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Abstract

This study examines the inherent limitations of the prevailing Observation-Oriented learning
paradigm by understanding relationship modeling from a unique dimensionality perspective.
This paradigm necessitates the identification of modeling objects prior to defining relations,
confining models to observational space, and limiting their access to dynamical temporal
features. By relying on a singular, absolute timeline, it often neglects the multi-dimensional
nature of the temporal feature space. This oversight compromises model robustness and
generalizability, contributing significantly to the AI misalignment issue.

Drawing from the relation-centric essence of human cognition, this study presents a new
Relation-Oriented paradigm, complemented by its methodological counterpart, the relation-
defined representation learning, supported by extensive efficacy experiments.

1 Introduction

The prevailing modeling paradigm rules that observed variables (and outcomes) are the premise of building
relationships. Model variables are often estimated by their observational values with an independent and
identical distribution (i.i.d.) setting. Back in the 1890s, Picard-Lindelof theorem introduced a logical timeline
t to record observational timestamps, establishing the paradigm xt+1 = f(xt) to depict variable X’s time
evolution. Since then, this Observation-Oriented principle has become our learning convention, where
the temporal dimensionality is equated to the counts of {t, t+ 1} unit, a predetermined constant time lag.

For a relationship X → Y , the model can be in form yt+m = f(xt), or yt+m = f({xt}), where {xt} =
{x1, . . . , xt, xt+1, . . . , xT } represents a time sequence of X within a certain length T , and a predetermined
time progress m from X to Y . No matter in which form, the outcome Y is strictly observational only, leaving
all potentially significant temporal changes of Y completely managed by f(·). However, although function
f(·) can be selected as linear or nonlinear, the time evolution from t to t+m is always left as linear.

Such a conventional linearity on the temporal dimension may be sufficient in the past, but not present, given
the current technological advancements in data collection and Artificial Intelligence (AI) learning. Exploring
nonlinear temporal distributions is gradually becoming essential. From a broader viewpoint, this is calling
for a new modeling paradigm Scholkopf et al. (2021), which does not rest on the conventional i.i.d. assumed
observations, but can treat t as a distinct computational dimension.

This study aims to fundamentally reveal the inherent deficiency of the current Observation-Oriented modeling
paradigm (Chapter I: Sections 2-4), and accordingly propose the new Relation-Oriented one as desired,
along with feasibility validations (Chapter II: Sections 5-7). Particularly, the single absolute timeline t that
we conventionally use, inherently cannot capture the multifaceted nature of temporal dimensionality, leading
to widespread biases and resulting in AI models misaligned with our cognitive understanding, contributing
significantly to the AI misalignment issue Christian (2020).

In this paper, we approach the concept of relationships in modeling through a novel dimensionality framework,
offering a unique perspective. The remainder of this section aims to lay the groundwork. Then, in Chapter I,
we will inspect causal learning from the view of temporal dimensionality, highlighting the key role of relations
in modeling. Subsequently, Chapter II will concentrate on the proposed relation-defined representation
learning method, which embodies the advocated Relation-Oriented modeling paradigm.
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1.1 Manifestation of AI Misalignment
Today, AI has displayed capabilities surpassing humans in solely observational learning tasks, such as gen-
erating images, Go gaming, and so on. However, AI may appear “unintelligent” in comprehending certain
relations that humans find intuitive. For instance, AI-created personas on social media can have realistic
faces but barely with the presence of hands, due to AI struggling with the complex structure, instead treating
hands as arbitrary assortments of finger-like items.

Moreover, when it comes to time evolution, causal reasoning presents a substantial challenge for AI, although
it is innate for humans. Traditional causal learning methods, while having made valuable contributions to
various fields of knowledge over the years Wood (2015); Vuković (2022); Ombadi et al. (2020), often suffer
from a limitation in their generalizability Scholkopf et al. (2021). Unsuccessful neural network applications
are particularly evident when addressing large-scale causal questions Luo et al. (2020). As a result, these
methods are often confined to context-specific applications and encounter difficulties in extending to diverse
scenarios. Thus, it is not strange that AI’s capability on the temporal dimension remains notably constrained.

The questions “How to leverage AI’s capability in causality” and “How to simulate hands with reasonable
fingers” may seemly pertain to specific domains such as causal inference and computer vision. However, they
fundamentally converge toward the broader challenge of AI Alignment, encapsulated by the essential ques-
tion: “Why are these relations unseen to AI?” Reflecting on Dr. Geoffrey Hinton’s warning, the misalignment
of AI capabilities with human values can result in unintended and potentially harmful consequences. It is
becoming increasingly critical to address this essential question.

1.2 Relations in Hyper-Dimension

Consider a pairwise relationship comprised of three elements: two observable objects, and a relation con-
necting them, which comes from our knowledge. The two objects can be solely observational (e.g., images,
spatial coordinates of a quadrotor, etc.), or either observational-temporal (e.g., trends of stocks, persistent
rain for five hours, etc.). Interestingly, the “relation” has to be unobservable to make this relationship
meaningful for machine learning, distinguished from mere statistical dependencies.

This principle was initially introduced in the form of Common Cause Dawid (1979); Scholkopf et al. (2021),
suggesting that any nontrivial conditional independence between two observables requires a third, mutual
cause (i.e., our unobservable “relation”). Take the relationship “Bob has a son named Jim” as an example.
The father-son relation is unobservable information that exists in our knowledge, which can also be seen as
the common cause that makes their connection unique rather than any random pairing of “Bob” and “Jim”.
Given sufficient observed social activities, AI may deduce this pair of “Bob” and “Jim” have some special
connection, but that does not equate to discerning their genuine father-son relation.

Put simply, the existence of unobservable element(s) makes the relationship model informative. In other
words, the information contained by the model stems from our knowledge, rather than direct observations.
Let’s denote the model as Y = f(X; θ) with θ indicating the function parameter in demand. Then, in the
context of modeling, the term “relation” can be represented by θ.

Figure 1: Observational, Temporal, and Hyper-Dimensional spaces, with the former two Observable.

From a dimensionality standpoint, a relationship can be viewed as a joint distribution across multiple di-
mensions: The observable objects feature the distribution on observational-temporal dimensions, while the
unobservable relation manifests as some unseen distribution on a hyper-dimension. As illustrated in Figure 1,
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our cognitive space storing the knowledge relationships can be divided into three categories accordingly, where
the Hyper-Dimensional space symbolizes the collective of all unobservable relations within our knowledge.
Chapter I of this study aims to examine why AI cannot autonomously model certain relations in this space
and understand the implications for its learning results.

1.3 Observational and Temporal Spaces
Under the Observation-Oriented principle, current models largely operate within the observational space.
For example, CNNs (Convolutional Neural Networks) can learn observational associations among two-
dimensional pixels; a quadrotor’s movement can be estimated in three spatial dimensions; LLMs (Large
Language Models) work in a semantic space along a logical timeline representing the order of words. Some
applications (e.g., the last two examples) are aligned with the Picard-Lindelof theorem, using a single logical
timeline to depict the absolute time evolution, thus often referred to as spatial-temporal analysis Alkon
(1988); Turner (1990); Andrienko (2003). However, in a modeling context, an attribute of timestamps is
not distinguishable from other observational attributes, unnecessarily to be temporally significant. Thus, we
classify this single absolute timeline scenario as within the observational space.

According to our discussions at the beginning, the form of timestamps can only capture linear relationships
on the temporal dimension, thus fundamentally impeding AI’s ability to handle the temporal nonlinearity.
This inherent disparity between our knowledge understanding and established models results in misalignment
(see Section 3.3 for further discussions), accentuated by the rise of highly efficient AI applications.

Moreover, in our cognition (not the modeling context), multiple logical timelines may exist to form the
temporal feature space in Figure 1 (see Section 4 for further insights). However, the current modeling
paradigm has determined they cannot be distinguished as different dimensions in computation but crudely
represented by an attribute of timestamps, i.e., consolidated as a single timeline.

In the observational-temporal joint space, as shown in Figure 1, observable distributions can be categorized
as either linear or nonlinear. The temporal-significant ones can manifest as “static” or “dynamical” temporal
features within a modeling context. For example, in the relationship “rain leads to wet floors”, the events
“rain” and “wet floors” are snapshots at specific timestamps and are thus viewed as static temporal objects.
In contrast, events such as “persistent rain for five hours” and “floors becoming progressively wetter” are
considered dynamical temporal due to their indispensable sequential patterns on the temporal dimension.

In this paper, we use the term “feature” to indicate the potential variable that fully represents the distribution
of interest in any dimension. Additionally, the observational-temporal joint space may also be referred to as
“observable data space”, in contrast to the “latent feature space”.

1.4 Hyper-Dimensional Space
Unobservable relations that fall outside the primary modeling objective can profoundly affect relationship
models. This can be traced back to an undetected joint distribution within the hyper-dimensional space.

For example, when evaluating the impact of spicy foods on health, the direct link between spiciness and
health is our primary modeling focus. However, there are underlying relations at play - such as how personal
traits (individual-level features) are influenced by their cultural context (population-level features). Even if
cultural differences are out of our modeling concern, overlooking these hierarchical distributions may intro-
duce biases into our relationship model. For clarity, we term these hidden hyper-dimensional distributions
as unobservable hierarchies, sidestepping their relational aspects that fall outside the modeling objective.

These unobservable hierarchies often signify different granularity levels within the population. Achieving
model generalizability across these levels is a common concern, dependent on the model’s ability to reuse
learned lower-level relationships for higher-level learnings Scholkopf et al. (2021). We argue that a shift from
Observation-Oriented to Relation-Oriented is essential to realize this goal, in light of the relation-centric
nature of human intelligence. In human understanding, relations function as indices that point to our
mental representations Pitt (2022), crafting interconnected knowledge systems in memory, inclusive of their
hierarchical structures. In line with this perspective, our proposed relation-defined representation learning
is conceived as an attempt to “simulate” the process of human knowledge construction.
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Chapter I: Deficiency of Current Observation-Oriented Paradigm

This chapter begins by examining the impact of unobservable hierarchies on models in Section 2, to high-
light how these hierarchies can result in significant information loss on the temporal dimension, and its
challenges for conventional causal inference. In Section 3, we offer a comprehensive critique of the prevailing
Observation-Oriented causal learning paradigm. Finally, Section 4 delves into the temporal space untouched
by the current paradigm, spotlighting its multi-dimensional nature that leads to inherent modeling issues.

2 Impact of Unobservable Hierarchies
Unobservable hierarchies in knowledge suggest unknown distributions in the hyper-dimensional space, which
are related to but distinct from the modeling objective. For solely observational learning tasks, such un-
knowns may lead to troubles, but still have the potential to be uncovered through methods like reinforce-
ment learning. However, when it comes to observational-temporal causal learning, the Observation-Oriented
paradigm inherently falls short in capturing dynamical temporal features across all hierarchical levels. This
section will illustrate these phenomena via two examples: one from computer vision and another from health
informatics. For the latter, we will further dissect the issue from a traditional causal inference perspective.

2.1 Observational Hierarchy

(a) AI-generated faces accompanied with hands (b) How human understand images of hands  

Observed Features Memorized Features

Level 𝑰    Knuckles, Nails, …
Level 𝑰𝑰  Relative Positions
Level 𝑰𝑰𝑰 Gestures

Identification of Fingers
Left/Right & Gestures
Intentions  

Figure 2: A comparison of AI-generated and human-sketched hand images. AI processes observed features
simultaneously, thus treating hands as arbitrary mixtures of finger-like items. The process is hierarchical for
humans, indexed through relations, where higher-level recognition relies on lower-level conclusions.

Figure 2(a) showcases AI-created hands with faithful color but unrealistic shapes, while humans can easily
recognize a plausible hand from simple grayscale sketches in (b). Indeed, we can rapidly decompose our
observations hierarchically according to different relations in our knowledge, and process sequentially from
lower to higher levels: I identifies fingers through knuckles, nails, and relative lengths; II denotes hand
gestures through positions; III retrieves the gesture’s meaning from memory. However, such an intuitive
hierarchy exists in our cognitions only. To AI, or similarly, to an extraterrestrial without our knowledge, the
hands in Figure 2(a) may seem as reasonable as the actual hands.

Such observational hierarchy may not always create major problems. If features at different levels do not
significantly overlap, AI may successfully “distinguish” them. For instance, AI can generate convincing faces
because the appearance of eyes is strongly indicative of the facial angle, eliminating the need for AI to
recognize “eyes” from “faces”. But various hand gestures may have similar appearances, leading to chaos.

Even with problems, AI may learn the hidden knowledge via reinforcement learning Sutton & Barto (2018),
under the guidance of human feedback. For example, human approval of five-fingered hands could lead AI
to start identifying fingers autonomously. It works because of completely captured observational features at
each level, while may not function when involving distributions across temporal dimensions.

2.2 Observational-Temporal Hierarchy

Figure 3(a) depicts patients’ daily effects on B following do(A), with t indicating the elapsed days. For
simplicity, let’s assume the patient’s (unobserved) personal characteristics linearly influence MA’s release,
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i.e., uniformly accelerate or decelerate its effective progress. The individualized causal effects (i.e., the red
and blue curves in (a)) are shaped by two levels of dynamical temporal features: 1) the population-level effect
sequence with a standard length of 30, and 2) the individual-level progress speed. An accurate estimation
of the level 1) dynamical feature provides the desired clinical effectiveness evaluation of MA.

Timeline 𝒕 
(# of Days)

30 Days20 Days 40 Days

General 
Causal Effect 

Causal Effect 
of 𝑷𝒊 

Specify the after-30-days 
Correlations for all patients

Daily Effect 
of 𝑑𝑜(𝑨)

 on 𝑩

0 Day

𝑑𝑜(𝑨)

Causal Effect 
of 𝑷𝑗  

𝑨 = Dose of Medication 𝑀𝐴  𝑑𝑜(𝑨) = Event “𝑨 changes from 0 to 1”  𝑩 = Measured Blood Lipid

(a) Observational Time Sequences 

D1

(b) Complete Dynamical Features

Figure 3: Medication MA treats high blood lipid, with do(A) denoting its initial use. It is given that the
population-level effect takes about 30 days to fully manifest (t = 30 at the elbow), depicted by the black
curve in (a). Patient Pi achieves this effect curve elbow in 20 days, while Pj takes 40 days.

Figure 3(b) represents patients’ effects in a 31-length feature vector, disentangled by two hierarchical levels.
Traditional medical effect estimation is often obtained by averaging the patients’ after-30-day performances.
This essentially builds a correlation model Bt+30 = f(do(At)), which only captures a static temporal feature
Bt+30, the last step of the level 1) dynamic, disregarding the preceding 29 steps. Moreover, even if the
estimation method employs a sequence of length 30 (e.g., Granger causality), it can capture the level 1)
dynamic at most and is exclusive of further levels. Causal effects with multiple levels of dynamics are preva-
lent in various causal learning applications, such as epidemic progression, economic fluctuations, strategic
decision-making, etc. The Observation-Oriented paradigm necessitates identifying objects before establishing
relations, making it often difficult to comprehensively encompass all levels of dynamics.

2.3 Strange Hidden-Confounder in Causal Inference

𝑑𝑜(𝑨)

𝑩

the Unobserved 
Characteristics  

of Patient

(a) DAG with Hidden Confounder

Correlation Model 𝑩𝒕+𝟑𝟎 = 𝑓(𝑑𝑜 𝑨𝒕 )

(b) Relation-Oriented Disentanglement (c) Latent Space Representation of (b)

𝑑𝑜 𝑨 ∗ 𝑬 = {𝑑𝑜 𝑨 ∗ 𝑬𝒊 , 𝑑𝑜 𝑨 ∗ 𝑬𝒋, … } Patient ID = {𝑖, 𝑗, … } 

Decode

Encode

ID Sequences

ID

Sequences

∗ →

Sequences

𝒇(𝒅𝒐(𝑨))  
𝑑𝑜(𝑨) 𝑑𝑜 𝑨 ∗ 𝑬

ID
𝑬 = {𝑬𝒊, 𝑬𝒋, … }

Figure 4: (a) Traditional causal inference DAG. (b) Hierarchical disentanglement of dynamics using relations
as indices. (c) Autoencoder-based generalized and individualized reconstructions of the sequential data.

For patients Pi and Pj , the estimated last-day effect Bt+30 is biased, as Pi exceeds 100% full effect, while
Pj only achieves about 75%. To account for such individual-level biases, causal inference usually introduces
a hidden confounder into DAG (Directed Acyclic Graph), to represent the unobserved personalized charac-
teristics, depicted as the node E in Figure 4 (a), a strangely involved outer variable. It implies an illogical
assertion: “Our model is biased due to some unknown aspects we have no intention to know.”

It is because, while E is unknown, its effect, the individual-level dynamical feature, is observable, but excluded
by the solely observational model f . Although hidden, E is observational and thus could be incorporated by f
if revealed. Thus, introducing a hidden confounder transforms observed dynamical variables into unobserved
observational ones, which enhances human understanding but unnecessarily benefits the model.
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As depicted in Figure 4(b), traditional causal inference views the individual-level effect as caused by the un-
observed composite cause do(A) ∗E, not a directly modelable relationship. Conversely, a Relation-Oriented
approach just treats relation as an index, to extract representations of observational-temporal effects from
sequential data, so we can employ any observed identifier, e.g., patient ID. Figure 4(c) illustrates its imple-
mentation architecture, to realize a relation-defined hierarchical disentanglement.

3 Causality on Temporal Dimension
Causality research acts as a gateway into the temporal dimension, going beyond the observational space.
However, the current causal learning models, formulated as yt+m = f(xt) for causality X → Y with m as a
predetermined time progression, do not fully integrate t as a computational dimension.

Under the prevailing Observation-Oriented paradigm, the objects - cause on X and effect on Y - must be
pre-identified prior to formulating the relation function f . While it remains feasible to assign a sequence of X
to encompass dynamics for the cause, identifying the exact start and end timestamps for the effect becomes
problematic. Consequently, traditional causal inference typically treats effects as solely observational, with
static temporal aspects determined by predefined m. When the underlying effects have dynamical signifi-
cance, selecting an appropriate value for m to capture the most relevant snapshot becomes challenging. This
identifiability difficulty is further magnified when multiple levels of dynamics are present in effects.

Indeed, integrating the concept of temporal distribution could greatly streamline causal inference theories,
making associated ideas more intuitive. For instance, when we acquire Counterfactuals Pearl (2009), we
are essentially capturing temporal distributions in response to conditional queries. Also, as demonstrated in
the prior section, fully capturing the observed dynamics across all hierarchical levels within the model could
potentially eliminate the need for hidden confounders.

Next, we begin by redefining the notion of causal models concerning the temporal dimension in Section
3.1, then delve into existing methodologies in Section 3.2, focusing on their capacity to capture temporal
distributions, with a particular exploration of the essence of do-calculus. Section 3.3 discusses inherent
limitations of the dominant Observation-Oriented causal model paradigm.

3.1 Redefined Causality Modeling

Traditional causal inference heavily emphasizes interpreting models, such as discerning the causal directions,
to distinguish them from mere correlations. In essence, the temporal-evolving aspects that set causality apart
from correlation are mainly evident in interpretations, rather than directly within the modeling framework.

From a modeling perspective, once the domain is defined, the learning process does not consider the temporal
significance behind the dimensions, including the timestamp attribute. Thus, it is understandable that the
traditional paradigm leans heavily on interpretation. With this in mind, we differentiate causality from
correlation in the modeling context by integrating distributions along the temporal dimension.

Theorem 1. Causality vs. Correlation in the modeling context.
• Causality is the relationship between observational-temporal features, which can be dynamical.
• Correlation is the relationship between features not dynamical.

A causality X → Y can be divided into two parts: 1) the informative relation connecting X and Y , crucial for
modeling, and 2) the causal direction, i.e., the roles of cause and effect, mainly significant in interpretation.
Specifically, for model selection, we can employ Y = f(X; θ) to predict the effect on Y , and, conversely,
utilize X = g(Y ;ψ) to deduce the cause X given Y . Both parameters, θ and ψ, are derived from the joint
probability P(X,Y ) without imposing modeling restrictions.

In practice, the causal direction is often predetermined for models. One reason is the importance of aligning
with our intuitive understanding of temporal progression. Moreover, the prevailing causal model paradigm
displays an imbalanced capacity for capturing dynamical features between the cause X and the effect Y . For
example, in Figure 4, inverse modeling of do(A) = f({Bt}) through RNNs, given a sufficiently long sequence
{Bt} = {Bt+1, . . . , Bt+40}, might fully capture dynamics of B and negate the need for a hidden confounder.
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Within the suggested Relation-Oriented approach, we can utilize relations to accurately identify the effect’s
observational-temporal features and fully extract their representations. As a result, the modeling function f
is relieved from encapsulating temporal facets. The differentiation between causality and correlation becomes
a matter of connected features, rather than the nature of the relational model.

3.2 Learning Temporal Distributions

Numerous methods are dedicated to capturing the dynamical features of the cause alone, such as autore-
gressive models Hyvärinen et al. (2010) and RNNs Xu et al. (2020), both employing the modeling formate
yt+m = f({xt}) with {xt} = {x1, . . . , xt, xt+1, . . . , xT }. Meanwhile, Granger causality Maziarz (2015), a
method widely recognized in economics, employs a sequence for the effect that exhibits significant temporal
patterns, in the formate {yτ} = f({xt}), where t and τ signifying two separate timelines.

Yet, using a sequence does not guarantee capturing dynamics. The distinction between “a sequence of static
variables” and “a dynamical variable” hinges on whether the nonlinear mutual relationships among these
variables can be captured. For autoregressive, if the selected model is linear, then {xt} remains a static
sequence. Conversely, RNNs can harness the nonlinearity of {xt}, enabling them to encapsulate dynamics
even within multiple levels. In Granger causality, the effect sequence {yτ} must be observationally identified
before modeling, making it typically a static sequence. At best, it can capture a single-level dynamic with
the right parameter setting, e.g., referring to Figure 3(b), a 30-length average sequence may capture level 1).

A more universal approach to represent temporal distributions is do-calculus Pearl (2012); Huang & Valtorta
(2012). Instead of specifying time sequences, it takes the identifiable temporal events as modeling objects to
conduct elementary calculus. The do(·) format flexibly modulates temporal features for the cause. However,
such a differential-calculus essence also introduces elevated complexity. Here, we reinterpret its three core
rules from an integral-calculus perspective, aiming for a more intuitive comprehension.

For the time sequence {xt} = {x1, . . . , xT }, let do(xt) = {xt, xt+1} indicate the occurrence of an instan-
taneous event do(x) at time t. Time lag ∆t between {t, t + 1} is sufficiently small to make this event
identifiable, such that do(xt)’s interventional effect can be depicted as a function of the resultant distribu-
tion at t+ 1. Conversely, the effect provoked by static xt snapshot is called observational effect. Then, the
observational-temporal distribution of the cause X ∈ Rd can be formulated as below:

Given X → Y | Z, where X = ⟨X, t⟩ ∈ Rd+1 encompass the temporal dimension, we have

X =
∫ T

0
do(xt) · xt dt with


(do(xt) = 1) | do(zt), Observational only (Rule 1)
(xt = 1) | do(zt), Interventional only (Rule 2)
(do(xt) = 0) | do(zt), No interventional (Rule 3)
otherwise Associated observational and interventional

The effect of X can be derived as f(X ) =
∫ T

0
ft

(
do(xt) · xt

)
dt =

T −1∑
t=0

(yt+1 − yt) = yT − y0

Within the graphical system {X,Y, Z}, the rules of do-calculus tackle three specific scenarios (notably,
a specifiable do(xt) · xt pertains to Rule 2), where conditional independence is maintained between the
observational and interventional effects. However, these rules bypass more generalized cases.

Utilizing the do(·) format, we can also represent observational-temporal distributions of Y as Y = ⟨Y, τ⟩, by
incorporating an additional timeline τ . However, in the Observation-Oriented paradigm, identifiable events
for Y still necessitate our prior specifications. In contrast, the proposed Relation-Oriented approach can
autonomously construct Y via relation-indexing.

3.3 Limitation of Current Causal Model Paradigm

Our innate understanding of causality aligns with Theorem 1. Yet, confining causal models to the observa-
tional space can lead to potential misalignments between these models and our intuitive knowledge. We have
categorized causal modeling into four scenarios shown in Figure 5. Depending on whether the relationship
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is already in knowledge, the modeling queries can be divided into causal discovery, which seeks new insights,
and causal learning, which leverages knowledge to model causality. Further, these applications can be cate-
gorized based on the dynamical significance of the effects. For instance, the causality “raining → wet floor”
includes only static temporal features, which is logically a causality but not distinguishable from correlation
once modeled. We explore these scenarios from two perspectives: the relation connecting features, critical
for modeling, and the causal direction, essential for interpretation.

Modeled Relation Modeled Causal Direction

❶
Observational Only.

Undiscovered Dynamics covered 
by Faithfulness Assumption.

Observational Information Determined.
Not Logical Causal Meaningful.

❷
Observational Only.

Aligned with Knowledge.
Observational Information Determined.

Maybe Logical Causal Meaningful.

❸

Knowledge Determined.
Unmodeled Dynamics covered 

by Hidden Confounders or 
Sufficiency Assumption.

Knowledge Determined.

❹ Knowledge Determined. Knowledge Determined.

Relationship still 
Unknown

Relationship 
in Knowledge

No Significant 
Dynamical Features

Include Significant 
Dynamical Features

Causal Modeling 

Causal 
Discovery

Causal 
Learning

Figure 5: An overview of the current Observation-Oriented causal model paradigm. On the left, the rectangle
means all logical causal relationships, while its potentially modelable scope is blue-circled.

(1) Modeled Relation
Traditional causal inference has made notable advancements in “downgrading” dynamical temporal features
to be observationally accessible. For instance, do-calculus explores independence conditions on the temporal
dimension. For overlooked dynamical features of the effect, if existing knowledge can suggest its potential
cause, creating a hidden confounder can enhance comprehension; if not, these dynamics may be dismissed
based on the causal Sufficiency assumption, potentially leading to subsequent challenges.

On the other hand, causal discovery mainly scans the observational space to explore dependencies. As a
result, if the underlying causality does not encompass significant dynamics, causal discovery can be effective.
However, if such dynamics exist, they largely go undetected. This potential gap may be negated under the
causal Faithfulness assumption suggesting that observed variables fully represent the causal reality.

(2) Modeled Causal Direction
Consider observed variables X and Y in a graphical system, with specified models Y = f(X; θ) and X =
g(Y ;ψ). Based on observations, the discovered causal direction between X and Y is determined by the
likelihoods of estimated parameters θ̂ and ψ̂. Given the joint distribution P(X,Y ), one would prefer X → Y

if L(θ̂) > L(ψ̂). Now, let I(θ) be a simplified form of IX,Y (θ), the Fisher information, representing the
amount of information contained by P(X,Y ) about unknown θ. Assume p(·) to be the probability density
function; then, in this context,

∫
X
p(x; θ)dx remains constant. So, we have

I(θ) = E[( ∂
∂θ

log p(X,Y ; θ))2 | θ] =
∫

Y

∫
X

( ∂
∂θ

log p(x, y; θ))2p(x, y; θ)dxdy

= α

∫
Y

( ∂
∂θ

log p(y;x, θ))2p(y;x, θ)dy + β = αIY |X(θ) + β,with α, β constants.

Thus, θ̂ = arg max
θ

P(Y | X, θ) = arg min
θ
IY |X(θ) = arg min

θ
I(θ), and L(θ̂) ∝ 1/I(θ̂).

Subsequently, the likelihoods of the estimated parameters θ̂ and ψ̂ depend on the amount of information,
I(θ̂) and I(ψ̂). That means the learned directionality between X and Y essentially indicates how much
their specified distributions are reflected in the data, with the more dominant one deemed the “cause”. It
presumes that the cause is more comprehensively captured in the observations than the effect by default.
Due to restricted data collection techniques, such a presumption was justifiable in past decades. But in the
present era, assuming such discovered directions to have logical causal meaning is no longer appropriate.
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4 The Overlooked Temporal Space

Data is commonly stored in matrices, with time series data incorporating an extra attribute for the times-
tamps, which forms a logical timeline to reflect the absolute time evolution in reality. Traditionally, modeling
has relied on this timeline to determine the chronological order of all potential events. However, our intuitive
understanding of time is far more complex than this singular, simplified absolute timeline.

Consider an analogy where ants dwell on a two-dimensional plane of a floor. If these ants were to construct
models, they might use the nearest tree as a reference to specify the elevation in their two-dimensional models.
By modeling, they observe an increased disruption at the tree’s mid-level, which indicates a higher chance of
encountering children. However, since they fail to comprehend humans as three-dimensional beings, instead
of interpreting this phenomenon in a new dimension “height”, they solely relate it to the tree’s mid-level. If
they migrate to a different tree with a varying height, where mid-level no longer presents a risk, they might
conclude that human behavior is too complex to model effectively. Similarly, when modeling time series, we
usually discount the dimension “time” as the single absolute timeline, which has become our “tree”.

Our understanding allows for the simultaneous existence of multiple logical timelines. If one is designated as
the absolute timeline, the remaining ones can be viewed as relative timelines, each representing distinctive
temporal events, which can be interconnected via specific relationships. In such Relation-Oriented perspec-
tive, like, during a causal inference analysis, the temporal dimension contains numerous possible logical
timelines that we could choose to construct any necessary scenarios. However, once we enter a modeling
context, like, using AI to model the time series along a single timeline, the temporal significance no longer
exists, but only a regular dimension containing timestamp values, indistinguishable from other observational
attributes. Metaphorically, if we consider the observational space for AI modeling as Schrödinger’s box and
our interest is the “cat” within, our task is to accurately construct the box, giving adequate consideration
to all potential logical timelines, to ensure the “cat” remains reasonable upon unveiling.

Theorem 2. The term Temporal Dimension encompasses all potential logical timelines, not just a
singular one. Consequently, a Temporal Space is defined as the space built by chosen timeline axes.

Fundamentally, as three-dimensional beings, we are limited from truly understanding temporal dimension-
ality. As the term “space” typically evokes a three-dimensional conception, the notion of “temporal space”
might seem odd for a four-dimensional creature. Like ants can use trees as references without the need to
fully comprehend the third dimension, we rely on logical timelines to interpret the fourth. At this juncture,
our mission is to recognize the potential “forest” beyond the present single “tree”.

This section will demonstrate how the single-timeline-based timestamp specification operation, rooted in the
Observation-Oriented paradigm, inherently biases modeling and hinders model generalizability. Then we
will summarize advancements and challenges on our journey towards realizing causal knowledge-aligned AI.

4.1 Inherent Temporal Bias Scheme
Modeling event identification typically relies on timestamps derived from a singular timeline in time series
data. In structural causal models (SCMs), this can induce inherent temporal biases, limiting our capacity
to leverage AI’s potential in the temporal dimension. This issue becomes more acute in large-scale causal
relationships, where more logical timelines may be hidden.

To better ascribe this issue, we improve the causal DAG (directed acyclic graph) Pearl (2009) as follows: 1)
incorporating (potentially multiple) logical timelines as axes into the DAG space, and 2) defining edges along
timeline axes to be vectors with meaningful lengths indicating the timespans of causal effects. For example,
the single-timeline scenario in Figure 3 has the new DAG depicted in Figure 6(b), with (a) showing the
traditional one as a comparison. The edge do(A) → B in Figure 6(a) represents the population-level effect
only, thus necessities a hidden confounder to explain the individual-level diversities, while in Figure 6(b),
they can be explicitly represented by varying lengths of

−−−−−→
do(A) B.

Consider an expanded two-timeline scenario in Figure 7(a), where A shorthandly represents do(A). Apart
from its primary effect on B, A also indirectly influences B through its side effect on another vital sign, C,
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depicted as edges −→AC and −−→CB. For simplicity, assume the timespan for −→AC is 10 days for all patients, with
the individual-level diversity confined to timeline TX alone. In conventional single-timeline causal modeling,
the SCM function would be Bt+30 = f(At, Ct+10). Let’s assume f(At, Ct+10) is implemented using RNNs,
which can accurately depict the individual-level final effects of A on B for any patient.

The confounding relationship over nodes {A,B,C} forms a triangle across timelines TX and TY - such shape
geometrically holds for any hierarchical level relationship. For patients Pi and Pj , the individualization
process is to “stretch” this triangle along TX by different ratios, which is a homographic linear transformation
in this space. However, as illustrated in Figure 7 (b) and (c), for either Pi or Pj , equating the outcome of f
to be Bt+30 violates the causal Markov condition necessary for reasonable SCMs.

Timeline of Days

𝑡 𝑡 + 30𝑡 + 20 𝑡 + 40…

𝑩

𝑑𝑜(𝑨)

𝑩 𝑩

𝑷𝒊 is 1/3 Faster 𝑷𝒋 is 1/3 Slower𝑑𝑜(𝑨)

𝑩

the Unobserved 
Characteristics  

of Patient 𝑬 = {𝑬𝒊, 𝑬𝒋, … }

(a) (b)

Figure 6: (a) Traditional Causal DAG introducing hidden E. (b) Improved DAG: the standard black vector
signifies the population-level effect, while the individual-level ones are represented by its different scaling.
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𝑩𝒕+𝟑𝟎 𝑩𝒕+𝟒𝟎𝑨𝒕

𝑪𝒕+𝟏𝟎
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20 30 400

𝐵𝑡+30 ≠ 𝑓(𝐴𝑡 , 𝐶𝑡+10) 𝐵𝑡+30 ≠ 𝑓(𝐴𝑡 , 𝐶𝑡+10) (a) Valid Individualization = Linear Transformation

Figure 7: (a) A two-timeline DAG space, where a valid individualization presents a linear transformation.
(b)(c) Violations of the Markov condition for the prevailing SCM with confounding dynamics across timelines.

Notably, in this specific case, the violation may not cause significant issues for AI models like RNNs. Given
the independence of dynamics on TX and TY , the SCM can be formulated as Bt+30 = f1(At) + f2(Ct+10),
suggesting that the cross-timeline confounding can be broken down into two single-timeline issues. However,
making assumptions such as independence or non-confounding is unrealistic. Since each cause-and-effect
pair might possess its unique logical timeline, these inherent temporal biases can accumulate exponentially,
significantly impacting the robustness of causal models, irrespective of our model selections.

Theorem 3. The inherent temporal bias may occur in SCM if it contains: 1) Confounding dynamical
temporal features across Multiple logical timelines, and 2) Unobservable hierarchy.

It is interesting to notice that most of the successful causal applications instinctively avoid one of the two
factors: confounding or multi-timeline. Statistical causal models can facilitate de-confounding as a pre-
processing, e.g., the backdoor adjustment Pearl (2009). For AI models, most of the achievements do not
potentially involve relative timelines, e.g., the large language model (LLM) in a semantic space, where the
phrases are ordered consistently along a single logical timeline.

Unlike AI’s black-box nature, causal inference essentially takes a Relation-Oriented viewpoint. Nevertheless,
in its context, the inherent temporal biases are difficult to recognize, as they often intermingle with the
modeling biases resulting from the statistically unsolvable nonlinearity. They have similar manifestations,
and both can be addressed by de-confounding. Consider Figure 6(a), the linearly modeled population-level
effect mismatches with individuals Pi and Pj , which may not be distinguishable from the mismatching that
occurs in Figure 7(b)(c), caused by dynamics across multi-timelines.
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4.2 Inherent Impact on SCM Generalizability

Traditional SCMs usually require specifying timestamps for objective events before modeling relations. While
this affects model robustness, the more pressing concern is that neglecting multiple timelines can render
established SCMs non-generalizable across different scenarios with analogous core relationships.

A B
C

S

A’ B’

C’
A

B

CS A B C

S

A’ B’ C’

T2D: Type II Diabetes
LDL: Blood Lipid

Statin: Medicine to Reduce LDL
BP: Blood Pressure

Figure 8: An exemplified 3D observational-temporal DAG space, with specified SCM, B′ = f(A,C, S) , to
evaluate Statin’s medical effect on reducing the risk of T2D, including two logical timelines TY and TZ . On
TY , the step ∆t from t to (t+ 1) allows A and C to fully influence B, while the step ∆τ on TZ , from (τ + 1)
to (τ + 2), let medicine S completely release its effect to progress from A to A′.

Consider the practical scenario depicted in Figure 8. Here, ∆t and ∆τ represent actual time spans. Yet, the
crux is not on determining their exact values, but on realizing their intended causal relationship: As each unit
of Statin’s effect is delivered on LDL via

−−→
SA′, it immediately impacts T2D through

−−−→
A′B′. Simultaneously,

the next unit effect begins generation. This dual action runs concurrently until S is fully administered. At
B′, the ultimate aim of this process is to evaluate the total cumulative influence stemming from S.

Given the relationship
−−→
SB′ =

−−→
SA′ +

−−−→
A′B′, specifying the

−−→
SB′ time span (i.e., half of the

−−→
AB′ time span)

inherently sets the ∆t : ∆τ ratio, defining the ASB′ triangle’s shape in this DAG space. While the estimated
mean effect at B′ might be precise for the present population, the preset ∆t : ∆τ ratio’s universality is
questionable, potentially constraining the established SCM’s generalizability.

4.3 Toward Causal Knowledge-Aligned AI

Our quest for causal reasoning AI involves broadening our modeling techniques from solely observational to
include temporal dimensions, as summarized in Figure 9. The present challenge lies in enabling structural
causal models in the joint observational-temporal feature space. Recognizing underlying logical timelines is
critical to avoid inherent biases and enhance model generalizability. However, since manual identification is
unrealistic, it may have been time for us to consider the new paradigm.

The initial models under i.i.d. assumption only approximate observational associations, proved unreliable
for causal reasoning Pearl et al. (2000); Peters et al. (2017). Correspondingly, the common cause principle
highlights the significance of the nontrivial conditional properties, to distinguish structural relationships from
statistical dependencies Dawid (1979); Geiger & Pearl (1993), providing a basis for effectively uncovering
the underlying structures in graphical models Peters et al. (2014).

Graphical causal models relying on conditional dependencies to construct Bayesian networks (BNs) often
operate in observational space and neglect temporal aspects, reducing their causal relevance Scheines (1997).
Causally significant models, such as Structural Equation Models (SEMs) and Functional Causal Models
(FCMs) Glymour et al. (2019); Elwert (2013), can address counterfactual queries Scholkopf et al. (2021),
with respect to temporal distributions by leveraging prior knowledge, to construct causal DAGs accordingly.

State-of-the-art deep learning applications on causality, which encode the DAG structural constraint into
continuous optimization functions Zheng et al. (2018; 2020); Lachapelle et al. (2019), undoubtedly enable

11



Under review as submission to TMLR

highly efficient solutions, especially for large-scale problems. However, larger question scales indicate more
underlying logical timelines, which may lead to snowballing temporal biases. It can be evident from the
limited successful applications of incorporating DAG structure into network architectures Luo et al. (2020);
Ma (2018), e.g., neural architecture search (NAS).
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Figure 9: Simple Taxonomy of Models (Adapted in part of Table 1 in Scholkopf et al. (2021)), from more
knowledge-driven (top in purple) to more data-driven (bottom in green). Notations: θ = parameter derived
from joint or conditional distribution, ⟨X, t⟩ = augment t-dimension, “?” = depending on practice.

Schölkopf Scholkopf et al. (2021) summarized three key challenges impeding causal AI applications to achiev-
ing generalizable success: 1) limited model robustness, 2) insufficient model reusability, and 3) inability to
handle data heterogeneity (caused by unobservable hierarchies in knowledge). Notably, all these challenges
can be attributed to the timestamp specification required by Observation-Oriented structural models.

On the other side, physical models, which explicitly integrate temporal dimensions in computation, and are
able to establish abstract concepts through relations, may provide insights into these challenges. We believe
that the Relation-Oriented approach can help bridge the gap between observational and temporal spaces.

Chapter II: Realization of Proposed Relation-Oriented Paradigm

This chapter begins by formulating the factorizations to achieve hierarchical disentanglement in the latent
space. Then, we explore the proposed relation-defined representation methodology as an embodiment of the
Relation-Oriented paradigm. Lastly, we validate its efficacy through comprehensive experiments.

5 Hierarchical Disentanglement in Latent Space

Given an observational variable X ∈ Rd, we denote its time sequence of length T as {xt} = {x1, . . . , xt−1,
xt, xt+1, . . . , xT }. Our goal is to construct a latent feature space RL for two specific purposes: 1) Fully
represent the observational-temporal features of X = ⟨X, t⟩ ∈ Rd+1. 2) Hierarchically disentangle X ’s repre-
sentation according to relations in knowledge. Consequently, the established system realizes the reusability
of models at any hierarchical level by indexing through the corresponding relations.

For Y = ⟨Y, τ⟩ ∈ Rb+1, if the relationship X → Y identifies certain features of Y’s distribution, the proposed
relation-defined representation learning aims to extract the representation Ŷ as determined by the relation
with X . Moreover, the resulting Ŷ should be reusable in developing subsequent levels of Y’s representations,
thereby facilitating the generalizability of the relationship model for X → Y. For instance, in a graphical
system {X ,Y,Z} with relationship X → Y ← Z, Y can be viewed as in a two-level hierarchy. The first
level is defined by X → Y and the second by ⟨X ,Z⟩ → Y, where the second level enhances the first by
incorporating an additional data stream from Z.
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5.1 Factorize Observational-Temporal Hierarchy
Let X = (X1, . . . , Xd) ∈ Rd, and assume X = ⟨X, t⟩ ∈ Rd+1 has an n-level hierarchy. Define Θi as the i-th
level component of X in the observable data space, and its counterpart in the latent feature space RL as θi.
The representation function fi facilitates the transformation from Rd+1 to RLi for the i-th level, considering
all prior lower-level features as attributes. θi is a vector in RL, with its significant value residing in a subset of
the L dimensions, denoted as RLi , forming the disentanglement {RL1 , . . . ,RLi , . . . ,RLn}. Then, we obtain:

X =
n∑

i=1
Θi, where Θi = fi

(
θi; Θ1, . . . ,Θi−1

)
with Θi ∈ Rd+1 and θi ∈ RLi ⊆ RL (1)

To illustrate an observational hierarchy, refer to Figure 2 (b). Let θ1 ∈ RL1 , θ2 ∈ RL2 , and θ3 ∈ RL3 represent
the three levels of features, with each subspace being mutually exclusive. That is, L = L1 + L2 + L3. The
combined vector ⟨θ1, θ2, θ3⟩ ∈ RL represent the whole image. In correspondence, Θ1, Θ2, and Θ3 are full-
scale images, each presenting unique content. For instance, Θ1 highlights the details of the fingers, whereas
Θ1 + Θ2 expands to showcase the entire hand.

In the context of an observational-temporal hierarchy, the component Θi ∈ Rd+1 can be expressed as the
original time sequence {Θt}i = {Θti

∈ Rd | ti = 1, . . . , T}. Consequently, we obtain a set of relative logical
timelines {t1, . . . , ti, . . . , tn} which, in contrast to the absolute timeline t, are each uniquely determined by
the relationship at their respective levels. However, in the observable data space, the i-th level observational-
temporal feature, represented as the sum Θ1 + . . .+ Θi, still maintains its timestamp attribute along t.

5.2 Factorize Hierarchy of Relationship
Given a set of n-level hierarchical representation functions for X , denoted by F(ϑ) =

{
fi

(
θi

)
| i = 1, . . . , n

}
,

our goal is to define n relationship functions, collectively termed G, such that Y = G(X ) exhibits an n-level
hierarchy. Each i-th level relationship function is gi(X ;φi), where φi is its parameter. Then, we have:

G(X ) =
n∑

i=1
gi(X ;φi) =

n∑
i=1

gi(Θi;φi) =
n∑

i=1
gi

(
θi; Θ1, . . . ,Θi−1, φi

)
= Y (2)

The i-th level relation-defined representation for Y is gi(θi;φi) considering the features of the preceding
(i − 1) levels of X . This relationship can be portrayed as the augmented feature vector ⟨θi, φi⟩ in latent
space RL. Using ϑX and ϑY to distinguish the collective hierarchical representations for X and Y respectively,
the overall relationship from X to Y becomes ϑY = ⟨ϑX , φ⟩, where φ = {φ1, . . . , φn}. The term ⟨ϑX , φ⟩
represents the pairwise augmentations between collections ϑX and φ.

6 Relation-Defined Representation Methodology

Causal Knowledge 
(e.g., DAGs)

Generated/Simulated/Imputed…
Observations

Traditional Causal Learning 
and Interpretations

Relation-Defined 
Representations

Observed
Data Sequences

Encoding

Decoding

Model Generalization 
and Individualization

Latent Feature 

Space

Original 

Observational-Temporal 

Data Space

Reconstructed 

Observational 

Data Space

Figure 10: Framework of utilizing relation-defined representations to benefit conventional models.

While the existing Observation-Oriented modeling paradigm has its limitations, it still forms the basis
of many existing knowledge infrastructures. As showcased in Figure 10, relation-defined representations
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enable AI to create generalizable models in a latent space rich with human-indecipherable features, and
concurrently, AI’s potential can be utilized to refine observations, thereby fortifying traditional models
through counterfactual effects, de-confounded simulations, and more.

This section presents a specialized autoencoder architecture essential for implementing relation-defined rep-
resentation; then, outlines the methodology for disentangling hierarchical levels of representations in con-
structing graphical models. Finally, we introduce a causal discovery algorithm for the latent feature space.

6.1 Invertible Autoencoder for Higher-Dimensional Representation

Autoencoders are generally used for dimensionality reduction, often aligning all observational variables as
data attributes for this purpose in structural modeling Wang et al. (2016). However, our objective diverges.
We aim to model individual relationships to disentangle variables’ representations and simultaneously “stack”
them to form a DAG within the latent space, RL. This space must be large enough to accommodate potential
relationships in the form of ϑY = ⟨ϑX , φ⟩. This poses a substantial technical challenge, as we need to achieve
higher-dimensional representation extraction for individual variables.

Corollary 1. For a given graph G and a data matrix X, which is column-augmented by all obser-
vational attributes and timestamps of variables in G, the dimensionality L of the latent space must
be at least as large as rank(X) to adequately represent G.

Corollary 1 stems from the notion that the autoencoder-learned RL is spanned by X’s top principal com-
ponents, often referred to in Principal Component Analysis (PCA) Baldi & Hornik (1989); Plaut (2018);
Wang et al. (2016). Hypothetically, reducing L below rank(X) may yield a less adequate but causally more
significant latent space through better alignment Jain et al. (2021) (further exploration is needed). In this
study, we will set aside discussions on the boundaries of dimensionality. Our experiments feature 10 variables
with dimensions 1 to 5 (Table 1), and we empirically fine-tune and reduce L from 64 to 16.

Encoder Decoder

Fully 
Connect

Relu

…

Encrypt

Latent Space 
Representation

Copy

Input 

𝒙

Decrypt

Output 

𝒙
Keys

Figure 11: Invertible autoencoder architecture for extracting higher-dimensional representations.

Figure 11 depicts the proposed autoencoder architecture, featured by the symmetrical Encrypt and Decrypt
layers. Encrypt amplifies the input vector −→x by extracting its higher-order associative features; conversely,
Decrypt symmetrically reduces dimensionality and restores −→x to its original form. To ensure reconstruction
accuracy, the invertibility of these operations is naturally required.

Figure 11 illustrates a double-wise associative feature expansion, where each pair of two digits from −→x are
encoded to form a new digit, by associating with a randomized constant Key, which is created by the encoder
and mirrored by the decoder. A double-wise expansion on −→x ∈ Rd generates a (d−1)(d−1) length vector. By
using multiple Keys and augmenting the derived vectors, −→x can have a significantly extended dimensionality.

The four differently patterned blue squares represent the vectors expanded by four distinct Keys, with the
grid patterns indicating their “signatures”. Each square visualizes a (d−1)(d−1) length vector (not signifying
a 2-dimensional vector). In a similar way, higher-order extensions, such as triple-wise ones across every three
digits, can also be employed by appropriately adapting Keys.

14



Under review as submission to TMLR

𝑥𝑗 ⊗𝒆𝒙𝒑 𝒔 𝑥𝑖 + 𝒕(𝑥𝑖)

Encrypt

𝑥𝑖 𝑥𝑗

𝑦𝑗

𝒕

𝒔

+

×

𝑦𝑖

Input 𝑥

Decrypt

𝑦𝑖 𝑦𝑗

𝑥𝑗

𝒕

𝒔

−

÷

𝑥𝑖

Output 𝑥

𝑦𝑗 − 𝒕 𝑦𝑖 ⊗𝒆𝒙𝒑(−𝒔(𝑦𝑖))

Figure 12: Encrypt (left) and Decrypt (right).
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Figure 13: Relationship model architecture.

Figure 12 depicts the encryption and decryption processes used to expand a digit pair (xi, xj), where i ̸= j ∈
1, . . . , d. The encryption function fθ(xi, xj) = xj ⊗ exp(s(xi)) + t(xi) is defined by two specific elementary
functions, s(·) and t(·). The parameter θ, serving as a Key, consists of their respective weights, θ = (ws, wt).

Specifically, the encryption of (xi, xj) transforms xj into a new digit yj using xi as a selected attribute. The
decryption process symmetrically employs the inverse function f−1

θ , defined as (yj − t(yi)) ⊗ exp(−s(yi)).
Notably, this approach sidesteps the need to calculate s−1 or t−1, allowing s(·) and t(·) to be flexibly specified
as needed for nonlinear transformations. This design is inspired by the pioneering work of Dinh et al. (2016)
on invertible neural network layers that utilize bijective functions.

By collectively representing all fθ functions as F(X;ϑ), where ϑ encompasses all parameters, the Encrypt
and Decrypt layers can be denoted as Y = F(X;ϑ) and X = F−1(Y ;ϑ), respectively. The source code for
both Encrypt and Decrypt is provided 1, along with a comprehensive experimental demo.

6.2 Stacking Hierarchical Representations to form SCM

Consider a causal system comprising three variables {X ,Y,Z}, each with corresponding representations
{H,V,K} ∈ RL initially extracted by three separate autoencoders. Figure 13 illustrates the process of
linking H and V to model the relationship X → Y. Additionally, Figure 14 depicts how two modeled
relationships related to Y are stacked to form a hierarchically disentangled representation.

Consider instances x and y for the relationship X → Y, which are represented as h and v in RL. To estimate
the latent dependency P(v|h), we use an RNN, as shown in Figure 13, to explicitly include the temporal
features of h. For the time being, we allow V to autonomously capture any potential dynamics, with the
expectation of future refinements. Each iteration of the learning process involves three optimizations:

1. Optimizing encoder P(h|x), RNN model P(v|h), and decoder P(y|v) to reconstruct x→ y relation.
2. Fine-tuning encoder P(v|y) and decoder P(y|v) to accurately represent y.
3. Fine-tuning encoder P(h|x) and decoder P(x|h) to accurately represent x.

Throughout the learning, h and v values are iteratively refined to minimize their distance in RL, and RNN
acts as a bridge to traverse this distance, thereby informatively modeling the relation x→ y.

Figure 14 presents two stacking scenarios for Y within the {X ,Y,Z} system, according to different causal
directions. Given the established X → Y relationship in RL, the left-side architecture completes X → Y ← Z
structure, while the right-side caters to X → Y → Z. By stacking an additional representation layer,
hierarchical disentanglement is formed, allowing for various input-output combinations (denoted as 7→) based
on practical needs. For instance, in the left-side setup, P(v|h) 7→ P(α) signifies the X → Y relationship,
while P(α|k) suggests Z → Y. On the right side, P(v) 7→ P (β|k) indicates the Y → Z relationship with Y
as input; conversely, P(v|h) 7→ P (β|k) signifies the causal chain X → Y → Z.

1https://github.com/kflijia/bijective_crossing_functions/blob/main/code_bicross_extracter.py
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Causal relationships of known edges can be sequentially stacked using existing causal DAGs in domain
knowledge. Additionally, this approach aids in discovering causal structures within the latent space by
identifying potential relationships among the initial variable representations.
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Figure 14: Architecutres of the relation-defined hierarchical disentanglement.

6.3 Causal Discovery in Latent Space

Algorithm 1 outlines the heuristic procedure for identifying edges among the initial variable representations.
We use Kullback-Leibler Divergence (KLD) as a metric to evaluate the strength of causal relationships.
Specifically, as depicted in Figure 13, KLD evaluates the similarity between the RNN output P(v|h) and
the prior P(v). Lower KLD values indicate stronger causal relationships due to closer alignment with the
ground truth. Although Mean Squared Error (MSE) is a common evaluation metric, its susceptibility to
data variances Reisach et al. (2021); Kaiser & Sipos (2021) led us to prefer KLD, using MSE as a secondary
measure. In the graphical representation context, we refer to variables A and B in the edge A → B as the
cause node and result node, respectively.

Algorithm 1: Latent Space Causal Discovery
Result: ordered edges set E = {e1, . . . , en}
E = {} ; NR = {n0 | n0 ∈ N, P arent(n0) = ∅} ;
while NR ⊂ N do

∆ = {} ;
for n ∈ N do

for p ∈ P arent(n) do
if n /∈ NR and p ∈ NR then

e = (p, n); β = {};
for r ∈ NR do

if r ∈ P arent(n) and r ̸= p then
β = β ∪ r

end
end
δe = K(β ∪ p, n) − K(β, n);
∆ = ∆ ∪ δe;

end
end

end
σ = argmine(δe | δe ∈ ∆);
E = E ∪ σ; NR = NR ∪ nσ ;

end

G = (N,E) graph G consists of N and E
N the set of nodes
E the set of edges
NR the set of reachable nodes
E the list of discovered edges
K(β, n) KLD metric of effect β → n
β the cause nodes
n the result node
δe KLD Gain of candidate edge e
∆ = {δe} the set {δe} for e
n,p,r notations of nodes
e,σ notations of edges

Figure 15 illustrates the causal structure discovery process in latent space over four steps. Two edges, (e1
and e3), are sequentially selected, with e1 setting node B as the starting point for e3. In step 3, edge e2
from A to C is deselected and reassessed due to the new edge e3 altering C’s existing causal conditions. The
final DAG represents the resulting causal structure.
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Figure 15: An example of causal discovery in the latent space.

7 Efficacy Validation Experiments
The experiments aim to validate the efficacy of the relation-defined representation learning method in three
areas: 1) extracting higher-dimensional representations with the proposed autoencoder architecture, 2) hi-
erarchically establishing relation-defined representations, and 3) discovering DAG structure in latent space.
A full demonstration of the experiments conducted in this study is available online 2.

We use a synthetic hydrology dataset for our experiments, a common resource in the field of hydrology. The
task focuses on predicting streamflow based on observed environmental conditions like temperature and pre-
cipitation. The application of relation-defined representation learning aims to create a streamflow prediction
model that is generalizable across various watersheds. While these watersheds share a fundamental hydro-
logical scheme governed by physical rules, they may exhibit unique features due to unobserved conditions
such as economic development and land use. Current models based on physical knowledge, however, often
lack the flexibility to fully capture multiple levels of dynamical temporal features across these watersheds.

In fact, to evaluate model robustness and generalizability, health informatics data would be optimal due to
their complex confounding dynamics across multiple timelines. However, empirical constraints prevented us
from accessing such data for this study. For insights into inherent temporal bias, we refer readers to previous
work Li et al. (2020).

1st tier causality

2nd tier causality

3rd tier causality

A

B

C

D

E

F

G

H

I

J

ID Variable Name Explanation

A Environmental set I Wind Speed, Humidity, Temperature

B Environmental set II Temperature, Solar Radiation, Precipitation

C Evapotranspiration Evaporation and transpiration

D Snowpack The winter frozen water in the ice form

E Soil Water Soil moisture in vadose zone

F Aquifer Groundwater storage

G Surface Runoff Flowing water over the land surface

H Lateral Vadose zone flow

I Baseflow Groundwater discharge

J Streamflow Sensors recorded outputs

Figure 16: Hydrological causal DAG: routine tiers organized by descending causal strength.

7.1 Hydrology Dataset
In hydrology, deep learning, particularly RNN models, has gained favor for extracting observational rep-
resentations and predicting streamflow Goodwell et al. (2020); Kratzert (2018). For our experiments, we
employ the Soil and Water Assessment Tool (SWAT), a comprehensive system grounded in physical modules,
to generate dynamically significant hydrological time series. We focus on a simulation of the Root River
Headwater watershed in Southeast Minnesota, covering 60 consecutive virtual years with daily updates.

Figure 16 displays the causal DAG employed by SWAT, complete with node descriptions. The hierarchy of
hydrological routines is color-coded based on their contribution to output streamflow. Surface runoff (1st
tier) significantly impacts rapid streamflow peaks, followed by lateral flow (2nd tier). Baseflow dynamics (3rd
tier) have a subtler influence. Our causal discovery experiments aim to reveal these underlying relationships
from the observed data.

2https://github.com/kflijia/bijective_crossing_functions.git
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Table 1: Statistics of variable attributes and performances of the variable representation test.
Variable Dim Mean Std Min Max Non-Zero Rate% RMSE on Scaled RMSE on Unscaled BCE of Mask

A 5 1.8513 1.5496 -3.3557 7.6809 87.54 0.093 0.871 0.095
B 4 0.7687 1.1353 -3.3557 5.9710 64.52 0.076 0.678 1.132
C 2 1.0342 1.0025 0.0 6.2145 94.42 0.037 0.089 0.428
D 3 0.0458 0.2005 0.0 5.2434 11.40 0.015 0.679 0.445
E 2 3.1449 1.0000 0.0285 5.0916 100 0.058 3.343 0.643
F 4 0.3922 0.8962 0.0 8.6122 59.08 0.326 7.178 2.045
G 4 0.7180 1.1064 0.0 8.2551 47.87 0.045 0.81 1.327
H 4 0.7344 1.0193 0.0 7.6350 49.93 0.045 0.009 1.345
I 3 0.1432 0.6137 0.0 8.3880 21.66 0.035 0.009 1.672
J 1 0.0410 0.2000 0.0 7.8903 21.75 0.007 0.098 1.088

Table 2: Brief summary of the latent space causal discovery test.
Edge A→C B→D C→D C→G D→G G→J D→H H→J B→E E→G E→H C→E E→F F→I I→J D→I
KLD 7.63 8.51 10.14 11.60 27.87 5.29 25.19 15.93 37.07 39.13 39.88 46.58 53.68 45.64 17.41 75.57
Gain 7.63 8.51 1.135 11.60 2.454 5.29 25.19 0.209 37.07 -5.91 -3.29 2.677 53.68 45.64 0.028 3.384

7.2 Higher-Dimensional Variable Representation Test
In this test, we have a total of ten variables (or nodes), each requiring a separate autoencoder for initializing a
higher-dimensional representation. Table 1 lists the statistics of their post-scaled (i.e., normalized) attributes,
as well as their autoencoders’ reconstruction accuracies. Accuracy is assessed in the root mean square error
(RMSE), where a lower RMSE indicates higher accuracy for both scaled and unscaled data.

The task is challenging due to the limited dimensionality of the ten variables - maxing out at just 5 dimensions
and the target node, J , having just one attribute. To mitigate this, we duplicate their columns to a consistent
12 dimensions and add 12 dummy variables for months, resulting in a 24-dimensional input. A double-wise
extension amplifies this to 576 dimensions, from which a 16-dimensional representation is extracted via the
autoencoder. Another issue is the presence of meaningful zero-values, such as node D (Snowpack in winter),
which contributes numerous zeros in other seasons and is closely linked to node E (Soil Water). We tackle
this by adding non-zero indicator variables, called masks, evaluated via binary cross-entropy (BCE).

Despite challenges, RMSE values ranging from 0.01 to 0.09 indicate success, except for node F (the Aquifer).
Given that aquifer research is still emerging (i.e., the 3rd tier baseflow routine), it is likely that node F in
this synthetic dataset may better represent noise than meaningful data.

7.3 Hierarchical Relation-Defined Representations Test
Table 3 presents the results of the relation-defined representation learning. We use the term “single-effect”
to describe the accuracy of a specific result node when reconstructed from a single cause node (e.g., B → D
and C → D), and “full-effect” for the accuracy when all its cause nodes are stacked (e.g., BC → D). To
provide context, we also include baseline performance scores based on the initial variable representations.
During the relation learning process, the result node serves two purposes: it maintains its own accurate
representation (as per optimization no.2 in 6.2) and helps reconstruct the relationship (as per optimization
no.1). Both aspects are evaluated in Table 3.

The KLD metrics in Table 3 indicate the strength of learned causality, with a lower value signifying stronger.
For instance, node J ’s minimal KLD values suggest a significant effect caused by nodes G (Surface Runoff),
H (Lateral), and I (Baseflow). In contrast, the high KLD values imply that predicting variable I using D
and F is challenging. For nodes D, E, and J , the “full-effect” are moderate compared to their “single-effect”
scores, suggesting a lack of informative associations among the cause nodes. In contrast, for nodes G and H,
lower “full-effect” KLD values imply capturing meaningful associative effects through hierarchical stacking.
The KLD metric also reveals the most contributive cause node to the result node. For example, the proximity
of the C → G strength to CDE → G suggests that C is the primary contributor to this causal relationship.

Figure 17 showcases reconstructed time series, for the result nodes J , G, and I, in the same synthetic year
to provide a straightforward overview of the hierarchical representation performances. Here, black dots
represent the ground truth; the blue line indicates reconstruction via the initial variable representation, and
the “full-effect” representation generates the red line. In addition to RMSE, we also employ the Nash–Sutcliffe
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Figure 17: Reconstructed time series, via hierarchically stacked relation-defined representations.

model efficiency coefficient (NSE) as an accuracy metric, commonly used in hydrological predictions. The
NSE ranges from -∞ to 1, with values closer to 1 indicating higher accuracy.

The initial variable representation closely aligns with the ground truth, as shown in Figure 17, attesting to
the efficacy of our proposed autoencoder architecture. As expected, the “full-effect” performs better than
the “single-effect” for each result node. Node J exhibits the best prediction, whereas node I presents a
challenge. For node G, causality from C proves to be significantly stronger than the other two, D and E.

One may observe via the demo that our experiments do not show smooth information flows along successive
long causal chains. Since RNNs are designed primarily for capturing the dynamics of causes rather than
the effects, relying on them to autonomously construct dynamical representations of the effects might prove
unreliable. It underscores a significant opportunity for enhancing effectiveness by improving the architecture.

7.4 Latent Space Causal Discovery Test
The discovery test initiates with source nodes A and B and proceeds to identify potential edges, culminating
in the target node J . Candidate edges are selected based on their contributions to the overall KLD sum (less
gain is better). Table 6 shows the order in which existing edges are discovered, along with the corresponding
KLD sums and gains after each edge is included. Color-coding in the cells corresponds to Figure 16, indicating
tiers of causal routines. The arrangement underscores the efficacy of this latent space discovery approach.

A comprehensive list of candidate edges evaluated in each discovery round is provided in Table 4 in Appendix
A. For comparative purposes, we also performed a 10-fold cross-validation using the conventional FGES
discovery method; those results are available in Table 5 in Appendix A.
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Table 3: Performances of the relation-defined representations, sorted by the result node.
Variable Representation
(Initial)

Variable Representation
(in Relation Learning) Relationship Reconstruction

RMSE BCE RMSE BCE RMSE BCE KLDResult
Node on Scaled

Values
on Unscaled

Values Mask

Cause
Node on Scaled

Values
on Unscaled

Values Mask on Scaled
Values

on Unscaled
Values Mask (in latent

space)
C 0.037 0.089 0.428 A 0.0295 0.0616 0.4278 0.1747 0.3334 0.4278 7.6353

BC 0.0350 1.0179 0.1355 0.0509 1.7059 0.1285 9.6502
B 0.0341 1.0361 0.1693 0.0516 1.7737 0.1925 8.5147D 0.015 0.679 0.445
C 0.0331 0.9818 0.3404 0.0512 1.7265 0.3667 10.149
BC 0.4612 26.605 0.6427 0.7827 45.149 0.6427 39.750
B 0.6428 37.076 0.6427 0.8209 47.353 0.6427 37.072E 0.058 3.343 0.643
C 0.5212 30.065 1.2854 0.7939 45.791 1.2854 46.587

F 0.326 7.178 2.045 E 0.4334 8.3807 3.0895 0.4509 5.9553 3.0895 53.680
CDE 0.0538 0.9598 0.0878 0.1719 3.5736 0.1340 8.1360
C 0.1057 1.4219 0.1078 0.2996 4.6278 0.1362 11.601
D 0.1773 3.6083 0.1842 0.4112 8.0841 0.2228 27.879G 0.045 0.81 1.327

E 0.1949 4.7124 0.1482 0.5564 10.852 0.1877 39.133
DE 0.0889 0.0099 2.5980 0.3564 0.0096 2.5980 21.905
D 0.0878 0.0104 0.0911 0.4301 0.0095 0.0911 25.198H 0.045 0.009 1.345
E 0.1162 0.0105 0.1482 0.5168 0.0097 3.8514 39.886
DF 0.0600 0.0103 3.4493 0.1158 0.0099 3.4493 49.033
D 0.1212 0.0108 3.0048 0.2073 0.0108 3.0048 75.577I 0.035 0.009 1.672
F 0.0540 0.0102 3.4493 0.0948 0.0098 3.4493 45.648
GHI 0.0052 0.0742 0.2593 0.0090 0.1269 0.2937 5.5300
G 0.0077 0.1085 0.4009 0.0099 0.1390 0.4375 5.2924
H 0.0159 0.2239 0.4584 0.0393 0.5520 0.4938 15.930J 0.007 0.098 1.088

I 0.0308 0.4328 0.3818 0.0397 0.5564 0.3954 17.410

8 Conclusions

Motivated by the issue of AI misalignment, we explore the inherent limitation of the prevalent Observation-
Oriented paradigm and introduce a new Relation-Oriented one, complemented by the practical approach of
relation-defined representation learning, and validate its efficacy through experimentations.

This research introduces a dimensionality framework for understanding relationship learning, offering new,
intuitive insights into causal inference and highlighting the restrictions of the existing Observation-Oriented
paradigm. This paradigm typically requires pre-identification of modeling objects before defining relations,
which confines models to the observational space, limiting their access to dynamical temporal features.
Further, by relying on a single, absolute timeline, it neglects the multi-dimensional nature of the temporal
feature space, compromising both model robustness and generalizability.

At its core, human cognition prioritizes relations, giving rise to our vast relation-centric knowledge systems.
We can identify dynamics by navigating the intricate network of relations in unobservable hyper-dimensional
space. This insight inspired the Relation-Oriented paradigm.

While implementing relation-defined representation learning, we faced significant challenges, including de-
signing an invertible autoencoder for higher-dimensional representation. Nevertheless, thorough experiments
have affirmed the feasibility of the proposed methodology. AI alignment is never a question with a simple
answer but calls for interdisciplinary efforts Christian (2020). Through this work, we aim to contribute to
developing more genuine AI and provide a foundation for future advancements.
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