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Abstract

Realtime environments change even as agents perform action inference and learning,
thus requiring high interaction frequencies to effectively minimize long-term regret.
However, recent advances in machine learning involve larger neural networks with
longer inference times, raising questions about their applicability in realtime systems
where reaction time is crucial. We present an analysis of lower bounds on regret
in realtime environments to show that minimizing long-term regret is generally
impossible within the typical sequential interaction and learning paradigm, but often
becomes possible when sufficient asynchronous compute is available. We propose
novel algorithms for staggering asynchronous inference processes to ensure that
actions are taken at consistent time intervals, and demonstrate that use of models
with high action inference times is only constrained by the environment’s effective
stochasticity over the inference horizon, and not by action frequency. Our analysis
shows that the number of inference processes needed scales linearly with increasing
inference times while enabling use of models that are multiple orders of magnitude
larger than existing approaches when learning from a realtime simulation of Game
Boy games such as Pokémon and Tetris.

1 Introduction
An often ignored discrepancy between the discrete-time RL framework and the real-world is the
fact that the world continues to evolve even while agents are computing their actions. As a result,
agents are limited in the types of problems that they can solve because the speed at which they can
compute actions dictates a particular stochastic or deterministic time discretization rate. Agents
that take infrequent actions require some lower-level program to manage behavior between actions,
often through simple policies like remaining still or repeating the last action. Ideally, intelligent
agents would exert more control over their environment, but this conflicts with the trend of using
larger models, which have high action inference and learning times. Consequently, as typically
deployed with sequential interaction, large models, which are often found to be essential for complex
tasks, increasingly rely on low-level automation, reducing their control over realtime environments.
This paper examines this discrepancy and explores alternative asynchronous interaction paradigms,
enabling large models to act quickly and maintain greater control in high-frequency environments.

Figure 1a shows the standard sequential interaction paradigm of RL. In this setup, the agent receives
a state from the environment, learns from the state transition, and then infers an action. Each
process must be completed before the agent can process a new state, limiting the action frequency and
increasing reliance on low-level automation as the model size grows. In contrast, Figure 1b illustrates
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Figure 1: Frameworks for Environment Interaction in RL. a) The typical sequential interaction
paradigm where both learning and action inference block the environment from moving forward.
b) The more realistic setting considered in this work where the environment, the agent’s inference
process, and agent’s learning process all proceed at their own rate and interact asynchronously.
Multiple self-loops are depicted for learning and inference to denote multiple asynchronous processes.

the asynchronous multi-process interaction paradigm we propose. Our key insight is that even models
with high inference times can act at every step using sufficiently many staggered inference processes.
Similarly, sufficiently many asynchronous learning processes can maintain rapid interaction without
blocking progress, despite high inference and learning times. This work formalizes and empirically
tests the benefits and limitations of this approach, making the following contributions:

1. We formalize how the choice of a particular time discretization induces a new learning
problem and how that problem relates to the original learning problem in Definition 1.

2. We derive worst-case lower bounds on regret for solving the new problem in terms of the
original problem in Theorem 1, leading us to conclude in Remark 1 that the typical sequential
interaction framework (Figure 1a) scales poorly with model size.

3. We propose novel approaches for staggering asynchronous inference in Algorithms 1 and 2,
addressing the poor scaling properties of sequential interaction (Remark 2).

4. We conduct comprehensive experiments to verify our theory, and demonstrate the application
of orders of magnitude larger models to realtime games like Pokémon and Tetris.

2 Formalizing Time Discretization in Realtime Reinforcement Learning
Background - Sequential Interaction: Most RL research focuses on agents interacting sequentially
with a Markov Decision Process (MDP) [28; 34] Mseq = ⟨S,A, p, r⟩, where S is a set of states, A is
a set of actions, r(s, a) is a reward function with outputs bounded by rmax, and p(s′|s, a) is a state
transition probability function. Agents take actions based on a policy πθ(a|s) that maps states to
action probabilities parameterized by θ. It is assumed that the time between decisions (which can be
denoted τM as it only depends on the MDP in this case) is constant and the environment can be
paused while the policy generates an action a from state s. The discrete decision step number t is
then given by t = ⌊τ/τM⌋, where τ is the elapsed time in seconds, excluding pauses.

Asynchronous Interaction Environments: The standard MDP formalism lacks a crucial element
for realtime settings where the environment cannot be "paused" and the agent interacts with it
asynchronously, as described by Travnik et al. [37]. In this case, it is necessary to define the
environment’s behavior when the agent has not selected an action. We believe the most general
solution is to use a preset default behavior if there is no available action at by the agent π at
time-step t. This behavior follows a ∼ β(s), where a ∈ Aβ is possibly from a different action
space than A, requiring p and r to be defined over A ∪ Aβ . Now we can define an asynchronous
MDP Masync = ⟨S,A, p, r, β⟩ as an extension of a sequential MDP Mseq with the addition of the
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default behavior policy β.1 Defining the default behavior as a policy is equivalent to the environment
following a Markov chain pβ(s′|s) when no action is available where pβ(s′|s) :=

∑
a∈Aβ

p(s′|s, a)β(a|s)
with expected reward rβ(s) =

∑
a∈Aβ

β(a|s)r(s, a).

Time Discretization Rates: The real environment evolves in continuous time, so we must define
time discretization rates to describe each component of the agent-environment interface in discrete
steps. We treat the environment step time as a random variable TM with sampled values τM ∼ TM
and expected value τ̄M := E[TM]. Similarly, the environment interaction time (a.k.a. the action
cycle time or inverse of the interaction frequency) is a random variable TI with sampled values
τI ∼ TI and expected value τ̄I := E[TI ]. The action inference time of the policy is another random
variable Tθ with sampled values τθ ∼ Tθ and expected value τ̄θ := E[Tθ].2 This sets the stage for
defining the decision problem induced by these choices related to the agent-environment boundary.

Definition 1 (Induced Delayed Semi-MDP) Any configuration of random variables TM,
TI , and Tθ applied to a asynchronous MDP Masync induces a delayed semi-MDP M̃delay :=
⟨S,A, p, r, β, TM, TI , Tθ⟩ where the semi-MDP decision making steps t̃ associated with the
actual decisions of the agent π happen after ⌈τI/τM⌉ steps t in the ground asynchronous MDP
Masync. The semi-MDP is delayed with respect to Masync because semi-MDP actions ãt̃ ∈ A
generated by π are equivalent to actions that are delayed by ⌈τθ/τM⌉ in Masync such that
πθ(ãt̃|st̃) = πθ(at+⌈τθ/τM⌉|st) where st̃ = st. If ⌈τθ/τM⌉ > 1 the transition dynamics are pβ and
reward dynamics are rβ for ⌈τθ/τM⌉ − 1 steps in Masync until at+⌈τθ/τM⌉ is applied.

In general, the optimal policy and optimal reward rate will not be the same for Masync and M̃delay,
with M̃delay incurring additional sub-optimality because of the coarse nature of the decision problem.
That said, we have direct control over TI and Tθ, so it is of interest to understand how our design
decisions relate to the suboptimality experienced. Chiefly, we are interested in understanding under
what scenarios the optimal reward rate of Masync can still be achieved even when τ̄θ >> τ̄M. To do
this, we focus on worst case lower bounds on regret i.e. the unavoidable regret incurred because of
the interaction defined by M̃delay in the worst case scenario where β is always a suboptimal choice.

Theorem 1 (Realtime Regret Decomposition) The total accumulated realtime regret
∆realtime(τ) as a function of time τ of a delayed semi-MDP M̃delay relative to the oracle
policy in the underlying asynchronous MDP Masync can be decomposed into independent terms.

∆realtime(τ) = ∆learn(τ) + ∆inaction(τ) + ∆delay(τ) (1)

∆learn(τ) is the regret experienced even in sequential environments as a result of necessary
learning and exploration. The lower bound on the regret of this term in the worst case is:3

∆learn(τ) ∈ Ω(
√

τ(τ̄I/τ̄M)) (2)

∆inaction(τ) expresses the regret as a result of following β rather than optimal actions in Masync.
The lower bound and upper bound on the regret of this term in the worst case is:

∆inaction(τ) ∈ Θ(τ(τ̄I − τ̄M)/τ̄M) (3)

∆delay(τ) expresses the regret as a result of the delay of actions by π in the underlying asyn-
chronous Masync. The lower bound on the regret of this term in the worst case is:

∆delay(τ) ∈ Ω(τ × E[(1− pminimax)τθ/τM ]) (4)

where pminimax := mins∈S,a∈A maxs′∈S p(s′|s, a) is a measure of environment stochasticity4and
τθ/τM is the number of environment steps elapsed during the inference of an action.

1Note that β need not be non-Markovian, because the state space should be defined to include any intermediate
computations needed to generate the actions of the default behavior policy.

2While policies in general could have adaptive computation times based on the state being processed, this is
relatively uncommon in the RL literature and will be left to future work for simplicity of the discourse.
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See Appendix E for a formal proof of Theorem 1 and our other findings. We believe this work is
the first to formally state the regret decomposition in Equation 1. Note that previous studies on
real-world RL have highlighted the challenges of learning from limited samples, realtime inference,
and managing system delays in scaling methods to realtime settings [8]. Equation 2 extends known
lower bounds on learning time [16], using the notation from Definition 1 to explicitly connect with
continuous time. Notably, this bound depends on τ̄I (not τ̄θ) and assumes learning can keep pace
with the environment to learn from every interaction. Equation 3 provides a novel regret bound,
formalizing the known suboptimality of interacting with realtime environments at a slower pace
[37; 13; 29; 41; 40; 10]. This result highlights the limitations of the sequential interaction paradigm.

Remark 1 (Realtime Regret of Sequential Interaction) When π and Masync interact
sequentially, τI ∈ Ω(τθ) such that in the worst case ∆inaction(τ) ∈ Ω(τ(τ̄θ − τ̄M)/τ̄M). This
implies that as τ →∞, in the worst case ∆realtime(τ)/τ ∈ Ω(∆inaction(τ)/τ) ∈ Ω((τ̄θ− τ̄M)/τ̄M).

This means a realtime framework with sequential interaction cannot ensure that regret will eventually
dissipate. Thus, we explore asynchronous alternatives in the next section. Finally, Equation 4
highlights the key limitation in minimizing regret using asynchronous compute. Previous work
established that suboptimality from delay in MDPs relates to the stochasticity in the underlying
undelayed MDP [7; 24], focusing on communication delays inherent to the environment. Our focus,
however, is on delays caused by the agent’s computations, which we can control. Thus, the emphasis
on regret associated with the decision that leads to a particular value of τθ is novel. Since this term
is the only part of regret that depends on τθ, it helps identify which environments are manageable
when τθ >> τM. In deterministic environments, there is no regret due to τθ as pminimax = 1, but in
stochastic environments, the degree and temporal horizon of stochasticity determine what values
of τθ are tolerable. For simplicity, we present a looser bound here; a tighter bound is available in
Appendix E. Stochasticity with respect to actual rewards (not just transitions) is what really matters.

3 Algorithms for Asynchronous Interaction and Learning
Figure 2 highlights key differences between the standard sequential RL framework and the asyn-
chronous multi-process framework we propose. In the sequential framework, interaction and learning
delay each other. In contrast, in the asynchronous framework that we propose, actions and learning
can occur at every step with enough processes. However, actions are delayed and reflect past states,
which may limit performance in some environments. Note that staggering processes to maintain
regular intervals is essential. For example, if inference processes took a deterministic amount of time
with no offset, all additional actions in the environment would be overwritten and there would be no
benefit of increasing compute. Meanwhile, with staggering we can experience linear speedups.

3.1 Our Contribution: Staggered Asynchronous Inference
We leverage the round-robin framework for staggered asynchronous learning [20]. See Appendix A for
a detailed discussion regarding this approach. Here we focus on our contribution, which is staggering
the inference processes. See Appendix B for a comparison of our contribution with related work.

In Remark 1 we highlighted that τ̄I is fundamentally limited by τ̄θ for sequential interaction, which
results in persistent regret even as time goes on when τ̄θ > τ̄M. We will now highlight two novel
algorithms for staggering inference processes that can lead to a reduction in τ̄I when the number of
inference processes NI are increased. Algorithm 1 is capable of scaling the expected interaction time
with the number of processes by τ̄I = min(τmax

θ /NI , τ̄M) where τmax
θ is the maximum encountered

value of τθ. Meanwhile, algorithm 2 is capable of scaling the expected interaction time with the
number of processes by τ̄I = min(τ̄θ/NI , τ̄M). Both algorithms can eliminate inaction.

3Known algorithms achieve regret upper bounds within a logarithmic factor of this lower bound [26].
4When the environment is deterministic, pminimax = 1 and ∆delay(τ) = 0. When the environment is uniformly

random, pminimax = 1/|S| and ∆delay(τ) is maximized such that as |S| → ∞, ∆delay(τ) ∈ Ω(τ).
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Figure 2: Realtime Interaction Frequency. We illustrate the comparative interaction frequency of
methods that sequence learning and inference and those that maintain multiple staggered asynchronous
processes. Even when inference times are greater than the environment step time, it is possible to
use asynchronous compute to eliminate inaction and learn from every environment step.

Remark 2 (Inaction Regret of Asynchronous Interaction) For any τ̄θ when π and
Masync interact asynchronously with algorithms 1 or 2, there is a value of the number of
inference processes N∗

I such that for all NI ≥ N∗
I , ∆inaction(τ)→ 0 as time goes on to τ →∞.

Algorithm 1 always ensures each processes waits for the current estimate of τmax
θ amount of seconds

before an action is taken by that process to preserve the spacing between actions. Adjustments are
made to the waiting time in each process until the estimate converges to the true τmax

θ value. The
benefit of this algorithm is that the spacing between actions stays very consistent with no variance
once the maximum value estimate has stabilized. This makes M̃delay easier to learn from. The
downside is that the amount of necessary compute to eliminate inaction may be relatively high. See
Appendix D for detailed algorithm pseudocode as well as a description of how algorithm 2 works.

4 Empirical Results
To show that our proposed method does indeed provide practical benefits for minimizing regret per
second with large neural networks in realtime environments, we perform a suite of experiments to
validate the theoretical claims made in Sections 2 and 3. Our experiments include:

• Question 1: an evaluation of the speed of progress through a realtime game with constant
novelty to demonstrate that our proposed asynchronous algorithms can not only maintain
better throughput of actions, but also maintain learning performance to make faster progress
through a game in which agents must demonstrate competent behavior to go on.

• Question 2: an evaluation of episodic reward in a game where reaction time must be fast
to demonstrate that asynchronous interaction can maintain performance with models that
are multiple orders of magnitude larger than those using sequential interaction.

• Question 3: an evaluation of the scaling properties of Algorithm 1 to demonstrate that
the needed number of processes to eliminate inaction N∗

I does indeed scale linearly with
increasing inference times τ̄θ and parameter counts |θ|.

• Question 4 (Appendix A): an evaluation of the scaling properties of round-robin asyn-
chronous learning [20] to demonstrate that the number of processes needed to learn from
every transition also scales linearly with increasing learning times and parameter counts |θ|.

Implementation Details: In all our experiments, we implemented the Deep Q-Network (DQN)
learning algorithm [21] within our asynchronous multi-process framework, using a discount factor
of γ = 0.99, a learning rate of 0.001 with the Adam optimizer, and a batch size of 16. A shared
experience replay buffer stores the 1 million most recent environment transitions. For preprocessing,
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we down-sampled monochromatic Game Boy images to 84x84x1, similar to Atari preprocessing [21].
Following the scaling procedure previously established by [4] and [32], we used a 15-layer ResNet
model [9] while scaling the number of filters by a factor k to grow the network. The model sizes
correspond to: k = 1 (1M parameters), k = 7 (10M), k = 29 (100M), and k = 98 (1B). Models were
deployed on multi-process CPUs using Pytorch multiprocessing on Intel Gold 6148 Skylake cores
at 2.4GHz, with one core per process and multiple machines for models using > 40 processes. See
Appendix C for further detailed regarding our experimental setup and a discussion of limitations.

Realtime Game Boy Simulation: To run a comprehensive set of scaling experiments that would
not be feasible with real-world deployment, we need a simulation of a realistic realtime scenario.
Towards this end, we considered two games from the Game Boy that are made available for simulation
as RL environments through the Gymnasium Retro project [25]. We implemented a realtime version
of the Game Boy where it is run at 59.7275 frames per second i.e. τM = 1/59.7275 and with "noop"
actions executed as the default behavior β. This exactly mimics the way that humans would interact
with the Game Boy as a handheld console [39] and matches the setting in which humans compete
over speed runs for these games. This is an ideal setting for addressing our core empirical questions.

4.1 Faster Progress Through a Realtime Game with Constant Novelty

(a) 100M: Pokémon Battles Won vs. Time τ

(b) 100M: Wild Pokémon Caught vs. Time τ

Figure 3: Realtime Pokémon Perfor-
mance for Staggered Asynchronous
Interaction & Learning (|θ|=100M).
a) Battles won in Pokémon Blue as a func-
tion of time. b) Wild Pokémon caught in
Pokémon Blue as a function of time.

Pokémon Blue: Pokémon Blue is a valuable environ-
ment for our study due to its long play through time
and constant novelty over many hours of play. Acting
quickly is not a necessity to complete this game as it lets
the agent dictate the pace of play, but better players are
still differentiated based on their speed of completing
the game. Indeed, the game has a large community of
"speed runners" aiming to complete milestones in record
times, with even the fastest milestones taking multiple
hours [33]. It is an interesting domain for our study
because acting quickly is only beneficial to the extent
that the agent displays competent behavior so action
throughput alone will not lead to better results when the
quality of play correspondingly suffers. Because Poké-
mon Blue is known as a challenging exploration problem
that perhaps even exceeds the scope of previous deep RL
achievements [15], we divided the game into two settings
based on expert human play: 295 battle encounters (Fig-
ure 7a) and 93 catching encounters (Figure 7b). Agents
are deployed in these settings and must complete each
encounter (by winning a battle or catching a Pokémon)
before progressing.

Question 1: Can asynchronous interaction and learning
achieve faster progress through a realtime strategy game
where constant learning is necessary to move forward
even when models are large?

Figure 3: For Pokémon Blue we leverage NI = N∗
I and

NL = N∗
L/5 as we did not find benefit from learning

at every step given that the underlying game is not
responsive to every action taken at the frame level. For
all models, exploration rate is annealed from 1.0 to 0.05 over the course of the first 100,000 steps of
learning. We compare to the standard RL interaction paradigm where inference and learning are
performed sequentially [34] and where the order is flipped for realtime settings [37]. Our results in
Figures 3a and 3b showcase that asynchronous inference and learning combine for superior scaling
of realtime performance as the model size grows. See Appendix C for results with the smaller 1M
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and 10M model sizes. The performance improvement over the sequential interaction framework
correspond with our expectations given Remarks 1 and 2.

4.2 Retaining Performance in a Game that Prioritizes Reaction Time as Models Grow

Figure 4: Realtime Tetris Performance
vs. |θ|. The average episodic return over
2,000 episodes of learning. We compare mod-
els with a single inference process to those
that perform staggered asynchronous infer-
ence over N∗

I processes with Algorithm 1.

Tetris: We also explore the game Tetris (Figure 7c)
that presents a different kind of challenge for our agents
where even more of a premium is put on reaction
time. In Tetris, the player will lose the game if they
wait indefinitely and do not act in time. While a
slow policy can eventually win the game in Pokémon,
despite taking longer than necessary, a policy that does
not act timely cannot progress through Tetris as new
pieces must be moved into the correct spots before
they fall on existing pieces.

Question 2: Can asynchronous interaction help for
games that prioritize reaction time as |θ| grows?

Figure 4: To aid with exploration and jump-start
learning, a single episode of human play is provided to
each agent to learn from. The agent continues to learn
from a total of 2,000 episodes with an exploration rate
of 0.05. We see the sequential interaction scales quite poorly for games that prioritize a high frequency
of actions and cannot surpass random performance for |θ| ≥1M as we would expect based on Remark
1. Meanwhile, staggered asynchronous inference following Algorithm 1 can achieve a much higher
reward rate for |θ| >1B as we would anticipate based on Remark 2.

4.3 Computational Scaling Properties for Asynchronous Interaction

(a) N∗
I vs. τ̄θ for Algorithm 1

(b) N∗
I vs. |θ| for Algorithm 1

Figure 5: We plot the scal-
ing behavior for ResNet polices
across CPUs for the Game Boy
of a) N∗

I as τ̄θ increases and
b) N∗

I as |θ| increases.

Question 3: How does N∗
I from Remark 2 scale with τ̄θ and the

number of parameters |θ|?

Figure 5: We measure N∗
I for the Game Boy when run at the

standard frequency using a greedy DQN policy. We implemented
maximum inference time staggering from Algorithm 1. Figure 5a
shows that N∗

I scales roughly linearly with τ̄θ, as expected for effective
staggering (Remark 2). Figure 5b also demonstrates that N∗

I scales
roughly linearly with |θ|.

5 Conclusion
In this paper, we have taken a deeper look at RL in realtime set-
tings and the viability of increasing the neural network model size
in these environments. Our theoretical analysis of regret bounds
has demonstrated the downfall of models that implement a single
action inference process as model sizes grow (Remark 1) and we
have proposed staggering algorithms that address this limitation for
environments that are sufficiently deterministic (Remark 2). Our
empirical results on the realtime Game Boy games Pokémon Blue
and Tetris corroborate these findings and demonstrate the ability to
perform well in realtime environments with models that are orders
of magnitude larger than what is achievable with a single inference
process. While conventional wisdom often leads researchers to think
that smaller models are necessary for realtime settings, our work indicates that this is not necessarily
the case and takes a step towards making realtime foundation model deployment realistic.
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A Additional Background: Staggered Asynchronous Learning

Parallel vs. Asynchronous Updates: Learning from a transition, i.e., computing gradients,
usually takes longer than inference. Thus, performing learning in separate processes is crucial to avoid
blocking inference [40], especially for models with a large number of parameters. For this use case, one
might be tempted to consider parallel learning processes to increase the effective batch size without
increasing wall-clock time per batch as this avoids wasted computation. Indeed, parallel updates are
better for training large language models when final performance and compute efficiency are most
important. In contrast, asynchronous learning can produce updates even faster than learning from a
single transition, making the model more responsive to exploration. However, lock-free asynchronous
approaches risk overwriting updates, potentially wasting computation that does not contribute to
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(a) N∗
L vs. τ̄L for Algorithm 1 (b) N∗

L vs. |θ| for Algorithm 1

Figure 6: a) We plot the scaling behavior of the learning compute requirement N∗
L as the expected

transition learning time τ̄L increases for ResNet polices across CPUs in the Game Boy environment.
b) We plot the scaling behavior of N∗

L instead as a function of the number of policy parameters |θ|.

the final performance. Our focus is on maximizing responsiveness in large models, not necessarily
compute efficiency. Even overwritten updates are not wasted with respect to total regret.

Round-Robin Asynchronous Learning: Langford et al. [20] laid the foundation for addressing
asynchronous update staggering for large neural network models using variants of stochastic gradient
descent (SGD). They showed that applying updates in a delayed, orderly fashion avoids wasted
compute on overwritten gradients. Their approach demonstrated convergence for delayed SGD, with
linear scaling limited only by the time taken to update parameters relative to computing gradients.
This method allows significant linear scaling with minimal compute waste for large models and the
delay in the updates will not be a significant source of regret in Theorem 1. While not our novel
contribution, this strategy is underexplored. We investigate its scaling properties in our experiments.

A.1 Experiments: Scaling of Round-Robin Asynchronous Learning

Notation for Asynchronous Learning: We also would like to consider the compute scaling
properties of round-robin asynchronous learning [20]. We now assume that the time to learn from an
environment transition can be treated as a random variable TL with sampled values τL ∼ TL and
expected value τ̄L := E[TL]. N∗

L will denote the number of learning processes such that all NL ≥ N∗
L

include at least one transition learned from for each transition in the environment in the long-run.
This quantity is of significant interest because it expresses the number of learning processes needed to
learn from each transition in the environment at least once given the frequency of the environment.

Question 4: How does N∗
L scale with τ̄L and the number of parameters |θ|?

Figure 6: In Figure 6a we demonstrate that N∗
L grows approximately linearly with τ̄L. This scaling

is in line with what we would expect for the round-robin algorithm for large and deep neural networks
[20]. Additionally, our results in Figure 6b appear to also showcase linear scaling of N∗

L with |θ|.

B Related Work

Realtime interaction: Previous work such as Travnik et al. [37] has considered the asynchronous
nature of realtime environments. However, we are not aware of any prior paper that has formalized
the connection between asynchronous and sequential versions of the same environment as we have.
Travnik et al. [37] highlight the reaction time benefit of acting before you learn, and Ramstedt &
Pal [29] highlight the reaction time benefit of interacting based on a one-step lag. Meanwhile, the
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interaction frequency of both of these approaches are limited by sequential interaction and thus the
drawback highlighted in Remark 1 also applies to these approaches too.

Designing the interaction rate: Farrahi & Mahmood [10] examined how the choice of τI affects
the learning performance of deep RL algorithms in robotics. They found that low τI complicates
credit assignment, while high τI complicates learning reactive policies. Karimi et al. [18] proposed
a policy that executes multi-step actions with a learned τI within the options framework, which
may aid in slow problems where credit assignment is challenging. However, this approach does not
address the action delay issue we focus on and may worsen it by committing to multiple actions
based on a delayed state. Our policy, defined in the semi-MDP framework (Definition 1), relies on
a low-level policy β, similar to the options framework [35]. The key difference is that β cannot be
modified by our policy, preventing intra-option learning and thus making it impossible to improve β
even when its behavior is suboptimal. As such, we would rather minimize its use.

Reinforcement learning with delays: Reinforcement learning in environments with delayed states,
observations, and actions is well-studied. Typically, delays are treated as communication delays
inherent to the environment [38; 3]. In contrast, we focus on delays resulting from our computations,
which are under our control and part of agent design. Our formulation of delay as part of regret is
novel due to this unique focus. Common methods address delay by augmenting the state space with
all actions taken since the delayed state or observation [2; 19; 23], but this is infeasible for us since
these actions are not available when computation begins. Instead, our approach aligns more with
methods addressing delay without state augmentation [30; 3; 6; 1; 17]. However, these methods are
limited by the environment’s stochasticity [7; 24], as highlighted by equation 4 of Theorem 1.

Asynchronous learning: Most work on asynchronous RL involves multiple environment simulators
learned from asynchronously or in parallel [22; 9; 31]. We explore a more challenging real-world
setup with a single environment, limiting exploration opportunities. Unlike typical asynchronous
setups where each process interacts sequentially with the environment and then learn from that
interaction [22], our setting benefits from making interaction and learning asynchronous (Remark 2).
Similarly to ours, some prior work has considered asynchronous learning to avoid blocking inference
[40], focusing on model-based learning [13; 14; 12; 41] and auxiliary value functions [36; 5]. The
novelty of our approach is in its use of multiple asynchronous staggered inference processes instead
of a single process, a critical contribution for deploying large models (Remark 1 and Remark 2).

C Further Details Supporting Experiments in Main Text

Software Libraries: Our experiments leverage Numpy [11], which is publicly available following a
BSD license. Neural network models were developed using Pytorch [27], which is publicly available
following a modified BSD license. The Gym Retro project [25] used to simulate the Game Boy in a
RL environment is made available following a MIT license. We are not at liberty to distribute the
proprietary ROMs associated with Pokémon or Tetris and each person that deploys our provided
code must separately obtain their own copy.

Environment Details: We depict the environments considered in our paper in Figure 7. We
consider six discrete actions for both Pokémon Blue and Tetris including the A button, the B button,
the left directional button, the up directional button, the right directional button, and the down
directional button. In the Battling Environment when the opponent Pokémon is knocked out by the
agent’s Pokémon a reward of 1 is received and a reward of −1 is received when a users Pokémon is
knocked out. Battles include 1-6 Pokémon for the agent and 1-6 Pokémon for the opponent AI. In
the Catching Environment a reward of 1 is received by the agent when a wild Pokémon is captured
and −1 when the encounter is terminated unsuccessfully. In Tetris we provide changes in the in-game
score as a reward for the agent to learn from.

Training Procedure for Tetris: The one episode of human play provided for Tetris included
16,000 steps where non-noop actions were taken. We used our experiments from Figure 5 to calculate
the amount of action delay per step for each model and populated the replay buffer with 16,000
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(a) Pokémon Battling Environment (b) Pokémon Catching Environment (c) Tetris Environment

Figure 7: a) A frame from the final battle of Pokémon Blue when the agent is deciding on the
next move. b) A frame from the final catching encounter of Pokémon Blue when the agent has just
successfully caught Mewtwo. C) A frame from Tetris right before the agent completes its first line.

(a) 1M: Pokémon Battles Won vs. Time τ (b) 1M: Wild Pokémon Caught vs. Time τ

Figure 8: Realtime Pokémon Performance for Staggered Asynchronous Interaction &
Learning. a) Battles won in Pokémon Blue as a function of time for |θ| = 1M . b) Wild Pokémon
caught in Pokémon Blue as a function of time for |θ| = 1M .

transitions corresponding to these actions with observations delayed by the expected amount for each
model. We the trained the model for 16,000 steps before tuning the model in a simulation of the
environment with the corresponding amount of delay 2,000 for episodes. The episodic reward from
Figure 4 corresponds to the average episodic reward achieved during that training period.

Statistical Significance: We also note that error bar shading throughout our paper reflects 95%
confidence intervals computed with three random seeds: 0, 1, and 2.

Limitations: In both our experiments on Pokémon Blue and Tetris, performance is well below
human-level. This is because both of these games pose significant exploration problems and we train
our models from scratch for a limited amount of time. We believe that these experiments are more
than sufficient to showcase the benefits of staggered asynchronous inference in comparison to the
sequential interaction framework by showcasing when the latter framework breaks down in realtime
settings. However, we speculate that the results showing that game play does not suffer despite
significant action delay will likely not generalize to more intricate human-level policies.

D Algorithm Details

Algorithm Pseudocode: We provide detailed pseudocode for Algorithms 1 and 2, which could not
be included in the main text due to space constraints.
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(a) 10M: Pokémon Battles Won vs. Time τ (b) 10M: Wild Pokémon Caught vs. Time τ

Figure 9: Realtime Pokémon Performance for Staggered Asynchronous Interaction &
Learning. a) Battles won in Pokémon Blue as a function of time for |θ| = 10M . b) Wild Pokémon
caught in Pokémon Blue as a function of time for |θ| = 10M .

We discussed Algorithm 1 in the main text, but did not have the space to discuss Algorithm 2.
Algorithm 2 stops all waiting in all threads as time goes on, so that the expected interaction time of
each thread is τ̄θ. An estimate of τ̄θ is maintained and when the estimate changes after an action is
taken, threads wait for an amount of time designed to adjust the average spacing between threads to
τ̄θ/NI . The law of large numbers ensures that the estimate converges to τ̄θ in the limit as τ →∞ and
that the waiting time diminishes to zero. Algorithm 2 has a strictly smaller compute requirements
than algorithm 1, but experiences variance in TI driven by the variance in Tθ, which makes M̃delay
harder to learn from. The compute advantage becomes more significant for distributions that have
variance in Tθ such that τmax

θ − τ̄θ is large. In our experiments, we consider Algorithm 1 because we
found the variance in τθ is extremely small for the models we consider.

Algorithm 1 Maximum Time Inference Staggering
Initialize: τ̂max

θ = 0 and delay[threadnum] = ϵ(threadnum− 1)/NI ∀ threadnum ∈ [1, ..., NI ]
Run: INFERENCE[threadnum] ∀ threadnum ∈ [1, ..., NI ]

1: function Inference(threadnum)
2: while alive do
3: sleep(delay[threadnum]) ▷ Sleep for any delays accumulated by other threads
4: delay[threadnum] ← 0
5: a, τθ ∼ πθ(st) ▷ Have the policy sample an action and inference time
6: if τθ ≥ τ̂max

θ then
7: δτ ← τθ − τ̂max

θ ▷ Other threads sleep for the difference with the maximum
8: for num ̸= threadnum ∈ [1, ..., NI ] do
9: delay[num] ← delay[num] + dist(num,threadnum) ×δτ/NI

10: τ̂max
θ ← τθ ▷ Set new global maximum

11: else
12: sleep(τ̂max

θ − τθ) ▷ Sleep for the remaining time
13: at+⌈τ̂max

θ
/τM⌉ ← a ▷ Register action in environment
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Algorithm 2 Expected Time Inference Staggering
Initialize: ˆ̄τθ = 0, τtot = 0, and atot = 0
Initialize: delay[threadnum] = ϵ(threadnum− 1)/NI ∀ threadnum ∈ [1, ..., NI ]
Run: INFERENCE[threadnum] ∀ threadnum ∈ [1, ..., NI ]

1: function Inference(threadnum)
2: while alive do
3: sleep(delay[threadnum]) ▷ Sleep for any delays accumulated by other threads
4: delay[threadnum] ← 0
5: a, τθ ∼ πθ(st) ▷ Have the policy sample an action and inference time
6: atot ← atot + 1
7: τtot ← τtot + τθ

8: ˆ̄τ ′

θ ← τtot/atot
9: δτ ← ˆ̄τ ′

θ − ˆ̄τθ

10: if δτ ≥ 0 then ▷ Wait more further from the current thread
11: for num ̸= threadnum ∈ [1, ..., NI ] do
12: delay[num] ← delay[num] + dist(num,threadnum) abs(δτ)/NI

13: else ▷ Wait more closer to the current thread
14: for num ̸= threadnum ∈ [1, ..., NI ] do
15: delay[num] ← delay[num] + (NI − 1)dist(num,threadnum) abs(δτ)/NI

16: at+⌈τθ/τM⌉ ← a ▷ Register action in environment

E Proofs for Each Theoretical Statement

Our proofs rely on the following core assumptions, restated from Section 2 in the main text:

1. The environment step time can be treated as an independent random variable TM with
sampled values τM ∼ TM and expected value τ̄M := E[TM].

2. The environment interaction time can be treated as an independent random variable TI
with sampled values τI ∼ TI and expected value τ̄I := E[TI ].

3. The action inference time of the policy can be treated as an independent random variable
Tθ with sampled values τθ ∼ Tθ and expected value τ̄θ := E[Tθ].

4. Asynchronous learning can learn from every interaction with M̃delay.

E.1 Definition 1

Most of Definition 1 just recaps the dynamics of how the agent interacts with an asynchronous
ground MDP following assumptions 1-3 about the nature of that interaction. All that is left to
show is that this can be viewed as a delayed MDP and that it can be viewed as a semi-MDP. The
interaction process highlighted in Definition 1 matches that of a Random Delay Markov Decision
Process (RDMDP) [3] where the action delay distribution is defined by the random variable ⌈τθ/τM⌉.
To show it is a semi-MDP as well, we consider the same proof style of Theorem 1 in Sutton et al. [35]:

A semi-MDP consists of (1) a set of states, (2) a set of actions, (3) for each pair of state and action,
an expected cumulative discounted reward, and (4) a well-defined joint distribution of the next state
and transit time. We now demonstrate each of these properties. The set of states is S and the
set of actions is A. The expected reward and the next-state and transit-time distributions are well
defined for every state and delayed action. These expectations and distributions are well defined
because Masync is Markov, thus the next state, reward, and time are dependent only on the delayed
action chosen and the state in which it was initiated. Transit times with arbitrary real intervals are
permitted in semi-MDPs.
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E.2 Theorem 1

To prove Theorem 1 we will demonstrate the validity of each equation of the theorem following the
order of presentation in the main text.

Equation 1: By definition ∆learn(τ) and ∆inaction(τ) must be independent contribution to the total
regret because learning regret is only incurred when acting in the environment following π and
inaction regret is only incurred when not acting in the environment and thus following the default
behavior policy β. The interaction frequency does not depend on the parameter values of π as they
change following from the independent random variable assumption. Even when regret from learning
is eliminated and regret from inaction is eliminated there is still another independent source of regret
that persists ∆delay(τ) reflecting the lower reward rate of the best possible policy in acting over
M̃delay in comparison to the best possible policy acting over Masync.

Equation 2: The worst case lower bound for the standard notion of regret arising from the need for
learning and exploration has been established as ∆learn(T ) ∈ Ω(

√
T ) where T denotes the number

of discrete learning steps taken in the environment. Given that we learn from every step in the
environment following assumption 4, then the regret as a function of τ scales with the expected
number of discrete environment steps as a function of T i.e. E[T (τ)] = τ(τ̄I/τ̄M) because TM and
TI are independent. Therefor, ∆learn(τ) ∈ Ω(

√
τ(τ̄I/τ̄M)). As noted in the footnote in the main

text, this analysis equally applies to the known ∆learn(T ) ∈ Õ(
√
T ) minimum upper bound [26].

Equation 3: The worst case lower bound on ∆inaction(τ) is derived by considering a worst case
environment with two actions a1 and a2 and two states s1 and s2 where the default behavior β
takes its own action a3 at every state. The reward provided is 1 at s1 and 0 at s2. The next state
is s1 regardless of the state if either a1 or a2 is taken and s2 if a3 is taken. In this environment
the optimal reward rate is 1 and the reward rate when following β is 0.0. The expected number
of times a3 is taken during τ seconds in Masync is then τ(τ̄I − τ̄M)/τ̄M because TM and TI are
independent. Therefor, ∆inaction(τ) ∈ Ω(τ(τ̄I− τ̄M)/τ̄M) for this particular environment. Meanwhile,
the expected inaction regret is also upper bounded by ∆inaction(τ) ≤ rmaxτ(τ̄I − τ̄M)/τ̄M) where
rmax is the maximum possible reward per step because by definition the agent cannot incur regret
from inaction when it is acting in the environment. Therefor, we have demonstrated that equation 3
holds.

Equation 4: The worst case lower bound on ∆delay(τ) is derived by considering a worst case
environment with two actions a1 and a2 and two states s1 and s2 where the default behavior β takes
its own action a3 at every state. The agent stays in the current state regardless of the action with
probability pminimax and goes to the other state with probability pminimax where pminimax ≤ 0.5 by
definition. The agent receives a reward of 1 for taking a1 in s1 or a2 in s2 and a reward of 0 otherwise.
So the best reward rate as a function of τ that can be ensured with actions delayed by τθ/τM is
τ ×E[(1−pminimax)τθ/τM ] meanwhile the best reward rate possible inMasync is τ , so the lower bound
on the regret with respect to that optimal reward rate is ∆delay(τ) ∈ Ω(τ × E[(1− pminimax)τθ/τM ]).

E.3 Remark 1

We restate the derivation of the remark from the main text, filling in a bit more detail for clarity.
When π and Masync interact sequentially, we must have τI ≥ τθ, so ∆inaction(τ) ∈ Ω(τ(τ̄I −
τ̄M)/τ̄M) ∈ Ω(τ(τ̄θ − τ̄M)/τ̄M). This implies that even as τ → ∞, the worst case regret rate
∆realtime(τ)/τ ∈ Ω(∆inaction(τ)/τ) ∈ Ω((τ̄θ − τ̄M)/τ̄M) following from Theorem 1.

E.4 Remark 2

Algorithm 1 is capable of scaling the expected interaction time with the number of processes by
τ̄I = min(τmax

θ /NI , τ̄M) where τmax
θ is the maximum encountered value of τθ as τ →∞. This then

implies that for NI ≥ N∗
I = ⌈τmax

θ /τ̄M⌉, τ̄I = τ̄M. Algorithm 2 is capable of scaling the expected
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interaction time with the number of processes by τ̄I = min(τ̄θ/NI , τ̄M) as τ →∞ following the law
of large numbers. This then correspondingly implies that for NI ≥ N∗

I = ⌈τ̄θ/τ̄M⌉, τ̄I = τ̄M.
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