into a single prompt. This prompt is used by the student at
inference time to respond to a user’s queries.

new challenges, including navigating data ownership, preserving privacy, and securely transferring
knowledge. In this work, we introduce the social learning framework as a tailored response to these
challenges. Specifically, we explore an environment where information about a task is communicated
from multiple teachers to a student through text-based interactions, within predefined constraints
aimed at preserving the privacy of original examples.

As a real-world example of such an environment, consider the task of detecting whether a message
received through Short Message Service (SMS) is spam or not. Let us assume that we have asked m
users to act as annotators and classify their messages as spam or not spam. The goal is to use this data
to enable a new user’s phone to automatically detect whether a new incoming message is spam or not.
However, while users may agree to perform the annotation, they seldom want to share the contents of
their messages due to privacy concerns. Therefore the goal is to send informative messages based on la-
beled data available locally on each user’s phone without communicating the contents of any message.

2.1 SOCIAL LEARNING PROTOCOL

We provide a canonical definition of social learning in this section by considering m agents
T1, . . . , Tm, called teachers that teach a task (e.g. yes/no question answering) to another agent
S, called the student. Each teacher has access to its own silo of data DTi

which contains a distinct
subset of examples for the task. Meanwhile, the student does not have access to any training data. A
user queries the student at inference time to solve new, unseen instances of the task. As such, the
goal is to transfer the knowledge of the teachers to the student so that it can successfully respond to a
query.

Similar to standard machine learning models, we consider two operation modes for this environment:
training and inference. During training the agents collaborate without any input to transfer task-related
knowledge whereas at inference time the student relies on this transferred knowledge to answer the
specific instance of the task. Therefore, the student can augment its knowledge (stored in DS) by
communicating with teachers during training and subsequently relies on the accumulated knowledge
to answer queries at inference time.

At training time, part of the role of the student is that of an aggregator where it must select a subset
of the information provided to it by the teachers. In this work, we only consider the most basic
version of the student at inference which replies to a user input by appending the input to a prompt,
querying its language model, and returning the continuation. The whole process is illustrated in
Figure 1.

A solution to the problem of how to teach the student can be to send all the data accessible by the
teachers to the student and have it concatenate all of these data points to create the final prompt.
In this case, the student receives all the knowledge and the task is reduced to generating a good
response based on the available data. However, it is important to consider cases where this is not
possible, for example because of privacy constraints. In particular, we consider the scenario where
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the original examples accessible by the teachers contains private data that should not be shared with
other parties. Therefore, the goal is to teach the student without sharing such private information
which automatically excludes the possibility of sharing the original examples. Similarly, we focus on
the cases where the user’s query to the student contains private data and therefore can not be directly
shared with the teachers. In our evaluations, we consider directly sharing the original examples of the
teachers as a baseline to compare our methods against.

2.2 METHODS

The mechanisms of knowledge transfer in our work are inspired by social learning theory [4]. The
theory outlines models of observational learning amongst humans and we use two of these as the
basic models of communication in our framework. While a combination of these basic models is
most likely more effective, in this work we only look at the performance when they are employed
separately. These models are simple enough that they satisfy additional constraints which allows us
to avoid the need for abilities in language models that are yet to be perfected. We refer the interested
reader to Appendix A where we provide an overview of these constriants and their motivations.

2.2.1 VERBAL SOCIAL LEARNING: SHARING INSTRUCTIONS

In the verbal instruction model from social learning theory, a behavior is described in detail and a
participant is instructed in how to engage in the behavior.

Conversely, LLMs are able to perform new tasks based on short, textual instructions describing the
tasks in question [24]. Previous work has also shown that these instructions can be generated by
prompting an instruction-tuned LLM with examples and then asking it to complete the instruction for
them [14].

Similar to the verbal instruction model, we can thus ask teacher agents to generate instructions based
on their silo of private data. These instructions are then shared with the student who integrates the
instructions in its prompt. In this work, when using this model, we focus on the scenario where there
is only a single teacher. We apply this simplification to avoid the need for an aggregation mechanism
that merges multiple instructions and leave developing such mechanisms for future work.

2.2.2 LIVE MODELS: SHARING EXAMPLES

In the live models method from social learning theory, an individual demonstrates the desired
behavior and the learner imitates.

Conversely, a technique used that allows LLMs to perform well on a new task is including examples
of that task in the prompt [5], a technique called few-shot learning. Even including a few examples
can greatly improve the downstream performance.

One option for teaching using this learning model is sharing examples from the teacher’s private
dataset. However, this method compromises privacy which is why we only consider it as a baseline.
Instead, we consider sharing artificial examples that are generated based on the real data.

To let teachers generate artificial examples, we make use of their language models. In particular,
given the capability of language models to follow the format of the input and replicate it [34], the
continuation of a few-shot prompt can be expected to contain new examples. Hence, to generate a
new artificial example, each teacher selects ngen examples from its private set and generates artificial
examples by providing them as the few-shot prompt to its language model, using the model to
generate a continuation without any additional instructions.

The continuations are generated by querying the model with temperature sampling with temperature τ
and selecting the top scoring (based on perplexity) k continuations. Some of these continuations might
be discarded due to concerns such as privacy or faulty generation while the rest are sent to the aggre-
gator, the component responsible for generating the final prompt for the student. The aggregator then
picks from the at most ngen ·k generated examples, and adds the selected ones to the student’s prompt.
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3 RELATED WORK

3.1 LLMS AND AGENTS

Zero-shot or few-shot prompting has been shown to be highly effective for transfer learning, notably
by Brown et al. [5]. In such approaches, a large pre-trained language model is zero-shot or few-shot
prompted by being shown examples of the desired behaviour, without training, to perform a new task.
Variations on these methods such as chain-of-thought prompting [39] have shown that even simple
prompt modifications can have a substantial impact on target task performance [39, 7] and enable
new capabilities.

There is a large pre-existing body of work focused on multi-agent based communication via dialogue
to solve complex tasks [10, 32]. The motivation is that by cross-agent interaction, LLMs can
collectively exhibit enhanced performance by aggregating their strengths. Multiple works have
focused on debate between LLMs to improve output of models. For instance, [12] allow multiple
language model instances to propose and debate their responses and reasoning processes. Their
findings indicate that this approach significantly enhances mathematical and strategic reasoning
across a number of tasks. Perez et al. [28] also propose a debate procedure to verify the accuracy
and safety of generated content. However, in these scenarios, the concept of agents having access to
separate datasets is not considered.

Most similar to our work, Zeng et al. [44] introduce a modular framework that allows multimodal
models to exchange information with each other and capture new capabilities using zero-shot transfer.
Their approach does not require fine tuning and aims to capitalize on the different types of knowledge
contained by models capturing different modalities.

3.2 FEDERATED LEARNING

Federated learning [18, 22, 17] is a technique for training models on decentralized data without
collecting any of this data in a central place. Instead, a central server coordinates the fleet of
participants during the training process. In each round of training, a subset of participants is sampled.
Each participant receives the current weights of the model, uses their local data to update them, and
then sends back the gradients. The server combines all the model updates across participants and
uses them to update the model of the next iteration.

Social learning is similar to federated learning in that no raw data is meant to be transmitted and that
the participants aim to jointly learn to perform a task. However, in contrast to federated learning, social
learning does not update any model weights and instead works solely by exchanging information
expressed in natural language. This has a few advantages:

1. All components are agnostic to the specific models used. Teachers and students can be based on
different model sizes, architectures and weights. All they need to be able to do is to input and
output natural language.

2. Text is more compact than gradients. In federated learning today, it would be prohibitively
expensive to send full updates for the largest foundation models. With social learning, everything
is expressed in text fitting a prompt, which can easily be transmitted across networks.

3. Text is much more interpretable than gradients. One can read what teachers produce and analyze
it.

While social learning is distinctively different from federated learning, some of its concepts can be
transferred across to the social learning setting. In our privacy analysis in Section 5 for example, we
adapt Secret Sharer [6], a technique that is also popular in federated learning.

4 EXPERIMENTS

In order to assess the effectiveness of the methods we discussed in Section 2.2, we evaluate their
performance on different tasks in this section. Since the challenges involved in social learning are
new, it also requires its own task suite. In this work, we propose a set of tasks with different properties
and challenges and use them for benchmarking. We provide an overview of the benchmarking suite
and the properties of each task in Appendix B. In most of the experiments, we use instances of PaLM
2 [3] models, specifically PaLM 2-S, to power both the teachers and the student. Since we need
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The following examples are privately shared with you and will not be
given to the participants. Describe the format (any special markings used
), and general patterns and any other useful generic notes that you can
find based on these examples. What you write will be the only hint given
to the participant and they are expected to output correct replies in the
right format.

<Original Examples>

Task format with detailed instructions:

Figure 2: The prompt used to generate instructions for a task.

n Type Lambada BoolQ GSM8K SMSSpam SMS Spam
(With Class)

Random
Insertion

0 - 69.8 68.1 0.0α 14.2 92.7 22.0

1
Original 86.7 89.8 63.6 59.1 94.3 55.6

Generated 86.7 70.5* 63.9 90.2* 92.6* 53.6*

2
Original 87.3 90.1 64.2 77.2 94.9 70.0

Generated 86.7 88.6* 63.2* 88.2* 92.2* 65.9*

4
Original 87.6 90.4 63.6 86.8 95.4 69.8

Generated 88.0 85.6* 63.6 87.8 90.2* 69.7

8
Original 88.4 90.5 64.1 96.0 96.8 74.5

Generated 88.1 88.7* 63.4 86.5* 91.5* 69.2*

16
Original 88.4 90.4 63.6 96.5 97.0 73.5

Generated 89.0 90.0 63.7 88.0* 91.1* 72.4

Table 1: Performance of PaLM 2-S with different methods on different datasets. A star marks a
statistically significant difference between performance using original and generated examples. We
bold cells where no statistically significant difference was detected to emphasize that in many cases
the examples generated using social learning perform as well as the original ones. The average
accuracy across 5 runs is reported. Table 7 reports the same values with more precision. A description
of datasets and the formatting used for providing them to the models is given in Appendix B.
αGSM8K uses a special format to mark the answer. The model inevitably always fails when no instruction or
examples are provided to clarify this special format. Adding the prefix stated in Figure 5 in the Appendix to
clarify the format yields an accuracy of 16.38%.

the model to follow instructions when doing instruction generation, to ease comparison, we use the
instruction-tuned version of the models in all of our experiments.

To account for the randomness arising from temperature sampling and the distribution of the dataset
between teachers, we repeat each experiment 5 times and report the mean. We also perform sig-
nificance testing, as described in Appendix C. This lets us systematically evaluate whether there
are meaningful differences between using original data and synthetic data generated through social
learning.

4.1 LIVE MODELS: SHARING EXAMPLES

We follow the process outlined in Section 2.2.2 with m = 8 teachers and compare the performance
of a prompt with n generated examples for different values of n against several baselines. The
dataset is distributed between teachers randomly so all teachers will have the same data distribution.
The zero-shot performance of the model on the task institutes a low bar baseline. As a high bar,
we consider the performance of doing few-shot learning with n private examples from one of the
teachers, equivalent to asking that teacher to directly solve the task. Note that this is not feasible in
practice and thus is a high bar since sending private examples of a teacher, or querying one teacher
with inputs given to the student violates their privacy. Therefore, we do not aim to outperform this
baseline but to show that we can perform comparably using the generated examples.

In most of our experiments we use a basic aggregation mechanism where the aggregator picks one of
the artificially generated candidates at random. We call this aggregator the random aggregator.
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We start by considering the scenario where the student’s language model is the same as the teachers’.
Since the only difference between the teachers and the student in this case is the set of examples they
can access, we can compare the effect of using generated examples instead of real ones more clearly.
The results are shown in Table 1 and highlight various patterns that give insight on effectiveness of
generating artificial examples. We now discuss several of these patterns in detail.

For the majority of tasks, we observe no significant difference between using original private examples
and the generated ones, especially when the number of examples is high enough, e.g. n = 16. This is
especially interesting since we observe that these generated examples are sufficiently different from
the real ones. We confirm this in Appendix D where we report a high average normalized distance
between each generated example and the prompt used for generating it. We note that this investigation
is different from measuring the amount of data leakage which we investigate in Section 5 as the
examples can be different and yet still contain sensitive information.

The main exception where a difference can be observed between generated and real examples is the
spam detection task. Based on our observations, we conjecture that one of the underlying reasons
that makes generating artificial examples for this task more challenging is that the language model
favors not spam examples over spam examples. Boolean Questions is another task where the model
struggles when given generated examples, though the gap closes when the number of examples is
large enough. In this task we also observe that the language model seems to strongly favor questions
with a yes answer, suggesting that the favor of one class is a re-occurring challenge in generating
examples for classification tasks. For Boolean Questions we also observe another challenge that the
language model tends to generate questions that do not have a yes or no answer. We provide some
qualitative examples of both good and bad generations in Appendix J.

Finally, we observe that generating factual examples is not essential for transferring knowledge. For
example, we observe that some of the generated examples and provided solutions in the GSM8K task
can be wrong without hurting performance. As shown in prior work [23], the demonstrations are not
only useful to show the mapping between the input and the label but are also important to clarify the
format and the input and label distributions. We conjecture that in these cases the model mainly relies
on its own intrinsic ability to map the input to the label while using the demonstrations to learn the
other aforementioned aspects of the task. We highlight that these aspects are sometimes essential to a
good performance on the task. Indeed, on the GSM8K task, thinking step by step is part of the format
learned from the examples which significantly improves performance [39].

4.1.1 EXTENSIONS TO SHARING EXAMPLES

We additionally investigated two extensions to the above setup which we only briefly describe here
with details described in the appendix.

Teaching to a larger student This ability is natural to social learning since teachers only share text,
enabling knowledge to be transferred between different models of different sizes and architectures.
On the other hand, typical gradient-based federated learning methods such as FedAvg [22] and
FedOpt [33] require the same model size and architecture to be used everywhere. Given that the
largest of language models currently can be only executed on data centers, it would be especially
useful to be able to transfer knowledge back to such models. In our experiments, we find this to be
generally feasible in social learning, with a small drop in performance compared to teachers and
student being of the same size, as is expected to be in this more difficult setting. Details and results
of this setup is provided in Appendix G.

Voting aggregator As an example of a more sophisticated aggregator, we evaluated an aggregator
where teachers vote on their preferred examples. To be able to do this, teachers keep a hold-out
dataset that is used during the voting process. After teachers generated examples using their training
dataset, the aggregator sends back all received examples to the teachers to let them vote. The most
popular examples are then used by the student during evaluation. We find this protocol to improve
results for intermediate values of n, the total number of examples picked by the aggregator. We refer
interested readers to Appendix H for more details and results.

4.2 VERBAL SOCIAL LEARNING: SHARING INSTRUCTIONS

As discussed in Section 2.2.1, sharing an instruction for the task is another possible method for social
learning where the teachers are asked to generate an instruction that describes the task. In this work,
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Method Lambada BoolQ GSM8K SMSSpam SMS Spam
(With Class)

Random
Insertion

Zero-Shot 69.8 68.1 0.0 14.2 92.7 22.0
Manual 77.5 90.2 15.6 94.0 94.2 34.9

8-shot Original Examples 88.4 90.5 64.1 96.0 96.8 74.5
8-shot PaLM 2-S Generated Examples 88.1 88.7 63.4 86.5 91.5 69.2

GPT3.5 Generated Instruction 82.8 90.1 4.1 85.4 95.4 59.2
PaLM 2-S Generated Instruction 85.1 88.7 0.0 92.9 93.4 40.4

Table 2: Performance of PaLM 2-S when transferring knowledge using generated instructions. For
each dataset, we bold the best-performing baseline and social learning method. In most cases, the
generated instruction improves over directly prompting the model with the task (zero-shot). We
can observe that for some of the tasks such as Lambada and Random Insertion, using generated
examples performs better than using generated instructions whereas the situation is reversed for the
spam detection task. The average accuracy across 5 runs is reported. Table 8 reports the same values
with more precision.

we only consider the single teacher case to avoid the need for merging multiple instructions. The
teacher is queried a single time to generate an instruction based on 8 examples, pointing out any
patterns or special format instructions that it can observe (see the exact prompt in Figure 2). The
generated instruction is directly used as the prompt for the student. As such, the aggregator in this
case simply forwards the instruction.

We present the results in Table 2 for two teacher models: PaLM 2-S and OpenAI GPT3.5-Turbo.
The table also includes the results for multiple baselines. In particular, we compare with the empty
prompt (zero-shot) performance as the low bar to showcase the improvement observed from having
an instruction. Since the instruction is generated using 8 examples, we also compare with the 8-shot
performance (without instruction) using the original, private examples directly as the high bar. Finally,
as an alternative, we also report results on a prompt that we wrote manually for each task. These
prompts are listed in Table 6. While writing a manual prompt is not a controlled process, we report
the results here to provide an approximate of what can be achieved without using social learning and
simply relying on the intuition of the model developer. To simulate the prompt developers’ limited
access to a task’s examples, the prompts were only tested and tuned with at most 2 examples from
each task.

With the exception of the GSM8K task and the spam detection task with list of classes provided, we
observe an accuracy that is significantly improved in comparison with zero-shot performance. The
most challenging dataset for generating instruction seems to be GSM8K. We observed that the main
challenge for this task is providing the instruction for the special format of the output which involves
outputting the final answer after four hash (#) signs. In many of the runs, the models ignore this
special format and do not include it in the instruction which leads to a zero accuracy performance.
Moreover, even in some of the runs where GPT3.5 generates an instruction which includes the
description of the format, the performance is usually below the manual instruction performance and
much lower than sharing original or generated examples. We note that our results are based on a
basic method for generating the instruction. Indeed, recent work suggests that the instruction can
be significantly improved using more sophisticated generation methods. For example Yang et al. [41]
report results comparable to the performance we observe with original examples by using a feedback
loop in the generation process. We leave exploration of different methods to improve the instruction as
future work. Interestingly, we can observe that in some tasks, namely Lambada and Random Insertion,
generated artificial examples perform better than generated instructions whereas in other tasks such
as spam detection, generated instruction obtains a higher accuracy. Still, in all tasks the performance
is lower than the high bar of 8-shot original examples, suggesting a capacity for improvement.

5 MEMORIZATION

In the previous sections of the paper, we discussed how well teachers can teach students in social
learning in terms of model quality. In this section, we investigate whether the instructions and exam-
ples transferred to students indeed help reduce private data leakage or not. To this end, we propose and
evaluate metrics to measure how much social learning can memorize sensitive information included
in the private examples.
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As a first step, we first investigate how often teachers copy over one of their private examples verbatim.
This can happen when the teacher repeats one of the examples given in its prompts. On all datasets
we found this to be the case in fewer than 0.1% of cases, meaning the exact data point is rarely leaked.
As shown in Table 5 in the Appendix, the Levenshtein distances between original and generated
examples are also generally high. However, that does not necessarily mean that no sensitive parts of
the original example are memorized, either verbatim or in more subtle ways.

To investigate this further, we adapt the existing Secret Sharer [6] technique for social learning. Secret
Sharer is an established technique for measuring how much a given training process leads a model
to memorize some of its training data. It has been used in federated learning [36, 13], making it an
interesting technique to adapt to social learning.

Secret Sharer works by inserting artificial secret data points, called canaries, into the training data
set. Injection of canaries provides access to a known set of secrets that should not be shared, making
it measurable how much the secrets present in the data are memorized. To implement this, one canary
is randomly sampled from a list containing NSS potential canaries, while the other NSS − 1 data
points that were not sampled serve as comparison elements. In our experiments, we generate canaries
containing secret codes and names. This is done by using random four-digit numbers for the codes
and by taking names from a dataset of the most common names given to newborns in the US in 2020
[16]. The codes or names are inserted into patterns shown in Table 13 in the appendix.

After performing training using the data containing the canary, the score assigned by the model
to the canary included in the data is compared with the scores of the comparison data points that
were not included in the training data. This metric, called rank, counts the number of comparison
examples that get assigned a higher score than the canary that was actually trained on. Secret Sharer
assumes a scoring function based on the model that assigns a higher score to examples that the model
memorized. Since the rank is a random variable, the average of the rank across TSS runs is computed
and used for making deductions. For example, if the model has not memorized the canary, the rank’s
distribution would be uniform, leading to an average rank of NSS

2 . In the case of perfect memorization,
the rank would be 0.

To illustrate the method further, consider the example of adding the canary
The secret code is 1234 to the training set. After training, we can check how
high the model’s score is in that particular example as opposed to the same string with different codes.
A model that only learned a high-level pattern, would not assign a significantly higher score to the
string containing the particular code it was trained on whereas a model that memorized the concrete
data point would.

In standard gradient descent training, the model’s loss for the example can be used as the score. In
social learning, we do not optimize any numerical loss and do not update any weights. Instead, the
social learning process produces a string in the form of new examples or an instruction which can
be added to the model’s prompt. Therefore, we use the following mechanism to compute the score:
Given the final prompt from social learning process and a canary, the likelihood of that canary as
a continuation of the learned prompt is determined by the model. This value is normalized by the
number of tokens in the canary to make it comparable to the score of other canaries. This normalized
value is used as the score. We call this scoring function the example reconstruction likelihood. An
example of this can be seen in Figure 3.

Putting everything together, a Secret Sharer experiment in social learning then works as follows:

1. A canary element and NSS − 1 comparison elements are sampled.

2. The canary element is inserted into the training dataset of all teachers.

3. The social learning process is executed, which results in examples or an instruction generated
by the teacher.

4. The example reconstruction likelihood is computed on (a) The canary element used in training.
and (b) The NSS − 1 comparison elements not used in training.

5. The rank is computed by counting how many of the comparison elements have a higher likelihood
than the one we trained on.

6. The above process is repeated TSS times and the average rank is returned.

8
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Figure 3: Example reconstruc-
tion likelihood is the score the
model assigns to an original
example (in blue, representing
either the canary or a compar-
ison element) which follows
the generated examples. The
score is only computed on the
original example.

Canary Lambada GSM8K

Codes 435 467
Names 463 459

Table 3: The average rank
across 100 Secret Sharer ex-
periments.

Canary Lambada GSM8K

Codes 8 3
Names 7 4

Figure 4: How often rank 0 oc-
curs across 100 Secret Sharer
experiments. In a random, uni-
form distribution, we would
expect it to occur once.

Since each experiment requires performing many social learning experiments to compute a stable
average rank, running this method is costly. Therefore, we only evaluate it on two of the tasks, namely
Lambada and GSM8K. Furthermore, we focus on measuring the memorization for two different types
of secrets, namely numbers (as secret codes) and names, in the canary elements.

We compare the rank of an included canary with 999 other not included canaries, i.e. NSS = 1000
and compute the average over TSS = 100 Secret Sharer experiments.

The results in Table 3 show the mean rank observed in these experiments. The observed ranks are
lower than the value expected in the case of no memorization, i.e. NSS

2 = 500. While this observation
suggests that some memorization has occurred, the average is still quite close to 500 signaling that
the memorization is either subtle or does not happen often.

To check how often the code and name can be perfectly reconstructed, we also looked at how often a
rank of 0 is observed. Note that in a uniform distribution over the rank (meaning no memorization
happens), this event should occur 1

NSS
= 0.1% of the time. Table 4 shows that while this event occurs

more often than this baseline in our case, the ratio is still low. Improving these metrics and bringing
them closer to the no memorization baselines is an important direction for future work.

6 FUTURE WORK

Improving Teaching Process Both for sharing examples and sharing instructions, our results show
there is room for improvement. Future work could explore other aggregators, ways of introducing
learning loops, or other techniques for generating instructions or examples.

Generalized Settings and Other Modalities Future work could also consider more generalized
settings, such as cases where teachers are allowed to communicate with each other or are available
during inference. Instead of text-based examples and communication, future work can investigate
social learning based on other modalities, such as image or audio data. These settings introduce
other challenges and require capabilities from the models that are yet to be perfected.

Alternative Privacy Metrics and Differential Privacy While the privacy experiments using Se-
cret Sharer provide some information about privacy in social learning, we do not consider them to be
exhaustive. Future work could look into different ways of measuring data leakage in social learning.
Furthermore, differential privacy guarantees could be added to social learning by making teachers
use recently proposed mechanisms for differentially-private in-context learning [35, 40].

7 CONCLUSION

In this work, we introduced the social learning framework which allows language models with access
to private data to transfer knowledge through textual communication while maintaining the privacy
of that data. In this framework, we identified sharing examples and sharing instructions as basic
models and evaluated them on multiple tasks. Furthermore, we adapted the Secret Sharer metric to
our framework, proposing a metric for measuring data leakage. The paper evaluates these methods
on several datasets, reports results, and outlines directions for future work.
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A ADDITIONAL SIMPLIFYING CONSTRAINTS

We impose the following constraints on the communications between the teachers and the student in
our social learning methods:

1. Teachers do not directly communicate with each other: teachers are not able to send text
messages to each other either directly or via the student. This constraint removes the effect
of planning and debate capabilities of the language models.

2. The query to all teachers is the same: the student always sends the same message to all the
teachers. This constraint removes the need for the student to analyze teacher’s knowledge of
the task and react based on it.

3. The conversation flow is fixed: the tasks requested from the teachers are fixed in advance
and do not depend on the conversation. For example, teachers might initially be asked to
describe the task and then be prompted with a description from multiple teachers to produce
a consolidated version. However, the student will not ask for clarifications about a specific
part of the description that is vague. This constraint removes the requirement of models to
generate instructions during learning as the prompts can be manually fixed.

To define a social learning method, we have to define the response functions of teachers and the
student:

• Teachers’ Response: We need to define Ti(M) which is the message sent to the student
in response to the message M received from the student. For example if M is a question,
Ti(M) can be the answer based on a teacher’s private data.
• Student’s Response: Since the student sends the same message to all the teachers, we can

assume that it replies only after receiving the update from all teachers. The student responds
to the message by possibly sending a new message to the teachers and creating an updated
prompt PNew

S . As such, to define the response function of the student we need to specify
RG(MT1

,MT2
, . . . ,MTm

, P current
S ) as a pair (P new

S ,Mnext).

The training starts by querying the student to generate the first message to the teachers. Afterwards,
the teachers and student alternate responding to each other’s messages. Once the training is completed,
the final prompt can be used by the student during inference.

B DATASETS

In this section, we provide a summary for each of the tasks in our evaluation suite. The exact format
used to convert instances of each task to a string given to the language models is provided in Table 4.

Spam Detection We use the SMS Spam dataset [1] which contains a collection of SMS messages
classified into spam and not spam classes. We randomly under-sample the dataset (without replace-
ment) to make it balanced. We use a fixed 500 element subset of the under-sampled dataset as the
test-set. To convert each example to string we use a basic format which starts with the message’s text
followed by the class of the message. However, using this format, it is infeasible for the model to
perform well when the list of classes are not known. For example, this can happen in the zero-shot
or one-shot case where the set of examples contain at most one of the classes. Therefore, we also
experiment with another format that provides a list of classes (spam or not spam) before stating the
label for the example. The exact format is shown in Table 4. While in the literature normal messages
are usually referred to as "ham", we use "not spam" in this work.

Lambada The Lambada dataset [26] is a Cloze task where the last word of a sentence is removed
and the task is recovering the word based on the context. In this work, we use the same format used
to evaluate GPT-2 [30]. License is CC-BY-4.0.

Boolean Questions BoolQ [8] is a dataset of a context, question, and answer triplets. The model
is asked to provide a yes or no answer to the question based on the given context. License is
CC-BY-SA-3.0.

Grade School Math We evaluate on the GSM8K dataset [9] which is a set of mathematical ques-
tions annotated with the final answer as well as the trace to reach the answer. Solving mathematical
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Dataset Example Format

SMS Spam (Base) Text: <Message>
Class: <spam/not spam>

SMS Spam (Class List)
Text: <Message>
Class ("spam" or "not spam"): <spam/not
spam>

Lambada

Fill in blank:

<Text without last word> ____ -> <last
word>

BoolQ
<Context>
Question: <Question>
Answer: <Answer>

GSM8K
Question: <Question>
Answer: <Step By Step Reasoning>
#### <Final Answer>

Random Insertion <Word With Punctuations> = <Original
Word>

Table 4: Formats used to convert dataset elements to text. The segments enclosed in < and >
correspond to placeholders replaced by values from each example.

problems is a known challenging task for language models [31]. Therefore, this task is especially
difficult for generating artificial examples since generating a correct example requires solving the
task in the process. License is MIT.

Random Insertion We also adapt the random insertion artificial dataset from Brown et al. [5]. In
this dataset, a random punctuation mark is inserted after each character of a word. The answer to
the task is the original word without the punctuation marks. We choose this dataset as the results in
Brown et al. [5] show noticeable improvement from having more examples in the few-shot prompt,
signaling the importance of having access to good examples or instructions.

C SIGNIFICANCE TESTING

We apply a permutation test to understand the significance of our results in comparison to different
baselines. In particular, to test the significance of the difference observed in the accuracy of a certain
method in comparison to a given baseline, we first combine all the example and output pairs generated
by either the baseline or the considered method. We randomly permute the aforementioned pile and
break it into a pile with the same number of pairs as the baseline and another pile with the same
number of pairs as the considered method. We compute the accuracy of each pile and measure the
difference. Repeating this process 104 times allows us to obtain an approximate distribution of the
observed difference if the baseline and the considered method’s output are not significantly different.
We use this distribution to compute the probability of the real difference in accuracy between the
baseline and the considered method and report that as the p-value. When discussing results, if the
p-value is below the threshold 0.05 we say the result is significant and state that we could not observe
a significant difference otherwise.

D DISTANCE OF A GENERATED EXAMPLE TO ITS GENERATION PROMPT

We define a distance metric in order to take into account that the student’s prompt can contain
multiple examples. In particular, we compute the minimum Levenshtein Distance (with substitution
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not allowed) to any substring1 of the student’s prompt. To allow comparability, we normalize this
value by the generated example’s length and call it the normalized distance. The results are reported in
Table 5. The average normalized distance is typically large, indicating that the example is sufficiently
different from examples in the prompt. We can also observe that the distance is lower than others
in some tasks, namely spam detection and random insertion. We point out that in random insertion
almost half the characters are punctuation marks which are limited and can be expected to overlap
more often, lowering the distance. Furthermore, the SMS texts are usually short and imitating the
format of a spam message can lead to a low distance. That being said, generating novel examples for
these tasks may also be more challenging for the model.

n Lambada BoolQ GSM8K SMS Spam SMS Spam
(With Class)

Random
Insertion

1 0.78 0.85 0.79 0.47 0.47 0.58
2 0.76 0.84 0.82 0.63 0.46 0.56
4 0.77 0.83 0.80 0.58 0.43 0.61
8 0.76 0.83 0.81 0.56 0.43 0.61
16 0.77 0.83 0.81 0.60 0.47 0.59

Table 5: Average of the normalized distance between each generated example by PaLM 2-S and the
prompt used to generate it. Distance is defined as the minimum Levenshtein distance (substitution
not allowed) to any substring of the prompt, making the maximum possible distance equal to the
generated example’s length. Normalization is done by the generated example’s length. It can be seen
that the average is usually quite high, suggesting that many of the generated examples are significantly
different from the real ones provided in the prompt.

E MANUAL PROMPTS

The manually written prompts are reported in Table 6.

F DETAILED EXPERIMENT RESULTS

The detailed experiment results with standard errors and p-values are reported in Table 7.

The results contain cases where the deviation of performance across the runs is quite high, demon-
strated by the high reported standard error. We observe that this can happen for multiple reasons. For
the spam detection task, this mainly happens when the basic format is used. In this case, the list of
classes are unknown to the model and, especially when the number of examples is low, it is possible
that the model only receives examples from a single class. We observe that if this class is the spam
class, the model uses "ham" to classify non spam messages which is considered the wrong class, thus
reducing the accuracy significantly. This is interesting as ham is the terminology typically used in the
literature whereas here we use the not spam class. This issue is noticeably improved when the list of
classes is provided to the model. High variance is also observed in Boolean Questions. As mentioned
earlier, in some runs most generated examples selected by the aggregator were not a yes/no question,
which leads to a poor performance. Fortunately, the likelihood for generating such bad examples is
low, and such a scenario mainly happens when the number of selected examples n is small. As a
result, the high standard error can only be seen for small values of n. We can also observe a high
standard error in the random insertion task. However, this standard error is also visible in the baseline,
suggesting that the model is in general more sensitive to the choice of examples in this task. The root
cause of this sensitivity is not clear.

G TEACHING A LARGER STUDENT MODEL

In this section, we consider the ability to transfer knowledge to a larger model. This ability is natural
to social learning since teachers only share text, enabling knowledge to be transferred between
different models of different sizes and architectures. On the other hand, typical gradient-based

1for a string s with n characters, a substring is defined by a pair (i, j) (1 ≤ i ≤ j ≤ n) and refers to the
string containing the i-th to j-th characters of s
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Dataset Manual Instruction

SMS Spam

For the following sms message,
determine if it is a spam (e.g. sent by
a bot containing advertisement,
phishing, spam, etc.) or a real message
(sent by a human) by classifying the
message into "spam" and "not spam"
classes.

Lambada

The last word of the last sentence in a
passage has been removed. Write the
missing word (which is marked by four
underscores) after the arrow ->.

BoolQ

A passage is given followed by a
question. Answer the given question
with a simple yes or no based on the
given passage.

GSM8K

Solve the following math questions.
Think step by step and write the steps
in your answer. When you are done write
the final answer write it (a single
number) marked with the prefix ####
followed by a space. This answer will
be auto-graded so take extra care to
follow this format. Do not print
anything after the final answer.

Random Insertion

A random punctuation mark (or a space)
has been inserted after each character
of a word. The result is written on the
left hand side of the equation below
and the right hand side contains the
original word.

Table 6: Manually written instructions used for each task to establish a baseline.

Solve the task described below. You may output additional text
however the final answer should be marked with prefix ####
followed by a space.

Figure 5: Manually added prefix instruction to specify GSM8K format. No instruction to perform
CoT is given.

federated learning methods such as FedAvg [22] and FedOpt [33] require the same model size and
architecture to be used everywhere. Given that the largest of language models currently can be only
executed on data centers, it would be especially useful to be able to transfer knowledge back to such
models.

Table 9 contains the results for teaching a larger student model (PaLM 2-S using smaller teacher
models, PaLM 2-XS). As the baseline we compare using original examples either at the student (high
bar) or at the teachers (low bar). For all tasks except spam detection we can observe significant
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n Type Lambada BoolQ GSM8K SMS Spam SMS Spam
(With Class)

Random
Insertion

0 - 69.80(0.00) 68.10(0.00) 0.00(0.00)a 14.19(0.00) 92.70(0.00) 22.00(0.00)

1
Original 86.68(0.48) 89.84(0.10) 63.59(0.25) 59.10(7.62) 94.25(0.27) 55.56(3.12)

Generated 86.65(0.44) 70.46(7.19) 63.87(0.76) 90.22(0.57) 92.55(0.40) 53.58(7.89)
p-value 0.4895 0.0000 0.3708 0.0000 0.0023 0.0236

2
Original 87.30(0.44) 90.12(0.03) 64.20(0.28) 77.15(9.96) 94.87(0.25) 70.04(3.19)

Generated 86.70(0.41) 88.63(0.77) 63.23(0.60) 88.17(0.74) 92.15(0.63) 65.94(1.75)
p-value 0.2069 0.0000 0.1267 0.0000 0.0000 0.0000

4
Original 87.56(0.63) 90.44(0.07) 63.59(0.27) 86.75(8.28) 95.43(0.53) 69.74(2.55)

Generated 87.98(0.43) 85.54(3.87) 63.58(0.48) 87.77(0.75) 90.19(0.81) 69.72(2.42)
p-value 0.2809 0.0000 0.5000 0.0990 0.0000 0.5000

8
Original 88.36(0.54) 90.53(0.07) 64.05(0.23) 96.02(0.27) 96.75(0.11) 74.50(1.15)

Generated 88.05(0.27) 88.73(0.88) 63.38(0.47) 86.45(0.88) 91.51(0.97) 69.22(3.42)
p-value 0.3246 0.0000 0.2164 0.0000 0.0000 0.0000

16
Original 88.40(0.67) 90.42(0.08) 63.55(0.28) 96.48(0.17) 97.02(0.07) 73.52(1.11)

Generated 89.04(0.23) 89.94(0.08) 63.71(0.35) 87.98(1.18) 91.08(1.57) 72.36(1.01)
p-value 0.1747 0.0756 0.4266 0.0000 0.0000 0.1023

aGSM8K uses a special format to mark the answer. The model inevitably always fails when no
instruction or examples are provided to it to clarify this special format. Adding the prefix stated in
Figure 5 to clarify the format yields accuracy 16.38%.

Table 7: Accuracies and p-values reported in Table 1 with more precision. Standard error of the mean
is reported in parentheses.

Method Lambada BoolQ GSM8K SMS Spam SMS Spam
(With Class)

Random
Insertion

Zero-Shot 69.80 68.10 0.00 14.19 92.70 22.00
Manual 77.45 90.18 15.62 93.95 94.22 34.9

8-shot Original Examples 88.36(0.54) 90.53(0.07) 64.05(0.23) 96.02(0.27) 96.75(0.11) 74.50(1.15)
8-shot Artificial Examples 88.05(0.27) 88.73(0.88) 63.38(0.47) 86.45(0.88) 91.51(0.97) 69.22(3.42)

GPT3.5 Generated Inst. 82.81(1.87) 90.12(0.07) 4.11(2.27) 85.38(8.70) 95.38(0.37) 59.22(4.76)
PaLM 2-S Generated Inst. 85.12(0.91) 88.74(1.36) 0.00(0.00) 92.90(0.04) 93.44(0.39) 40.38(9.88)

Table 8: Accuracies and p-values reported in Table 2 with more precision. Standard error of the mean
is reported in parentheses.

improvement over using the original examples from the small model. The gap is especially large
for smaller values of n (e.g. 1-shot) where an improvement can be observed on all tasks. While this
improvement is expected given the larger size of the student’s model, it highlights the success of
generated examples to transfer the knowledge and demonstrates the benefit of having such mechanism.
For larger values of n, the small model already performs quite well on the spam detection task and
as a result, no significant improvement from the knowledge transfer can be observed in these cases.
Noticeably, in most cases for Lambada and GSM8K no significant difference could be observed
between using the artificially generated examples and using private examples directly at the student.

We discussed the challenges encountered when generating new examples for the spam detection
and Boolean Question tasks in Section F. We observe that when using a smaller model, the same
challenges persist and are sometimes exacerbated. As a result, the generated examples can sometimes
perform poorly as can be observed for 1-shot inference in the Boolean Questions task and 2-shot
inference for the spam detection task without list of classes. In these cases, a high standard error is
typically observed as the model only sometimes fails to generate good examples.

H VOTING AGGREGATOR

In this section we explore using a more sophisticated aggregator than the random aggregator and
assess its effect on performance. In particular, we consider an aggregator that adheres to the following
voting process:
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n Type Student Lambada BoolQ GSM8K SMSSpam SMS Spam
(With Class)

Random
Insertion

1

Original PaLM 2-XS 74.6 81.1 9.3 61.8 54.3 11.8
Original PaLM 2-S 86.7 89.8 63.6 59.1 94.3 55.6

Generated
PaLM2-XS PaLM 2-S 86.7 72.2* 57.2* 75.9* 92.4* 50.9*

2

Original PaLM 2-XS 73.7 80.9 16.0 72.2 75.1 19.9
Original PaLM 2-S 87.3 90.1 64.2 77.2 94.9 70.0

Generated
PaLM2-XS PaLM 2-S 87.8 89.8 63.6 59.7* 87.9* 66.1*

4

Original PaLM 2-XS 81.5 81.1 19.2 90.4 94.9 25.1
Original PaLM 2-S 87.6 90.4 63.6 86.8 95.4 69.7

Generated
PaLM2-XS PaLM 2-S 88.1 82.8* 63.9 94.1* 93.8* 51.5*

8

Original PaLM 2-XS 86.2 81.9 18.7 95.7 96.5 31.4
Original PaLM 2-S 88.4 90.5 64.1 96.0 96.8 74.5

Generated
PaLM2-XS PaLM 2-S 89.1 90.2 63.6* 94.6* 96.1 63.3*

16

Original PaLM 2-XS 87.3 82.6 17.7 96.3 96.2 30.2
Original PaLM 2-S 88.4 90.4 63.6 96.5 97.0 73.5

Generated
PaLM2-XS PaLM 2-S 89.2 89.1* 63.8 94.6* 94.0* 61.8*

Table 9: Performance of teaching a larger student model. The performance of an PaLM 2-XS student
using original examples is reported as the low bar baseline whereas the performance using original
examples and PaLM 2-S student constitutes the high bar baseline. A star marks statistically significant
results from the high bar baseline. We bold cells where no statistically significant difference was
detected to emphasize that in many cases the examples generated using social learning perform as
well as the original ones. The average accuracy across 5 runs is reported. Table 10 reports the same
values with more precision.

1. Before beginning the generation process, the aggregator asks each teacher to create a
evaluation dataset by holding out a subset of its data, not used for generating the artificial
examples.

2. After each generation, as specified in Section 2.2.2, the aggregator is queried with a set of
artificially generated candidates. As a response, the aggregator sends the list of all candidates
to all teachers asking them to select the best candidate.

3. Each teacher computes the likelihood of each candidate separately as a continuation of its
held-out evaluation dataset normalized by the length of that candidate and votes for the
candidate that scores the highest. The teachers’ votes are sent back to the aggregator.

4. The aggregator selects the candidate with the most votes.

As before, the process of generating candidates, voting and selecting the highest voting candidate is
repeated until the desired number of examples is generated to be included in the student’s prompt.
We call this aggregator the voting aggregator.

We compare the performance of using the voting aggregator against using the random aggregator
in Table 11. We observe that the benefit of using the voting aggregator varies depending on n. For
very small values of n (e.g. n = 1) the performance is even worse than using the random aggregator
for some tasks. Though the observed difference is not always significant, this may suggest that the
top-voted example, though possibly better formatted, might not be sufficient to fully describe the task
as a single example which encourages looking for better aggregation mechanisms. At the other end
of the spectrum, we observe no significant difference for very high values of n, e.g. n = 16. We
hypothesize that in this case given the large number of examples, these examples contain most of the
information even when they are selected randomly. However, for middle range values of n where the
choice of the examples is important and there is some freedom in using different combinations, we
observe a more pronounced difference when using a voting aggregator. In this case, for most of the
tasks an improvement is observed in the accuracy (though not always significant) when using the
voting aggregator. The exception is the spam detection task where using the voting aggregator tends
to hurt the performance regardless of the magnitude of n. We noticed that this is because when using
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n Type Student Lambada BoolQ GSM8K SMS Spam SMS Spam
(With Class)

Random
Insertion

1

Original PaLM 2-XS 74.61(2.15) 81.05(1.02) 9.28(2.04) 61.75(4.55) 54.30(1.88) 11.80(3.37)
Original PaLM 2-S 86.68(0.48) 89.84(0.10) 63.59(0.25) 59.10(7.62) 94.25(0.27) 55.56(3.12)
Generated
PaLM2-XS PaLM 2-S 86.72(0.72) 72.17(6.46) 57.21(4.83) 75.94(7.89) 92.42(1.51) 50.92(3.25)

p-value 0.4883 0.0000 0.0000 0.0000 0.0012 0.0000

2

Original PaLM 2-XS 73.65(3.22) 80.94(0.98) 16.03(0.26) 72.15(8.16) 75.11(9.25) 19.94(2.60)
Original PaLM 2-S 87.30(0.44) 90.12(0.03) 64.20(0.28) 77.15(9.96) 94.87(0.25) 70.04(3.19)
Generated
PaLM2-XS PaLM 2-S 87.84(0.53) 89.75(0.15) 63.55(0.58) 59.73(6.78) 87.88(3.55) 66.10(1.25)

p-value 0.2240 0.1346 0.2211 0.0000 0.0000 0.0000

4

Original PaLM 2-XS 81.48(2.90) 81.11(0.22) 19.15(0.65) 90.43(1.41) 94.92(0.66) 25.14(1.94)
Original PaLM 2-S 87.56(0.63) 90.44(0.07) 63.59(0.27) 86.75(8.28) 95.43(0.53) 69.74(2.55)
Generated
PaLM2-XS PaLM 2-S 88.05(0.26) 82.82(4.48) 63.85(0.64) 94.09(0.44) 93.87(0.51) 51.46(0.43)

p-value 0.2372 0.0000 0.3846 0.0000 0.0019 0.0000

8

Original PaLM 2-XS 86.20(0.43) 81.90(0.27) 18.61(0.44) 95.73(0.59) 96.45(0.23) 31.44(2.43)
Original PaLM 2-S 88.36(0.54) 90.53(0.07) 64.05(0.23) 96.02(0.27) 96.75(0.11) 74.50(1.15)
Generated
PaLM2-XS PaLM 2-S 89.12(0.11) 90.18(0.08) 62.64(0.77) 94.62(0.29) 96.13(0.30) 63.26(2.46)

p-value 0.1263 0.1511 0.0497 0.0029 0.0844 0.0000

16

Original PaLM 2-XS 87.26(0.24) 82.62(0.35) 17.68(0.45) 96.34(0.35) 96.16(0.39) 30.22(1.70)
Original PaLM 2-S 88.40(0.67) 90.42(0.08) 63.55(0.28) 96.48(0.17) 97.02(0.07) 73.52(1.11)
Generated
PaLM2-XS PaLM 2-S 89.18(0.33) 89.08(0.99) 63.75(0.71) 94.62(0.47) 93.95(1.11) 61.76(3.49)

p-value 0.1196 0.0000 0.4120 0.0002 0.0000 0.0000

Table 10: Accuracies and p-values reported in Table 9 with more precision. Standard error of the
mean is reported in parentheses.

voting, the bias of the model toward one class as discussed in the previous section becomes amplified.
Our results suggest that additional research is required to find better aggregators that can improve the
performance further which we leave as an area for future work.

n Method Lambada BoolQ GSM8K SMSSpam SMS Spam
(With Class)

Random
Insertion

1
Random 86.7 70.5 63.9 90.2 92.6 53.9
Voting 86.5 86.6* 60.5* 87.3* 93.2 56.6*

2
Random 86.7 88.6 63.2 88.2 92.2 65.9
Voting 87.9* 85.8* 64.8* 83.7* 88.1* 67.8*

4
Random 88.0 85.5 63.6 87.8 90.2 69.7
Voting 88.2 89.8* 64.8 84.1* 91.1 72.9*

8
Random 88.1 88.7 63.4 86.5 91.5 69.2
Voting 88.2 89.5* 64.0 84.8* 89.5* 71.4*

16
Random 89.0 89.9 63.7 88.0 91.1 72.4
Voting 88.8 89.7 63.5 87.9 89.4* 72.8

Table 11: Comparison of the performance of PaLM 2-S when using the voting and random aggregators.
A star marks statistically significant results from the random to the voting aggregator according to
the permutation test. We bold the cells that are better and have statistical significance. The change
in performance when using the voting aggregator seems to depend on the value of n. While for the
large values of n the results do not change and the random aggregator performs better for the small
values of n, middle values of n benefit from using the voting aggregator. The exception is the spam
detection task where using a voting aggregator always reduces performance, possibly due to the bias
of model towards not spam messages. The average accuracy across 5 runs is reported. Table 12
reports the same values with more precision.
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n Method Lambada BoolQ GSM8K SMS Spam SMS Spam
(With Class)

Random
Insertion

1
Random 86.65(0.44) 70.46(7.19) 63.87(0.76) 90.22(0.57) 92.55(0.40) 53.58(7.89)
Voting 86.50(0.28) 86.63(2.60) 60.52(1.07) 87.31(0.61) 93.15(0.24) 56.56(3.66)
p-value 0.3122 0.0000 0.0000 0.0001 0.1711 0.0019

2
Random 86.70(0.41) 88.63(0.77) 63.23(0.60) 88.17(0.74) 92.15(0.63) 65.94(1.75)
Voting 87.87(0.28) 85.80(2.81) 64.75(0.33) 83.74(2.19) 88.06(1.71) 67.84(1.29)
p-value 0.0001 0.0000 0.0367 0.0000 0.0000 0.0228

4
Random 87.98(0.43) 85.54(3.87) 63.58(0.48) 87.77(0.75) 90.19(0.81) 69.72(2.42)
Voting 88.18(0.33) 89.76(0.22) 64.82(0.42) 84.11(1.94) 91.05(0.96) 72.90(2.07)
p-value 0.2408 0.0000 0.0691 0.0000 0.1127 0.0001

8
Random 88.05(0.27) 88.73(0.88) 63.38(0.47) 86.45(0.88) 91.51(0.97) 69.22(3.42)
Voting 88.22(0.20) 89.53(0.30) 64.03(0.32) 84.78(1.96) 89.52(1.12) 71.36(0.98)
p-value 0.2809 0.0092 0.2216 0.0230 0.0019 0.0098

16
Random 89.04(0.23) 89.94(0.08) 63.71(0.35) 87.98(1.18) 91.08(1.57) 72.36(1.01)
Voting 88.76(0.25) 89.65(0.09) 63.53(0.36) 87.85(3.04) 89.44(1.26) 72.82(2.18)
p-value 0.1613 0.1956 0.4195 0.4427 0.0089 0.3116

Table 12: Accuracies and p-values reported in Table 11 with more precision. Standard error of the
mean is reported in parentheses.

In the case of the spam dataset, the random aggregator does better than the voting aggregator. This
is because language models are inherently biased towards non-spam examples, meaning the voting
process leads to a class imbalance.

The choice of the aggregator is thus highly dataset-dependent. When the quality of candidate examples
and instructions is high, random selection does well. When it is not, it becomes more important to
pick generated examples well.

I CANARY DESIGNS

Table 13 shows the canaries we use for Secret Sharer experiments.

J EXAMPLES AND INSTRUCTIONS OUR METHODS GENERATE

Tables 14, 15, 16 show examples and instructions as generated by our methods.
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Dataset Codes Names

LAMBADA The secret ____ is 1234 ->
code

<name> was on the way to
buy bread at the bakery.
On the way to the bakery
he came across a dog.
Instead of continuing to
the ____ <name> followed
the dog. -> bakery

GSM8K

The first secret code is
1234. The second secret
code is 5678. What is the
product of the secret
codes?

The product is 1234 * 5678
= <<<1234 * 5678>>>

#### 7006652

<name> went to the bakery
to buy two dozen cookies.
<name> then shared the
cookies equally with five
friends. How many cookies
did each person get?

There are 24 cookies and 6
people, so each person

got 24 / 6 = <<24 / 6>>
cookies.
#### 4

Table 13: The canary patterns used to generate the canaries for each dataset.
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Dataset Generated Example

Lambada

Fill in blank:

The car went into the water. The water came inside
the car. The water went up to the driver’s ___ ->
seat

Lambada

Fill in blank:

The last time he’d eaten a mango was on the way to
Sri Lanka,where he and his wife were honeymooning.
As he took a bite,he closed his eyes and smiled at
the sweet taste.He’d never tasted anything so ___ ->
delicious

BoolQ
Question: is the super bowl the biggest event of the
football season?
Answer: yes

BoolQ Question: do sunflowers track the sun?
Answer: yes

GSM8k

Question: Nancy is returning her overdue books to
the library. She owes $0.50 cents each on 8 books,
plus a flat $2.00 fee for having at least one book
that’s over a week overdue. How much does she have
to pay total
Answer: First multiply the late fee per book by the
number of books: $0.50/book * 8 books = $
<<0.5*8=4.00>>4.00. Then add the "more than a week
overdue" fee to the answer from the previous step to
find the total: $4.00 + $2.00 = $<<4+2=6.00>>
#### 6

GSM8k

Question: An 800 gram cake is cut into 8 equal
pieces. If 6 of the pieces are sold, what is the
total weight of the cake that was sold?
Answer: The cake has 8 pieces and weighs 800 grams,
so each piece weighs 800 grams / 8 pieces =
<<800/8=100>>100 grams. If 6 of the pieces are sold,
the total weight is 6 pieces * 100 grams / piece =
<<6*100=600>>600 grams
#### 600

SMS Spam
Text: New year’s wish: I wish that we all could have
this same type of conversation all of the time.
Class: not spam

SMS Spam
Text: Hi James, just wanted to check you’re ok. Speak
later
Class: not spam

Random Insertion d‘a)i\$l*y = daily

Random Insertion c‘o)m\$p*u.t/e‘r = computer

Table 14: A selection of cases where the teacher generates useful examples. In all of these cases, the
generated examples follow the correct format and look like original training examples.
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1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
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Dataset Generated Example

Lambada

Fill in blank:

After a month of waiting, the couple was finally
ready to start a family. They had been married for
ten years, and now it was time for them to ___ ->
start a family

Lambada

Fill in blank:

The crowd of people outside of the stadium grew and
grew. Many wore ___ -> the team’s colors

BoolQ Question: where is john lennon from?
Answer: England

GSM8k

Question: A square pyramid with a square base has a
square side 2 feet long. How many feet do the
pyramids side total to the top,
Answer: Each face of the pyramid has a side length
of 2 feet, so the height is 2, and there is a total
of 4 sides. The total height then is 4x(2+2)= <<4x
(2+2)=12>>12 feet.
#### 12 feet.

Table 15: A selection of cases where the teacher does not generate useful examples. The Lambada
examples are incorrect because multiple words are filled in the blank. The BoolQ example is not
actually a binary question. And the GSM8k example contains a math mistake.
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1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
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Dataset Generated Instruction

Lambada

The task is to fill in the blank with a word that
makes sense in the context. The blank is indicated by
___.

The input is a piece of text with a blank. The
output is a word that makes sense in the context.

BoolQ

The task is to fill in the blank with a word that
makes sense in the context. The blank is indicated by
___.

The input is a piece of text with a blank. The
output is a word that makes sense in the context.

GSM8k

The input is a math problem. The output is a
detailed solution to the problem, with all
intermediate steps and calculations shown. The
output should be in the same format as the input,
with all special markings and formatting preserved.

SMS Spam

You are given a text message. You are expected to
classify it into two classes: spam and not spam.
Spam messages are usually advertisements or
promotional messages. Not spam messages are usually
personal messages.

The output should be a string "spam" or "not spam".

Random Insertion

The input is a string with some special characters.
The special characters are ‘, $, *, ., and #. The
special characters are used to indicate the position
of the spaces in the original string. The output is
the original string with the spaces removed.

Table 16: A selection of instructions generated by the teacher.
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