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2 Institute of Ophthalmic Research, University of Tübingen, Germany
3 University Eye Clinic, University of Tübingen, Germany
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Abstract

Interpreting deep learning models typically relies on post-hoc saliency map techniques.
However, these techniques often fail to serve as actionable feedback to clinicians, and they
do not directly explain the decision mechanism. Here, we propose an inherently inter-
pretable model that combines the feature extraction capabilities of deep neural networks
with advantages of sparse linear models in interpretability. Our approach relies on straight-
forward but effective changes to a deep bag-of-local-features model (BagNet). These mod-
ifications lead to fine-grained and sparse class evidence maps which, by design, correctly
reflect the model’s decision mechanism. Our model is particularly suited for tasks which
rely on characterising regions of interests that are very small and distributed over the image.
In this paper, we focus on the detection of Diabetic Retinopathy, which is characterised
by the progressive presence of small retinal lesions on fundus images. We observed good
classification accuracy despite our added sparseness constraint. In addition, our model
precisely highlighted retinal lesions relevant for the disease grading task and excluded irrel-
evant regions from the decision mechanism. The results suggest our sparse BagNet model
can be a useful tool for clinicians as it allows efficient inspection of the model predictions
and facilitates clinicians’ and patients’ trust.
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1. Introduction

While machine learning (ML) tools have been approaching expert-level performance in
many medical imaging tasks thanks to progress in deep learning (De Fauw et al.; Shen
et al., 2019; Mahoro and Akhloufi, 2022), they lack interpretability thereby posing ethical
concerns (Grote and Berens, 2020) and preventing wide adoption in clinical practice (Teng
et al., 2022). Deep ML models are most commonly explained by identifying image regions
that influence the output of the trained model with post-hoc saliency maps (Simonyan et al.,
2013; Zhou et al., 2016; Springenberg et al., 2014; Selvaraju et al., 2020). However, using
saliency maps has been recently shown to be problematic for medical images as they only
poorly localize disease-related lesions and are highly variable (Arun et al., 2021; Saporta
et al., 2022). Furthermore, they do not provide actionable insights, given that they do not
directly reflect the network’s actual decision mechanisms. Instead, inherently interpretable
models could provide a path forward for safety-critical tasks (Rudin, 2019), but few such
models achieve sufficiently high prediction accuracy at the same time. In particular, classical
linear models perform poorly when directly applied to medical images.

In this paper, we develop an inherently interpretable deep learning model that combines
the feature extraction capabilities of deep neural networks with the advantages in inter-
pretability of sparse linear models. Our model is especially suited for clinically relevant
tasks which require identifying and characterising small lesions or other anomalies in large
search regions. Examples of such tasks include screening for certain retinal diseases, breast
or lung cancer. We focus here on the detection and grading of Diabetic Retinopathy (DR)
on retinal fundus images.

DR is a microvascular complication of diabetes characterized by the progressive presence
of one or more small retinal lesions such as microaneurysms, hemorrhages, or hard and soft
exudates (ICO, 2017). It is the leading cause of blindness in the working-age population and
the third leading cause of visual impairment worldwide, and early diagnosis and treatment
can slow its progression (ICO, 2017; Wong et al., 2018). It is therefore recommended that
diabetes patients undergo regular monitoring, and ML could facilitate mass screening and
help clinicians use their time more efficiently (Ting et al., 2016).

Numerous high-performing black-box DR detection methods have been proposed (Rao
et al., 2020; Alyoubi et al., 2020; Tavakoli and Kelley, 2021; Huang et al., 2021). For such
methods, interpretation is mostly aided by saliency maps (Wang and Yang, 2019; Chetoui
and Akhloufi, 2020) or the generation of counterfactual images (González-Gonzalo et al.,
2020; Boreiko et al., 2022). A more interpretable approach for detecting DR is a multiple-
instance learning model which combines features extracted from different image patches
with attention weights (Papadopoulos et al., 2021). These weights can be visualised as a
heatmap showing the contribution of different image regions to the prediction. Although all
these methods provide some visual evidence of suspicious image regions, the saliency maps
do not directly explain the decision mechanism, making their interpretation unintuitive.
Further, they are often too cluttered and dense to be useful as feedback for clinicians and
may be too coarse to identify small lesions.

We overcome these key limitations and propose a model for DR detection and grad-
ing which performs comparably to state-of-the-art models, despite being interpretable-by-
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Figure 1: Overview of the proposed interpretable model. (a) Input image. The black patch
illustrates the small receptive field of (b) the modified ResNet-50 backbone. (c)
The resulting feature map of size N ×N ×D, where D is the number of features.
(d) The class evidence map A is obtained with C kernels of size 1 × 1 where
C is the number of classes. A sparsity constraint can be placed on A. (e) Top
to bottom: class probabilities obtained by spatial average pooling and softmax;
example class evidence map; suspicious input patches based on the heatmap.

design1. Our approach is based on a bag-of-local-features model (BagNet) (Brendel and
Bethge, 2019), which has already been shown to be effective in ophthalmology (Ilanchezian
et al., 2021). The BagNet relies solely on local evidence, which makes it relevant for classi-
fication or detection tasks where the regions of interest are very small and distributed over
the image, as is the case in DR. We propose straightforward but effective changes to the
BagNet model which lead to fine-grained class evidence maps which directly and correctly
reflect the neural network’s decision mechanism. Importantly, our approach allows us to en-
force sparse heatmaps, which further aids interpretability and allows the model to precisely
identify disease related image regions.

2. Developing an interpretable-by-design disease classification network

2.1. Backbone architecture and baseline model

We used a BagNet (Brendel and Bethge, 2019) as a baseline classification model. The
BagNet is a variant of ResNet-50 (He et al., 2016) and is obtained by replacing many 3× 3
convolutions with 1× 1 convolutions and reducing the strides. This leads to a final feature
map F of size N × N × D where D is the number of feature channels (Fig. 1c, typically
D = 2048). Spatial average pooling reduces these features to 1×D, and a linear layer then
provides the final prediction logits l of size 1× C where C is the number of classes.

These architecture modifications in the BagNet have two effects: First, due to the
replaced filters, each image pixel has an effective receptive field of size q × q in the final
feature layer. Therefore, the model makes its predictions based on small image patches
of size q × q, implicitly. Secondly, reducing the stride in the convolutional layers prevents

1. Our code is available at https://github.com/kdjoumessi/interpretable-sparse-activation
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downsampling effects and results in relatively high-resolution (i.e. fine-grained) feature
maps compared to the original ResNet.

2.2. Enhancing the architecture with an interpretable decision-making stage

To interpret predictions in the BagNet model described above, one cannot directly examine
the final feature maps (Fig. 1c), as these represent high-dimensional features rather than
class evidence at each location. Rather, it is necessary to construct activation maps with
multiple forward passes for individual image patches of size q× q since the original BagNet
architecture is not fully convolutional.

Therefore, we introduced class evidence layers to obtain actual class evidence maps Ac

per class c with a single forward pass and make the local information representation explicit.
To this end, we reorganised two network operations. As the spatial average pooling and the
final fully connected layer are sums, they can be swapped without affecting the final logits:

lc =

D∑
d=1

wdc

∑
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1

N2
Fij
d

 =
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i,j≤N

1
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(
D∑
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d

)
=
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i,j≤N

1

N2
Aij

c . (1)

Importantly, Eq. 1 can be implemented by replacing the (swapped) FC layer by a 1× 1
convolution with c output channels. The final class-wise evidence mapsAc directly represent
the contribution of individual input patches to the final prediction. The final class score
is then obtained by simple spatial averaging (Fig. 1d), resulting in a c-dimensional logits
vector. Applying the softmax function finally leads to the class probabilities py (Fig. 1e).

2.3. Introducing sparsity constraints on class evidence maps

We found that the original BagNet produces dense heatmaps with many positive and nega-
tive activations, indicating that clinically irrelevant input patches contribute to the predic-
tion. This behavior makes it difficult for a human to discern how the prediction was formed
and to efficiently verify its correctness.

By introducing explicit class evidence layers (Sec. 2.2) we can directly place constraints
on the class evidence map containing per-patch scores (Fig. 1d) to induce spatial sparsity.
To achieve that, we propose to place an ℓ1 regularisation constraint on the class evidence
maps Ac, leading to the following loss function:

Loss(y,py) = CE(y,py) + λ
∑
i,j,c

|Aij
c |. (2)

Here, CE denotes the cross-entropy and y are the reference class labels. The sparsity of the
activation maps depends on the hyperparameter λ. Enforcing sparsity in class evidence in
this way is not a post-hoc measure, but rather forces the classification model to focus on
the most relevant image regions. This is particularly suitable for tasks such as DR grading
where the detection and characterisation of few lesions in the image is sufficient for an
accurate diagnostic result and in line with clinical workflows.
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Table 1: Classification performance for referable DR detection on the test set.
Accuracy AUC Specificity Sensitivity

ResNet-50 0.942 0.960 0.993 0.810
Dense BagNet 0.936 0.957 0.991 0.779
Sparse BagNet 0.928 0.937 1.0 0.750

2.4. Advantages of the new architecture and use in a clinical workflow

The proposed modification of the architecture improves the transparency of the model by
providing readily interpretable activation maps which show the contribution of each patch
to the final prediction without further post-processing. Furthermore, it provides a different
class evidence map for each class in a multi-class scenario, directly showing the contribution
of each patch to the classification of the input into that class. Importantly, it does so while
being less computationally intensive than the original BagNet.

As we will show below, the class activation maps extracted from the sparse BagNet
(Fig. 1d) can be upsampled to the input size and overlaid on the input (Fig. 1e) for easy
visualisation and interpretation by clinicians. Further, based on activation scores from
the class evidence map, suspicious patches (Fig. 1d) can be extracted and presented to the
clinician for further investigations (see Sec. 3.4). In contrast to classical saliency maps,
one can directly and straightforwardly report how strongly each patch contributes to the
network’s decision. A clinician can use the global prediction, the class evidence maps, and
suspicious patches to either strengthen their trust in the model or reject a decision.

3. Results

3.1. Dataset

We used retinal fundus images from the Kaggle Diabetic Retinopathy challenge (Kaggle,
2015) with reference DR grades ranging from 0 (no DR) to 4 (proliferative DR). We removed
poor-quality images from the dataset using an ensemble of EffcientNet models (Tan and Le,
2019) trained on the ISBI20202 challenge dataset. The resulting dataset after the quality
filtering contained 45, 923 images with class proportions (0.73, 0.15, 0.08, 0.03, 0.01), which
we split into training (75%), validation (10%) and test folds (15%). We preprocessed the
images by fitting a circular mask to the field of view and cropping its bounding box. All
images were resized to 512 × 512 and the image intensities were normalised by the mean
and standard deviation of the training set. For additional analyses, an experienced in-house
ophthalmologist provided detailed lesion annotations on a selection of 15 test images.

3.2. Sparse BagNets yield good accuracy on referable DR detection

We first evaluated our method for the clinically relevant case of (binary) referable DR de-
tection (combining class labels {0, 1} vs {2, 3, 4}). We configured the backbone architecture
(Sec. 2.1) such that the receptive field size was q = 33 as in Ilanchezian et al. (2021). The

2. https://isbi.deepdr.org/challenge2.html
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Figure 2: Heatmaps for two example cases with referable DR (top rows) and a healthy case
(bottom row). From left to right, heatmaps are shown for the ResNet-50 (using
GradCAM), the dense and the sparse BagNet. Red regions provide evidence for
the diseased class, while blue regions provide evidence for the healthy class.

regularisation coefficient (Eq. 2) was set to λ = 5·10−5 based on the tradeoff between classifi-
cation performance on the validation set and sparsity (see App.A). In a realistic application
setting, a device manufacturer might define clinically relevant performance thresholds which
must be met, and select the maximum sparsity coefficient accordingly.

We compared our sparse BagNet against its dense baseline (λ = 0) and a ResNet-50 as a
black-box state-of-the-art reference. As DR detection has been widely studied classification
performance was not our main goal, the training procedures for all models were adopted from
Huang et al. (2021), who systematically evaluated hyperparameter choices (see App.B).

We found that the sparse BagNet achieved high accuracy and AUC, which were slightly
lower than the respective measures of the dense BagNet and the ResNet50, mainly because
of lower sensitivity (Tab. 1). This established that the sparse BagNet was a good candidate
for a high-performing interpretable-by-design model, and disease detection performance was
not severely hampered by the sparseness penalty on the class activation map.

3.3. Sparsity constraints declutter class evidence maps

We next compared local evidence heatmaps indicating important image features obtained
from the different models. For ResNet-50, we used the post-hoc technique GradCAM (Sel-
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Table 2: Heatmap evaluation on the test set. The first columns show the local-to-global
correspondence for images of healthy and diseased eyes, respectively. The third
column shows the localisation precision. For all measures, we report mean (std)
per image (higher is better).

r−LG r+LG Precision

Dense BagNet 0.922 ± 0.03 0.145 ± 0.06 0.219 ± 0.1
Sparse BagNet 0.991 ± 0.04 0.374 ± 0.33 0.791 ± 0.1

varaju et al., 2020). For the BagNet variants, we used class evidence maps directly from
the penultimate layer (Sec. 2.2). The ResNet heatmaps were coarse due to the model’s large
receptive field and some highlighted regions were similar to regions identified by the dense
BagNet (Fig. 2, more examples in App.C). However, as the ResNet’s heatmaps do not rep-
resent the specific local contribution to the model’s decision-making process, we focused on
the inherently interpretable BagNet versions for further analysis.

Interestingly, the constraints we imposed on our model led to much sparser heatmaps
compared to the original BagNet (see right columns in Fig. 2), showing that the decision
was formed from few small regions of the retinal fundus. These regions seemed to be mostly
a subset of the salient regions used by the dense model. On healthy images, the sparse
model led to an almost complete absence of positive activations, in contrast to the mix of
positive and negative evidence suggested by the dense model (see bottom row in Fig. 2).

To assess this quantitatively, we measured how consistently the local class evidence (i.e.
the heatmap values) corresponded to the global model prediction. For healthy images,
we counted all pixels with negative scores and calculated the ratio of pixels with negative
scores among all pixels with non-zero scores, which we call local-to-global correspondence
r−LG. This confirmed the qualitative assessment (dense vs. sparse BagNet: 0.922 vs. 0.991;
Tab. 2). The same analysis for diseased eyes also further showed a large increase in local-to-
global correspondence r+LG compared to the dense model (0.145 vs. 0.374; Tab. 2). However,
on diseased eyes, there remained a large proportion of evidence for healthy tissue, likely
because much of the fundus background did not contain any lesions.

3.4. High evidence regions correspond to lesions in sparse BagNet

To assess whether the highlighted regions were clinically relevant for diagnosing DR, we
quantified the precision of the BagNets’ heatmaps at localising DR lesions on the subset
of 15 clinically annotated test images. On these, we extracted input patches with positive
scores and calculated precision as the proportion of patches that contained a lesion.

The dense BagNet model contained many positive activations in healthy areas without
lesions, resulting in low lesion localisation precision (0.219; Tab. 2). In contrast, the sparse
BagNet showed considerably increased precision, almost exclusively extracting patches with
lesions (0.791). When we visually inspected the patches identified by the sparse model on
the annotated images (Fig. 3), we found that almost all patches with positive scores (red
boxes, magnified on the right) contained suspicious spots.
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Figure 3: Lesions extracted from the class activation map from the sparse BagNet on two
referable DR examples. The green markers indicate reference lesion annotations,
whereas the red boxes denote suspicious patches identified by the sparse model
(enlarged on the right sorted with decreasing evidence scores).

In fact, when we showed the few seemingly false positive patches (that did not contain
an annotation in form of a green marker) to the clinician a second time, she determined
that almost all of them likely contain a lesion that had been missed in the original clinical
screening.

3.5. Sparse BagNets enhance interpretability for multi-class DR grading

Finally, we applied our method to the multi-class setting of DR grading, where individual
severity grades were predicted. We used the same training parameters as for the binary
task and set the number of output classes to 5. We set the regularisation coefficient of the
sparse model to λ = 6 ·10−6, again choosing an appropriate accuracy trade-off (see App.A).
We found that the dense and sparse models achieved comparable accuracy (resp. 0.864,
and 0.850) to the baseline ResNet50 model (0.862).

Again, our sparse BagNet model led to more focused heatmaps that were generally
consistent with the predicted class (Fig. 4, more examples in App.D). For the example shown
in Fig. 4, a clinician retrospectively confirmed that the image appeared healthy except for
diffuse bleeding in line with moderate DR in the area highlighted by our sparse model.

Interestingly, further analysis also helped us to uncover a failure mode of the sparse
BagNet: We noticed that sparse BagNets always failed to detect grade 3 and most often
grade 4 DR cases (Fig. 4). Instead, it tended to classify these cases as moderate DR (grade
2), likely because the sparse BagNet architecture was not designed to detect the larger
lesions occurring in these grades.

4. Discussion and Conclusion

In this paper, we proposed an inherently interpretable classification model which provides
sparse high-resolution class evidence maps. Enforcing sparse activations directly caused
fewer input regions to contribute to the classifier decision. We showed that the remain-
ing relevant regions in the sparse model identified lesions with high precision, which is a
considerable advance of classical saliency map techniques (Saporta et al., 2022). Further,
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Figure 4: Application to multi-class DR detection shows usefulness of class-specific sparse
activation maps of the sparse model over the dense model (bottom row vs. top
row; middle column). The example image with moderate DR and predicted
probabilities are shown on the left. The confusion matrices (right) show that for
the sparse model, severe DR is systematically graded as moderate DR.

healthy images yielded heatmaps with consistently negative evidence. The sparse model
was therefore easier and potentially less time-consuming to inspect.

Preliminary feedback from our clinical collaborators suggests that our approach can be
a useful tool to verify predictions, understand failure modes of and facilitate their trust
in the ML model. Interestingly, they also found the predicted bounding boxes helpful for
guiding their attention to subtle anomalies otherwise missed. This suggests future research
on ideal ways to let clinicians interact with our model in a human-in-the-loop setting. In a
next step, we also plan to apply our approach to other problem settings with local regions
of interest such as breast or lung cancer screening.
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Cristina González-Gonzalo, Bart Liefers, Bram van Ginneken, and Clara I. Sánchez. Iter-
ative augmentation of visual evidence for weakly-supervised lesion localization in deep
interpretability frameworks: Application to color fundus images. IEEE Transactions on
Medical Imaging, 39(11):3499–3511, 2020.

Thomas Grote and Philipp Berens. On the ethics of algorithmic decision-making in health-
care. Journal of medical ethics, 46(3):205–211, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Im-
age Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016.

Yijin Huang, Li Lin, Pujin Cheng, Junyan Lyu, Roger Tam, and Xiaoying Tang. Identifying
the key components in resnet-50 for diabetic retinopathy grading from fundus images: a
systematic investigation. arXiv preprint arXiv:2110.14160, 2021.

ICO. International council of ophthalmology (ico) guidelines for diabetic eye care, 2017.
URL https://icoph.org/eye-care-delivery/diabetic-eye-care/.

Indu Ilanchezian, Dmitry Kobak, Hanna Faber, Focke Ziemssen, Philipp Berens, and Mu-
rat Seçkin Ayhan. Interpretable gender classification from retinal fundus images us-
ing bagnets. In International Conference on Medical Image Computing and Computer-
Assisted Intervention, pages 477–487. Springer, 2021.

Kaggle. Kaggle competition on diabetic retinopathy detection, 2015. URL https://www.

kaggle.com/c/diabetic-retinopathy-detection/data. Accessed: 2022-11-30.

10

https://icoph.org/eye-care-delivery/diabetic-eye-care/
https://www.kaggle.com/c/diabetic-retinopathy-detection/data
https://www.kaggle.com/c/diabetic-retinopathy-detection/data


Sparse Activations for Interpretable Disease Grading

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

Ella Mahoro and Moulay A. Akhloufi. Applying Deep Learning for Breast Cancer Detection
in Radiology. Current Oncology (Toronto, Ont.), 29(11):8767–8793, 2022.

Yu E Nesterov. A method for solving the convex programming problem with convergence
rate O

(
1
k2

)
. In Dokl. Akad. Nauk SSSR,, volume 269, pages 543–547, 1983.

Alexandros Papadopoulos, Fotis Topouzis, and Anastasios Delopoulos. An interpretable
multiple-instance approach for the detection of referable diabetic retinopathy in fundus
images. Scientific Reports, 11(1):14326, 2021.

Mihir Rao, Michelle Zhu, and Tianyang Wang. Conversion and implementation of state-
of-the-art deep learning algorithms for the classification of diabetic retinopathy. ArXiv,
abs/2010.11692, 2020.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead. Nature Machine Intelligence, 1(5):206–215, 2019.

Adriel Saporta, Xiaotong Gui, Ashwin Agrawal, Anuj Pareek, Steven QH Truong,
Chanh DT Nguyen, Van-Doan Ngo, Jayne Seekins, Francis G Blankenberg, Andrew Y
Ng, et al. Benchmarking saliency methods for chest x-ray interpretation. Nature Machine
Intelligence, 4(10):867–878, 2022.

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi
Parikh, and Dhruv Batra. Grad-CAM: Visual Explanations from Deep Networks via
Gradient-based Localization. International Journal of Computer Vision, 128(2):336–359,
2020.

Shiwen Shen, Simon X Han, Denise R Aberle, Alex A Bui, and William Hsu. An inter-
pretable deep hierarchical semantic convolutional neural network for lung nodule malig-
nancy classification. Expert Systems with Applications, 128:84–95, 2019.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2013.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striv-
ing for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806, 2014.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In International conference on machine learning, pages 6105–6114. PMLR,
2019.

Meysam Tavakoli and Patrick Kelley. A comprehensive survey on computer-aided diagnostic
systems in diabetic retinopathy screening. 2021.

Qiaoying Teng, Zhe Liu, Yuqing Song, Kai Han, and Yang Lu. A survey on the inter-
pretability of deep learning in medical diagnosis. Multimedia Systems, 28(6):2335–2355,
2022.

11



Djoumessi Ilanchezian Kühlewein Faber Baumgartner Bah Berens Koch

Daniel Shu Wei Ting, Gemmy Chui Ming Cheung, and Tien Yin Wong. Diabetic retinopa-
thy: global prevalence, major risk factors, screening practices and public health chal-
lenges: a review. Clinical & Experimental Ophthalmology, 44(4), 2016.

Zhiguang Wang and Jianbo Yang. Diabetic Retinopathy Detection via Deep Convolutional
Networks for Discriminative Localization and Visual Explanation. In Workshops at the
thirty-second AAAI conference on artificial intelligence. arXiv, 2019.

Tien Y Wong, Jennifer Sun, Ryo Kawasaki, Paisan Ruamviboonsuk, Neeru Gupta,
Van Charles Lansingh, Mauricio Maia, Wanjiku Mathenge, Sunil Moreker, Mahi MK
Muqit, et al. Guidelines on diabetic eye care: the international council of ophthalmol-
ogy recommendations for screening, follow-up, referral, and treatment based on resource
settings. Ophthalmology, 125(10):1608–1622, 2018.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning
deep features for discriminative localization. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2921–2929, 2016.

12



Sparse Activations for Interpretable Disease Grading

Appendix A. Effect of the sparsity hyperparameter λ

The regularisation coefficient λ (see Eq. 2) is the hyperparameter that controls the sparsity
of the class-specific activation map in the sparse BagNet. It was chosen based on a tradeoff
between performance on the validation set according to each task (Fig. 5). Specifically, we
manually selected the highest sparsity coefficient for which the performance did not drop
too strongly.
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Figure 5: Comparison of validation performance with different regularization values. (a)
The regularization coefficient λ affects the AUC and accuracy on the binary refer-
able task. (b) Same as (a), but for the multiclass task with accuracy and kappa.
The red points indicate the selected values, which are a trade-of between sparsity
and accuracy.

Appendix B. Training details

We adopted the training regime and hyperparameter choices optimised by Huang et al.
(2021), who systematically evaluated relevant hyperparameters for DR detection on fun-
dus images, such as the influence of data preprocessing and augmentation, optimiser and
learning rate configurations. The final settings are described below.

We performed data augmentation during training by flipping, rotating, randomly crop-
ping, and translating with a given probability. We also used Krizhevsky color augmentation
(Krizhevsky et al., 2017), as suggested by Huang et al. (2021).

To train the networks, we used the cross-entropy loss (unless specified otherwise) as
the objective function with the SGD optimizer where the initial learning rate was set to
0.001. Next, the cosine learning schedule was used and the minimum learning rate was set
to 0.0001. We also used Nesterov’s momentum (Nesterov, 1983) with a constant momentum
factor of 0.9 with a weight decay of 0.0005 for regularization.

Models were initialized with weights obtained on the ImageNet and fine-tuned on the
Kaggle dataset for 100 epochs with a mini-batch size of 8. The best model was saved on
the validation set depending on the task (binary referable DR detection or multiclass DR
grading).
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For simplicity, and as our goal was not to push the boundaries of classification perfor-
mance, we did not incorporate features from opposite eyes for image grading (as suggested
by Huang et al. (2021)), and also omitted ensembling multiple models.

Appendix C. Additional examples of class evidence maps

An additional selection of class evidence maps for correctly classified and misclassified ex-
amples is provided in Fig. 6.

Appendix D. Additional results for multiclass setting

The classification performance of our sparse model was comparable to its dense baseline and
the ResNet (see Tab. 3). The multiclass task (Fig. 7) shows the advantages of having class-
specific activation maps: For example in the last row, small lesions are detected arguing for
moderate DR, but larger deteriorations towards the edge of the image argue for proliferate
DR. .

Acc. Kappa

ResNet-50 0.862 0.826
Dense BagNet 0.864 0.830
Sparse BagNet 0.850 0.780

Table 3: Comparison of the classification performances on multiclass DR detection between
the proposed approaches and the baseline ResNet-50 model on the test set.
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Figure 6: Heatmaps for example of correctly and misclassified cases with referable and
healthy DR images. From left to right, heatmaps are shown for ResNet-50 (using
GradCAM), the dense and sparse BagNet. Below each heatmap, we also show
the predicted probability for referable DR.
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Figure 7: Multi-class evidence maps for images of different DR grades. From left to right,
we show the fundus image, the ResNet-50 heatmap (using GradCAM), and the
class-specific map for different grades for the dense (top) and sparse (bottom)
BagNet. Below each heatmap, we also show the predicted probability for each
class, as well as the predicted class and probability for the ResNet-50 model.
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