
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DELVEPO: DIRECTION-GUIDED SELF-EVOLVING
FRAMEWORK FOR FLEXIBLE PROMPT OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Prompt Optimization has emerged as a crucial approach due to its capabilities in
steering Large Language Models to solve various tasks. However, current works
mainly rely on the random rewriting ability of LLMs, and the optimization pro-
cess generally focus on specific influencing factors, which makes it easy to fall
into local optimum. Besides, the performance of the optimized prompt is of-
ten unstable, which limits its transferability in different tasks. To address the
above challenges, we propose DelvePO (Direction-Guided Self-Evolving Frame-
work for Flexible Prompt Optimization), a task-agnostic framework to optimize
prompts in self-evolve manner. In our framework, we decouple prompts into
different components that can be used to explore the impact that different fac-
tors may have on various tasks. On this basis, we introduce working memory,
through which LLMs can alleviate the deficiencies caused by their own uncer-
tainties and further obtain key insights to guide the generation of new prompts.
Extensive experiments conducted on different tasks covering various domains for
both open- and closed-source LLMs, including DeepSeek-R1-Distill-Llama-8B,
Qwen2.5-7B-Instruct and GPT-4o-mini. Experimental results show that DelvePO
consistently outperforms previous SOTA methods under identical experimental
settings, demonstrating its effectiveness and transferability across different tasks.

1 INTRODUCTION

The rapid advancement of Large Language Models (LLMs) (DeepSeek-AI, 2025; Li et al., 2025)
has revolutionized various real-world applications (Shao et al., 2024; Zheng et al., 2025) . Prompt,
a method that steers LLMs to produce desired results without modifying parameters, has garnered
significant interest among non-AI experts from different domains (Wan et al., 2024; Guo et al., 2025;
Fernando et al., 2024). Consequently, the rapid growth in users has increased demand for prompt
engineering methods.

Previous efforts primarily focused on manually designing specialized prompts (Brown et al., 2020;
Kojima et al., 2022; Wei et al., 2023). However, this kind of method is time-consuming and demands
extensive trial and error, making it less versatile for diverse tasks and limiting their real-world effec-
tiveness. To reduce the human effort required for constructing effective prompts, many researches
(Shum et al., 2023; Wang et al., 2023c; Zhang et al., 2022; Feng et al., 2024; He et al., 2024) have
increasingly explored methods such as curating unified demonstrations for related tasks, systemati-
cally designing domain-specific templates, and identifying critical factors for prompt performance.
However, these methods exhibit limited applicability across diverse scenarios.

Subsequently, a series of research emerged that employ optimization algorithms to refine prompts.
Such approaches (e.g. APE (Zhou et al., 2023b), PromptBreeder (Fernando et al., 2024), and Evo-
Prompt (Guo et al., 2025)) synergistically integrate the efficiency inherent in the algorithms with the
powerful text processing ability of LLMs, achieving relatively stable performance enhancement on
target datasets. Although these studies analogize the mutation operation in evolutionary algorithms
to the rewriting operation of LLMs, they fail to fully harness the efficiency and rapid convergence
inherent to such algorithms, which ultimately limits the realization of their performance advan-
tages in prompt optimization. The primary reason lies in the inherently stochastic nature of the
evolutionary process: the directionality of mutation operations remains uncontrollable, while their
interpretability is also notably limited. Furthermore, these methods neglect the potential impact of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

constituent components within a prompt on overall performance, leading to premature convergence
in local optima. For example, during evolutionary phase of EvoPrompt, the initial prompt inherently
contains the "role" as a critical component. However, due to the stochastic nature of the mutation
process, the stochastic mutation process may accidentally remove this component. Once discarded,
it cannot be reintegrated into subsequent evolutionary iterations. Such degradation significantly
heightens the risk of premature convergence in local optima. A parallel limitation is observed in
the PromptBreeder method, which exhibits even higher stochasticity, as its implementation not only
uses two distinct mutation prompts but also employs diverse mutation operators, amplifying ran-
domness throughout the optimization process. We summarize that a robust Prompt Optimization
(PO) must have the following characteristics:

• Seamlessly integrating domain expert experience: For tasks in different domains, prior experi-
ence from domain experts can be incorporated into the PO algorithm, thus improving the efficiency
of the optimization process.

• Actively exploring factors that may affect prompt performance: The method can actively
explore factors affecting prompt performance to guide optimization using historical data.

• Adaptively identifying optimal prompts for different LLMs with varying performance: The
algorithm self-adjusts to discover the best prompts for target tasks across differently specialized
models and scenarios, ensuring broad applicability in diverse professional contexts.

Integrating insights from existing research, we propose DelvePO 1 (Direction-Guided Self-Evolving
Framework for Flexible Prompt Optimization) that adaptively accommodates diverse LLMs and
self-improves through guidance from its historical optimization strategies. Inspired by the concept of
Loci (the corresponding location of genes with important functions) and Alleles (different versions
of the same gene) on genetics, this framework first decouples prompt instructions into functional
components (analogous to Loci). Subsequently, it iteratively evolves these components by explor-
ing the potential impacts of diverse allele variations, ultimately achieving holistic optimization of the
entire prompt through systematic recombination. In particular, building upon the components, we
introduce working memory mechanism (i.e., Component Memory and Prompt Memory) to guide the
evolutionary process. Component Memory is designed to capture evolutionary trends in individual
components and utilize these trends to guide further optimization of each element. Take the com-
ponent a step further, Prompt Memory creates interconnections between components by utilizing
contextual information to guide the progressive optimization of the entire prompt. The contributions
of our work can be summarized as follows:

• To the best of our knowledge, our work is the first to introduce memory mechanism to guide
prompt optimization, not only stabilizing the performance of the entire prompt population but
also greatly reducing the time required for evolutionary operations.

• By decoupling prompt into multiple components and designing guided evolutionary mechanisms,
our framework integrates multiple influencing factors into a single prompt. This integration not
only enhances the scalability of PO methods but also improves the interpretability of the optimiza-
tion process, significantly lowering the difficulty to interact with the system.

• For LLMs with varying performance levels, our framework can elicit their capabilities, striking
a good balance between exploring diverse components and exploiting the current derived good
components, ultimately obtaining optimal prompts that adapt to the target tasks and LLMs simul-
taneously. Extensive experimental results on multiple datasets and three widely-adopted LLMs
reveal that DelvePO outperforms manually crafted prompts and existing PO methods.

2 PRELIMINARIES

Given task T = (D,A), D is the task-related dataset and A represents the corresponding answer
to the dataset, prompt optimization can be briefly described as follows: Guided by the working
memory mechanism, the initial prompt population Pinit = {p1, p2, · · · } is continuously optimized
to obtain the final prompt population Pfinal. The best prompt p∗ can be selected as follows:

p∗ ← argmax
p∈Pfinal

feval
(
ϕLLM(p,Ddev),A

)
1DelvePO is available at https://anonymous.4open.science/r/DelvePO

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where Ddev is the development dataset and ϕLLM(p,Ddev) means that the prompts and questions
are combined and then fed into the LLM to produce the corresponding response. The important
concepts used in our proposed framework are described below.

Components Similar to the relationship between Loci and Chromosome, components are mainly
used to identify the location of key factors that affect task performance in prompts. Different tasks
can introduce distinct components or reuse existing ones. Components are extensible, i.e., the type
and number of components can be user-defined, and our method can also evolve synchronously as
the context length that LLMs can receive increases. In this paper, we construct a comprehensive
and representative component pool from a broad set of related literature. Further details on how the
components are studied and predefined in our framework are provided in Appendix E.

Templates To bind components to prompts, we design a general template (corresponding to the
Chromosome functionally), whose content is mainly composed of two parts: general and unchang-
ing text; domain-specific and replaceable descriptive text (i.e., components and their correspond-
ing values). For the descriptive text, its main functions include explaining domain-specific com-
ponents, connecting different components, and providing contextual semantics about components.
To overcome the instability of LLMs in recognizing components, we borrow the design idea of
"markup" from HyperText Markup Language (HTML) to define different domain components. Tak-
ing "<role></role>" as an example, the "role" is one of the various component types. Accordingly,
the value of the component will be enclosed within the markup pairs, i.e., <role>Sentence Simpli-
fier</role>. More details can be found in Figure 6 in Appendix F.

3 METHODOLOGY

3.1 FRAMEWORK OF DELVEPO

Our self-evolution prompt optimization framework consists of 4 necessary functional modules:
Sampling & Update module, Task-Evolution module, Solution-Evolution module and Memory-
evolution module. We define the Task as "discover the promising direction of evolution", that is,
determining the component (types or values) that need to evolve in the next step under the guidance
of components memory. We define the Solution as "make sure the process of evolutionary opera-
tion and perform evolutionary operation", i.e., under the guidance of prompts memory, evolutionary
operations are applied to the component values according to the selected evolution type: for a sin-
gle sample, only mutation is performed, while for two samples, both mutation and crossover are
executed. For memory-evolution, it mainly uses the evolved prompts and component value pairs
before and after evolution to update the prompts memory and components memory, respectively.
In the sampling and update module, when the number of iterations reaches a pre-defined value, the
population is updated. Otherwise, a new sampling operation is performed within the current popu-
lation, which in turn triggers the next round of self-evolution operations. The designs of DelvePO
framework is shown in Figure 1. Next, we first introduce the working memory mechanism.

Components Memory stores the corresponding component values before and after evolution, which
is selected according to the mutated component type. The value pairs will be ordered by descend,
i.e., when injecting to the final prompt, the first value performs better than the second. Components
Memory will guide the selection of components in the Task-Evolution stage.

Prompts Memory stores the prompts after each step of evolution. The evolved prompts are stored
in descending order according to their performance scores. There are two forms of prompts mem-
ory: discrete form and continuous form. The discrete version only stores discrete combinations of
component value in the prompt. And the continuous version stores a complete prompt formed by
injecting component value into the template, which means that it stores continuous text containing
context. Prompts memory will be used to guide the mutation of component or the crossover of the
prompt in the Solution-Evolution stage.

3.2 OVERVIEW OF DELVEPO

As shown in Figure 1, the workflow of DelvePO contains several core stages as outlined below.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Populations (old)

pi < pi, si >
⋮ ⋮

⋮ ⋮

Populations (new)

p' < p', s'>p' < p', s'>

⋮ ⋮⋮ ⋮

2N Populations

p < p, s >p < p, s >

⋮ ⋮⋮ ⋮

⋮ ⋮⋮ ⋮
p' < p', s'>p' < p', s'>

⋮ ⋮⋮ ⋮

Sort

#candidates = 2N

Top-N

Sample
Sampled prompt(s): 1 or 2

pCase IpCase I pCase IIpCase II pCase IIpCase II

#1 #2pCase II pCase II

#1 #2

Dev Dataset

Evaluate
s < s'

Guide

Sampled promptSampled prompt Evolved prompt

p' <p', s'>p <p, s>

Raw Task: Traw

Raw Solution: Sraw

① Sampling (& Update)

④ Memory-Evolution

② Task-Evolution

Evolved Task: Tevo

Evolved Solution: Sevo

 Prompt for Traw Prompt for Traw Prompt for Tsub
2 Prompt for Tsub

1

Solution description

Working Memory (old)

Mcomponents Mprompts

Prompt

Memory

Mcomponents Mprompts

Prompt

Memory

Working Memory (new)Memory evolveMemory evolve

p1 < p1, s1 >

pN < pN, sN >

Component

Memory
Component

Memory

Task evolve

Solution evolve

Task description

Case I

Sub-task Tsub
1

Case II

Sub-task Tsub
2

Case I

Sub-task Tsub
1

Case II

Sub-task Tsub
2

③ Solution-Evolution

Mutation Only Mutation and Crossover

Figure 1: The Framework of DelvePO. Initialization begins with predefined components, which
are concatenated to form individual p; multiple individuals constitute the initial population Pop-
ulations (old). At each step, one individual (Mutation only) or two individuals (Mutation and
Crossover) are sampled, and the Sub-task determines the evolutionary direction (i.e., the mutated
component type). Guided by Task-, Solution-, and Memory-Evolution modules, selected prompts
are iteratively evolved, contrasting with unguided optimization. The new population Populations
(new) is accumulated across epochs, and once the threshold is reached, the population is updated to
initiate the next round of self-evolution.

Initialization & Sampling: First, we use task-agnostic component-value generation prompt (see
Figure 4 in Appendix C) to generate candidate values for each component type. Then, we randomly
sample from these candidates and inject the selected values into the population-construction tem-
plate (illustrated in Figure 6 in Appendix F) to construct the initial population. Each individual in the
initial population is evaluated on the development dataset to obtain its performance score. Finally,
the sorted population is stored as the initial prompts memory. Before the population evolves, there is
no components memory. After initialization, the sampling process begins, aiming to select prompts
from the current population for evolution. Inspired by genetic principles, there are two main ways
to generate new individuals: mutating a single individual or performing crossover between two indi-
viduals. Notably, mutation may also occur during crossover. To account for these cases, we assume
that the number of individuals selected in each sampling step can be either 1 or 2.

The evolutionary process mainly includes two parts: generating new individuals based on selected
individuals; generating and storing the working memory. Specifically, there are 3 types of evolu-
tion, namely Task-Evolution, Solution-Evolution, Memory-Evolution. The mechanism of Task-
Evolution and Solution-Evolution is shown in Figure 2.

Task-Evolution For task evolution, considering the components and the evolutionary operations
(mutation and crossover), we design two kinds of evolutionary sub-tasks. The detailed information
is shown in Figure 8 and Figure 9 (see Appendix G).

• Sub-task I: This task mainly uses mutation operations to process a single candidate prompt. First,
the semantic comprehension capability of the LLMs is utilized to obtain the relevant insights
of component evolution from the component memory Mcomponents. Then, the insights are used
to guide the selection of components. Finally, the selected components will be treated as the
promising direction to guide the evolution of mutation-based solution.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Raw Prompt

Solution evolve

Task evolve

Raw Task: Traw

Based on the current prompt(s)

{p,...}, find a suitable prompt for

the downstream task.

Raw Solution: Sraw

Given downstream task, rewrite

current prompt {p,...} to get a new

prompt.

Conclude Insights from {Mprompts}.

Based on the Insights and Direction,

mutate current prompt {p} to get

final prompt.

Conclude Insights from {Mprompts}.

Based on the Insights and Direction,

mutate & crossover current prompts

{p1, p2} to get final prompt.

Evolved Task: Tevo

Conclude Insights from {Mcomponents}.

Based on the Insights and current

prompt {p}, get promising Direction

for mutate.

Evolved Prompt Evolved Prompt

Conclude Insights from {Mcomponents}.

Based on the Insights and current

prompts {p1, p2}, get promising

Direction for mutate & crossover.

Evolved Solution: Sevo

Figure 2: The mechanism of Task-Evolution and Solution-Evolution. Using the pseudo-prompt to
explain the details of Task- and Solution-Evolution.

• Sub-task II: After performing Sub-task I on the two candidate prompts, we can get the respective
component types set C1 and C2 for two prompts (say p1 and p2) as the promising direction for
mutation. The final mutated component type is selected as Ĉ = C1 ∩ C2. Next, for each compo-
nent in C̃ = C \ Ĉ where C denotes the set of all component types, corresponding contents from
p1 and p2 are extracted to construct a pair. Then, based on the insights derived from Mcomponents,
one value from each pair is selected as the potential value to improve performance of the prompts
after evolution. Finally, the component types from Ĉ will be treated as the promising direction
to guide the evolution of crossover-based solution, and the selected values from p1 or p2 whose
component types coming from C̃ will also be passed into the corresponding Solution-Evolution
phase to help construct the final prompts.

Solution-Evolution The main goal of solution evolution is to utilize the insights (derived from the
prompts memory) and direction (received from the task-evolution) to perform evolution operations
on the corresponding content in the current prompt and generate a new prompt that performs better.
In this phase, we propose 2 sub-solutions corresponding to 2 sub-tasks. Depending on whether the
prompt is continuous or discrete, each sub-solution can also be further divided to eliminate the effect
of prompt format on the final result.

• Sub-solution I: Extract component contents from current prompt based on the results obtained by
sub-task I (i.e., the mutated components that are most likely to improve prompt performance). The
extracted contents are then mutated using insights obtained from the prompts memory Mprompts

stored in discrete or continuous forms. Those contents that have not been mutated will be retained
in new prompts. Finally, the mutated and unmutated component contents will be integrated as the
result of sub-solution I. The corresponding prompts are shown in Figure 10, 11 (see Appendix H)
for the prompts memory in discrete and continuous forms, respectively.

• Sub-solution II: This mainly uses the results from sub-task II as a guide, and extracts component
contents from the currently selected two prompts. And the evolutionary operations would combine
mutation and crossover. First, for components that do not require mutation, the corresponding
content is received from sub-task II. Then, for the component that need to be mutated, we extract
its content from the two prompts. Based on the evolutionary insights derived from the prompt
memory Mprompts, the mutation operations are performed on the extracted content. Next, the
generated two prompts will crossover on the component types that need to be mutated. Finally,
the results obtained from the mutation and crossover operations are integrated to generate a new
prompt as the result of the sub-solution II. The details are shown in Figure 12 for the prompts
memory in discrete form and Figure 13, 14 for continuous form (see Appendix H).

Memory-Evolution is based on the component pairs and prompts both before and after the evolu-
tion to update the corresponding components memory and prompts memory, which is used to guide
the next evolution process. In this module, the evaluation will be performed. Specifically, to clearly
describe the evaluation process, we illustrate a general form of a prompt designed for LLMs that
can be applied across different tasks (shown in Figure 7). Evaluation refers to calculating the per-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

formance score of the generated new prompts on the development dataset based on the evaluation
metrics of the target task, according to which components can be sorted and memory can be updated.

Update: Add the evolved prompts to the temporary population generated in each iteration. When
the iteration ends, the temporary and current populations are mixed, and Top-N is selected as the
updated population for the next iteration based on performance.

The details of DelvePO are outlined in Algorithm 1, which can be found in Appendix C.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Baselines In our experiments, We choose 6 commonly used methods which have been widely proven
to be efficient in the field of prompt optimization as our baselines, which are: Crafted by human
experts, CoT-ZS, CoT-FS, Promptbreeder, APE, and EvoPrompt.

• Human corresponds to manually crafted prompts by experts, as detailed in the relevant literature
Zhang et al. (2024); Sanh et al. (2022), which primarily derived from prior studies.

• CoT has been extensively applied in various domains, represents a rationale-based approach. We
evaluate two representative forms of CoT: CoT-ZS (Zero-Shot CoT, Kojima et al. (2022)) and
CoT-FS (Few-Shot CoT, also known as Manual-CoT, Wei et al. (2023)).

• APE (Zhou et al., 2023b) regards instructions as programs and uses Monte Carlo Search to select
appropriate instructions as optimized prompts under LLM guidance.

• Promptbreeder (Fernando et al., 2024) further investigates the effect of different mutation strate-
gies on self-optimization based on elaborately designed evolutionary operations.

• EvoPrompt (Guo et al., 2025) introduces evolutionary algorithms to prompt optimization for
the first time. Considering different scenarios, it instantiates its framework using two practical
evolutionary algorithms. According to its statement, compared with GA method, the DE method
has a wider range of use in solving complex problems. Therefore, we select EvoPrompt-DE as
our baseline, and denote it simply as EvoPrompt.

Datasets and LLMs To demonstrate the generalizability of our method, we conducted experiments
on 11 datasets across three LLMs, covering diverse domains and representative real-world tasks.
The details information about datasets and LLMs are represented in Appendix B. Other experimental
details (e.g., Computational Resources and Hyperparameter Details) are represented in Section 6.

4.2 MAIN RESULTS

Following the same settings as baselines, we tested the best prompts obtained during training. The
main experimental results (as shown in Table 1) on DeepSeek-R1-Distill-Llama-8B are reported as
averages over three random seeds, with standard deviations provided. It is worth noting that we
observed Promptbreeder to be significantly more time-consuming than other methods (as shown in
Figure 3). To balance the diversity of baselines and ensure the fairness in training time, we therefore
report results for Promptbreeder using a single random seed.

From Table 1, we can observe that our method achieves substantial improvements over manual ap-
proaches. Among the automated optimization methods, our method consistently outperforms base-
lines, demonstrating not only its effectiveness but also its adaptability to different task types. From
the results on classical NLP benchmarks, we observe that the baselines perform well, confirming
their effectiveness on established datasets. However, on more recently introduced benchmarks that
demand broader capabilities, automated prompt optimization methods generally perform better, with
our approach showing particularly substantial improvements. These results indicate that as LLMs
continue to advance, prompt optimization techniques must likewise evolve, and our framework de-
livers consistently strong performance across diverse domains.

To further evaluate the performance of our framework on different LLMs, we conducted additional
experiments across different task types on the closed-source model (GPT-4o-mini, results reported
in Table 2) and the widely used open-source model (Qwen2.5-7B-Instruct, shown in Table 5 in
Appendix D). The experimental settings were kept identical to the main experiments. As shown
in the results evaluated on these two LLMs, our framework consistently delivers either superior

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Main results on different downstream tasks for DeepSeek-R1-Distill-Llama-8B. Since
expert-written prompts are not available for all datasets, sign ("-") is used to indicate missing cases.

Method Classical NLP Question-Answering Domain-specific NLG Avg.
Subj MR CoLA SQuAD TREC FinPB SAMSum

Human 26.00 55.89 - - 54.67 - 25.68 -
CoT-ZS 70.00 68.00 65.45 43.91 68.00 60.00 3.23 56.74
CoT-FS 83.00 90.67 70.63 47.92 71.00 68.67 4.25 62.81

Promptbreeder 35.00 86.00 55.58 54.16 60.00 59.00 27.88 51.20
APE 74.67(2.85) 83.67(1.67) 68.75(1.20) 67.57(1.62) 42.33(2.40) 70.67(2.33) 30.02(0.85) 61.25
EvoPrompt 82.00(2.08) 83.00(1.00) 66.75(2.73) 68.17(1.14) 67.00(1.53) 72.00(1.53) 29.18(0.47) 65.55

DelvePO 83.67(1.20) 91.00(1.00) 76.25(1.49) 68.53(2.61) 76.00(2.08) 73.33(3.06) 32.05(0.25) 70.48

Table 2: The results on different downstream tasks for GPT-4o-mini.

Method Classical NLP Domain-specific Multi-domain Avg.
Subj CoLA FinPB AG’s News

Human 27.33 - - 87.56 57.45
CoT-ZS 67.67 81.40 73.67 80.33 75.77
CoT-FS 82.00 84.93 80.67 83.00 82.65

Promptbreeder 45.00 67.72 72.00 78.00 65.68
APE 79.61(1.78) 81.53(1.93) 94.93(0.78) 84.60(0.93) 85.17

EvoPrompt 76.70(1.90) 82.72(2.11) 96.97(0.52) 86.50(1.40) 85.72

DelvePO 91.07(1.03) 83.14(1.90) 98.63(0.62) 89.40(0.81) 90.56

or competitive performance across multiple task types, demonstrating its robustness and general
effectiveness when applied to diverse LLMs.

4.3 COST ANALYSIS

In our experiments, the overhead primarily stems from the training time required for open-source
LLMs and the number of tokens consumed in API requests for closed-source LLMs. Accordingly,
for DeepSeek-R1-Distill-Llama-8B, we randomly selected one dataset from each task type and mea-
sured the time cost of different baselines, with results presented in Figure 3. The statistics indicate
that our method consistently outperforms or matches the baselines in terms of optimization speed,
particularly when compared with PromptBreeder. This also explains why we report its results using
a single random seed. Overall, the results demonstrate that our method can more effectively exploit
the rapid convergence property of evolutionary algorithms for faster optimization.

Moreover, we reported token usage in terms of the actual monetary expenditure, as shown in Table 6.
Overall, as shown in Table 2 and Table 6, although our method requires higher expenditure, it con-
sistently delivers performance above or competitive with the baselines, indicating that our approach
offers a favorable balance between performance and cost. We also analyzed the reasons behind the
generally higher token usage. The primary factor is that the content stored in the memory module
is included as part of the input provided to the target LLMs. In future work, we plan to integrate
prompt compression techniques into the framework to reduce this overhead.

4.4 ABLATION STUDY

To evaluate the impact of the memory mechanism in our framework, we conducted ablation experi-
ments on GPT-4o-mini. We selected three datasets of different types to evaluate the adaptability of
the memory mechanisms across multiple scenarios. Table 3 reports the performance on three types
of datasets using a single random seed. When both memory mechanisms are included and oper-
ate in coordination, the overall performance is substantially higher than in the other configurations,
demonstrating the effectiveness and complementary benefits of the proposed memory design.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

MR CoLA TREC FinPB SAMSum
0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
vo

lv
in

g
Ti

m
e

pe
r

E
po

ch
 (G

PU
 h

ou
rs

)

1.60
1.69 1.76

2.48

1.88
1.73

1.87

2.31

2.71 2.77 2.72
2.89

1.97
2.10

2.25

1.75

2.27

2.87
2.73

2.38

DelvePO EvoPrompt APE PromptBreeder

Figure 3: Average time-consuming (GPU hours) for one epoch of optimization on DeepSeek-R1-
Distill-Llama-8B.

Table 3: Ablations of Memory Mechanism.

Memory Modules SAMSum SQuAD Causal Judgement

w/o Component Memory 28.8 67.4 62.6
w/o Prompt Memory 29.4 67.9 61.8
w/o both 28.4 64.6 61.3
DelvePO 35.3 84.7 65.7

Table 4: Sensitivity test regarding the number of
component values.

Value SAMSum SQuAD SST-5
50 29.2 67.9 57.2
40 29.2 67.3 57.4
30 29.7 66.8 56.8
20 28.8 66.5 59.1
10 30.2 69.7 60.3

Furthermore, to investigate the impact of the
number of component values for each compo-
nent type on the overall performance of the ini-
tial population, we designed a sensitivity test
examining how initial population performance
varies with the number of component values at
initialization. Using GPT-4o-mini, we gener-
ated initial populations for three different types
of datasets under a single random seed and eval-
uated their performance on the corresponding
test sets. The results in Table 4 show that in-
creasing the number of component values does not cause significant fluctuations in the initial popu-
lation performance. This indicates that a relatively small number of component values is sufficient
to obtain an initial population with stable and reasonable performance, and importantly, it rules out
the concern that a larger number of components could lead to an overestimated initial population,
which might otherwise suggest that further optimization is unnecessary.

To illustrate the stability of our method, we use the MR dataset as an example and report the average
and best population performance over 10 epochs (Figure 5, Appendix D). As iterations increase, the
performance population of DelvePO steadily improves, while baselines exhibit larger fluctuations,
demonstrating its robustness. We also conducted a case study to help researchers quickly understand
our framework, with details in Appendix I.

5 RELATED WORK

Prompt Engineering Prompt engineering is a resource-efficient approach, focusing on elaborately
designing expert-level prompts to steer LLMs generate desired solutions to various downstream
tasks. In this part, we mainly focus on those works which use prompts to stimulate the internal abil-
ities of LLMs. Least-to-Most (Zhou et al., 2023a), Decomposed Prompting (Khot et al., 2023) and
PS&PS+ (Wang et al., 2023a) use prompts to leverage the decomposition ability of LLMs, breaking

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

down complex problems into simpler ones, enabling the model to perform better when dealing with
complex problems. CoT (Wei et al., 2023), PoT (Chen et al., 2023), PS & PS+ (Wang et al., 2023a),
Automate-CoT (Shum et al., 2023), ToT (Yao et al., 2023)and GoT (Besta et al., 2024) guide the
model to utilize chain-of-thought in different ways through the design of prompts, stimulating the
thinking ability of the model, thereby enhancing the model’s reasoning ability. Also, Complexity-
based Prompting (Fu et al., 2023) and DIV-SE (Naik et al., 2024) focus on the complexity and diver-
sity of prompts, aiming to help the model think better. Rephrase and Respond (Deng et al., 2024),
OPRO (Yang et al., 2024), and MIPRO (Opsahl-Ong et al., 2024) utilized the self-optimization
capabilities of LLMs through methods such as input rewriting, iterative prompt optimization and
structured program optimization, jointly demonstrating that LLMs can autonomously enhance the
performance of task execution by dynamically improving prompts. TextGrad (Yuksekgonul et al.,
2025) and SPO (Xiang et al., 2025) combine LLMs by orchestrating Standard Operation Pipelines
(SOPs) in advance, and uses the evaluation ability of the model itself to guide the optimization of
prompts. These methods effectively demonstrate that LLMs can be more proactive in utilizing their
exploration abilities under the scientific guidance of predefined SOPs. Although the above works
have elicited some abilities of LLMs to cope with complex problems, they cannot get rid of the
problem that LLMs are sensitive to inputs, which results in the inconsistency of outputs’ quality.

Prompt Optimization Given a downstream task, prompt optimization aims to improve the effec-
tiveness of prompt, which typically involves an iterative process including initialization, execution,
evaluation and selection. This part primarily focus on those works which leverage external tech-
nologies or exogenous intelligence sources to guide LLMs to perform prompt optimization. Using
external knowledge to optimize prompt is very effective. Existing works generally referred to: 1)
the way humans think (Wang et al., 2023c); 2) the idea of program synthesis (Zhou et al., 2023b);
3) external knowledge (Zhao et al., 2023) to optimize prompts which achieve good results. Format-
ting the structure of prompts can standardize the thinking process of LLMs, and to a certain extent
improve their reasoning capability. LangGPT (Wang et al., 2024) presents a framework for prompt
design, proving that scalable structures are important for prompts migration. Prompt template (He
et al., 2024) delves into the impact of the format of the prompt template on solving problems, demon-
strating the effectiveness of structured prompts in eliciting LLMs’ capabilities. Furthermore, there
are some efforts that introduce algorithms that have been widely proven to have good optimization
capabilities to the optimization of prompts, including K-means (Zhang et al., 2022), KNN (Shi et al.,
2022), reinforcement learning (Pryzant et al., 2023; Wang et al., 2023b), active learning (Diao et al.,
2024), and evolutionary algorithm (Guo et al., 2025; Fernando et al., 2024).

In summary, although existing studies have mitigated the output stochasticity of LLMs, the effi-
ciency of the optimization algorithm has still not been fully explored. These efforts generally tend
to treat prompts as a whole unit to optimize, so the potential optimization space is very large. In
addition, most previous researches combining optimizing algorithms (e.g., evolutionary algorithms)
with LLMs, do not take full advantage of the experience generated before and after optimization,
so that the optimization process is more stochastic, which tends to fall into local optima. Inspired
by biological Loci and Alleles, this paper proposes a flexible framework for prompt optimization,
which can effectively reduce the randomness of the optimization process and significantly improves
the optimization speed. We hope our approach will provide possible improvements for subsequent
PO methods, significantly lowering the learning barrier for non-AI experts to leverage LLMs.

6 CONCLUSION

We introduced DelvePO, a self-evolving framework for prompt optimization that decouples prompts
into distinct components. With components, prompts can be modified by adding or removing con-
tent that may affect their performance, striking a good balance between exploration and exploitation
of factors that affect task performance. DelvePO employs a co-evolutionary mechanism to iter-
atively refine the specifics of two sub-tasks and generate corresponding solutions. The evolved
prompt, following systematic processing, is encoded into working memory to facilitate LLMs in de-
riving relevant insights, thereby provides directional guidance for generating task-specific prompts.
Extensive experiments on different tasks demonstrate DelvePO consistently outperforms baselines,
validating its effectiveness. As we anticipate the emergence of even more powerful LLMs that can
deal with longer context, we firmly believe that more professional prompts will penetrate all walks
of life, and DelvePO will help more users complete various complex tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work studies prompt optimization techniques for language models (LLMs) to better elicit their
capabilities in solving target tasks. The primary potential risks of this research are related to the
misuse of LLMs, for example, generating misleading, harmful, or biased content.

In our experiments, we only use publicly available datasets and pre-trained LLMs, and no private
or sensitive data were involved. Specific statements on LLM usage can be found in Appendix
A. We emphasize that our methods are intended for research and benchmarking purposes, and we
encourage responsible use to mitigate potential societal risks.

REPRODICIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. To facilitate replication, we provide
the following details:

Computational Resources The following describes the experimental environment, including de-
tailed information on both hardware and software configurations.

• Hardware. All experiments were conducted on a computing node equipped with four NVIDIA
Tesla V100-SXM2 GPUs (32GB memory each), an Intel Xeon Gold 6248 CPU @ 2.50GHz with
20 cores, and 226 GB of RAM.

• Software. The system runs Ubuntu 20.04.6 LTS with Linux kernel version 5.4.0. All models were
implemented in Python 3.10.18 using PyTorch 2.0.0 with CUDA 11.7.

Hyperparameter Details In order to isolate the effect of our proposed method and ensure a fair
comparison, we mainly followed the default configurations used in baseline methods and intention-
ally introduced no additional trainable parameters. Specifically, the detailed hyperparameter settings
are given below.

• Initial Population Size. Following the setup of EvoPrompt, which uses both human-written and
LLM-generated prompts, we adopted a similar strategy in spirit but tailored it to our fully auto-
mated framework. (1) We identify a fixed set of components through preliminary study mentioned
at ref . (2) For each component, we use an LLM to generate 10 candidate values based on prompt
templates. (3) We then randomly combine these values to create 10 initial prompts, which together
form the initial population for the evolutionary process.

• Temperature. Since the stochasticity of LLM outputs is sensitive to temperature settings, we set
the temperature to 0.5 to strike a balance between exploration and exploitation. This choice aligns
with prior work such as EvoPrompt.

• Sample Allocation. For data splits, we followed the protocols of APE and EvoPrompt. Specif-
ically, if the dataset has a predefined training/testing split, we used it as-is. For datasets without
predefined splits, we randomly selected 100 examples as the test set and used the remaining ex-
amples for training.

• Randomness Control. To ensure reproducibility. Unless otherwise noted, we use 3 random seeds
(5, 10 and 15) in the training phrase, and reported the results on the test set.

LIMITATIONS

While our framework can adaptively design well-matched prompts for any LLM across diverse
downstream tasks, several limitations remain. (1) Due to substantial computational costs, we cannot
comprehensively evaluate all models and domains. Instead, we focused on widely used datasets to
balance fairness and coverage. (2) Although we report monetary cost based on actual token usage,
variations in token pricing across input and output types cannot be precisely captured by the API.
Analysis indicates that most of the cost arises from including memory content as input tokens, while
output token consumption remains relatively modest, particularly when "thinking mode" is disabled.
Future work will explore prompt compression to further optimize resource use. (3) We evaluated
only representative component values from each category due to resource constraints. Nevertheless,
even with this limited set, our approach continues to outperforms or remains competitive with base-
lines, demonstrating its effectiveness and suggesting that its benefits will likely increase as LLMs
support longer contexts.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gi-
aninazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten
Hoefler. Graph of thoughts: Solving elaborate problems with large language models. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 38(16):17682–17690, March 2024.
ISSN 2159-5399. doi: 10.1609/aaai.v38i16.29720. URL http://dx.doi.org/10.1609/
aaai.v38i16.29720.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Proceedings of the
34th International Conference on Neural Information Processing Systems, NIPS ’20, Red Hook,
NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks, 2023. URL https:
//arxiv.org/abs/2211.12588.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

DeepSeek Chat. Deepseek chat web interface, 2025. URL https://chat.deepseek.com/.
Accessed: 2025-08.

Yihe Deng, Weitong Zhang, Zixiang Chen, and Quanquan Gu. Rephrase and respond: Let large
language models ask better questions for themselves, 2024. URL https://arxiv.org/
abs/2311.04205.

Shizhe Diao, Pengcheng Wang, Yong Lin, Rui Pan, Xiang Liu, and Tong Zhang. Active prompting
with chain-of-thought for large language models, 2024. URL https://arxiv.org/abs/
2302.12246.

Longyu Feng, Mengze Hong, and Chen Jason Zhang. Auto-demo prompting: Leveraging generated
outputs as demonstrations for enhanced batch prompting. arXiv preprint arXiv:2410.01724, 2024.

Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero, and Tim Rocktäschel.
Promptbreeder: self-referential self-improvement via prompt evolution. In Proceedings of the
41st International Conference on Machine Learning, ICML’24. JMLR.org, 2024.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting
for multi-step reasoning, 2023. URL https://arxiv.org/abs/2210.00720.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian, and
Yujiu Yang. Evoprompt: Connecting llms with evolutionary algorithms yields powerful prompt
optimizers, 2025. URL https://arxiv.org/abs/2309.08532.

Jia He, Mukund Rungta, David Koleczek, Arshdeep Sekhon, Franklin X Wang, and Sadid Hasan.
Does prompt formatting have any impact on llm performance? arXiv preprint arXiv:2411.10541,
2024.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
Sabharwal. Decomposed prompting: A modular approach for solving complex tasks, 2023. URL
https://arxiv.org/abs/2210.02406.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwa-
sawa. Large language models are zero-shot reasoners. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems, volume 35, pp. 22199–22213. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf.

11

http://dx.doi.org/10.1609/aaai.v38i16.29720
http://dx.doi.org/10.1609/aaai.v38i16.29720
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2501.12948
https://chat.deepseek.com/
https://arxiv.org/abs/2311.04205
https://arxiv.org/abs/2311.04205
https://arxiv.org/abs/2302.12246
https://arxiv.org/abs/2302.12246
https://arxiv.org/abs/2210.00720
https://arxiv.org/abs/2309.08532
https://arxiv.org/abs/2210.02406
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang,
and Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. CoRR,
abs/2501.05366, 2025. doi: 10.48550/ARXIV.2501.05366. URL https://doi.org/10.
48550/arXiv.2501.05366.

Ranjita Naik, Varun Chandrasekaran, Mert Yuksekgonul, Hamid Palangi, and Besmira Nushi. Di-
versity of thought improves reasoning abilities of llms, 2024. URL https://arxiv.org/
abs/2310.07088.

Krista Opsahl-Ong, Michael J Ryan, Josh Purtell, David Broman, Christopher Potts, Matei Za-
haria, and Omar Khattab. Optimizing instructions and demonstrations for multi-stage lan-
guage model programs. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Pro-
ceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp.
9340–9366, Miami, Florida, USA, November 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.emnlp-main.525. URL https://aclanthology.org/2024.
emnlp-main.525/.

Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with “gradient descent” and beam search. In Houda Bouamor, Juan Pino, and Ka-
lika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 7957–7968, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.494. URL https://aclanthology.org/2023.
emnlp-main.494/.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai, An-
toine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan Dey, M Saiful Bari, Canwen
Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chh-
ablani, Nihal Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo
Manica, Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala
Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan
Teehan, Tali Bers, Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M. Rush. Multitask
prompted training enables zero-shot task generalization. In International Conference on Learning
Representations (ICLR), 2022. URL https://arxiv.org/abs/2110.08207.

Jie-Jing Shao, Xiao-Wen Yang, Bo-Wen Zhang, Baizhi Chen, Wen-Da Wei, Guohao Cai, Zhenhua
Dong, Lan-Zhe Guo, and Yu feng Li. Chinatravel: A real-world benchmark for language agents
in chinese travel planning, 2024. URL https://arxiv.org/abs/2412.13682.

Weijia Shi, Julian Michael, Suchin Gururangan, and Luke Zettlemoyer. Nearest neighbor zero-
shot inference. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of
the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 3254–3265,
Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.emnlp-main.214. URL https://aclanthology.org/2022.
emnlp-main.214/.

Kashun Shum, Shizhe Diao, and Tong Zhang. Automatic prompt augmentation and selection with
chain-of-thought from labeled data. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Find-
ings of the Association for Computational Linguistics: EMNLP 2023, pp. 12113–12139, Sin-
gapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
findings-emnlp.811. URL https://aclanthology.org/2023.findings-emnlp.
811/.

Xingchen Wan, Ruoxi Sun, Hootan Nakhost, and Sercan Ö. Arı k. Teach better or show
smarter? on instructions and exemplars in automatic prompt optimization. In A. Globerson,
L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in
Neural Information Processing Systems, volume 37, pp. 58174–58244. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/6b031defd145b02bed031093d8797bb3-Paper-Conference.pdf.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng
Lim. Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large lan-
guage models. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings

12

https://doi.org/10.48550/arXiv.2501.05366
https://doi.org/10.48550/arXiv.2501.05366
https://arxiv.org/abs/2310.07088
https://arxiv.org/abs/2310.07088
https://aclanthology.org/2024.emnlp-main.525/
https://aclanthology.org/2024.emnlp-main.525/
https://aclanthology.org/2023.emnlp-main.494/
https://aclanthology.org/2023.emnlp-main.494/
https://arxiv.org/abs/2110.08207
https://arxiv.org/abs/2412.13682
https://aclanthology.org/2022.emnlp-main.214/
https://aclanthology.org/2022.emnlp-main.214/
https://aclanthology.org/2023.findings-emnlp.811/
https://aclanthology.org/2023.findings-emnlp.811/
https://proceedings.neurips.cc/paper_files/paper/2024/file/6b031defd145b02bed031093d8797bb3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/6b031defd145b02bed031093d8797bb3-Paper-Conference.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 2609–2634, Toronto, Canada, July 2023a. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.acl-long.147. URL https://aclanthology.org/2023.
acl-long.147/.

Ming Wang, Yuanzhong Liu, Xiaoyu Liang, Songlian Li, Yijie Huang, Xiaoming Zhang, Sijia Shen,
Chaofeng Guan, Daling Wang, Shi Feng, et al. Langgpt: Rethinking structured reusable prompt
design framework for llms from the programming language. arXiv preprint arXiv:2402.16929,
2024.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P.
Xing, and Zhiting Hu. Promptagent: Strategic planning with language models enables expert-
level prompt optimization, 2023b. URL https://arxiv.org/abs/2310.16427.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023c. URL https://arxiv.org/abs/2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Jinyu Xiang, Jiayi Zhang, Zhaoyang Yu, Fengwei Teng, Jinhao Tu, Xinbing Liang, Sirui Hong,
Chenglin Wu, and Yuyu Luo. Self-supervised prompt optimization, 2025. URL https://
arxiv.org/abs/2502.06855.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers, 2024. URL https://arxiv.org/abs/2309.
03409.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 11809–11822. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Pan Lu, Zhi Huang, Carlos Guestrin,
and James Zou. Optimizing generative ai by backpropagating language model feedback. Nature,
639:609–616, 2025.

Wenxuan Zhang, Yue Deng, Bing Liu, Sinno Pan, and Lidong Bing. Sentiment analysis in
the era of large language models: A reality check. In Kevin Duh, Helena Gomez, and
Steven Bethard (eds.), Findings of the Association for Computational Linguistics: NAACL 2024,
pp. 3881–3906, Mexico City, Mexico, June 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-naacl.246. URL https://aclanthology.org/2024.
findings-naacl.246/.

Yue Zhang, Leyang Cui, Deng Cai, Xinting Huang, Tao Fang, and Wei Bi. Multi-task instruction
tuning of llama for specific scenarios: A preliminary study on writing assistance, 2023. URL
https://arxiv.org/abs/2305.13225.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models, 2022. URL https://arxiv.org/abs/2210.03493.

Ruochen Zhao, Xingxuan Li, Shafiq Joty, Chengwei Qin, and Lidong Bing. Verify-and-edit:
A knowledge-enhanced chain-of-thought framework. In Anna Rogers, Jordan Boyd-Graber,
and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 5823–5840, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.320. URL
https://aclanthology.org/2023.acl-long.320/.

13

https://aclanthology.org/2023.acl-long.147/
https://aclanthology.org/2023.acl-long.147/
https://arxiv.org/abs/2310.16427
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2502.06855
https://arxiv.org/abs/2502.06855
https://arxiv.org/abs/2309.03409
https://arxiv.org/abs/2309.03409
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://aclanthology.org/2024.findings-naacl.246/
https://aclanthology.org/2024.findings-naacl.246/
https://arxiv.org/abs/2305.13225
https://arxiv.org/abs/2210.03493
https://aclanthology.org/2023.acl-long.320/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environ-
ments, 2025. URL https://arxiv.org/abs/2504.03160.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi. Least-to-most prompting enables com-
plex reasoning in large language models, 2023a. URL https://arxiv.org/abs/2205.
10625.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers, 2023b. URL https:
//arxiv.org/abs/2211.01910.

14

https://arxiv.org/abs/2504.03160
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2211.01910
https://arxiv.org/abs/2211.01910

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A USE OF LLMS

Large Language Models (LLMs) were used in two ways in this work. First, LLMs served as base
models in our experiments on prompt optimization, where we studied how different prompts can
elicit their capabilities to solve target tasks. Second, LLMs were employed as auxiliary tools for
minor writing support, such as grammar checking and phrasing improvements. Specific details
about the LLMs used in our experiments can be found in Appendix B. No LLMs were used to
generate substantive ideas, analyses, or content of the paper.

B DETAILS OF DATASETS AND LLMS USED

Datasets For fair comparison, we followed the datasets and evaluation metrics used in prior base-
lines whenever possible. Specifically, we include 4 classic NLP benchmarks (MR, Subj, CoLA,
SST-5) and two widely used question-answering datasets (SQuAD, TREC) to validate basic capa-
bilities; several domain-specific benchmarks to probe specialized performance, including Financial
Sentiment Evaluation dataset (FinFE), Financial PhraseBank (FinPB), reasoning related dataset
(Casual Judgement). Besides, one multi-domain datasets (AG’s News) and one natural language
generation dataset (SAMSum) are also used to assess overall robustness. To evaluate output quality
beyond simple accuracy, we report ROUGE-Avg on SAMSum and the Matthews correlation coef-
ficient (MCC) on CoLA. To balance computational cost while maximizing coverage, we selected
datasets according to a “maximize capability diversity” principle — for example, in addition to the
main experiments we ran Qwen2.5-7B-Instruct on Subj, AG’s News, and FinFE to cover several of
the categories above. Detailed results are presented in the experimental analysis section.

LLMs To demonstrate the adaptability of the proposed method for LLMs, we selected DeepSeek-
R1-Distill-Llama-8B and Qwen2.5-7B-Instruct from open-source LLMs, as well as GPT-4o-mini
from closed-source LLMs, as the base models for our experiments. The experiments on DeepSeek-
R1-Distill-Llama-8B evaluate both the performance of the DeepSeek model itself and, to some ex-
tent, the capabilities of the underlying Llama architecture, which is primarily trained on English-
language data. Experiments on Qwen2.5-7B-Instruct assess the framework’s performance on a
model predominantly trained on Chinese-language data, demonstrating applicability to non-English
corpora. GPT-4o-mini was included because it is a widely used closed-source model in prior studies
and allows cost-effective experimentation within our budget.

C ALGORITHM DETAILS

Algorithm 1 An Overview of DelvePO
Require: A population of prompts P, size of population N , task-related dataset D, number of

epochs m, number of iterations n, working memory M = {Mcomponents,Mprompts}
Ensure: Best prompt p∗

1: Initialization: P = {p1, p2, · · · , pN}, Mprompts ← fsort(P), Mcomponents ← ∅
2: for epoch = 1 to m do
3: Pevo ← ∅
4: for step = 1 to n do
5: Selection: p← fr.w.s.(P)
6: Task-Evolution: Tevo ← ϕT (p,Mcomponents | T)
7: Solution-Evolution: Sevo ← ϕS(p,Mprompts | Tevo)
8: Evaluation: p′ ← ϕLLM(Sevo), s′ ← feval(p

′,D)
9: Memory-Evolution: Mevo ← ϕM(

M, ⟨p, p′, s ≥ s′⟩
)

10: Pevo ← {Pevo, p
′}

11: end for
12: Update: P← Top-N {P,Pevo}
13: end for
14: Return the best prompt p∗: p∗ ← argmax

p∈P
feval

(
ϕLLM(p,D)

)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The sampling function used in our framework is roulette wheel selection, denoted as fr.w.s.(·),
which is commonly used in the evolution algorithm. ϕT , ϕS , ϕM refer to the Task-Evolution,
Solution-Evolution, Memory-Evolution methods, respectively. Similarly, T , S, and M mean the
corresponding Task, Solution, Memory. Based on the components, we designed a task-agnostic
template described in Figure 4, through which any kind of LLMs can construct an initial content set
of components based on a simple description of the target task input by the user.

================== Task-agnostic Template for Component ==================

---------------------------- Downstream Task (Causal judgement) for role ----------------------------

Fig. xxx Initialization of Component's value space

Hi there, I have a task to do which can be described as Downstream Task Related Information. Now I

want you to give me . [OPTIONAL Example]. Please list your
answers in the following format: ['content 1', 'content 2',...]

<Query>: Hi there, I have a task to do which can be described as "answer questions about causal

attribution". Now I want you to give me related roles who are expertise in these questions. For

example, 'Casusal Analysis Experts', etc. Please list your answers in the following format: ["content 1",

"content 2",...]

<Response>: ["Cognitive Scientist", "Social Psychologist", "Computational Linguist", "AI Ethicist",

"Behavioral Economist", "Decision Theorist", "Philosophy of Mind Researcher", "Causal Inference
Data Scientist", "Educational Psychologist", "Human-Computer Interaction Specialist"]

Figure 4: Task-agnostic template for generating component values corresponding to the given com-
ponent types. The following part of the figure is the prompt to generate content for Component
"role" using the casual judgement task as an example.

D ADDITIONAL EXPERIMENTS

Table 5: The results on different downstream tasks for Qwen2.5-7B-Instruct.

Method Classical NLP Question-Answering Domain-specific Multi-domain Avg.
Subj SST-5 CoLA TREC FinFE AG’s News

APE 69.00(3.06) 47.00(1.10) 79.05(1.73) 43.40(1.14) 64.30(2.70) 83.43(1.90) 64.38
EvoPrompt 77.03(4.74) 57.67(1.19) 79.69(1.42) 67.55(2.08) 64.67(1.22) 85.73(1.29) 72.06

DelvePO 80.07(0.65) 60.00(1.69) 81.40(1.07) 70.77(1.74) 69.97(0.87) 89.27(0.97) 75.25

Table 6: Average monetary cost (USD) for one epoch of optimization on GPT-4o-mini.

Methods Subj CoLA FinPB AG’s News
Promptbreeder 1.17 1.31 0.97 1.52
APE 0.57 0.56 0.61 0.79
EvoPrompt 0.83 0.64 0.74 1.23
DelvePO 1.27 1.08 1.30 1.10

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9
Epoch

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Ac
cu

ra
cy

 (A
PE

, E
vo

Pr
om

pt
 &

 B
es

t)

APE - Avg
EvoPrompt - Avg
DelvePO - Best

APE - Best
EvoPrompt - Best
DelvePO - Avg

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Ac
cu

ra
cy

 (D
el

ve
PO

)

Average Accuracy (Line) and Best Accuracy (Bar)

Figure 5: Robustness of DelvePO as the number of epochs increases (Take the dataset MR as an
example).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E DETAILED INFORMATION ABOUT COMPONENTS

To ensure that the types of components are as comprehensive and representative as possible, we
first surveyed a broad set of related literature (Yuksekgonul et al., 2025; He et al., 2024; Feng et al.,
2024; Opsahl-Ong et al., 2024; Diao et al., 2024; Wang et al., 2024; 2023b) and extracted a variety of
factors that have been shown to influence the performance of prompts, forming our component pool.
We then categorized all components in the pool based on the semantics implied in their original
sources, which resulted in five categories: “Role and Expertise”, “Task Content”, “Constraints and
Norms”, “Process and Behavior” and “Context and Examples”. From each category, we selected the
most representative component as our predefined component types. The complete component pool
and its categorization are provided in Table 7.

Despite this extensive literature review, we acknowledge that some important aspects may remain
uncovered. This observation motivated our design: as more non-AI experts begin to use LLMs,
domain specialists should be able to adaptively define new components through our mechanism,
thereby supporting both effective task performance and improved interpretability. It is worth noting
that for each component type, we can add a “null” option when generating its values, allowing
the presence or absence of the component to be controlled and makes the optimized prompts more
flexible.

Table 7: The categories and types of components in the component pool

Categories Related Items

Role and Expertise Role; Role description; Scenario; Domain knowledge; Term Clarification
Task Content Task description; Instruction; Goal
Constraints and Norms Output format; Constraints; Principle; Style; Length; Tone; Priority &

Emphasis; Exception handling; Target audience
Process and Behavior Workflow; CoT; Action; Skill; Suggestions; Initialization
Context and Examples Examples; Reference prompt; Attachment

F TEMPLATE FOR INJECTION & PROMPTS FOR EVALUATION ON LLMS

Template_For_Injection =
 <component1>{content1}</component1>. Given the , <component2>{content2}

</component2>

Template_For_Injection =
You are a <role>{role}</role>. Given the , your task is to <task_description>{task_description}
</task_description>.

Template_For_Injection =
You are a <role>{role}</role>. Given the , your task is to <task_description>

{task_description}</task_description>.

Figure 6: Template for initializing prompt populations. It is also used in the construction of Prompts
Memory, that is, injecting discrete components into the template to obtain a continuous form prompt.
The above shows the general form, while the two below provide illustrative examples.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Prompt_For_LLM =
<INSTRUCTION>: {content1}. Given the , {content2}
< >: {input}
<OUTPUT FORMAT>: Output the final result starting with the tag <res> and ending with the tag
</res>. [OPTIONAL REQUIREMENTS]

Prompt_For_LLM =
<INSTRUCTION>: You are a {role}. Given the , your task is to {task_description}.

< >: {input}
<OUTPUT FORMAT>: Output the final result starting with the tag <res> and ending with the tag

</res>. The final result must come from the following: [World, Sports, Business, Tech].

Prompt_For_LLM =
<INSTRUCTION>: You are a {role}. Given the , your task is to {task_description}.

< >: {input}
<OUTPUT FORMAT>: Output the final result starting with the tag <res> and ending with the tag

</res>.

Figure 7: Complete prompt template for LLMs (including three parts: instruction, input, and output).
Here we also display two practical prompts for AG’s News and Simplification Tasks.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

G THE DETAILED PROMPTS OF TASK-EVOLUTION

Sub-Task Ⅰ
Please follow the instructions step-by-step to get final result.

 Step 1 Conclude Insights from the provided Memory Components , which consists of multiple

elements. Each element contains two lists: the first contains several markup pairs in the format

<component>content</component>. For example, in the pair <role>role_description</role>, the
content ("role_description") describes the component ("role"). All markup pairs follow this structure.

By default, the first list in each element is considered to perform better than the second.
Memory Components : { }

 Step 2 Based on the Insights from Step 1 and the Current Prompt , select one or more component(s)
from Component Set that could potentially improve performance to form final result. Separate the

final result with a special token '|' and ensure that each of final result is unique and appears only

once. The final result must start with the tag <res> and end with the tag </res> . For example, the
final result must follow the format: <res>component1|...</res>.

Current Prompt : { }
Component Set : {components}

Figure 8: The prompts for sub-task I

Sub-Task Ⅱ
Please follow the instructions step-by-step to get final result.

 Step 1 Conclude Insights from the provided Memory Components , which consists of multiple

elements. Each element contains two lists: the first contains several markup pairs in the format

<component>content</component>. For example, in the pair <role>role_description</role>, the
content ("role_description") describes the component("role"). All markup pairs follow this structure.

By default, the first list in each element is considered to perform better than the second.
Memory Components : { }

 Step 2 Given a list named Old Values , where each element contains a pair of contents, use the
Insights from Step 1 to select one content from each pair in original order. The final result must

start with the tag <res> and end with the tag </res> . For example, the final results must follow the

format: <res>content1|...</res>.
Old Values : {old_values}

Scenario 1 (For Sub-task Ⅰ)

Please follow the instructions step-by-step to get final result.

 Step 1 Conclude the Insights from the Memory Prompts , which consists of multiple items. Each item

includes two parts: the first part contains several markup pairs in the format

<component>content</component>. For example, in the pair <role>role_description</role>, the
content ("role_description") describes the component ("role"). Other markup pairs follow this same

structure. The second part of each item represents its corresponding performance. The entire
Memory Prompts is sorted in descending order based on performance.

Memory Prompts : { }

 Step 2 Given a list named Old Values , use the Insights from Step 1 to generate a new mutated

content for each content to form a new list, i.e. final result, referring to Description, adhering to

Rules below.

Description:

In Old Values , each element is a markup pair like <component>content</component>

containing content that needs to mutate.

Rules:

1. Mutation Requirements:

For each element like <component>content</component>, generate a new one
content that:

Figure 9: The prompts for sub-task II

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

H THE DETAILED PROMPTS OF SOLUTION-EVOLUTION
Scenario 1 (For Sub-task Ⅰ)

Please follow the instructions step-by-step to get final result.

 Step 1 Conclude the Insights from the Memory Prompts , which consists of multiple items. Each item
includes two parts: the first part contains several markup pairs in the format

<component>content</component>. For example, in the pair <role>role_description</role>, the
content ("role_description") describes the component ("role"). Other markup pairs follow this same

structure. The second part of each item represents its corresponding performance. The entire Memory

Prompts is sorted in descending order based on performance.
Memory Prompts : { }

 Step 2 Given a list named Old Values , use the Insights from Step 1 to generate a new mutated
content for each content to form a new list, i.e. final result, referring to Description, adhering to Rules

below.

Description:

In Old Values , each element is a markup pair like <component>content</component>
containing content that needs to mutate.

Rules:

1. Mutation Requirements:

For each element like <component>content</component>, generate a new one content
that:

If the component is <role>, the new content must be a noun phrase describing a
person.

If the component is <task_description>, the new content must be a verb phrase

describing a task.

Is distinct from the original content.

Preserves lexical identity (noun/verb phrase) matching the component.

If the original content had the highest score, the new content must prioritize

improved performance potential (e.g., higher efficiency, enhanced properties).

Otherwise, the new content may be derived from those contents linked to its

corresponding component in the Memory Prompts (optional but allowed).

2. Output Format:

Start with <res> and end with </res>.

Separate mutated contents strictly with '|' (no extra characters).

Never include original contents in the output.

Old Values : {old_values}

Figure 10: The prompts for Sub-solution I - Prompts Memory in discrete form

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Scenario 2 (For Sub-task Ⅰ)

Please follow the instructions step-by-step to get final result.

 Step 1 Conclude the Insights from the Memory Prompts , which contains multiple items. Each item
has two parts: a sentence enclosed in <prompt> and </prompt>, and its corresponding performance

score. The sentence includes markup pairs in the format <component>content</component>, where
the content describes the component. For example, <role>role_description</role> indicates that

"role_description" explains the "role" component. All items are sorted in descending order by

performance.
Memory Prompts : { }

 Step 2 Based on the Current Prompt and Insights from Step 1, generate a new mutated content for
each markup pair whose component matches those listed in Mutate Factors to form the final result,
referring to Description, adhering to Rules below.

Description:

In Current Prompt , markup pair like <component>content</component> contains content
that needs to mutate.

In Mutate Factors , each element is a component appeared in Current Prompt .

Rules:

1. Mutation Requirements:

For each markup pair like <component>content</component>, if the component in

Mutate Factors , generate a new one content that:

If the component is <role>, the new content must be a noun phrase describing a
person.

If the component is <task_description>, the new content must be a verb phrase

describing a task.

Is distinct from the original content.

Preserves lexical identity (noun/verb phrase) matching the component.

If the original content had the highest score, prioritize generating contents with

improved performance potential (e.g., higher efficiency, enhanced properties).

Otherwise, the new content may derive from those contents linked to its component

in the Memory Prompts (optional but allowed).

2. Output Format:

Start with <prompt> and end with </prompt>.

Only mutate contents within markup pairs specified in Mutate Factors .

Preserve all other values outside markup pairs.

Replace original contents with mutated ones directly within their components.

Current Prompt : {prompt}

Mutate Factors : {mutate_factors}

Figure 11: The prompts for Sub-solution I - Prompts Memory in continuous form

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Scenario 3 (For Sub-task Ⅱ)

Please follow the instructions step-by-step to get final result.

 Step 1 Conclude the Insights from the Memory Prompts , which consists of multiple items. Each item
includes two parts: the first part contains several markup pairs in the format

<component>content</component>. For example, in the pair <role>role_description</role>, the
content ("role_description") describes the component ("role"). Other markup pairs follow this same

structure. The second part of each item represents its corresponding performance. The entire Memory

Prompts is sorted in descending order based on performance.
Memory Prompts : { }

 Step 2 Given a list named Old Values , where each element contains a pair of contents, use the
Insights from Step 1 to generate a new mutated content for each pair to form a new list, i.e. final
result, referring to Description, adhering to Rules below.
Old Values : {old_values}

Description:

In Old Values, each element contains a pair of contents like [a, b].

Rules:

1. Mutation Requirements:

For each pair of contents like [a, b], generate a new one content that:

If a and b are enclosed with <role> & </role>, the new content must be a noun

phrase used to describe a person.

If a and b are enclosed with <task_description> & </task_description>, the new
content must be a verb phrase used to describe a task.

Is distinct from both a and b.

Preserve corresponding lexical identity.

If the original pair has the highest score, prioritize generating contents with
improved performance potential (e.g., higher efficiency, enhanced properties).

Otherwise, derive the new content from those contents linked to its component in the

Memory Prompts (optional but allowed).

2. Output Format:

Start with <res> and end with </res>.

Separate mutated contents strictly with '|' (no extra characters).

Never include original pairs in the output.

hellohellohello

Figure 12: The prompts for Sub-solution II - Prompts Memory in discrete form

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Please follow the instructions step-by-step to get final result.

 Step 1 Conclude the Insights from the Memory Prompts , which contains multiple items. Each item

has two parts: a sentence enclosed in <prompt> and </prompt>, and its corresponding performance
score. The sentence includes markup pairs in the format <component>content</component>, where

the content describes the component. For example, <role>role_description</role> indicates that

"role_description" explains the "role" component. All items are sorted in descending order by
performance.

Memory Prompts : { }

 Step 2 Based on the Prompt 1 and Insights from Step 1, generate a new mutated content for each

markup pair whose component matches those listed in Mutate Factors to form the Prompt 2 , referring
to Description, adhering to Rules below.

Description:

In Prompt 1 , markup pair like <component>content</component> contains content that

needs to mutate.

In Mutate Factors , each element is a content appeared in Prompt 1 .

Rules:

1. Mutation Requirements:

For each markup pair like <component>content</component>, if the component in
Mutate Factors , Generate a new one content that:

If the component is <role>, the new content must be a noun phrase describing a

person.

If the component is <task_description>, the new content must be a verb phrase

describing a task.

Is distinct from the original content.

Preserves lexical identity (noun/verb phrase) matching the component.

If the original content had the highest score, prioritize generating contents with
improved performance potential (e.g., higher efficiency, enhanced properties).

Otherwise, the new content may derive from those contents linked to its component
in the Memory Prompts (optional but allowed).

2. Output Format:

Start with <prompt> and end with </prompt>.

Only mutate contents within markup pairs specified in Mutate Factors .

Preserve all other values outside markup pairs.

Replace original contents with mutated ones directly within their components.

Prompt 1 : {prompt1}

Mutate Factors : {mutate_factors}

 Step 3 Based on the Prompt 3 and Insights from Step 1, generate a new mutated content for each

markup pair whose component matches those listed in Mutate Factors to form the Prompt 4 , referring
to Description, adhering to Rules below.

Description:

In Prompt 3 , markup pair like <component>content</component> contains content that

needs to mutate.

Figure 13: The prompts for Sub-solution II - Prompts Memory in continuous form

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

In Mutate Factors , each element is a content appeared in Prompt 3 .

Rules:

1. Mutation Requirements:

For each markup pair like <component>content</component>, if the component in
Mutate Factors , Generate a new one content that:

If the component is <role>, the new content must be a noun phrase describing a
person.

If the component is <task_description>, the new content must be a verb phrase

describing a task.

Is distinct from the original content.

Preserves lexical identity (noun/verb phrase) matching the component.

If the original content had the highest score, prioritize generating contents with

improved performance potential (e.g., higher efficiency, enhanced properties).

Otherwise, the new content may derive from those contents linked to its component
in the Memory Prompts (optional but allowed).

2. Output Format:

Start with <prompt> and end with </prompt>.

Only mutate contents within markup pairs specified in Mutate Factors .

Preserve all other values outside markup pairs.

Replace original contents with mutated ones directly within their components.

Prompt 3 : {prompt3}

Mutate Factors : {mutate_factors}

 Step 4 Generate final result by selecting contents from pairs in Prompt 2 and Prompt 4 under

identical markup components, referring to Description, adhering to Rules below.

Description:

Pairs from Prompt 2 and Prompt 4 have identical components (e.g., <role>,
<task_description>).

Rules:

1. Selection Criteria:

For each tagged pair (e.g., <role>a</role> and <role>b</role>):

Use Insights from Step 1 to select one content (a or b) that has higher performance
improvement potential (e.g., clarity, specificity, alignment with goals).

If the component is <role>, the new content must be a noun phrase describing a
person.

If the component is <task_description>, the new content must be a verb phrase
describing a task.

Preserve the lexical identity of the component.

Never modify text outside markup pairs.

2. Output Format:

Start with <prompt> and end with </prompt>.

Retain the structure of Prompt 3 but replace tagged pairs with the selected contents.

If multiple tagged pairs exist, update all while maintaining non-tagged values verbatim.

Figure 14: The prompts for Sub-solution II - Prompts Memory in continuous form (extended from
Figure 13)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

I CASE STUDY DETAILS

To quickly verify the generalizability of our framework, we conducted multi-turn dialogues with
DeepSeek Chat via the web interface provided by DeepSeek (DeepSeek Chat, 2025).

Throughout the process, we take simplification task (Zhang et al., 2023) as the example, which
allows for easy observation and interpretation of the outputs, and randomly set 4 components. The
whole process can be find in Appendix I. For Task-Evolution, we provide two input information (see
Figure 15, 17) for the prompt of two sub tasks (see Figure 8, 9). And the corresponding outputs are
shown in Figure 16, 18. From the final results, we can derive that under the guidance of direction
(i.e., Memory Components), The LLMs could find reasonable direction for evolutionary operator.

Accordingly, for Solution-Evolution, we provide four input information (see Figure 19, 21, 23, 25)
for four kinds of scenarios. And the corresponding responses are shown in Figure 20, 22, 24, 26,
respectively. Based on the observation from the responses, we also find that the procedure designed
in this paper can accurately guide the model to deduce corresponding insights and further output
reasonable results based on the insights.

By the way, this case study provides new users with a quick understanding of our framework. It can
also serve as a practical guide, allowing anyone to construct a prototype using the system prompts
provided in the case study without writing any code, which can help users optimize domain-specific
prompts. We sincerely invite researchers to try it out and share their valuable feedback for further
improvement.

 Step 1 Memory Components:

 Step 2 Current Prompt:

Component Set:

dpsk输出（2025.05.15）

[

 [

 [<action>Clarify Sentence Meaning</action>, <requirements>Adapt to

Audience</requirements>],

 [<action>Reduce Linguistic Complexity</action>, <requirements>Improve

Structure</requirements>]

],

 [

 [<role>Readability Specialist</role>],

 [<role>Sentence Simplifier</role>]

]

]

[

 <role>Sentence Simplifier</role>,

 <task_description>Rewrite the provided sentences in a simpler

form</task_description>,

 <action>Condense Sentences</action>,

 <requirements>Adapt to Audience</requirements>

]

[role, task_description, action, requirements]

Figure 15: The input for sub-task I

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

�

Step 1: Conclude Insights from the Memory Components

1. In the first tuple, <action>Clarify Sentence Meaning</action> is preferred over <action>Reduce

Linguistic Complexity</action> , and <requirements>Adapt to Audience</requirements> is preferred
over <requirements>Improve Structure</requirements> .

2. In the second tuple, <role>Readability Specialist</role> is preferred over <role>Sentence

Simplifier</role> .

Insights:

Role: "Readability Specialist" outperforms "Sentence Simplifier."

Action: "Clarify Sentence Meaning" outperforms "Reduce Linguistic Complexity" (and by

extension, other actions like "Condense Sentences").

Requirements: "Adapt to Audience" is already the preferred choice.

Step 2: Select Components to improve performance based on Current Prompt and Insights

The Current Prompt uses <role>Sentence Simplifier</role> , but the Insights suggest

<role>Readability Specialist</role> is better.

The Current Prompt uses <action>Condense Sentences</action> , but the Insights suggest

<action>Clarify Sentence Meaning</action> is better.

The Current Prompt already uses the preferred <requirements>Adapt to Audience</requirements> ,
so no change is needed here.

final result: <res>role|action</res>

 Figure 16: The responses for sub-task I

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

 Step 1 Memory Components:

 Step 2 Old Values:

[

 [

 [<action>Clarify Sentence Meaning</action>, <requirements>Adapt to

Audience</requirements>], [<action>Reduce Linguistic

Complexity</action>, <requirements>Improve Structure</requirements>]

],

 [

 [<role>Readability Specialist</role>],

 [<role>Sentence Simplifier</role>]

],

 [

 [<action>Optimize Readability</action>, <task_description>Reduce the

complexity of the provided sentences</task_description>],

 [<action>Reword for Better Clarity</action>, <task_description>Reword the

provided sentences for better clarity</task_description>]

]

]

[

 [<role>Readability Specialist</role>, <role>Paraphrasing Specialist</role>],

 [<action>Simplify Sentence Structure</action>, <action>Break Down

Complexity</action>]

]

Figure 17: The input for sub-task II

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

�

Step 1: Conclude Insights from Memory Components

From the Memory Components:

1. First Element:

The pair <action>Clarify Sentence Meaning</action> with <requirements>Adapt to

Audience</requirements> is preferred over <action>Reduce Linguistic Complexity</action> with
<requirements>Improve Structure</requirements> .

Insight: Prioritizing audience adaptation and meaning clarification over general structural

improvement and complexity reduction.

2. Second Element:

<role>Readability Specialist</role> is preferred over <role>Sentence Simplifier</role> .

Insight: "Readability Specialist" is considered a more effective or broader role than

"Sentence Simplifier".

3. Third Element:

<action>Optimize Readability</action> is preferred over <action>Reword for Better

Clarity</action> .

Insight: Optimizing readability takes precedence over merely rewording for clarity.

Step 2: Apply Insights to Select from Old Values

Old Values:

1. [<role>Readability Specialist</role>, <role>Paraphrasing Specialist</role>]

Based on Insight 2, "Readability Specialist" is already preferred, and since "Paraphrasing" is

similar to "Sentence Simplifier", "Readability Specialist" aligns better with the insight.

2. [<action>Simplify Sentence Structure</action>, <action>Break Down Complexity</action>]

Based on Insight 1 and 3:

"Simplify Sentence Structure" relates more directly to optimizing readability and
clarifying sentence meaning.

"Break Down Complexity" could be interpreted similarly to "Reduce Linguistic
Complexity", which was not preferred.

So, choose "Simplify Sentence Structure".

Final Output (final results):

<res>

 <role>Readability Specialist</role>

 <action>Simplify Sentence Structure</action>

</res>

Figure 18: The responses for sub-task II

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

 Step 1 Memory Promptsdiscrete:

 Step 2 Old Values:

1 预期输出：role当前是最好的，那就要变；

2 预期输出：action不是最好的，那就要变成最好的。

gpt-4o满足了1，不满足2；

deepseek满足了1，满足了2；

deepseek输出

[

 [

 [<role>Sentence Simplifier</role>, <task_description>Clarify the meaning of

the given sentences by simplifying them</task_description>, <action>Optimize

Readability</action>, <requirements>Improve Structure</requirements>],

 25.0

]

 [

 [<role>Readability Specialist</role>, <task_description>Reduce the complexity

of the provided sentences</task_description>, <action>Clarify Sentence

Meaning</action>, <requirements>Simplify Vocabulary</requirements>],

 21.0

]

 [

 [<role>Grammar & Clarity Editor</role>, <task_description>Modify the given

sentences to be more straightforward</task_description>, <action>Reduce Linguistic

Complexity</action>, <requirements>Adapt to Audience</requirements>],

 16.0

]

 [

 [<role>AI Sentence Simplifier</role>, <task_description>Reword the provided

sentences for better clarity</task_description>, <action>Simplify Sentence

Structure</action>, <requirements>Ensure Conciseness</requirements>],

 14.0

]

]

[

 <role>Sentence Simplifier</role>,

 <action>Reduce Linguistic Complexity</action>

]

Figure 19: The input for Sub-solution I - Prompts Memory in discrete form

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

�

Based on the Memory Item List and the Old Values provided, here's how we can generate the
Mutated Values:

1. For <role>Sentence Simplifier</role> :

This role already has the highest performance score (25.0), so we need to create a new value
that's different but still relevant.

Possible mutation: "Clarity Optimizer" (derived from the action "Optimize Readability" in the
top-performing item)

2. For <action>Reduce Linguistic Complexity</action> :

This action comes from an item with performance score 16.0 (not the highest), so we can

derive a new value from higher-performing items.

The top-performing item has action "Optimize Readability" (score 25.0)

The second-highest has action "Clarify Sentence Meaning" (score 21.0)

Mutated Values:

<res>

 <role>Clarity Optimizer</role>,

 <action>Optimize Readability</action>

</res>

Figure 20: The responses for Sub-solution I - Prompts Memory in discrete form

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

 Step 1 Memory Promptscontinuous:

 Step 2 Current Prompt:

 Step 2 Mutate Factors:

图形化解释
image-20250413115709426

[

 [

 <prompt>You are a <role>Sentence Simplifier</role>. Given the English

Sentence, your task is to <task_description>Clarify the meaning of the given sentences

by simplifying them</task_description>. To accomplish this, you need to

<action>Optimize Readability</action>. Please make sure to <requirements>Improve

Structure</requirements> throughout the process.</prompt>,

 25.0

]

 [

 <prompt>You are a <role>Readability Specialist</role>. Given the English

Sentence, your task is to <task_description>Reduce the complexity of the provided

sentences</task_description>. To accomplish this, you need to <action>Clarify Sentence

Meaning</action>. Please make sure to <requirements>Simplify Vocabulary</requirements>

throughout the process.</prompt>,

 21.0

]

 [

 <prompt>You are a <role>Grammar & Clarity Editor</role>. Given the English

Sentence, your task is to <task_description>Modify the given sentences to be more

straightforward</task_description>. To accomplish this, you need to <action>Reduce

Linguistic Complexity</action>. Please make sure to <requirements>Adapt to

Audience</requirements> throughout the process.</prompt>,

 16.0

]

 [

 <prompt>You are a <role>Technical Content Simplifier</role>. Given the English

Sentence, your task is to <task_description>Reword the provided sentences for better

clarity</task_description>. To accomplish this, you need to <action>Simplify Sentence

Structure</action>. Please make sure to <requirements>Ensure

Conciseness</requirements> throughout the process.</prompt>,

 14.0

]

]

<prompt>

 You are a <role>Sentence Simplifier</role>. Given the English Sentence, your task

is to <task_description>Rewrite the provided sentences in a simpler

form</task_description>. To accomplish this, you need to <action>Condense

Sentences</action>. Please make sure to <requirements>Adapt to Audience</requirements>

throughout the process.

</prompt>

<res> role | requirements </res>

Figure 21: The input for Sub-solution I - Prompts Memory in continuous form

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Here is the Final Prompt with mutated values for the specified tags (role and requirements), while
keeping the rest unchanged:

Mutation Justification:

1. <role>

Original: "Sentence Simplifier"

Mutated: "Clarity Enhancer" (Inspired by high-performing roles like "Readability Specialist"
and "Grammar & Clarity Editor", but distinct.)

2. <requirements>

Original: "Adapt to Audience"

Mutated: "Improve Structure" (Drawn from the top-performing prompt's <requirements> ,
ensuring relevance while avoiding repetition.)

All other tags (task_description , action) remain unchanged as they were not in the Mutate Factors.
The new values align with high-scoring patterns while being unique.

case 4 part2/2
Step 2. Based on the Prompt 1 and Insights from step 1, mutate the values within markup pairs

whose tags match those listed in Mutate Factors. Each mutated value must differ from the original in

the Current Prompt and may be derived from the content linked to the corresponding tag in the
Memory Item List, but is not limited to it. Do not modify any content outside the markup pairs. The

Prompt 2 should be enclosed within one pair of and .

Prompt 1: {prompt1}

Mutate Factors: {mutate_factors}

Step 3. Based on the Prompt 3 and Insights from step 1, mutate the values within markup pairs
whose tags match those listed in Mutate Factors. Each mutated value must differ from the original in

the Current Prompt and may be derived from the content linked to the corresponding tag in the

Memory Item List, but is not limited to it. Do not modify any content outside the markup pairs. The
Prompt 4 should be enclosed within one pair of and .

Prompt 3: {prompt3}

<prompt>

 You are a <role>Clarity Enhancer</role>. Given the English Sentence, your task is

to <task_description>Rewrite the provided sentences in a simpler

form</task_description>. To accomplish this, you need to <action>Condense

Sentences</action>. Please make sure to <requirements>Improve Structure</requirements>

throughout the process.

</prompt>

Figure 22: The responses for Sub-solution I - Prompts Memory in continuous form

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

 Step 1 Memory Promptsdiscrete:

 Step 2 Old Values:

图形

deepseek(2025.05.15)

[

 [

 [<role>Sentence Simplifier</role>, <task_description>Clarify the meaning of

the given sentences by simplifying them</task_description>, <action>Optimize

Readability</action>, <requirements>Improve Structure</requirements>],

 25.0

]

 [

 [<role>Readability Specialist</role>, <task_description>Reduce the complexity

of the provided sentences</task_description>, <action>Clarify Sentence

Meaning</action>, <requirements>Simplify Vocabulary</requirements>],

 21.0

]

 [

 [<role>Grammar & Clarity Editor</role>, <task_description>Modify the given

sentences to be more straightforward</task_description>, <action>Reduce Linguistic

Complexity</action>, <requirements>Adapt to Audience</requirements>],

 16.0

]

 [

 [<role>AI Sentence Simplifier</role>, <task_description>Reword the provided

sentences for better clarity</task_description>, <action>Simplify Sentence

Structure</action>, <requirements>Ensure Conciseness</requirements>],

 14.0

]

]

[

 [<role>Sentence Simplifier</role>, <role>Paraphrasing Specialist</role>],

 [<action>Reduce Linguistic Complexity</action>, <action>Break Down

Complexity</action>]

]

Figure 23: The input for Sub-solution II - Prompts Memory in discrete form

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Step 1: Conclude the Insights from the Memory Prompts

From the Memory Prompts, we can observe the following insights:

1. Roles: The roles are centered around simplifying, clarifying, or modifying sentences to improve
readability and reduce complexity. Examples include "Sentence Simplifier," "Readability

Specialist," "Grammar & Clarity Editor," and "AI Sentence Simplifier."

2. Task Descriptions: The tasks involve simplifying, rewording, or modifying sentences for clarity

and straightforwardness. Examples include "Clarify the meaning of the given sentences by
simplifying them" and "Reduce the complexity of the provided sentences."

3. Actions: The actions focus on optimizing readability, clarifying meaning, reducing linguistic

complexity, and simplifying sentence structure. Examples include "Optimize Readability" and

"Clarify Sentence Meaning."

4. Requirements: The requirements emphasize improving structure, simplifying vocabulary,
adapting to the audience, and ensuring conciseness. Examples include "Improve Structure" and

"Simplify Vocabulary."

The list is sorted in descending order of performance, with "Sentence Simplifier" being the highest-

performing role.

Step 2: Mutate a new value from each pair in Old Values

Old Value Pair 1:

Sentence Simplifier: From the Memory Prompts, this role involves simplifying sentences for

clarity.

Paraphrasing Specialist: Not explicitly in the Memory Prompts, but likely involves rewording

sentences while preserving meaning.

Mutation: Combine the ideas of simplifying and rewording to create a new role that emphasizes
clarity and adaptation. For example, "Clarity Adaptation Editor" or "Simplification & Paraphrasing

Expert."

Chosen mutation: "Clarity Adaptation Editor"

Old Value Pair 2:

Reduce Linguistic Complexity: From the Memory Prompts, this involves making language less

complex.

Break Down Complexity: Similar, but more focused on decomposing complex ideas.

Mutation: Combine the ideas of reducing and breaking down complexity into a more general or

refined action. For example, "Streamline Language" or "Simplify and Deconstruct."

Chosen mutation: "Streamline Language"

Final Mutated Values:

[<role>Sentence Simplifier</role>, <role>Paraphrasing Specialist</role>]

[<action>Reduce Linguistic Complexity</action>, <action>Break Down

Complexity</action>]

<res>

 [<role>Clarity Adaptation Editor</role>, <action>Streamline Language</action>]

</res>

Figure 24: The responses for Sub-solution II - Prompts Memory in discrete form

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

 Step 1 Memory Promptscontinuous:

 Step 2 Prompt 1:

Mutate Factors:

 Step 3 Prompt 3:

Mutate Factors:

[

 [

 <prompt>You are a <role>Sentence Simplifier</role>. Given the English Sentence,

your task is to <task_description>Clarify the meaning of the given sentences by

simplifying them</task_description>. To accomplish this, you need to <action>Optimize

Readability</action>. Please make sure to <requirements>Improve Structure</requirements>

throughout the process.</prompt>,

 25.0

]

 [

 <prompt>You are a <role>Readability Specialist</role>. Given the English

Sentence, your task is to <task_description>Reduce the complexity of the provided

sentences</task_description>. To accomplish this, you need to <action>Clarify Sentence

Meaning</action>. Please make sure to <requirements>Simplify Vocabulary</requirements>

throughout the process.</prompt>,

 21.0

]

 [

 <prompt>You are a <role>Grammar & Clarity Editor</role>. Given the English

Sentence, your task is to <task_description>Modify the given sentences to be more

straightforward</task_description>. To accomplish this, you need to <action>Reduce

Linguistic Complexity</action>. Please make sure to <requirements>Adapt to

Audience</requirements> throughout the process.</prompt>,

 16.0

]

 [

 <prompt>You are a <role>Technical Content Simplifier</role>. Given the English

Sentence, your task is to <task_description>Reword the provided sentences for better

clarity</task_description>. To accomplish this, you need to <action>Simplify Sentence

Structure</action>. Please make sure to <requirements>Ensure Conciseness</requirements>

throughout the process.</prompt>,

 14.0

]

]

<prompt>You are a <role>Sentence Simplifier</role>. Given the English Sentence, your task

is to <task_description>Rewrite the provided sentences in a simpler

form</task_description>. To accomplish this, you need to <action>Condense

Sentences</action>. Please make sure to <requirements>Adapt to Audience</requirements>

throughout the process.

</prompt>

<res> role | requirements </res>

<prompt>You are a <role>Linguistic Analyst</role>. Given the English Sentence, your task

is to <task_description>Rewrite the provided sentences in a simpler

form</task_description>. To accomplish this, you need to <action>Condense

Sentences</action>. Please make sure to <requirements>Preserve Meaning</requirements>

throughout the process.

</prompt>

<res> role | requirements </res>

Figure 25: The input for Sub-solution II - Prompts Memory in continuous form

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Step 1: Insights from the Memory Prompts

1. Highest Scoring Item (Score: 25.0):

Role: Sentence Simplifier

Task Description: Clarify the meaning of the given sentences by simplifying them

Action: Optimize Readability

Requirements: Improve Structure

2. Other Items:

Role: Readability Specialist (Score: 21.0)

Role: Grammar & Clarity Editor (Score: 16.0)

Role: Technical Content Simplifier (Score: 14.0)

Step 2: Mutate Prompt 1

Mutate Factors: <res> role | requirements </res>

Role: "Sentence Simplifier" is already the highest-scoring role, so we generate a new value: "Clarity
Enhancer".

Requirements: "Adapt to Audience" is not the highest-scoring (highest is "Improve Structure"), so

we replace it with "Improve Structure".

Prompt 2:

Step 3: Mutate Prompt 3

Mutate Factors: <res> role | requirements </res>

Role: "Linguistic Analyst" is not in the Memory Item List, so we replace it with the highest-scoring
role: "Sentence Simplifier".

Requirements: "Preserve Meaning" is not the highest-scoring, so we replace it with "Improve

Structure".

Prompt 4:

Step 4: Combine Prompt 2 and Prompt 4

Combine the best-performing markup pairs from Prompt 2 and Prompt 4:

Role: "Clarity Enhancer" (from Prompt 2)

Task Description: "Rewrite the provided sentences in a simpler form" (common in both)

Action: "Condense Sentences" (common in both)

Requirements: "Improve Structure" (common in both)

Final Prompt:

<prompt>You are a <role>Clarity Enhancer</role>. Given the English Sentence, your task is

to <task_description>Rewrite the provided sentences in a simpler form</task_description>.

To accomplish this, you need to <action>Condense Sentences</action>. Please make sure to

<requirements>Improve Structure</requirements> throughout the process.</prompt>

<prompt>You are a <role>Sentence Simplifier</role>. Given the English Sentence, your task

is to <task_description>Rewrite the provided sentences in a simpler

form</task_description>. To accomplish this, you need to <action>Condense

Sentences</action>. Please make sure to <requirements>Improve Structure</requirements>

throughout the process.</prompt>

<prompt>You are a <role>Clarity Enhancer</role>. Given the English Sentence, your task is

to <task_description>Rewrite the provided sentences in a simpler form</task_description>.

To accomplish this, you need to <action>Condense Sentences</action>. Please make sure to

<requirements>Improve Structure</requirements> throughout the process.</prompt>

Figure 26: The responses for Sub-solution II - Prompts Memory in continuous form

37

	Introduction
	Preliminaries
	Methodology
	Framework of DelvePO
	Overview of DelvePO

	Experiments
	Experimental Settings
	Main Results
	Cost Analysis
	Ablation Study

	Related Work
	Conclusion
	Use of LLMs
	Details of Datasets and LLMs Used
	Algorithm Details
	Additional Experiments
	Detailed Information about Components
	Template for Injection & Prompts for Evaluation on LLMs
	The Detailed Prompts of Task-Evolution
	The Detailed Prompts of Solution-Evolution
	Case Study Details

