
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DELVEPO: DIRECTION-GUIDED SELF-EVOLVING
FRAMEWORK FOR FLEXIBLE PROMPT OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Prompt Optimization has emerged as a crucial approach due to its capabilities in
steering Large Language Models to solve various tasks. However, current works
mainly rely on the random rewriting ability of LLMs, and the optimization pro-
cess generally focus on specific influencing factors, which makes it easy to fall
into local optimum. Besides, the performance of the optimized prompt is of-
ten unstable, which limits its transferability in different tasks. To address the
above challenges, we propose DelvePO (Direction-Guided Self-Evolving Frame-
work for Flexible Prompt Optimization), a task-agnostic framework to optimize
prompts in self-evolve manner. In our framework, we decouple prompts into
different components that can be used to explore the impact that different fac-
tors may have on various tasks. On this basis, we introduce working memory,
through which LLMs can alleviate the deficiencies caused by their own uncer-
tainties and further obtain key insights to guide the generation of new prompts.
Extensive experiments conducted on different tasks covering various domains for
both open- and closed-source LLMs, including DeepSeek-R1-Distill-Llama-8B,
Qwen2.5-7B-Instruct and GPT-4o-mini. Experimental results show that DelvePO
consistently outperforms previous SOTA methods under identical experimental
settings, demonstrating its effectiveness and transferability across different tasks.

1 INTRODUCTION

The rapid advancement of Large Language Models (LLMs) (DeepSeek-AI, 2025; Li et al., 2025)
has revolutionized various real-world applications (Shao et al., 2024; Zheng et al., 2025) . Prompt,
a method that steers LLMs to produce desired results without modifying parameters, has garnered
significant interest among non-AI experts from different domains (Wan et al., 2024; Guo et al., 2025;
Fernando et al., 2024). Consequently, the rapid growth in users has increased demand for prompt
engineering methods.

Previous efforts primarily focused on manually designing specialized prompts (Brown et al., 2020;
Kojima et al., 2022; Wei et al., 2023). However, this kind of method is time-consuming and demands
extensive trial and error, making it less versatile for diverse tasks and limiting their real-world effec-
tiveness. To reduce the human effort required for constructing effective prompts, many researches
(Shum et al., 2023; Wang et al., 2023c; Zhang et al., 2022; Feng et al., 2024; He et al., 2024) have
increasingly explored methods such as curating unified demonstrations for related tasks, systemati-
cally designing domain-specific templates, and identifying critical factors for prompt performance.
However, these methods exhibit limited applicability across diverse scenarios.

Subsequently, a series of research emerged that employ optimization algorithms to refine prompts.
Such approaches (e.g. APE (Zhou et al., 2023b), PromptBreeder (Fernando et al., 2024), and Evo-
Prompt (Guo et al., 2025)) synergistically integrate the efficiency inherent in the algorithms with the
powerful text processing ability of LLMs, achieving relatively stable performance enhancement on
target datasets. Although these studies analogize the mutation operation in evolutionary algorithms
to the rewriting operation of LLMs, they fail to fully harness the efficiency and rapid convergence
inherent to such algorithms, which ultimately limits the realization of their performance advan-
tages in prompt optimization. The primary reason lies in the inherently stochastic nature of the
evolutionary process: the directionality of mutation operations remains uncontrollable, while their
interpretability is also notably limited. Furthermore, these methods neglect the potential impact of
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constituent components within a prompt on overall performance, leading to premature convergence
in local optima. For example, during evolutionary phase of EvoPrompt, the initial prompt inherently
contains the "role" as a critical component. However, due to the stochastic nature of the mutation
process, the stochastic mutation process may accidentally remove this component. Once discarded,
it cannot be reintegrated into subsequent evolutionary iterations. Such degradation significantly
heightens the risk of premature convergence in local optima. A parallel limitation is observed in
the PromptBreeder method, which exhibits even higher stochasticity, as its implementation not only
uses two distinct mutation prompts but also employs diverse mutation operators, amplifying ran-
domness throughout the optimization process. We summarize that a robust Prompt Optimization
(PO) must have the following characteristics:

• Seamlessly integrating domain expert experience: For tasks in different domains, prior experi-
ence from domain experts can be incorporated into the PO algorithm, thus improving the efficiency
of the optimization process.

• Actively exploring factors that may affect prompt performance: The method can actively
explore factors affecting prompt performance to guide optimization using historical data.

• Adaptively identifying optimal prompts for different LLMs with varying performance: The
algorithm self-adjusts to discover the best prompts for target tasks across differently specialized
models and scenarios, ensuring broad applicability in diverse professional contexts.

Integrating insights from existing research, we propose DelvePO 1 (Direction-Guided Self-Evolving
Framework for Flexible Prompt Optimization) that adaptively accommodates diverse LLMs and
self-improves through guidance from its historical optimization strategies. Inspired by the concept of
Loci (the corresponding location of genes with important functions) and Alleles (different versions
of the same gene) on genetics, this framework first decouples prompt instructions into functional
components (analogous to Loci). Subsequently, it iteratively evolves these components by explor-
ing the potential impacts of diverse allele variations, ultimately achieving holistic optimization of the
entire prompt through systematic recombination. In particular, building upon the components, we
introduce working memory mechanism (i.e., Component Memory and Prompt Memory) to guide the
evolutionary process. Component Memory is designed to capture evolutionary trends in individual
components and utilize these trends to guide further optimization of each element. Take the com-
ponent a step further, Prompt Memory creates interconnections between components by utilizing
contextual information to guide the progressive optimization of the entire prompt. The contributions
of our work can be summarized as follows:

• To the best of our knowledge, our work is the first to introduce memory mechanism to guide
prompt optimization, not only stabilizing the performance of the entire prompt population but
also greatly reducing the time required for evolutionary operations.

• By decoupling prompt into multiple components and designing guided evolutionary mechanisms,
our framework integrates multiple influencing factors into a single prompt. This integration not
only enhances the scalability of PO methods but also improves the interpretability of the optimiza-
tion process, significantly lowering the difficulty to interact with the system.

• For LLMs with varying performance levels, our framework can elicit their capabilities, striking
a good balance between exploring diverse components and exploiting the current derived good
components, ultimately obtaining optimal prompts that adapt to the target tasks and LLMs simul-
taneously. Extensive experimental results on multiple datasets and three widely-adopted LLMs
reveal that DelvePO outperforms manually crafted prompts and existing PO methods.

2 PRELIMINARIES

Given task T = (D,A), D is the task-related dataset and A represents the corresponding answer
to the dataset, prompt optimization can be briefly described as follows: Guided by the working
memory mechanism, the initial prompt population Pinit = {p1, p2, · · · } is continuously optimized
to obtain the final prompt population Pfinal. The best prompt p∗ can be selected as follows:

p∗ ← argmax
p∈Pfinal

feval
(
ϕLLM(p,Ddev),A

)
1DelvePO is available at https://anonymous.4open.science/r/DelvePO
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where Ddev is the development dataset and ϕLLM(p,Ddev) means that the prompts and questions
are combined and then fed into the LLM to produce the corresponding response. The important
concepts used in our proposed framework are described below.

Components Similar to the relationship between Loci and Chromosome, components are mainly
used to identify the location of key factors that affect task performance in prompts. Different tasks
can introduce distinct components or reuse existing ones. Components are extensible, i.e., the type
and number of components can be user-defined, and our method can also evolve synchronously as
the context length that LLMs can receive increases. In this paper, we construct a comprehensive
and representative component pool from a broad set of related literature. Further details on how the
components are studied and predefined in our framework are provided in Appendix E.

Templates To bind components to prompts, we design a general template (corresponding to the
Chromosome functionally), whose content is mainly composed of two parts: general and unchang-
ing text; domain-specific and replaceable descriptive text (i.e., components and their correspond-
ing values). For the descriptive text, its main functions include explaining domain-specific com-
ponents, connecting different components, and providing contextual semantics about components.
To overcome the instability of LLMs in recognizing components, we borrow the design idea of
"markup" from HyperText Markup Language (HTML) to define different domain components. Tak-
ing "<role></role>" as an example, the "role" is one of the various component types. Accordingly,
the value of the component will be enclosed within the markup pairs, i.e., <role>Sentence Simpli-
fier</role>. More details can be found in Figure 6 in Appendix F.

3 METHODOLOGY

3.1 FRAMEWORK OF DELVEPO

Our self-evolution prompt optimization framework consists of 4 necessary functional modules:
Sampling & Update module, Task-Evolution module, Solution-Evolution module and Memory-
evolution module. We define the Task as "discover the promising direction of evolution", that is,
determining the component (types or values) that need to evolve in the next step under the guidance
of components memory. We define the Solution as "make sure the process of evolutionary opera-
tion and perform evolutionary operation", i.e., under the guidance of prompts memory, evolutionary
operations are applied to the component values according to the selected evolution type: for a sin-
gle sample, only mutation is performed, while for two samples, both mutation and crossover are
executed. For memory-evolution, it mainly uses the evolved prompts and component value pairs
before and after evolution to update the prompts memory and components memory, respectively.
In the sampling and update module, when the number of iterations reaches a pre-defined value, the
population is updated. Otherwise, a new sampling operation is performed within the current popu-
lation, which in turn triggers the next round of self-evolution operations. The designs of DelvePO
framework is shown in Figure 1. Next, we first introduce the working memory mechanism.

Components Memory stores the corresponding component values before and after evolution, which
is selected according to the mutated component type. The value pairs will be ordered by descend,
i.e., when injecting to the final prompt, the first value performs better than the second. Components
Memory will guide the selection of components in the Task-Evolution stage.

Prompts Memory stores the prompts after each step of evolution. The evolved prompts are stored
in descending order according to their performance scores. There are two forms of prompts mem-
ory: discrete form and continuous form. The discrete version only stores discrete combinations of
component value in the prompt. And the continuous version stores a complete prompt formed by
injecting component value into the template, which means that it stores continuous text containing
context. Prompts memory will be used to guide the mutation of component or the crossover of the
prompt in the Solution-Evolution stage.

3.2 OVERVIEW OF DELVEPO

As shown in Figure 1, the workflow of DelvePO contains several core stages as outlined below.
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Figure 1: The Framework of DelvePO. Initialization begins with predefined components, which
are concatenated to form individual p; multiple individuals constitute the initial population Pop-
ulations (old). At each step, one individual (Mutation only) or two individuals (Mutation and
Crossover) are sampled, and the Sub-task determines the evolutionary direction (i.e., the mutated
component type). Guided by Task-, Solution-, and Memory-Evolution modules, selected prompts
are iteratively evolved, contrasting with unguided optimization. The new population Populations
(new) is accumulated across epochs, and once the threshold is reached, the population is updated to
initiate the next round of self-evolution.

Initialization & Sampling: First, we use task-agnostic component-value generation prompt (see
Figure 4 in Appendix C) to generate candidate values for each component type. Then, we randomly
sample from these candidates and inject the selected values into the population-construction tem-
plate (illustrated in Figure 6 in Appendix F) to construct the initial population. Each individual in the
initial population is evaluated on the development dataset to obtain its performance score. Finally,
the sorted population is stored as the initial prompts memory. Before the population evolves, there is
no components memory. After initialization, the sampling process begins, aiming to select prompts
from the current population for evolution. Inspired by genetic principles, there are two main ways
to generate new individuals: mutating a single individual or performing crossover between two indi-
viduals. Notably, mutation may also occur during crossover. To account for these cases, we assume
that the number of individuals selected in each sampling step can be either 1 or 2.

The evolutionary process mainly includes two parts: generating new individuals based on selected
individuals; generating and storing the working memory. Specifically, there are 3 types of evolu-
tion, namely Task-Evolution, Solution-Evolution, Memory-Evolution. The mechanism of Task-
Evolution and Solution-Evolution is shown in Figure 2.

Task-Evolution For task evolution, considering the components and the evolutionary operations
(mutation and crossover), we design two kinds of evolutionary sub-tasks. The detailed information
is shown in Figure 8 and Figure 9 (see Appendix G).

• Sub-task I: This task mainly uses mutation operations to process a single candidate prompt. First,
the semantic comprehension capability of the LLMs is utilized to obtain the relevant insights
of component evolution from the component memory Mcomponents. Then, the insights are used
to guide the selection of components. Finally, the selected components will be treated as the
promising direction to guide the evolution of mutation-based solution.
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Figure 2: The mechanism of Task-Evolution and Solution-Evolution. Using the pseudo-prompt to
explain the details of Task- and Solution-Evolution.

• Sub-task II: After performing Sub-task I on the two candidate prompts, we can get the respective
component types set C1 and C2 for two prompts (say p1 and p2) as the promising direction for
mutation. The final mutated component type is selected as Ĉ = C1 ∩ C2. Next, for each compo-
nent in C̃ = C \ Ĉ where C denotes the set of all component types, corresponding contents from
p1 and p2 are extracted to construct a pair. Then, based on the insights derived from Mcomponents,
one value from each pair is selected as the potential value to improve performance of the prompts
after evolution. Finally, the component types from Ĉ will be treated as the promising direction
to guide the evolution of crossover-based solution, and the selected values from p1 or p2 whose
component types coming from C̃ will also be passed into the corresponding Solution-Evolution
phase to help construct the final prompts.

Solution-Evolution The main goal of solution evolution is to utilize the insights (derived from the
prompts memory) and direction (received from the task-evolution) to perform evolution operations
on the corresponding content in the current prompt and generate a new prompt that performs better.
In this phase, we propose 2 sub-solutions corresponding to 2 sub-tasks. Depending on whether the
prompt is continuous or discrete, each sub-solution can also be further divided to eliminate the effect
of prompt format on the final result.

• Sub-solution I: Extract component contents from current prompt based on the results obtained by
sub-task I (i.e., the mutated components that are most likely to improve prompt performance). The
extracted contents are then mutated using insights obtained from the prompts memory Mprompts

stored in discrete or continuous forms. Those contents that have not been mutated will be retained
in new prompts. Finally, the mutated and unmutated component contents will be integrated as the
result of sub-solution I. The corresponding prompts are shown in Figure 10, 11 (see Appendix H)
for the prompts memory in discrete and continuous forms, respectively.

• Sub-solution II: This mainly uses the results from sub-task II as a guide, and extracts component
contents from the currently selected two prompts. And the evolutionary operations would combine
mutation and crossover. First, for components that do not require mutation, the corresponding
content is received from sub-task II. Then, for the component that need to be mutated, we extract
its content from the two prompts. Based on the evolutionary insights derived from the prompt
memory Mprompts, the mutation operations are performed on the extracted content. Next, the
generated two prompts will crossover on the component types that need to be mutated. Finally,
the results obtained from the mutation and crossover operations are integrated to generate a new
prompt as the result of the sub-solution II. The details are shown in Figure 12 for the prompts
memory in discrete form and Figure 13, 14 for continuous form (see Appendix H).

Memory-Evolution is based on the component pairs and prompts both before and after the evolu-
tion to update the corresponding components memory and prompts memory, which is used to guide
the next evolution process. In this module, the evaluation will be performed. Specifically, to clearly
describe the evaluation process, we illustrate a general form of a prompt designed for LLMs that
can be applied across different tasks (shown in Figure 7). Evaluation refers to calculating the per-
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formance score of the generated new prompts on the development dataset based on the evaluation
metrics of the target task, according to which components can be sorted and memory can be updated.

Update: Add the evolved prompts to the temporary population generated in each iteration. When
the iteration ends, the temporary and current populations are mixed, and Top-N is selected as the
updated population for the next iteration based on performance.

The details of DelvePO are outlined in Algorithm 1, which can be found in Appendix C.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Baselines In our experiments, We choose 6 commonly used methods which have been widely proven
to be efficient in the field of prompt optimization as our baselines, which are: Crafted by human
experts, CoT-ZS, CoT-FS, Promptbreeder, APE, and EvoPrompt.

• Human corresponds to manually crafted prompts by experts, as detailed in the relevant literature
Zhang et al. (2024); Sanh et al. (2022), which primarily derived from prior studies.

• CoT has been extensively applied in various domains, represents a rationale-based approach. We
evaluate two representative forms of CoT: CoT-ZS (Zero-Shot CoT, Kojima et al. (2022)) and
CoT-FS (Few-Shot CoT, also known as Manual-CoT, Wei et al. (2023)).

• APE (Zhou et al., 2023b) regards instructions as programs and uses Monte Carlo Search to select
appropriate instructions as optimized prompts under LLM guidance.

• Promptbreeder (Fernando et al., 2024) further investigates the effect of different mutation strate-
gies on self-optimization based on elaborately designed evolutionary operations.

• EvoPrompt (Guo et al., 2025) introduces evolutionary algorithms to prompt optimization for
the first time. Considering different scenarios, it instantiates its framework using two practical
evolutionary algorithms. According to its statement, compared with GA method, the DE method
has a wider range of use in solving complex problems. Therefore, we select EvoPrompt-DE as
our baseline, and denote it simply as EvoPrompt.

Datasets and LLMs To demonstrate the generalizability of our method, we conducted experiments
on 11 datasets across three LLMs, covering diverse domains and representative real-world tasks.
The details information about datasets and LLMs are represented in Appendix B. Other experimental
details (e.g., Computational Resources and Hyperparameter Details) are represented in Section 6.

4.2 MAIN RESULTS

Following the same settings as baselines, we tested the best prompts obtained during training. The
main experimental results (as shown in Table 1) on DeepSeek-R1-Distill-Llama-8B are reported as
averages over three random seeds, with standard deviations provided. It is worth noting that we
observed Promptbreeder to be significantly more time-consuming than other methods (as shown in
Figure 3). To balance the diversity of baselines and ensure the fairness in training time, we therefore
report results for Promptbreeder using a single random seed.

From Table 1, we can observe that our method achieves substantial improvements over manual ap-
proaches. Among the automated optimization methods, our method consistently outperforms base-
lines, demonstrating not only its effectiveness but also its adaptability to different task types. From
the results on classical NLP benchmarks, we observe that the baselines perform well, confirming
their effectiveness on established datasets. However, on more recently introduced benchmarks that
demand broader capabilities, automated prompt optimization methods generally perform better, with
our approach showing particularly substantial improvements. These results indicate that as LLMs
continue to advance, prompt optimization techniques must likewise evolve, and our framework de-
livers consistently strong performance across diverse domains.

To further evaluate the performance of our framework on different LLMs, we conducted additional
experiments across different task types on the closed-source model (GPT-4o-mini, results reported
in Table 2) and the widely used open-source model (Qwen2.5-7B-Instruct, shown in Table 5 in
Appendix D). The experimental settings were kept identical to the main experiments. As shown
in the results evaluated on these two LLMs, our framework consistently delivers either superior
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Table 1: Main results on different downstream tasks for DeepSeek-R1-Distill-Llama-8B. Since
expert-written prompts are not available for all datasets, sign ("-") is used to indicate missing cases.

Method Classical NLP Question-Answering Domain-specific NLG Avg.
Subj MR CoLA SQuAD TREC FinPB SAMSum

Human 26.00 55.89 - - 54.67 - 25.68 -
CoT-ZS 70.00 68.00 65.45 43.91 68.00 60.00 3.23 56.74
CoT-FS 83.00 90.67 70.63 47.92 71.00 68.67 4.25 62.81

Promptbreeder 35.00 86.00 55.58 54.16 60.00 59.00 27.88 51.20
APE 74.67(2.85) 83.67(1.67) 68.75(1.20) 67.57(1.62) 42.33(2.40) 70.67(2.33) 30.02(0.85) 61.25
EvoPrompt 82.00(2.08) 83.00(1.00) 66.75(2.73) 68.17(1.14) 67.00(1.53) 72.00(1.53) 29.18(0.47) 65.55

DelvePO 83.67(1.20) 91.00(1.00) 76.25(1.49) 68.53(2.61) 76.00(2.08) 73.33(3.06) 32.05(0.25) 70.48

Table 2: The results on different downstream tasks for GPT-4o-mini.

Method Classical NLP Domain-specific Multi-domain Avg.
Subj CoLA FinPB AG’s News

Human 27.33 - - 87.56 57.45
CoT-ZS 67.67 81.40 73.67 80.33 75.77
CoT-FS 82.00 84.93 80.67 83.00 82.65

Promptbreeder 45.00 67.72 72.00 78.00 65.68
APE 79.61(1.78) 81.53(1.93) 94.93(0.78) 84.60(0.93) 85.17

EvoPrompt 76.70(1.90) 82.72(2.11) 96.97(0.52) 86.50(1.40) 85.72

DelvePO 91.07(1.03) 83.14(1.90) 98.63(0.62) 89.40(0.81) 90.56

or competitive performance across multiple task types, demonstrating its robustness and general
effectiveness when applied to diverse LLMs.

4.3 COST ANALYSIS

In our experiments, the overhead primarily stems from the training time required for open-source
LLMs and the number of tokens consumed in API requests for closed-source LLMs. Accordingly,
for DeepSeek-R1-Distill-Llama-8B, we randomly selected one dataset from each task type and mea-
sured the time cost of different baselines, with results presented in Figure 3. The statistics indicate
that our method consistently outperforms or matches the baselines in terms of optimization speed,
particularly when compared with PromptBreeder. This also explains why we report its results using
a single random seed. Overall, the results demonstrate that our method can more effectively exploit
the rapid convergence property of evolutionary algorithms for faster optimization.

Moreover, we reported token usage in terms of the actual monetary expenditure, as shown in Table 6.
Overall, as shown in Table 2 and Table 6, although our method requires higher expenditure, it con-
sistently delivers performance above or competitive with the baselines, indicating that our approach
offers a favorable balance between performance and cost. We also analyzed the reasons behind the
generally higher token usage. The primary factor is that the content stored in the memory module
is included as part of the input provided to the target LLMs. In future work, we plan to integrate
prompt compression techniques into the framework to reduce this overhead.

4.4 ABLATION STUDY

To evaluate the impact of the memory mechanism in our framework, we conducted ablation experi-
ments on GPT-4o-mini. We selected three datasets of different types to evaluate the adaptability of
the memory mechanisms across multiple scenarios. Table 3 reports the performance on three types
of datasets using a single random seed. When both memory mechanisms are included and oper-
ate in coordination, the overall performance is substantially higher than in the other configurations,
demonstrating the effectiveness and complementary benefits of the proposed memory design.
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Figure 3: Average time-consuming (GPU hours) for one epoch of optimization on DeepSeek-R1-
Distill-Llama-8B.

Table 3: Ablations of Memory Mechanism.

Memory Modules SAMSum SQuAD Causal Judgement

w/o Component Memory 28.8 67.4 62.6
w/o Prompt Memory 29.4 67.9 61.8
w/o both 28.4 64.6 61.3
DelvePO 35.3 84.7 65.7

Table 4: Sensitivity test regarding the number of
component values.

# Value SAMSum SQuAD SST-5
50 29.2 67.9 57.2
40 29.2 67.3 57.4
30 29.7 66.8 56.8
20 28.8 66.5 59.1
10 30.2 69.7 60.3

Furthermore, to investigate the impact of the
number of component values for each compo-
nent type on the overall performance of the ini-
tial population, we designed a sensitivity test
examining how initial population performance
varies with the number of component values at
initialization. Using GPT-4o-mini, we gener-
ated initial populations for three different types
of datasets under a single random seed and eval-
uated their performance on the corresponding
test sets. The results in Table 4 show that in-
creasing the number of component values does not cause significant fluctuations in the initial popu-
lation performance. This indicates that a relatively small number of component values is sufficient
to obtain an initial population with stable and reasonable performance, and importantly, it rules out
the concern that a larger number of components could lead to an overestimated initial population,
which might otherwise suggest that further optimization is unnecessary.

To illustrate the stability of our method, we use the MR dataset as an example and report the average
and best population performance over 10 epochs (Figure 5, Appendix D). As iterations increase, the
performance population of DelvePO steadily improves, while baselines exhibit larger fluctuations,
demonstrating its robustness. We also conducted a case study to help researchers quickly understand
our framework, with details in Appendix I.

5 RELATED WORK

Prompt Engineering Prompt engineering is a resource-efficient approach, focusing on elaborately
designing expert-level prompts to steer LLMs generate desired solutions to various downstream
tasks. In this part, we mainly focus on those works which use prompts to stimulate the internal abil-
ities of LLMs. Least-to-Most (Zhou et al., 2023a), Decomposed Prompting (Khot et al., 2023) and
PS&PS+ (Wang et al., 2023a) use prompts to leverage the decomposition ability of LLMs, breaking
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down complex problems into simpler ones, enabling the model to perform better when dealing with
complex problems. CoT (Wei et al., 2023), PoT (Chen et al., 2023), PS & PS+ (Wang et al., 2023a),
Automate-CoT (Shum et al., 2023), ToT (Yao et al., 2023)and GoT (Besta et al., 2024) guide the
model to utilize chain-of-thought in different ways through the design of prompts, stimulating the
thinking ability of the model, thereby enhancing the model’s reasoning ability. Also, Complexity-
based Prompting (Fu et al., 2023) and DIV-SE (Naik et al., 2024) focus on the complexity and diver-
sity of prompts, aiming to help the model think better. Rephrase and Respond (Deng et al., 2024),
OPRO (Yang et al., 2024), and MIPRO (Opsahl-Ong et al., 2024) utilized the self-optimization
capabilities of LLMs through methods such as input rewriting, iterative prompt optimization and
structured program optimization, jointly demonstrating that LLMs can autonomously enhance the
performance of task execution by dynamically improving prompts. TextGrad (Yuksekgonul et al.,
2025) and SPO (Xiang et al., 2025) combine LLMs by orchestrating Standard Operation Pipelines
(SOPs) in advance, and uses the evaluation ability of the model itself to guide the optimization of
prompts. These methods effectively demonstrate that LLMs can be more proactive in utilizing their
exploration abilities under the scientific guidance of predefined SOPs. Although the above works
have elicited some abilities of LLMs to cope with complex problems, they cannot get rid of the
problem that LLMs are sensitive to inputs, which results in the inconsistency of outputs’ quality.

Prompt Optimization Given a downstream task, prompt optimization aims to improve the effec-
tiveness of prompt, which typically involves an iterative process including initialization, execution,
evaluation and selection. This part primarily focus on those works which leverage external tech-
nologies or exogenous intelligence sources to guide LLMs to perform prompt optimization. Using
external knowledge to optimize prompt is very effective. Existing works generally referred to: 1)
the way humans think (Wang et al., 2023c); 2) the idea of program synthesis (Zhou et al., 2023b);
3) external knowledge (Zhao et al., 2023) to optimize prompts which achieve good results. Format-
ting the structure of prompts can standardize the thinking process of LLMs, and to a certain extent
improve their reasoning capability. LangGPT (Wang et al., 2024) presents a framework for prompt
design, proving that scalable structures are important for prompts migration. Prompt template (He
et al., 2024) delves into the impact of the format of the prompt template on solving problems, demon-
strating the effectiveness of structured prompts in eliciting LLMs’ capabilities. Furthermore, there
are some efforts that introduce algorithms that have been widely proven to have good optimization
capabilities to the optimization of prompts, including K-means (Zhang et al., 2022), KNN (Shi et al.,
2022), reinforcement learning (Pryzant et al., 2023; Wang et al., 2023b), active learning (Diao et al.,
2024), and evolutionary algorithm (Guo et al., 2025; Fernando et al., 2024).

In summary, although existing studies have mitigated the output stochasticity of LLMs, the effi-
ciency of the optimization algorithm has still not been fully explored. These efforts generally tend
to treat prompts as a whole unit to optimize, so the potential optimization space is very large. In
addition, most previous researches combining optimizing algorithms (e.g., evolutionary algorithms)
with LLMs, do not take full advantage of the experience generated before and after optimization,
so that the optimization process is more stochastic, which tends to fall into local optima. Inspired
by biological Loci and Alleles, this paper proposes a flexible framework for prompt optimization,
which can effectively reduce the randomness of the optimization process and significantly improves
the optimization speed. We hope our approach will provide possible improvements for subsequent
PO methods, significantly lowering the learning barrier for non-AI experts to leverage LLMs.

6 CONCLUSION

We introduced DelvePO, a self-evolving framework for prompt optimization that decouples prompts
into distinct components. With components, prompts can be modified by adding or removing con-
tent that may affect their performance, striking a good balance between exploration and exploitation
of factors that affect task performance. DelvePO employs a co-evolutionary mechanism to iter-
atively refine the specifics of two sub-tasks and generate corresponding solutions. The evolved
prompt, following systematic processing, is encoded into working memory to facilitate LLMs in de-
riving relevant insights, thereby provides directional guidance for generating task-specific prompts.
Extensive experiments on different tasks demonstrate DelvePO consistently outperforms baselines,
validating its effectiveness. As we anticipate the emergence of even more powerful LLMs that can
deal with longer context, we firmly believe that more professional prompts will penetrate all walks
of life, and DelvePO will help more users complete various complex tasks.

9
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ETHICS STATEMENT

This work studies prompt optimization techniques for language models (LLMs) to better elicit their
capabilities in solving target tasks. The primary potential risks of this research are related to the
misuse of LLMs, for example, generating misleading, harmful, or biased content.

In our experiments, we only use publicly available datasets and pre-trained LLMs, and no private
or sensitive data were involved. Specific statements on LLM usage can be found in Appendix
A. We emphasize that our methods are intended for research and benchmarking purposes, and we
encourage responsible use to mitigate potential societal risks.

REPRODICIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. To facilitate replication, we provide
the following details:

Computational Resources The following describes the experimental environment, including de-
tailed information on both hardware and software configurations.

• Hardware. All experiments were conducted on a computing node equipped with four NVIDIA
Tesla V100-SXM2 GPUs (32GB memory each), an Intel Xeon Gold 6248 CPU @ 2.50GHz with
20 cores, and 226 GB of RAM.

• Software. The system runs Ubuntu 20.04.6 LTS with Linux kernel version 5.4.0. All models were
implemented in Python 3.10.18 using PyTorch 2.0.0 with CUDA 11.7.

Hyperparameter Details In order to isolate the effect of our proposed method and ensure a fair
comparison, we mainly followed the default configurations used in baseline methods and intention-
ally introduced no additional trainable parameters. Specifically, the detailed hyperparameter settings
are given below.

• Initial Population Size. Following the setup of EvoPrompt, which uses both human-written and
LLM-generated prompts, we adopted a similar strategy in spirit but tailored it to our fully auto-
mated framework. (1) We identify a fixed set of components through preliminary study mentioned
at ref . (2) For each component, we use an LLM to generate 10 candidate values based on prompt
templates. (3) We then randomly combine these values to create 10 initial prompts, which together
form the initial population for the evolutionary process.

• Temperature. Since the stochasticity of LLM outputs is sensitive to temperature settings, we set
the temperature to 0.5 to strike a balance between exploration and exploitation. This choice aligns
with prior work such as EvoPrompt.

• Sample Allocation. For data splits, we followed the protocols of APE and EvoPrompt. Specif-
ically, if the dataset has a predefined training/testing split, we used it as-is. For datasets without
predefined splits, we randomly selected 100 examples as the test set and used the remaining ex-
amples for training.

• Randomness Control. To ensure reproducibility. Unless otherwise noted, we use 3 random seeds
(5, 10 and 15) in the training phrase, and reported the results on the test set.

LIMITATIONS

While our framework can adaptively design well-matched prompts for any LLM across diverse
downstream tasks, several limitations remain. (1) Due to substantial computational costs, we cannot
comprehensively evaluate all models and domains. Instead, we focused on widely used datasets to
balance fairness and coverage. (2) Although we report monetary cost based on actual token usage,
variations in token pricing across input and output types cannot be precisely captured by the API.
Analysis indicates that most of the cost arises from including memory content as input tokens, while
output token consumption remains relatively modest, particularly when "thinking mode" is disabled.
Future work will explore prompt compression to further optimize resource use. (3) We evaluated
only representative component values from each category due to resource constraints. Nevertheless,
even with this limited set, our approach continues to outperforms or remains competitive with base-
lines, demonstrating its effectiveness and suggesting that its benefits will likely increase as LLMs
support longer contexts.
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A USE OF LLMS

Large Language Models (LLMs) were used in two ways in this work. First, LLMs served as base
models in our experiments on prompt optimization, where we studied how different prompts can
elicit their capabilities to solve target tasks. Second, LLMs were employed as auxiliary tools for
minor writing support, such as grammar checking and phrasing improvements. Specific details
about the LLMs used in our experiments can be found in Appendix B. No LLMs were used to
generate substantive ideas, analyses, or content of the paper.

B DETAILS OF DATASETS AND LLMS USED

Datasets For fair comparison, we followed the datasets and evaluation metrics used in prior base-
lines whenever possible. Specifically, we include 4 classic NLP benchmarks (MR, Subj, CoLA,
SST-5) and two widely used question-answering datasets (SQuAD, TREC) to validate basic capa-
bilities; several domain-specific benchmarks to probe specialized performance, including Financial
Sentiment Evaluation dataset (FinFE), Financial PhraseBank (FinPB), reasoning related dataset
(Casual Judgement). Besides, one multi-domain datasets (AG’s News) and one natural language
generation dataset (SAMSum) are also used to assess overall robustness. To evaluate output quality
beyond simple accuracy, we report ROUGE-Avg on SAMSum and the Matthews correlation coef-
ficient (MCC) on CoLA. To balance computational cost while maximizing coverage, we selected
datasets according to a “maximize capability diversity” principle — for example, in addition to the
main experiments we ran Qwen2.5-7B-Instruct on Subj, AG’s News, and FinFE to cover several of
the categories above. Detailed results are presented in the experimental analysis section.

LLMs To demonstrate the adaptability of the proposed method for LLMs, we selected DeepSeek-
R1-Distill-Llama-8B and Qwen2.5-7B-Instruct from open-source LLMs, as well as GPT-4o-mini
from closed-source LLMs, as the base models for our experiments. The experiments on DeepSeek-
R1-Distill-Llama-8B evaluate both the performance of the DeepSeek model itself and, to some ex-
tent, the capabilities of the underlying Llama architecture, which is primarily trained on English-
language data. Experiments on Qwen2.5-7B-Instruct assess the framework’s performance on a
model predominantly trained on Chinese-language data, demonstrating applicability to non-English
corpora. GPT-4o-mini was included because it is a widely used closed-source model in prior studies
and allows cost-effective experimentation within our budget.

C ALGORITHM DETAILS

Algorithm 1 An Overview of DelvePO
Require: A population of prompts P, size of population N , task-related dataset D, number of

epochs m, number of iterations n, working memory M = {Mcomponents,Mprompts}
Ensure: Best prompt p∗

1: Initialization: P = {p1, p2, · · · , pN}, Mprompts ← fsort(P), Mcomponents ← ∅
2: for epoch = 1 to m do
3: Pevo ← ∅
4: for step = 1 to n do
5: Selection: p← fr.w.s.(P)
6: Task-Evolution: Tevo ← ϕT (p,Mcomponents | T )
7: Solution-Evolution: Sevo ← ϕS(p,Mprompts | Tevo)
8: Evaluation: p′ ← ϕLLM(Sevo), s′ ← feval(p

′,D)
9: Memory-Evolution: Mevo ← ϕM(

M, ⟨p, p′, s ≥ s′⟩
)

10: Pevo ← {Pevo, p
′}

11: end for
12: Update: P← Top-N {P,Pevo}
13: end for
14: Return the best prompt p∗: p∗ ← argmax

p∈P
feval

(
ϕLLM(p,D)

)
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The sampling function used in our framework is roulette wheel selection, denoted as fr.w.s.(·),
which is commonly used in the evolution algorithm. ϕT , ϕS , ϕM refer to the Task-Evolution,
Solution-Evolution, Memory-Evolution methods, respectively. Similarly, T , S, and M mean the
corresponding Task, Solution, Memory. Based on the components, we designed a task-agnostic
template described in Figure 4, through which any kind of LLMs can construct an initial content set
of components based on a simple description of the target task input by the user.

================== Task-agnostic Template for Component ==================

---------------------------- Downstream Task (Causal judgement) for role ----------------------------

Fig. xxx Initialization of Component's value space

 

 

Hi there, I have a task to do which can be described as Downstream Task Related Information. Now I 

want you to give me . [OPTIONAL Example]. Please list your 
answers in the following format: ['content 1', 'content 2',...]

<Query>: Hi there, I have a task to do which can be described as "answer questions about causal 

attribution". Now I want you to give me  related roles who are expertise in these questions. For 

example, 'Casusal Analysis Experts', etc. Please list your answers in the following format: ["content 1", 

"content 2",...]

<Response>: ["Cognitive Scientist", "Social Psychologist", "Computational Linguist", "AI Ethicist", 

"Behavioral Economist", "Decision Theorist", "Philosophy of Mind Researcher", "Causal Inference 
Data Scientist", "Educational Psychologist", "Human-Computer Interaction Specialist"]

 
Figure 4: Task-agnostic template for generating component values corresponding to the given com-
ponent types. The following part of the figure is the prompt to generate content for Component
"role" using the casual judgement task as an example.

D ADDITIONAL EXPERIMENTS

Table 5: The results on different downstream tasks for Qwen2.5-7B-Instruct.

Method Classical NLP Question-Answering Domain-specific Multi-domain Avg.
Subj SST-5 CoLA TREC FinFE AG’s News

APE 69.00(3.06) 47.00(1.10) 79.05(1.73) 43.40(1.14) 64.30(2.70) 83.43(1.90) 64.38
EvoPrompt 77.03(4.74) 57.67(1.19) 79.69(1.42) 67.55(2.08) 64.67(1.22) 85.73(1.29) 72.06

DelvePO 80.07(0.65) 60.00(1.69) 81.40(1.07) 70.77(1.74) 69.97(0.87) 89.27(0.97) 75.25

Table 6: Average monetary cost (USD) for one epoch of optimization on GPT-4o-mini.

Methods Subj CoLA FinPB AG’s News
Promptbreeder 1.17 1.31 0.97 1.52
APE 0.57 0.56 0.61 0.79
EvoPrompt 0.83 0.64 0.74 1.23
DelvePO 1.27 1.08 1.30 1.10
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Figure 5: Robustness of DelvePO as the number of epochs increases (Take the dataset MR as an
example).
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E DETAILED INFORMATION ABOUT COMPONENTS

To ensure that the types of components are as comprehensive and representative as possible, we
first surveyed a broad set of related literature (Yuksekgonul et al., 2025; He et al., 2024; Feng et al.,
2024; Opsahl-Ong et al., 2024; Diao et al., 2024; Wang et al., 2024; 2023b) and extracted a variety of
factors that have been shown to influence the performance of prompts, forming our component pool.
We then categorized all components in the pool based on the semantics implied in their original
sources, which resulted in five categories: “Role and Expertise”, “Task Content”, “Constraints and
Norms”, “Process and Behavior” and “Context and Examples”. From each category, we selected the
most representative component as our predefined component types. The complete component pool
and its categorization are provided in Table 7.

Despite this extensive literature review, we acknowledge that some important aspects may remain
uncovered. This observation motivated our design: as more non-AI experts begin to use LLMs,
domain specialists should be able to adaptively define new components through our mechanism,
thereby supporting both effective task performance and improved interpretability. It is worth noting
that for each component type, we can add a “null” option when generating its values, allowing
the presence or absence of the component to be controlled and makes the optimized prompts more
flexible.

Table 7: The categories and types of components in the component pool

Categories Related Items

Role and Expertise Role; Role description; Scenario; Domain knowledge; Term Clarification
Task Content Task description; Instruction; Goal
Constraints and Norms Output format; Constraints; Principle; Style; Length; Tone; Priority &

Emphasis; Exception handling; Target audience
Process and Behavior Workflow; CoT; Action; Skill; Suggestions; Initialization
Context and Examples Examples; Reference prompt; Attachment

F TEMPLATE FOR INJECTION & PROMPTS FOR EVALUATION ON LLMS 

 

Template_For_Injection    = 
 <component1>{content1}</component1>. Given the ,  <component2>{content2}

</component2> 

Template_For_Injection    = 
You are a <role>{role}</role>. Given the , your task is to <task_description>{task_description}
</task_description>.

Template_For_Injection     = 
You are a <role>{role}</role>. Given the , your task is to <task_description>

{task_description}</task_description>.

 

 

Figure 6: Template for initializing prompt populations. It is also used in the construction of Prompts
Memory, that is, injecting discrete components into the template to obtain a continuous form prompt.
The above shows the general form, while the two below provide illustrative examples.
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Prompt_For_LLM    = 
<INSTRUCTION>:  {content1}. Given the ,  {content2} 
< >: {input}
<OUTPUT FORMAT>: Output the final result starting with the tag <res> and ending with the tag 
</res>. [OPTIONAL REQUIREMENTS]

Prompt_For_LLM    = 
<INSTRUCTION>: You are a {role}. Given the , your task is to {task_description}. 

< >: {input}
<OUTPUT FORMAT>: Output the final result starting with the tag <res> and ending with the tag 

</res>. The final result must come from the following: [World, Sports, Business, Tech].

Prompt_For_LLM    = 
<INSTRUCTION>: You are a {role}. Given the , your task is to {task_description}. 

< >: {input}
<OUTPUT FORMAT>: Output the final result starting with the tag <res> and ending with the tag 

</res>.

 
Figure 7: Complete prompt template for LLMs (including three parts: instruction, input, and output).
Here we also display two practical prompts for AG’s News and Simplification Tasks.
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G THE DETAILED PROMPTS OF TASK-EVOLUTION

 

 

Sub-Task Ⅰ
Please follow the instructions step-by-step to get final result.

 Step 1  Conclude Insights from the provided Memory Components , which consists of multiple 

elements. Each element contains two lists: the first contains several markup pairs in the format 

<component>content</component>. For example, in the pair <role>role_description</role>, the 
content ("role_description") describes the component ("role"). All markup pairs follow this structure. 

By default, the first list in each element is considered to perform better than the second.
Memory Components : { }

 Step 2  Based on the Insights from Step 1 and the Current Prompt , select one or more component(s) 
from Component Set  that could potentially improve performance to form final result. Separate the 

final result with a special token '|' and ensure that each of final result is unique and appears only 

once. The final result must start with the tag <res> and end with the tag </res> . For example, the 
final result must follow the format: <res>component1|...</res>.

Current Prompt : {  }
Component Set : {components}

 
Figure 8: The prompts for sub-task I

 

 

Sub-Task Ⅱ
Please follow the instructions step-by-step to get final result.

 Step 1  Conclude Insights from the provided Memory Components , which consists of multiple 

elements. Each element contains two lists: the first contains several markup pairs in the format 

<component>content</component>. For example, in the pair <role>role_description</role>, the 
content ("role_description") describes the component("role"). All markup pairs follow this structure. 

By default, the first list in each element is considered to perform better than the second.
Memory Components : { }

 Step 2  Given a list named Old Values , where each element contains a pair of contents, use the 
Insights from Step 1 to select one content from each pair in original order. The final result must 

start with the tag <res> and end with the tag </res> . For example, the final results must follow the 

format: <res>content1|...</res>.
Old Values : {old_values}

 

 

 

 

 

Scenario 1 (For Sub-task Ⅰ)

Please follow the instructions step-by-step to get final result.

 Step 1  Conclude the Insights from the Memory Prompts , which consists of multiple items. Each item 

includes two parts: the first part contains several markup pairs in the format 

<component>content</component>. For example, in the pair <role>role_description</role>, the 
content ("role_description") describes the component ("role"). Other markup pairs follow this same 

structure. The second part of each item represents its corresponding performance. The entire 
Memory Prompts is sorted in descending order based on performance.

Memory Prompts : { }

 Step 2  Given a list named Old Values , use the Insights from Step 1 to generate a new mutated 

content for each content to form a new list, i.e. final result, referring to Description, adhering to 

Rules below. 

Description:  

In Old Values , each element is a markup pair like <component>content</component> 

containing content that needs to mutate.

Rules:

1. Mutation Requirements:

For each element like <component>content</component>, generate a new one 
content that:

Figure 9: The prompts for sub-task II
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H THE DETAILED PROMPTS OF SOLUTION-EVOLUTION
Scenario 1 (For Sub-task Ⅰ)

Please follow the instructions step-by-step to get final result.

 Step 1  Conclude the Insights from the Memory Prompts , which consists of multiple items. Each item 
includes two parts: the first part contains several markup pairs in the format 

<component>content</component>. For example, in the pair <role>role_description</role>, the 
content ("role_description") describes the component ("role"). Other markup pairs follow this same 

structure. The second part of each item represents its corresponding performance. The entire Memory 

Prompts is sorted in descending order based on performance.
Memory Prompts : { }

 Step 2  Given a list named Old Values , use the Insights from Step 1 to generate a new mutated 
content for each content to form a new list, i.e. final result, referring to Description, adhering to Rules 

below. 

Description:  

In Old Values , each element is a markup pair like <component>content</component> 
containing content that needs to mutate.

Rules:

1. Mutation Requirements:

For each element like <component>content</component>, generate a new one content 
that:

If the component is <role>, the new content must be a noun phrase describing a 
person.  

If the component is <task_description>, the new content must be a verb phrase 

describing a task. 

Is distinct from the original content.

Preserves lexical identity (noun/verb phrase) matching the component.  

If the original content had the highest score, the new content must prioritize 

improved performance potential (e.g., higher efficiency, enhanced properties).  

Otherwise, the new content may be derived from those contents linked to its 

corresponding component in the Memory Prompts (optional but allowed).  

2. Output Format:  

Start with <res> and end with </res>.  

Separate mutated contents strictly with '|' (no extra characters).  

Never include original contents in the output. 

Old Values : {old_values}

 
Figure 10: The prompts for Sub-solution I - Prompts Memory in discrete form
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Scenario 2 (For Sub-task Ⅰ)

Please follow the instructions step-by-step to get final result.

 Step 1  Conclude the Insights from the Memory Prompts , which contains multiple items. Each item 
has two parts: a sentence enclosed in <prompt> and </prompt>, and its corresponding performance 

score. The sentence includes markup pairs in the format <component>content</component>, where 
the content describes the component. For example, <role>role_description</role> indicates that 

"role_description" explains the "role" component. All items are sorted in descending order by 

performance.
Memory Prompts : { }

 Step 2  Based on the Current Prompt  and Insights from Step 1, generate a new mutated content for 
each markup pair whose component matches those listed in Mutate Factors  to form the final result, 
referring to Description, adhering to Rules below.

Description:  

In Current Prompt , markup pair like <component>content</component> contains content 
that needs to mutate.

In Mutate Factors , each element is a component appeared in Current Prompt .

Rules:

1. Mutation Requirements:  

For each markup pair like <component>content</component>, if the component in 

Mutate Factors , generate a new one content that:  

If the component is <role>, the new content must be a noun phrase describing a 
person.  

If the component is <task_description>, the new content must be a verb phrase 

describing a task. 

Is distinct from the original content. 

Preserves lexical identity (noun/verb phrase) matching the component.  

If the original content had the highest score, prioritize generating contents with 

improved performance potential (e.g., higher efficiency, enhanced properties).  

Otherwise, the new content may derive from those contents linked to its component 

in the Memory Prompts (optional but allowed).  

2. Output Format:  

Start with <prompt> and end with </prompt>.  

Only mutate contents within markup pairs specified in Mutate Factors .  

Preserve all other values outside markup pairs.  

Replace original contents with mutated ones directly within their components.  

Current Prompt : {prompt} 

Mutate Factors : {mutate_factors}

 
Figure 11: The prompts for Sub-solution I - Prompts Memory in continuous form
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Scenario 3 (For Sub-task Ⅱ)

Please follow the instructions step-by-step to get final result.

 Step 1  Conclude the Insights from the Memory Prompts , which consists of multiple items. Each item 
includes two parts: the first part contains several markup pairs in the format 

<component>content</component>. For example, in the pair <role>role_description</role>, the 
content ("role_description") describes the component ("role"). Other markup pairs follow this same 

structure. The second part of each item represents its corresponding performance. The entire Memory 

Prompts is sorted in descending order based on performance.
Memory Prompts : { }

 Step 2  Given a list named Old Values , where each element contains a pair of contents, use the 
Insights from Step 1 to generate a new mutated content for each pair to form a new list, i.e. final 
result, referring to Description, adhering to Rules below.
Old Values : {old_values}

Description: 

In Old Values, each element contains a pair of contents like [a, b].

Rules: 

1. Mutation Requirements:

For each pair of contents like [a, b], generate a new one content that: 

If a and b are enclosed with <role> & </role>, the new content must be a noun 

phrase used to describe a person.

If a and b are enclosed with <task_description> & </task_description>, the new 
content must be a verb phrase used to describe a task.

Is distinct from both a and b.

Preserve corresponding lexical identity.

If the original pair has the highest score, prioritize generating contents with 
improved performance potential (e.g., higher efficiency, enhanced properties).  

Otherwise, derive the new content from those contents linked to its component in the 

Memory Prompts (optional but allowed).

2. Output Format:  

Start with <res> and end with </res>.  

Separate mutated contents strictly with '|' (no extra characters).  

Never include original pairs in the output. 

 

 

hellohellohello

 

 

Figure 12: The prompts for Sub-solution II - Prompts Memory in discrete form
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Please follow the instructions step-by-step to get final result.

 Step 1  Conclude the Insights from the Memory Prompts , which contains multiple items. Each item 

has two parts: a sentence enclosed in <prompt> and </prompt>, and its corresponding performance 
score. The sentence includes markup pairs in the format <component>content</component>, where 

the content describes the component. For example, <role>role_description</role> indicates that 

"role_description" explains the "role" component. All items are sorted in descending order by 
performance.

Memory Prompts : { }

 Step 2  Based on the Prompt 1  and Insights from Step 1, generate a new mutated content for each 

markup pair whose component matches those listed in Mutate Factors  to form the Prompt 2 , referring 
to Description, adhering to Rules below.

Description:

In Prompt 1 , markup pair like <component>content</component> contains content that 

needs to mutate.

In Mutate Factors , each element is a content appeared in Prompt 1 .

Rules:

1. Mutation Requirements:  

For each markup pair like <component>content</component>, if the component  in 
Mutate Factors , Generate a new one content that:  

If the component is <role>, the new content must be a noun phrase describing a 

person.  

If the component is <task_description>, the new content must be a verb phrase 

describing a task. 

Is distinct from the original content. 

Preserves lexical identity (noun/verb phrase) matching the component.  

If the original content had the highest score, prioritize generating contents with 
improved performance potential (e.g., higher efficiency, enhanced properties).  

Otherwise, the new content may derive from those contents linked to its component 
in the Memory Prompts (optional but allowed).  

2. Output Format: 

Start with <prompt> and end with </prompt>.  

Only mutate contents within markup pairs specified in Mutate Factors .  

Preserve all other values outside markup pairs.  

Replace original contents with mutated ones directly within their components.  

Prompt 1 : {prompt1} 

Mutate Factors : {mutate_factors}

 Step 3  Based on the Prompt 3  and Insights from Step 1, generate a new mutated content for each 

markup pair whose component matches those listed in Mutate Factors  to form the Prompt 4 , referring 
to Description, adhering to Rules below.

Description:  

In Prompt 3 , markup pair like <component>content</component> contains content that 

needs to mutate.

Figure 13: The prompts for Sub-solution II - Prompts Memory in continuous form
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In Mutate Factors , each element is a content appeared in Prompt 3 .

Rules:

1. Mutation Requirements:

For each markup pair like <component>content</component>, if the component in 
Mutate Factors , Generate a new one content that: 

If the component is <role>, the new content must be a noun phrase describing a 
person.  

If the component is <task_description>, the new content must be a verb phrase 

describing a task. 

Is distinct from the original content. 

Preserves lexical identity (noun/verb phrase) matching the component.  

If the original content had the highest score, prioritize generating contents with 

improved performance potential (e.g., higher efficiency, enhanced properties).  

Otherwise, the new content may derive from those contents linked to its component 
in the Memory Prompts (optional but allowed).  

2. Output Format:  

Start with <prompt> and end with </prompt>.  

Only mutate contents within markup pairs specified in Mutate Factors .  

Preserve all other values outside markup pairs.  

Replace original contents with mutated ones directly within their components.  

Prompt 3 : {prompt3} 

Mutate Factors : {mutate_factors}

 Step 4  Generate final result by selecting contents from pairs in Prompt 2  and Prompt 4  under 

identical markup components, referring to Description, adhering to Rules below.

Description:

Pairs from Prompt 2  and Prompt 4  have identical components (e.g., <role>, 
<task_description>).

Rules:

1. Selection Criteria:

For each tagged pair (e.g., <role>a</role> and <role>b</role>):

Use Insights from Step 1 to select one content (a or b) that has higher performance 
improvement potential (e.g., clarity, specificity, alignment with goals).

If the component is <role>, the new content must be a noun phrase describing a 
person.  

If the component is <task_description>, the new content must be a verb phrase 
describing a task. 

Preserve the lexical identity of the component.

Never modify text outside markup pairs.

2. Output Format:

Start with <prompt> and end with </prompt>.  

Retain the structure of Prompt 3  but replace tagged pairs with the selected contents.

If multiple tagged pairs exist, update all while maintaining non-tagged values verbatim.

Figure 14: The prompts for Sub-solution II - Prompts Memory in continuous form (extended from
Figure 13)
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I CASE STUDY DETAILS

To quickly verify the generalizability of our framework, we conducted multi-turn dialogues with
DeepSeek Chat via the web interface provided by DeepSeek (DeepSeek Chat, 2025).

Throughout the process, we take simplification task (Zhang et al., 2023) as the example, which
allows for easy observation and interpretation of the outputs, and randomly set 4 components. The
whole process can be find in Appendix I. For Task-Evolution, we provide two input information (see
Figure 15, 17) for the prompt of two sub tasks (see Figure 8, 9). And the corresponding outputs are
shown in Figure 16, 18. From the final results, we can derive that under the guidance of direction
(i.e., Memory Components), The LLMs could find reasonable direction for evolutionary operator.

Accordingly, for Solution-Evolution, we provide four input information (see Figure 19, 21, 23, 25)
for four kinds of scenarios. And the corresponding responses are shown in Figure 20, 22, 24, 26,
respectively. Based on the observation from the responses, we also find that the procedure designed
in this paper can accurately guide the model to deduce corresponding insights and further output
reasonable results based on the insights.

By the way, this case study provides new users with a quick understanding of our framework. It can
also serve as a practical guide, allowing anyone to construct a prototype using the system prompts
provided in the case study without writing any code, which can help users optimize domain-specific
prompts. We sincerely invite researchers to try it out and share their valuable feedback for further
improvement.

 Step 1  Memory Components: 

 Step 2  Current Prompt: 

Component Set: 

 

### 

dpsk输出（2025.05.15）

[

  [

    [<action>Clarify Sentence Meaning</action>, <requirements>Adapt to 

Audience</requirements>], 

    [<action>Reduce Linguistic Complexity</action>, <requirements>Improve 

Structure</requirements>]

  ],

  [

    [<role>Readability Specialist</role>], 

    [<role>Sentence Simplifier</role>]

  ]

]

[

    <role>Sentence Simplifier</role>, 

    <task_description>Rewrite the provided sentences in a simpler 

form</task_description>, 

    <action>Condense Sentences</action>, 

    <requirements>Adapt to Audience</requirements>

]

[role, task_description, action, requirements]

Figure 15: The input for sub-task I
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Step 1: Conclude Insights from the Memory Components

1. In the first tuple, <action>Clarify Sentence Meaning</action>  is preferred over <action>Reduce 

Linguistic Complexity</action> , and <requirements>Adapt to Audience</requirements>  is preferred 
over <requirements>Improve Structure</requirements> .

2. In the second tuple, <role>Readability Specialist</role>  is preferred over <role>Sentence 

Simplifier</role> .

Insights:

Role: "Readability Specialist" outperforms "Sentence Simplifier."

Action: "Clarify Sentence Meaning" outperforms "Reduce Linguistic Complexity" (and by 

extension, other actions like "Condense Sentences").

Requirements: "Adapt to Audience" is already the preferred choice.

Step 2: Select Components to improve performance based on Current Prompt and Insights

The Current Prompt uses <role>Sentence Simplifier</role> , but the Insights suggest 

<role>Readability Specialist</role>  is better.

The Current Prompt uses <action>Condense Sentences</action> , but the Insights suggest 

<action>Clarify Sentence Meaning</action>  is better.

The Current Prompt already uses the preferred <requirements>Adapt to Audience</requirements> , 
so no change is needed here.

final result: <res>role|action</res>

  Figure 16: The responses for sub-task I
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 Step 1  Memory Components: 

 Step 2  Old Values: 

 

 

[

    [

        [<action>Clarify Sentence Meaning</action>, <requirements>Adapt to 

Audience</requirements>],                [<action>Reduce Linguistic 

Complexity</action>, <requirements>Improve Structure</requirements>]

    ],

    [

        [<role>Readability Specialist</role>],

        [<role>Sentence Simplifier</role>]

    ],

    [

        [<action>Optimize Readability</action>, <task_description>Reduce the 

complexity of the provided sentences</task_description>],

        [<action>Reword for Better Clarity</action>, <task_description>Reword the 

provided sentences for better clarity</task_description>]

    ]

]

[

    [<role>Readability Specialist</role>, <role>Paraphrasing Specialist</role>],

    [<action>Simplify Sentence Structure</action>, <action>Break Down 

Complexity</action>]

]

Figure 17: The input for sub-task II
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Step 1: Conclude Insights from Memory Components

From the Memory Components:

1. First Element:

The pair <action>Clarify Sentence Meaning</action>  with <requirements>Adapt to 

Audience</requirements>  is preferred over <action>Reduce Linguistic Complexity</action>  with 
<requirements>Improve Structure</requirements> .

Insight: Prioritizing audience adaptation and meaning clarification over general structural 

improvement and complexity reduction.

2. Second Element:

<role>Readability Specialist</role>  is preferred over <role>Sentence Simplifier</role> .

Insight: "Readability Specialist" is considered a more effective or broader role than 

"Sentence Simplifier".

3. Third Element:

<action>Optimize Readability</action>  is preferred over <action>Reword for Better 

Clarity</action> .

Insight: Optimizing readability takes precedence over merely rewording for clarity.

Step 2: Apply Insights to Select from Old Values

Old Values:

1. [<role>Readability Specialist</role>, <role>Paraphrasing Specialist</role>]

Based on Insight 2, "Readability Specialist" is already preferred, and since "Paraphrasing" is 

similar to "Sentence Simplifier", "Readability Specialist" aligns better with the insight.

2. [<action>Simplify Sentence Structure</action>, <action>Break Down Complexity</action>]

Based on Insight 1 and 3:

"Simplify Sentence Structure" relates more directly to optimizing readability and 
clarifying sentence meaning.

"Break Down Complexity" could be interpreted similarly to "Reduce Linguistic 
Complexity", which was not preferred.

So, choose "Simplify Sentence Structure".

Final Output (final results):

<res>

  <role>Readability Specialist</role>

  <action>Simplify Sentence Structure</action>

</res>

Figure 18: The responses for sub-task II
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 Step 1  Memory Promptsdiscrete:

 Step 2  Old Values: 

 

1 预期输出：role当前是最好的，那就要变；

2 预期输出：action不是最好的，那就要变成最好的。

 

gpt-4o满足了1，不满足2；

deepseek满足了1，满足了2；

 

deepseek输出

[

    [

        [<role>Sentence Simplifier</role>, <task_description>Clarify the meaning of 

the given sentences by simplifying them</task_description>, <action>Optimize 

Readability</action>, <requirements>Improve Structure</requirements>], 

        25.0

    ]

    [

        [<role>Readability Specialist</role>, <task_description>Reduce the complexity 

of the provided sentences</task_description>, <action>Clarify Sentence 

Meaning</action>, <requirements>Simplify Vocabulary</requirements>], 

        21.0

    ]

    [

        [<role>Grammar & Clarity Editor</role>, <task_description>Modify the given 

sentences to be more straightforward</task_description>, <action>Reduce Linguistic 

Complexity</action>, <requirements>Adapt to Audience</requirements>], 

        16.0

    ]

    [

        [<role>AI Sentence Simplifier</role>, <task_description>Reword the provided 

sentences for better clarity</task_description>, <action>Simplify Sentence 

Structure</action>, <requirements>Ensure Conciseness</requirements>], 

        14.0

    ]

]

[

    <role>Sentence Simplifier</role>, 

    <action>Reduce Linguistic Complexity</action>

]

Figure 19: The input for Sub-solution I - Prompts Memory in discrete form
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Based on the Memory Item List and the Old Values provided, here's how we can generate the 
Mutated Values:

1. For <role>Sentence Simplifier</role> :

This role already has the highest performance score (25.0), so we need to create a new value 
that's different but still relevant.

Possible mutation: "Clarity Optimizer" (derived from the action "Optimize Readability" in the 
top-performing item)

2. For <action>Reduce Linguistic Complexity</action> :

This action comes from an item with performance score 16.0 (not the highest), so we can 

derive a new value from higher-performing items.

The top-performing item has action "Optimize Readability" (score 25.0)

The second-highest has action "Clarify Sentence Meaning" (score 21.0)

Mutated Values:

 

<res>

    <role>Clarity Optimizer</role>,

    <action>Optimize Readability</action>

</res>

Figure 20: The responses for Sub-solution I - Prompts Memory in discrete form
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 Step 1  Memory Promptscontinuous:

 Step 2  Current Prompt: 

 Step 2  Mutate Factors: 

 

图形化解释
image-20250413115709426

[

    [

        <prompt>You are a <role>Sentence Simplifier</role>. Given the English 

Sentence, your task is to <task_description>Clarify the meaning of the given sentences 

by simplifying them</task_description>. To accomplish this, you need to 

<action>Optimize Readability</action>. Please make sure to <requirements>Improve 

Structure</requirements> throughout the process.</prompt>, 

        25.0

    ]

    [

        <prompt>You are a <role>Readability Specialist</role>. Given the English 

Sentence, your task is to <task_description>Reduce the complexity of the provided 

sentences</task_description>. To accomplish this, you need to <action>Clarify Sentence 

Meaning</action>. Please make sure to <requirements>Simplify Vocabulary</requirements> 

throughout the process.</prompt>, 

        21.0

    ] 

    [

        <prompt>You are a <role>Grammar & Clarity Editor</role>. Given the English 

Sentence, your task is to <task_description>Modify the given sentences to be more 

straightforward</task_description>. To accomplish this, you need to <action>Reduce 

Linguistic Complexity</action>. Please make sure to <requirements>Adapt to 

Audience</requirements> throughout the process.</prompt>, 

        16.0

    ] 

    [

        <prompt>You are a <role>Technical Content Simplifier</role>. Given the English 

Sentence, your task is to <task_description>Reword the provided sentences for better 

clarity</task_description>. To accomplish this, you need to <action>Simplify Sentence 

Structure</action>. Please make sure to <requirements>Ensure 

Conciseness</requirements> throughout the process.</prompt>, 

        14.0

    ]

]

<prompt>

    You are a <role>Sentence Simplifier</role>. Given the English Sentence, your task 

is to <task_description>Rewrite the provided sentences in a simpler 

form</task_description>. To accomplish this, you need to <action>Condense 

Sentences</action>. Please make sure to <requirements>Adapt to Audience</requirements> 

throughout the process.

</prompt>

<res> role | requirements </res>

Figure 21: The input for Sub-solution I - Prompts Memory in continuous form
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Here is the Final Prompt with mutated values for the specified tags ( role  and requirements ), while 
keeping the rest unchanged: 

Mutation Justification:

1. <role>   

Original: "Sentence Simplifier"  

Mutated: "Clarity Enhancer" (Inspired by high-performing roles like "Readability Specialist" 
and "Grammar & Clarity Editor", but distinct.)  

2. <requirements>   

Original: "Adapt to Audience"  

Mutated: "Improve Structure" (Drawn from the top-performing prompt's <requirements> , 
ensuring relevance while avoiding repetition.)  

All other tags ( task_description , action ) remain unchanged as they were not in the Mutate Factors. 
The new values align with high-scoring patterns while being unique.

 

 

 

 

 

case 4 part2/2
Step 2. Based on the Prompt 1 and Insights from step 1, mutate the values within markup pairs 

whose tags match those listed in Mutate Factors. Each mutated value must differ from the original in 

the Current Prompt and may be derived from the content linked to the corresponding tag in the 
Memory Item List, but is not limited to it. Do not modify any content outside the markup pairs. The 

Prompt 2 should be enclosed within one pair of  and .

Prompt 1: {prompt1}

Mutate Factors: {mutate_factors}

Step 3. Based on the Prompt 3 and Insights from step 1, mutate the values within markup pairs 
whose tags match those listed in Mutate Factors. Each mutated value must differ from the original in 

the Current Prompt and may be derived from the content linked to the corresponding tag in the 

Memory Item List, but is not limited to it. Do not modify any content outside the markup pairs. The 
Prompt 4 should be enclosed within one pair of  and .

Prompt 3: {prompt3}

<prompt>

    You are a <role>Clarity Enhancer</role>. Given the English Sentence, your task is 

to <task_description>Rewrite the provided sentences in a simpler 

form</task_description>. To accomplish this, you need to <action>Condense 

Sentences</action>. Please make sure to <requirements>Improve Structure</requirements> 

throughout the process.

</prompt>

Figure 22: The responses for Sub-solution I - Prompts Memory in continuous form
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 Step 1  Memory Promptsdiscrete:

 Step 2  Old Values: 

 

图形

deepseek(2025.05.15)

[

    [

        [<role>Sentence Simplifier</role>, <task_description>Clarify the meaning of 

the given sentences by simplifying them</task_description>, <action>Optimize 

Readability</action>, <requirements>Improve Structure</requirements>], 

        25.0

    ]

    [

        [<role>Readability Specialist</role>, <task_description>Reduce the complexity 

of the provided sentences</task_description>, <action>Clarify Sentence 

Meaning</action>, <requirements>Simplify Vocabulary</requirements>], 

        21.0

    ]

    [

        [<role>Grammar & Clarity Editor</role>, <task_description>Modify the given 

sentences to be more straightforward</task_description>, <action>Reduce Linguistic 

Complexity</action>, <requirements>Adapt to Audience</requirements>], 

        16.0

    ]

    [

        [<role>AI Sentence Simplifier</role>, <task_description>Reword the provided 

sentences for better clarity</task_description>, <action>Simplify Sentence 

Structure</action>, <requirements>Ensure Conciseness</requirements>], 

        14.0

    ]

]

[

    [<role>Sentence Simplifier</role>, <role>Paraphrasing Specialist</role>],

    [<action>Reduce Linguistic Complexity</action>, <action>Break Down 

Complexity</action>]

]

Figure 23: The input for Sub-solution II - Prompts Memory in discrete form
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Step 1: Conclude the Insights from the Memory Prompts

From the Memory Prompts, we can observe the following insights:

1. Roles: The roles are centered around simplifying, clarifying, or modifying sentences to improve 
readability and reduce complexity. Examples include "Sentence Simplifier," "Readability 

Specialist," "Grammar & Clarity Editor," and "AI Sentence Simplifier."

2. Task Descriptions: The tasks involve simplifying, rewording, or modifying sentences for clarity 

and straightforwardness. Examples include "Clarify the meaning of the given sentences by 
simplifying them" and "Reduce the complexity of the provided sentences."

3. Actions: The actions focus on optimizing readability, clarifying meaning, reducing linguistic 

complexity, and simplifying sentence structure. Examples include "Optimize Readability" and 

"Clarify Sentence Meaning."

4. Requirements: The requirements emphasize improving structure, simplifying vocabulary, 
adapting to the audience, and ensuring conciseness. Examples include "Improve Structure" and 

"Simplify Vocabulary."

The list is sorted in descending order of performance, with "Sentence Simplifier" being the highest-

performing role.

Step 2: Mutate a new value from each pair in Old Values

Old Value Pair 1: 

Sentence Simplifier: From the Memory Prompts, this role involves simplifying sentences for 

clarity.

Paraphrasing Specialist: Not explicitly in the Memory Prompts, but likely involves rewording 

sentences while preserving meaning.

Mutation: Combine the ideas of simplifying and rewording to create a new role that emphasizes 
clarity and adaptation. For example, "Clarity Adaptation Editor" or "Simplification & Paraphrasing 

Expert."  

Chosen mutation: "Clarity Adaptation Editor"

Old Value Pair 2:

Reduce Linguistic Complexity: From the Memory Prompts, this involves making language less 

complex.

Break Down Complexity: Similar, but more focused on decomposing complex ideas.

Mutation: Combine the ideas of reducing and breaking down complexity into a more general or 

refined action. For example, "Streamline Language" or "Simplify and Deconstruct."  

Chosen mutation: "Streamline Language"

Final Mutated Values:

[<role>Sentence Simplifier</role>, <role>Paraphrasing Specialist</role>]

[<action>Reduce Linguistic Complexity</action>, <action>Break Down 

Complexity</action>]

<res>

    [<role>Clarity Adaptation Editor</role>, <action>Streamline Language</action>]

</res>

Figure 24: The responses for Sub-solution II - Prompts Memory in discrete form
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 Step 1  Memory Promptscontinuous:

 Step 2  Prompt 1: 

Mutate Factors: 

 Step 3  Prompt 3: 

Mutate Factors: 

[

    [

        <prompt>You are a <role>Sentence Simplifier</role>. Given the English Sentence, 

your task is to <task_description>Clarify the meaning of the given sentences by 

simplifying them</task_description>. To accomplish this, you need to <action>Optimize 

Readability</action>. Please make sure to <requirements>Improve Structure</requirements> 

throughout the process.</prompt>, 

        25.0

    ]

    [

        <prompt>You are a <role>Readability Specialist</role>. Given the English 

Sentence, your task is to <task_description>Reduce the complexity of the provided 

sentences</task_description>. To accomplish this, you need to <action>Clarify Sentence 

Meaning</action>. Please make sure to <requirements>Simplify Vocabulary</requirements> 

throughout the process.</prompt>, 

        21.0

    ] 

    [

        <prompt>You are a <role>Grammar & Clarity Editor</role>. Given the English 

Sentence, your task is to <task_description>Modify the given sentences to be more 

straightforward</task_description>. To accomplish this, you need to <action>Reduce 

Linguistic Complexity</action>. Please make sure to <requirements>Adapt to 

Audience</requirements> throughout the process.</prompt>, 

        16.0

    ] 

    [

        <prompt>You are a <role>Technical Content Simplifier</role>. Given the English 

Sentence, your task is to <task_description>Reword the provided sentences for better 

clarity</task_description>. To accomplish this, you need to <action>Simplify Sentence 

Structure</action>. Please make sure to <requirements>Ensure Conciseness</requirements> 

throughout the process.</prompt>, 

        14.0

    ]

]

<prompt>You are a <role>Sentence Simplifier</role>. Given the English Sentence, your task 

is to <task_description>Rewrite the provided sentences in a simpler 

form</task_description>. To accomplish this, you need to <action>Condense 

Sentences</action>. Please make sure to <requirements>Adapt to Audience</requirements> 

throughout the process.

</prompt>

<res> role | requirements </res>

<prompt>You are a <role>Linguistic Analyst</role>. Given the English Sentence, your task 

is to <task_description>Rewrite the provided sentences in a simpler 

form</task_description>. To accomplish this, you need to <action>Condense 

Sentences</action>. Please make sure to <requirements>Preserve Meaning</requirements> 

throughout the process.

</prompt>

<res> role | requirements </res>

Figure 25: The input for Sub-solution II - Prompts Memory in continuous form
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Step 1: Insights from the Memory Prompts

1. Highest Scoring Item (Score: 25.0):

Role: Sentence Simplifier

Task Description: Clarify the meaning of the given sentences by simplifying them

Action: Optimize Readability

Requirements: Improve Structure

2. Other Items:

Role: Readability Specialist (Score: 21.0)

Role: Grammar & Clarity Editor (Score: 16.0)

Role: Technical Content Simplifier (Score: 14.0)

Step 2: Mutate Prompt 1

Mutate Factors: <res> role | requirements </res>

Role: "Sentence Simplifier" is already the highest-scoring role, so we generate a new value: "Clarity 
Enhancer".

Requirements: "Adapt to Audience" is not the highest-scoring (highest is "Improve Structure"), so 

we replace it with "Improve Structure".

Prompt 2:

Step 3: Mutate Prompt 3

Mutate Factors: <res> role | requirements </res>

Role: "Linguistic Analyst" is not in the Memory Item List, so we replace it with the highest-scoring 
role: "Sentence Simplifier".

Requirements: "Preserve Meaning" is not the highest-scoring, so we replace it with "Improve 

Structure".

Prompt 4:

Step 4: Combine Prompt 2 and Prompt 4

Combine the best-performing markup pairs from Prompt 2 and Prompt 4:

Role: "Clarity Enhancer" (from Prompt 2)

Task Description: "Rewrite the provided sentences in a simpler form" (common in both)

Action: "Condense Sentences" (common in both)

Requirements: "Improve Structure" (common in both)

Final Prompt:

<prompt>You are a <role>Clarity Enhancer</role>. Given the English Sentence, your task is 

to <task_description>Rewrite the provided sentences in a simpler form</task_description>. 

To accomplish this, you need to <action>Condense Sentences</action>. Please make sure to 

<requirements>Improve Structure</requirements> throughout the process.</prompt>

<prompt>You are a <role>Sentence Simplifier</role>. Given the English Sentence, your task 

is to <task_description>Rewrite the provided sentences in a simpler 

form</task_description>. To accomplish this, you need to <action>Condense 

Sentences</action>. Please make sure to <requirements>Improve Structure</requirements> 

throughout the process.</prompt>

<prompt>You are a <role>Clarity Enhancer</role>. Given the English Sentence, your task is 

to <task_description>Rewrite the provided sentences in a simpler form</task_description>. 

To accomplish this, you need to <action>Condense Sentences</action>. Please make sure to 

<requirements>Improve Structure</requirements> throughout the process.</prompt>

Figure 26: The responses for Sub-solution II - Prompts Memory in continuous form

37


	Introduction
	Preliminaries
	Methodology
	Framework of DelvePO
	Overview of DelvePO

	Experiments
	Experimental Settings
	Main Results
	Cost Analysis
	Ablation Study

	Related Work
	Conclusion
	Use of LLMs
	Details of Datasets and LLMs Used
	Algorithm Details
	Additional Experiments
	Detailed Information about Components
	Template for Injection & Prompts for Evaluation on LLMs
	The Detailed Prompts of Task-Evolution
	The Detailed Prompts of Solution-Evolution
	Case Study Details

