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ABSTRACT

Neal (1996) proved that infinitely wide shallow Bayesian neural networks (BNN)
converge to Gaussian processes (GP), when the network weights have bounded
prior variance. Cho & Saul (2009) provided a useful recursive formula for deep
kernel processes for relating the covariance kernel of each layer to the layer imme-
diately below. Moreover, they worked out the form of the layer-wise covariance
kernel in an explicit manner for several common activation functions, including
the ReLU. Subsequent works have made the connection between these two works,
and provided useful results on the covariance kernel of a deep GP arising as wide
limits of various deep Bayesian network architectures. However, recent works,
including Aitchison et al. (2021), have highlighted that the covariance kernels
obtained in this manner are deterministic and hence, precludes any possibility of
representation learning, which amounts to learning a non-degenerate posterior of a
random kernel given the data. To address this, they propose adding artificial noise
to the kernel to retain stochasticity, and develop deep kernel Wishart and inverse
Wishart processes. Nonetheless, this artificial noise injection could be critiqued in
that it would not naturally emerge in a classic BNN architecture under an infinite-
width limit. To address this, we show that a Bayesian deep neural network, where
each layer width approaches infinity, and all network weights are elliptically dis-
tributed with infinite variance, converges to a process with α-stable marginals in
each layer that has a conditionally Gaussian representation. These conditional
random covariance kernels could be recursively linked in the manner of Cho &
Saul (2009), even though marginally the process exhibits stable behavior, and
hence covariances are not even necessarily defined. We also provide useful gen-
eralizations of the recent results of Lorı́a & Bhadra (2024) on shallow networks
to multi-layer networks, and remedy the prohibitive computational burden of their
approach. The computational and statistical benefits over competing approaches
stand out in simulations and in demonstrations on benchmark data sets.

1 INTRODUCTION

The study of deep kernel processes as the infinite-width limit of deep Bayesian neural networks can
be traced back to the work of Cho & Saul (2009), and further developed by Damianou & Lawrence
(2013); Wilson et al. (2016); Aitchison et al. (2021), among others. This connection is built upon
the foundational work of Neal (1996), who proved under the condition of bounded variance network
weights, the infinite-width limit of a shallow (one hidden layer) Bayesian neural network (BNN) is
a Gaussian process (GP), whose covariance kernel depends on the choice of the nonlinear activation
function. Neal (1996) studied two bounded activations explicitly: the sign function and tanh, and
worked out the covariance kernels in these cases: respectively the exponential and the squared ex-
ponential covariances. Subsequently, Williams (1996) obtained explicit expressions for the kernel
under an error function activation. Through a standard use of what is now known as the kernel trick,
these expressions then allow one to work on with the covariance matrix induced by the kernel at the
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observation points for the purpose of nonparametric estimation and prediction under a GP model,
rather than having to work with a possibly infinite-dimensional and nonlinear feature space.

The importance of the work of Cho & Saul (2009) in the deep GP literature over the early works
on shallow networks is that they extend the kernel processes to deep architectures, which emerge as
infinite width limits of deep BNNs under bounded variance weights in various architectures, such as
simple deep feedforward BNN (Lee et al., 2018; de G. Matthews et al., 2018), or deep convolutional
BNNs (Garriga-Alonso et al., 2018). In fact, the tensor program of Yang (2019) shows that a limiting
GP would appear under an arbitrary network architecture under bounded variance priors. The work
of Cho & Saul (2009) provides an explicit recursive formula relating the kernels at each layer to the
layer below, so that one can evaluate the covariance matrix of the features in layer ℓ+ 1, using only
the covariance matrix of the features in layer ℓ. However, in the case of deep Gaussian processes,
the covariance kernel in each layer is deterministic (non-stochastic) and the downside is that any
possibility of learning the posterior distribution of the features disappears (Aitchison, 2020), as the
posterior distribution of a degenerate point mass kernel is again a degenerate point mass.

To address the deterministic limit, Aitchison et al. (2021) propose deep inverse Wishart processes
(DIWP), which they argue approximates neural network GPs and have convenient properties for
learning a variational posterior. Before introducing DIWP they also propose deep Wishart pro-
cesses (DWP), which work with a noisy version of the sample covariance matrices for finite-width
DNNs, the downside being a deterministic infinite-width limit. While these approaches succeed
in making the covariance kernel random through an artificial noise injection, so that the posterior is
non-degenerate, these processes do not result naturally as an infinite-width limit as in Neal (1996) or
Lee et al. (2018). Consequently, the choice of the artificial noise distribution could itself be consid-
ered a somewhat subjective design parameter, even though some recommendations and desiderata
for such choices do exist, such as the deterministic limiting kernel is a centrality parameter of the
distribution assigned to the random kernel, which is ensured in both DIWP and DWP.

Although deep GPs emerging as the infinite-width limit of deep BNNs are definitely interesting in
their own right, there are some limitations of a Gaussian scaling limit. One is the lack of feature
learning mentioned above. Second is the mean-square continuity of GPs, which means a GP prior
cannot model jump discontinuities or even just localized smoothness. The third limitation is one
noted by Neal (1996), that in the case of multiple outputs, GPs cannot learn the covariance structure
under i.i.d. weights, as the covariance is always zero under an isotropic Gaussian limit. To address
these limitations we develop α-stable kernel processes as the infinite-width limit of deep BNNs with
infinite prior variance at each layer. The realizations of α-stable random variables are able to model
jumps (Kyprianou, 2018, Section. 1.2), and their ability to learn features via a stochastic kernel is
developed in this paper.

1.1 PRIOR WORKS ON INFINITE-WIDTH LIMITS OF BNNS UNDER INFINITE VARIANCE
PRIORS AND OUR CONTRIBUTIONS IN CONTEXT

The literature on the scaling limits of infinitely wide BNNs with weights that have infinite variance
priors has traditionally focused on the properties of the limiting process and less on posterior in-
ference under such prior processes (analogous to kriging under GP priors). The first non-Gaussian
limit result of its kind was given by Der & Lee (2005), who proved that in a single hidden layer neu-
ral network the limiting process is sub-Gaussian with stable margins, and derived the characteristic
function of the process. Recent extensions to deep feedforward networks are by Peluchetti et al.
(2020), Favaro et al. (2023) and Lee et al. (2023); and to the convolutional setting by Bracale et al.
(2022). To the best of our knowledge, the first computationally viable method for posterior infer-
ence under these prior processes was explored by Lorı́a & Bhadra (2024). However, their method
has two major drawbacks. The first is that the method is limited to shallow networks. The second is
the computational complexity that scales exponentially in the input dimension. Specifically, with n
training points of dimension I , the computational complexity of their method is O(nI+2). Although
Lorı́a & Bhadra (2024) provided considerable evidence in one and two dimensions that a stable
process prior is beneficial when the true underlying data-generating function contains jump-type
discontinuities (which arise with zero probability under a GP prior), the second drawback, i.e., the
exponential complexity in I , is especially limiting, since it makes it infeasible to apply the method
in all but one or two dimensions, as also evidenced by our numerical experiments presented later in
this paper. An intuitive explanation for this exponential complexity is that Lorı́a & Bhadra (2024)
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work in the feature space with sign activation function in the hidden layer, for which the resulting
separating hyperplanes require enumeration over each of the I dimensions on whether the output of
the activation function is marked as 1 or 0. Enumerating over all n points results in the exponential
in I complexity. Avoiding this combinatorial enumeration is of critical importance for large I .

To address these serious limitations, the current work eschews working in the feature space al-
together, and focuses on kernel methods. Setting aside the issue of computational complexity
for a moment, a key observation of Lorı́a & Bhadra (2024) is that the limiting stable process
has a conditionally Gaussian representation, i.e., it is a Gaussian process, conditioned on some
positive α-stable variables. To see the main idea, we introduce the necessary notations on α-
stable random variables at this point. Define X ∼ S(α, β) an α-stable random variable with
index parameter α ∈ (0, 2] and skewness parameter β ∈ [−1, 1], by its characteristic function:
ϕX(t) = E[exp(itX)] = exp{−|t|α[1− iβω(α, t)]}, with ω(α, t) = tan(απ/2)sign(t) for α ̸= 1,
and ω(1, t) = −(2/π) log(|t|)sign(t) (Samorodnitsky & Taqqu, 1994, p. 5), with no closed form
to the density of X in general, apart from specific α. A remarkable property of α-stable variables
is that the α = 2 case is Gaussian, with the usual Gaussian limit for the scaled sum established by
the classical central limit theorem (CLT); but they possess infinite variance for α < 2, which does
not admit a Gaussian scaling limit due to an inapplicability of the classical CLT. The generalized
CLT (Gnedenko & Kolmogorov, 1968), that still applies, gives the non-Gaussian scaling limit in this
case, and is stated in Appendix A. Two cases of interest are: symmetric α-stable random variables,
which have β = 0; and positive α-stable, which requires α < 1 and β = 1 and which we denote
by S+

α . Equation 5.4.6 of Uchaikin & Zolotarev (1999) states for α0 ∈ (0, 1) and for all positive λ
one has: exp(−λα0) =

∫∞
0

exp(−λs)pS+
α0
(s)ds, where pS+

α0
(·) is the density function of a positive

α0-stable random variable, with no closed form in general. Using λ = t2, α0 = α/2 and the fact
that t2 = |t|2, we obtain for α ∈ (0, 2), a Gaussian scale mixture representation over a random scale
parameter s for the symmetric α-stable characteristic function as:

exp(−|t|α) =
∫ ∞

0

exp(−t2s)pS+
α/2

(s)ds. (1)

This observation is exploited in Theorem 1 of Lorı́a & Bhadra (2024), to represent the posterior
of the stable process as a Gaussian process posterior, conditional on mixing positive α/2-stable
variables, which results in posterior sampling analogous to the GP case. However, in computing the
covariance kernel of this GP, they suffer from the aforementioned combinatorial bottleneck.

Elliptical α-stable random vectors (Samorodnitsky & Taqqu, 1994, Definition 2.5.1) centered at
zero have a characteristic function defined similarly to the scalar case as: ϕZ(t) = E[exp(itTZ)] =
exp{−(tTΣt)α/2}, where Σ is a positive definite matrix, termed the shape parameter. The main
advantage of zero-centered elliptical α-stable vectors is that they admit the Gaussian mixture rep-
resentation: Z d

= S1/2G, where d
= denotes equality in distribution, S ∼ S+

α/2 and G ∼ N (0,Σ),
with S, G independent, which can be shown using a multivariate extension of Equation (1).

What the current work does is to find a recursive formula for deep kernel processes exploiting the
technique of Cho & Saul (2009) to relate the conditional stochastic covariance kernels in a recursive
manner, resulting in a far more computationally practical procedure in the kernel space rather than
one in the feature space. One must note that although the limit processes are conditionally Gaussian
for each layer, they possess stable margins. Nevertheless, the conditionally Gaussian representation
naturally results in a stochastic covariance kernel in each layer, whose posterior can be learned
given the data, to enable data-dependent representation learning. In this way, the proposed method
bypasses the need for artificial noise injection in the manner of Aitchison et al. (2021).

1.2 SUMMARY OF MAIN CONTRIBUTIONS

1. The development of a novel deep α-stable kernel process, arising as the infinite-width limit
of a deep BNN under elliptical infinite variance priors on the weights at each layer. We
further present a conditionally Gaussian representation of the resulting process at each
layer, with a recursive formula relating these conditional covariance kernels, even when
covariances for the marginal processes do not exist at any layer.
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2. Theoretical and numerical demonstrations that the covariance kernel in the conditionally
Gaussian representation for each layer is stochastic, allowing for learning a non-degenerate
posterior of the kernels and identifying a clear demarcation with the deep GP literature.

3. A Markov chain Monte Carlo method for posterior sampling, which allows out-of-sample
prediction at new inputs as well as uncertainty quantification of the predictions via the full
posterior predictive distribution.

4. Numerical demonstrations in simulations and on benchmark UCI data sets that our method
performs better in prediction than the competing methods, offers full predictive uncertainty
estimates, and is considerably less time-consuming than the method of Lorı́a & Bhadra
(2024) that is limited to shallow (one hidden layer) BNNs.

2 DEEP α-STABLE KERNEL PROCESSES AS INFINITE-WIDTH LIMITS OF DEEP
BAYESIAN NEURAL NETWORKS UNDER HEAVY-TAILED WEIGHTS

Consider a deterministic input x ∈ RI with a corresponding one-dimensional output ψ(x). We
define an L layer feedforward deep neural network (DNN) with L−1 hidden layers by the recursion:

f
(ℓ+1)
j (x) = g

(
b
(ℓ)
j +

Mℓ∑
i=1

w
(ℓ)
ij f

(ℓ)
i (x)

)
, j = 1, . . . ,Mℓ+1; ℓ = 1, . . . , L− 1, (2)

ψ(x) =

ML∑
j=1

w
(L)
j f

(L)
j (x), (3)

where f (1) ≡ x, g(·) is a nonlinear activation function, and Mℓ is the width of the ℓ-th layer.
Neal (1996) proved under mild conditions, with L = 2 and the weights w(2)

j
ind.∼ M

−1/2
2 N (0, 1),

by taking the infinite-width limit M2 → ∞ for the last layer of this shallow network, the result-
ing stochastic process is a Gaussian process. Cho & Saul (2009) provided a recursive formula
for relating the layer-wise covariance kernels when the activation function g(·) is of the form
gδ(ζ) = ζδ1{ζ>0}, for δ a non-negative integer, and for any number of hidden layers while tak-
ing the limits M1 → ∞, . . . ,ML → ∞. Unlike these works, we use infinite variance prior weights
at each layer and study the resulting infinite-width limit posterior. For the first layer we take the

weights w(1)
mj

indep.∼ N (0, s
(1)
m,+), where s(1)m,+

i.i.d.∼ S+
α/2, and the bias of the first layer is sim-

ply taken to be b(1)j
i.i.d.∼ N (0, 1). For the subsequent layers, we set b(ℓ)j as i.i.d. N (0, 1) and

the weights (w(ℓ)
ij , for i = 1, . . . ,Mℓ, and j = 1, . . . ,Mℓ+1) of each layer ℓ > 1 are given a

distribution with infinite variance, as specified below in Theorem 1. This theorem establishes the
resulting infinite-width limit as a non-Gaussian process with stable marginals. Further, similar to
Tsuchida et al. (2019), it provides a conditionally Gaussian representation, conditioned on mixing
positive α/2 stable variables at each layer. The covariance kernel of this conditional GP can be de-
rived explicitly under several commonly used activation functions, similarly to Cho & Saul (2009).
Once this connection is established, posterior inference and prediction becomes feasible even in this
infinite-variance regime.

Theorem 1. For j = 1, . . . ,Mℓ+1 and k = 1, . . . , n, define: z(ℓ)j (xk) =
1

M
1/2
ℓ

∑Mℓ

i=1 w
(ℓ)
ij f

(ℓ)
i (xk),

where w(ℓ)
ij = (s

(ℓ)
+ )1/2w̃

(ℓ)
ij , with s(ℓ)+ i.i.d. positive α/2 stable random variables for ℓ = 2, . . . , L,

and without loss of generality, w̃(ℓ)
ij are i.i.d. with zero mean and unit variance and independent of

s
(ℓ)
+ . Then, the weights w(ℓ)

ij have infinite variance and as Mℓ → ∞, the limiting distribution of

z
(ℓ)
j = (z

(ℓ)
j (x1), . . . , z

(ℓ)
j (xn)), in the ℓ-th layer is elliptical α-stable, with characteristic function:

ϕ
z
(ℓ)
j |Σ(ℓ)(t) = exp

{
−(tTΣ(ℓ)t)α/2

}
,

where t = (t1, . . . , tn) and the n × n random matrix Σ(ℓ) is positive definite with probability
1. As such, the limiting z

(ℓ)
j admits the representation: z

(ℓ)
j | s(ℓ)+ ,Σ(ℓ) ∼ N (0, s

(ℓ)
+ Σ(ℓ)), where
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s
(ℓ)
+ ∼ S+

α/2. For activation functions gδ(ζ) = ζδ1{ζ>0}, and w̃(ℓ)
ij i.i.d. standard Gaussian, the

matrix Σ(ℓ) is recursively given as a function of Σ(ℓ−1) and s(ℓ−1)
+ by:

Σ
(ℓ)
k,h = π−1

[(
1 + s

(ℓ−1)
+ Σ

(ℓ−1)
k,k

)(
1 + s

(ℓ−1)
+ Σ

(ℓ−1)
h,h

)]δ/2
Jδ(θ

(ℓ)
k,h),

θ
(ℓ)
k,h = cos−1

{[
1 + s

(ℓ−1)
+ Σ

(ℓ−1)
k,h

] [
1 + s

(ℓ−1)
+ Σ

(ℓ−1)
k,k

]−1/2 [
1 + s

(ℓ−1)
+ Σ

(ℓ−1)
h,h

]−1/2
}
,

for k, h = 1, . . . , n, ℓ = 2, . . . , L; where Jδ(θ) can be computed explicitly for δ ∈ N us-
ing Eq. (4) of Cho & Saul (2009), and Σ(1) = XS

(1)
+ XT , where X = [x1, . . . ,xn]

T , S
(1)
+ =

diag(s
(1)
1,+, . . . , s

(1)
I,+), with s(1)m,+

i.i.d.∼ S+
α/2 for m = 1, . . . , I .

A proof is in Appendix B. For completeness, we note that g0(ζ) and g1(ζ) correspond to respectively
the step function and ReLU activations, for which J0(θ) = π−θ and J1(θ) = sin(θ)+(π−θ) cos(θ),
as derived by Cho & Saul (2009). This result has similarities to those previously obtained by both
Lee et al. (2018) and de G. Matthews et al. (2018). However, we emphasize the key difference
that in our case the kernels s(ℓ)+ Σ(ℓ) at all layers are random for α < 2, conditional on scales with
a positive α/2-stable distribution, although they are positive definite with probability one. The
limiting kernel for the Gaussian (α → 2) case reduces to a deterministic one, as in earlier works,
since S+

α/2→1 converges to a degenerate point mass at 1 with probability one. This permits an
explicit characterization of a deep kernel process with marginally infinite variance at each layer via
a conditional deep Gaussian process. Two significant gains, when compared to Lorı́a & Bhadra
(2024) are obtained: (1) there is no need for exponential complexity computations in the kernel
space as opposed to in the feature space, and (2) our derivations work with multi-layer BNNs, in
contrast to the results of Lorı́a & Bhadra (2024) that are limited to BNNs with a single hidden layer.

The next proposition describes the posterior predictive density implied by the probabilistic structure
in Theorem 1. The posterior predictive density we present combines the simplicity of predicting in
GPs while ameliorating the challenges posed by variables that have infinite variance.
Proposition 2. Consider a vector y of n real-valued observations with corresponding inputs X =
[x1, . . . ,xn]

T , where xk ∈ RI for all n. Consider the model of Equations (2) and (3) and suppose

we observe data with an additive error: yk = ψ(xk) + εk where εk
i.i.d.∼ N (0, σ2). Then, under the

setting of Theorem 1, and taking Mℓ → ∞ for all ℓ, at m new inputs X∗ = [xn+1, . . . ,xn+m]T ,
the posterior predictive distribution of the observations y∗ is given by:

y∗ | y,X,X∗, {s(ℓ)+ }Lℓ=2,S
(1)
+ ∼ Nm(µ∗,Λ∗), where,

µ∗ = Λ(n+1):(n+m),1:nΛ
−1
1:n,1:ny,

Λ∗ = Λ(n+1):(n+m),(n+1):(n+m) −Λ(n+1):(n+m),1:nΛ
−1
1:n,1:nΛ1:n,(n+1):(n+m),

s
(ℓ)
+

i.i.d.∼ S+
α/2; s

(1)
m,+

i.i.d.∼ S+
α/2, for, ℓ = 2, . . . , L; m = 1, . . . , I,

and Λ = Σ(L) + σ2In+m, where Σ(L) is the matrix obtained in the last layer in Theorem 1 with the
inputs, in order, [X,X∗] and In+m denotes the identity matrix of size (n+m).

Proof of Proposition 2 is in Appendix C. This proposition enables computation of the kernel poste-
rior and prediction, and is key to the numerical demonstrations presented later. We also remark that
the purpose of Proposition 2 is to tackle regression tasks rather than classification. However, similar
results can also be obtained for classification. Note that for α < 2, the conditional kernel Λ∗ is a
stochastic matrix, which we verify numerically in Sections 3 and 4.

Making use of Proposition 2, the next algorithm provides a Markov chain Monte Carlo (MCMC)
procedure for sampling from the posterior predictive density p(y∗, {s(ℓ)+ }Lℓ=2,S

(1)
+ | y,X,X∗).

Algorithm 1 obtains a valid sample of the posterior density p(y∗ | y,X,X∗) by classic results in
the MCMC literature (Chib & Greenberg, 1995). Our algorithm also provides valid samples of the
posterior stochastic covariance matrix induced by the kernel at the design points. We remark that
simulating in previously unseen locations can be done in an off-line manner, by simply utilizing the
scales and the collection of input points, which permits an efficient prediction algorithm without
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Algorithm 1 A Metropolis–Hastings sampler for the posterior predictive distribution of the deep
α-kernel process.

Require: Observations y ∈ Rn, with I-dimensional input variables X ∈ Rn×I , new input variables
X∗ ∈ Rm×I , and number of MCMC iterations T .

Output: Posterior predictive samples {y∗
t }Tt=1, samples of stochastic matrix {Σ(L)

t }Tt=1.
Simulate starting scales S(1)

+,(0), s
(ℓ)
+,(0)

i.i.d.∼ S+
α/2 for ℓ = 2, . . . , L using the algorithm of Cham-

bers et al. (1976).
for t = 1, . . . , T do

Simulate S
(1)
+,(t) | {s

(ℓ)
+,(t−1)}

L
ℓ=2 using Algorithm 2.

for ℓ = 2, . . . , L− 1 do
Simulate s(ℓ)+,(t) | y, {s

(h)
+,(t−1)}

L
h=ℓ+1 using Algorithm 2.

end for
Simulate s(L)

+,(t) | y using Algorithm 3.

Compute µ∗
t and Λ∗

t using Σ
(L)
t in Proposition 2.

Simulate y∗
t | (y,Σ(L)

t ) ∼ Nm(µ∗
t ,Λ

∗
t ).

end for
return {y∗

t }Tt=1 and {Λt}Tt=1.

a need to resample the scales. We also make use of a half-Cauchy prior (Gelman, 2006) on the
variance of the errors σ2, to specify a fully-Bayesian model. A full implementation, with examples,
is freely available at: https://github.com/loriaJ/deep-alpha-kernel.

Following the construction of Theorem 1 ensures we have defined a valid kernel process that is con-
sistent under marginalization, in the manner described by Aitchison et al. (2021). Specifically, the
process {Σ(ℓ)}Lℓ=1 is a deep kernel process with probability 1, meaning that they induce a distribu-
tion on positive definite matrices of different sizes which are consistent under marginalization. The
proof of this follows from a similar argument as in Aitchison et al. (2021), and reduces to their result
under fixed scales. For completeness we provide further elaboration in Appendix E.

Additionally, the process {Σ(ℓ)}Lℓ=1 has an implicit dependence on α, the index of the α-stable
random variables. For α = 2, the characteristic function of z(ℓ)j becomes that of a Gaussian random
variable, and Σ(ℓ) is deterministic. Remarkably this kernel process is stochastic when α < 2. The
importance of having a stochastic deep kernel process is that it allows us to learn features, which
deep Gaussian processes are not able to do, as highlighted by Yang et al. (2023). We formalize this
notion in the following proposition, with proof in Appendix F.

Proposition 3. For α < 2 the posterior distribution of the features z(ℓ)j is given by

p(z
(ℓ)
j | X,y) =

∫
p(z

(ℓ)
j | {s(ℓ)+ }Lℓ=2,S

(1)
+ )p({s(ℓ)+ }Lℓ=2,S

(1)
+ | X,y)

L∏
ℓ=2

ds
(ℓ)
+

I∏
m=1

ds
(1)
m,+.

This implies that the features also depend on the observations. For α = 2, the posterior distribution
of the features are independent of the observations, and hence, cannot be learned from the data.

The importance of this proposition is that we are able to verify that in the deep kernel process
we have defined, the features do depend on the observations. As such, there is feature learning
only when α < 2, but when α = 2 we return to a deterministic kernel and are not able to learn the
features. As an additional benefit, the proposition provides a straightforward procedure for sampling
from the posterior of the features. Namely, we can sample the scales from p({s(ℓ)+ }Lℓ=2,S

(1)
+ | X,y),

and then sample from z
(ℓ)
j | {s(ℓ)+ }Lℓ=2,S

(1)
+ ∼ N (0, s

(ℓ)
+ Σ(ℓ)) using the posterior samples of s(ℓ)+ .
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Figure 1: Decay of the conditional mutual information for the deep α-kernel process as a function
of the distance between the inputs with L = 2, δ = 1. The limiting Gaussian case (α = 2) is also
included.

3 NUMERICAL EXPERIMENTS

3.1 CONDITIONAL MUTUAL INFORMATION AS A FUNCTION OF α

Figure 1 displays the conditional mutual information for different values of α at varying distances
over a uniform grid in one-dimension with L = 2, δ = 1, for the proposed deep α-kernel process,
i.e., a process with one hidden layer. For a GP, the mutual information is simply a function of the
correlation, but this quantity is not well defined in our case, since there is no well-defined covari-
ance. As such, we need to refer to the conditional mutual information (Cover & Thomas, 2006, p.
23), which can be computed using the conditionally-Gaussian representation and numerical integra-
tion via Monte Carlo methods. The expressions of conditional mutual information and details of
computation are provided in Appendix G. The key finding is that the conditional mutual information
decays at a slower rate for smaller α. The long memory behavior of the conditional mutual infor-
mation suggests the developed deep α-kernel processes to be especially adept at picking up distant
relationships, which would be modeled as nearly independent under a GP.

3.2 POSTERIOR PREDICTION AND UNCERTAINTY QUANTIFICATION UNDER DISCONTINUITY

We display results on functions with jumps in one, two, and ten dimensions. The reason we focus
specifically on discontinuous true functions is that they are misspecified under a GP prior under any
covariance function, which can model varying levels of smoothness, but not a lack of mean square
continuity. In contrast, heavy-tailed priors enable posterior inference on a broader function class,
e.g., those belonging to Besov space; see recent theoretical works by Agapiou & Castillo (2024)
and extensive numerical works in Lorı́a & Bhadra (2024). The comparisons include a Bayesian GP
method (Gramacy & Taddy, 2010) and a frequentist approach on GPs (Dancik & Dorman, 2008),
as well as the DIWP and NNGP method as implemented by Aitchison et al. (2021), and the Stable
method by Lorı́a & Bhadra (2024). We refer to our proposed method as Dα-KP as a shorthand for
deep α-stable kernel process. For the deep kernel methods of Aitchison et al. (2021) we train all the
models using the same hyperparameters they use, with 8000 total steps with 10−2 as the step-size for
the first half, and 10−3 for the second half. For the Dα-KP method we run 3000 MCMC simulations
with α = 1, δ = 1. For a fair comparison, the three kernel methods all use L = 2, meaning they
are shallow with one hidden layer. The following simulation settings are considered, respectively in
one, two, and ten dimensions, all under discontinuous truth.

1. The true function in one dimension is f(ξ) = 5× 1{ξ>0} and we generate observations as
y(ξ) = f(ξ)+ ε; ε ∼ N (0, 0.52). For training we consider 40 equally-spaced input points
on [−1, 1] and predict on 100 out-of-sample points.

2. In two dimensions we use the function f(ξ1, ξ2) = 5×1{ξ1>0}+5×1{ξ1>0} and generate
y(ξ1, ξ2) = f(ξ1, ξ2) + ε; ε ∼ N (0, 0.52), using a 7 × 7 uniform grid on [−1, 1]2 for
training, and a similar 9× 9 grid for testing.
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3. In the ten-dimensional setting we use the function f(ξ) = 6sign(ξ1) + 8sign(ξ2 + ξ3) +
6sign(ξ4+ξ5)+6sign(ξ6+ξ7)+6sign(ξ8+ξ9)+6sign(ξ10) and generate y(ξ) = f(ξ)+ε,
with ε ∼ N (0, 0.52). The design points are generated by ξi

i.i.d.∼ Unif(−0.5, 0.5). We
generate 20 splits, each with 300 training and 300 testing observations.

Under these simulation settings, we provide in Table 1 the prediction errors for the competing meth-
ods by presenting the root mean squared error (RMSE) and mean absolute error (MAE). Our method
obtains smaller out-of-sample prediction errors compared to the other methods, and is generally a
close second to the Stable method of Lorı́a & Bhadra (2024). However, the running time of our
method is a fraction of the time of Lorı́a & Bhadra (2024), which we highlight in Supplementary
Section H.1. As a result of this high run time owing to the exponential complexity computations,
the results for the Stable method are only available in one and two dimensions. Figure 2a compares
the function fit for the one-dimensional function. Figure 2b displays the uncertainty quantification
(UQ) by presenting 90% posterior predictive intervals, where the benefits of the methods using α-
stable priors over GP priors are clear under discontinuity, as is the inability of GP to model such
functions. We display similar figures for the examples in two and ten dimensions in Appendix H.
Furthermore, the out-of-sample prediction errors for this case demonstrate the superior performance
of methods that incorporate α-stable random variables. Appendix H.2 shows the percent of observa-
tions that are covered in the 90% posterior predictive intervals for the simulation settings under all
methods. In Appendix H.3 we present additional results, including an ablation study on the param-
eter α (Appendix H.3.3) and visualizations of the posterior quantiles of the random kernel matrix
(Appendix H.3.4).
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(a) Function fit for the different methods.
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(b) 90% posterior predictive intervals for the
Bayesian methods.

Figure 2: Function fit and uncertainty quantification for the competing methods for a 1-d function
with a single jump.

Table 1: Out-of-sample errors in numerical examples, in twenty different splits. Best in bold. Stable
not available for more than 2 dimensions.

One Dimension Two Dimensions Ten Dimensions
Method RMSE (SD) MAE (SD) RMSE (SD) MAE (SD) RMSE (SD) MAE (SD)

Dα-KP 0.57 (0.05) 0.45 (0.04) 0.86 (0.09) 0.67 (0.07) 8.08 (0.38) 6.48 (0.33)
DIWP 1.08 (0.04) 0.84 (0.03) 1.69 (0.05) 1.36 (0.05) 8.92 (0.38) 7.21 (0.32)
GP Bayes 0.69 (0.05) 0.52 (0.04) 0.90 (0.06) 0.70 (0.06) 10.39 (0.63) 8.32 (0.52)
GP MLE 0.77 (0.06) 0.57 (0.04) 1.19 (0.08) 0.92 (0.07) 8.32 (0.38) 6.68 (0.34)
NNGP 1.08 (0.04) 0.84 (0.03) 1.69 (0.05) 1.36 (0.04) 8.92 (0.39) 7.21 (0.34)
Stable 0.52 (0.03) 0.42 (0.03) 0.57 (0.08) 0.45 (0.04) – –

3.3 THE EFFECT OF DEPTH ON PREDICTION FOR α-KERNEL PROCESSES

We numerically investigate the effect of depth on predictive performance in the synthetic data sets
of Section 3.2, with L = 2 results given there. As can be seen from Table 2, there is no meaningful
difference between deep and shallow α kernel processes for these simulation settings. Recent works
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have theoretically investigated fundamental barriers to trainable depth of deep neural networks,
exceeding which actually results in degraded performance (Schoenholz et al., 2017). A similar
theoretical investigation is beyond the scope of the current work, but we conjecture that the resultant
stable process can capture a function class rich enough with even one hidden layer, so that the effect
of depth becomes a secondary issue for these test functions. This is a very different situation from
a deep NNGP, which can only capture functions that are mean square continuous, with the effect of
depth primarily manifesting in a richer covariance kernel, but not in a non-Gaussian process.

Table 2: Average (SD) out-of-sample errors for deep α-KP, with δ = 1, α = 1, in the three simula-
tion scenarios with varying layer depth, over twenty different splits.

One Dimension Two Dimensions Ten Dimensions
L RMSE (SD) MAE (SD) RMSE (SD) MAE (SD) RMSE (SD) MAE (SD)

3 0.56 (0.05) 0.45 (0.04) 0.82 (0.07) 0.65 (0.05) 8.09 (0.38) 6.49 (0.34)
6 0.57 (0.05) 0.45 (0.04) 0.81 (0.07) 0.64 (0.05) 8.10 (0.39) 6.49 (0.34)

11 0.58 (0.05) 0.45 (0.04) 0.85 (0.06) 0.66 (0.05) 8.11 (0.40) 6.51 (0.35)
16 0.58 (0.05) 0.46 (0.04) 0.88 (0.06) 0.69 (0.05) 8.11 (0.39) 6.50 (0.34)

4 APPLICATIONS TO UCI DATA SETS

4.1 OUT-OF-SAMPLE PREDICTIVE PERFORMANCE

We apply the five methods (Dα-KP, DIWP, NNGP, GP Bayes, and GP MLE) to the three well-known
data sets from the UCI repository: Boston, Yacht, and Energy. Due to the size of these data sets and
the O(nI+2) computational complexity, the Stable procedure was not feasible to run. To this end,
we split each of the data sets in 20 different folds, training in 19 and testing in the remaining fold;
and repeat the process for each of the folds. We display the average RMSE and average MAE in
Table 3, with the respective standard deviations. We find that in two out of three cases (Energy and
Yacht), Dα-KP has the best predictive performance, while being a close second on the Boston data
set. In Appendix I.1 we display the running times for the considered methods, and in Appendix I.2
we display the coverage of the credible intervals.

Table 3: Comparison of out-of-sample errors in twenty splits of the three UCI datasets, using the
Dα-KP (α = 1, δ = 1, L = 2), DIWP, NNGP (Aitchison et al., 2021), GP Bayes, and GP MLE.
Number of observations denoted by n and number of inputs by I . Stable method not available for
I > 2. Best in bold.

Boston (n = 506, I = 13) Energy (n = 769, I = 8) Yacht (n = 308, I = 6)
Method RMSE (SD) MAE (SD) RMSE (SD) MAE (SD) RMSE (SD) MAE (SD)

Dα-KP 2.59 (0.73) 1.78 (0.35) 0.46 (0.07) 0.32 (0.05) 0.31 (0.12) 0.16 (0.05)
DIWP 2.85 (0.89) 2.01 (0.41) 0.48 (0.06) 0.34 (0.04) 0.60 (0.20) 0.30 (0.10)
NNGP 3.00 (0.87) 2.04 (0.43) 2.18 (0.23) 1.57 (0.18) 3.88 (0.87) 2.58 (0.49)
GP Bayes 2.58 (0.75) 1.76 (0.35) 0.68 (0.06) 0.51 (0.04) 0.48 (0.23) 0.22 (0.07)
GP MLE 3.93 (1.02) 2.58 (0.51) 0.49 (0.06) 0.34 (0.04) 0.52 (0.34) 0.25 (0.11)
Stable – – – – – –

4.2 NON-GAUSSIAN FEATURE LEARNING

In this section we numerically investigate whether Dα-KP indeed learns a non-degenerate and non-
Gaussian posterior of the features. Specifically, we display in Figure 3 the first two features in the
hidden layer of a two layer Dα-KP for the Energy data set. The posterior of features in the ℓ-th
layer is given by: z(ℓ)j | Σ(ℓ),y ∼ N (0,Σ(ℓ)). Note that after marginalizing over Σ(ℓ), which has
stable dependence, Proposition 3 indicates we would obtain a non-Gaussian distribution. Figure 3
confirms the non-Gaussianity. In this figure we include the 2-d heat map of posterior samples with
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1-d marginal box plots, which show far more values in the tails than what can be expected under
Gaussianity. The normal q–q plots also confirm the heavy tails. We include similar figures for the
Boston and Yacht datasets in Appendix J. The non-Gaussianity of z(ℓ)j also serves as confirmation
that Σ(ℓ) is indeed stochastic, since otherwise we would obtain Gaussian features.
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(b) Normal q–q plot of the first two features.

Figure 3: Posterior distribution of the features for the Energy data set using 10k posterior MCMC
samples with 1k burn-in samples.

5 CONCLUDING REMARKS

We present a viable posterior inference procedure for deep α-stable kernel processes arising as
the infinite-width limit of a BNN under infinite variance prior weights at each layer. Through a
convenient representation of elliptical α-stable random vectors as a Gaussian mixture with respect
to positive α/2 stable variables acting as random scales, we obtain an explicit relationship with a
deep conditionally Gaussian process, upon which the result of Cho & Saul (2009) can be leveraged
to link the conditional covariance kernels in a recursive manner, resulting in a computationally viable
method. We also present extensive evidence of benefits in prediction and uncertainty quantification
under a true data generating function that contains jump-type discontinuities. Compared to the
approach of Lorı́a & Bhadra (2024), the current work overcomes the serious limitations of being
restricted to one hidden layer and exponential complexity computations.

Several future directions could naturally follow from the current work. Although MCMC is gold
standard for full posterior uncertainty quantification, for computational scalability, one may look
for a variational approximation to the posterior predictive density we derived. Applying techniques
such as inducing points (Snelson & Ghahramani, 2005), would also help scale the algorithm to data
sets with larger sample sizes.

Our results indicate successful feature learning under non-Gaussian stochastic processes that is not
possible under a GP (shallow or deep) and achieves this without any artificial noise injection in the
manner of Aitchison et al. (2021). In the current work, we have not made any efforts of feature
selection, which appears to be a promising direction under the infinite-width limits of suitable spar-
sity inducing architectures, such as dropout (Srivastava et al., 2014), that should now be possible
to study following our work and leveraging its main ideas. More general activation functions, as in
Tsuchida et al. (2021), may also be considered.

Although in this paper we consider the infinite-width limit of deep Bayesian neural networks, an-
other interesting GP limit arises due to the dynamics of the stochastic gradient descent (SGD) noise
during the training of the network, resulting in the neural tangent kernel (NTK) (Jacot et al., 2018),
under the assumption of bounded variance SGD noise. However, recent works, including Simsekli
et al. (2019), have found empirical evidence that SGD noise can be heavy-tailed. In this regime, one
should expect a non-Gaussian analog for the NTK, with a random kernel, whose data-dependent
posterior should be possible to study using techniques similar to ours.
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A THE GENERALIZED CENTRAL LIMIT THEOREM

Theorem 4. (Uchaikin & Zolotarev, 1999, p. 62) Let X1, . . . , Xn be independent and identically
distributed random variables with the distribution function FX(x) satisfying the conditions:

1− FX(x) ∼ cx−µ, x→ ∞,

FX(x) ∼ dx−µ, x→ −∞,

with µ > 0, c ≥ 0, d ≥ 0. Then, there exists sequences an and bn such that the distribution of
the centered and normalized sum Zn = b−1

n (
∑n

i=1Xi − an), converges in distribution to the stable
distribution with parameters:

α = min(µ, 2), β =
c− d

c+ d
,

as n → ∞, i.e., FZn
(x) → G(x;α, β) for all x where G is continuous, where FZn

is the c.d.f of
Zn, and G is the c.d.f. of an α-stable random variable with symmetry parameter β. The coefficients
an and bn are given in Table 4.

Table 4: Centering and normalizing coefficients an and bn for the generalized central limit theorem.

µ α an bn

0 < µ < 1 µ 0 π1/α(c+ d)1/α[2Γ(α) sin(απ/2)]−1/αn1/α

µ = 1 µ (c− d)n log(n) π(c+ d)n/2
1 < µ < 2 µ nE[X] (c+ d)1/α[2Γ(α) sin(απ/2)]−1/αn1/α

µ = 2 2 nE[X] (c+ d)1/2[n log(n)]1/2

µ > 2 2 nE[X] [(1/2)Var(X)]1/2n1/2

B PROOF OF THEOREM 1

First, the marginal variance of w(ℓ)
ij is unbounded:

V(w(ℓ)
ij ) = V[(s(ℓ)+ )1/2E[w̃(ℓ)

ij | s(ℓ)+ ]] + E[s(ℓ)+ V[w̃(ℓ)
ij | s(ℓ)+ ]] = ∞,

since for Stable (α/2) random variables, the expectation is unbounded. Next, we have:

z
(ℓ)
j (xk) =

1

M
1/2
ℓ

Mℓ∑
i=1

w
(ℓ)
ij f

(ℓ)
i (xk) = (s

(ℓ)
+ )1/2

1

M
1/2
ℓ

Mℓ∑
i=1

w̃
(ℓ)
ij f

(ℓ)
i (xk).

Since w̃(ℓ)
ij are i.i.d. with unit variance by assumption, we have, as Mℓ → ∞:

1

M
1/2
ℓ

Mℓ∑
i=1

w̃
(ℓ)
ij f

(ℓ)
i (xk)

D→ N (0, λ
(ℓ)
k ),

by an application of the classical central limit theorem, where D→ denotes convergence in distribution.
Thus,

z
(ℓ)
j (xk)

D→ (s
(ℓ)
+ )1/2N (0, λ

(ℓ)
k ),

which is an α-stable random variable for each j, k, and λ(ℓ)k = V(f (ℓ)i (xk) | {s(l)+ }ℓ−1
l=1 ,S

(1)
+ ), which

does not depend on i since the f (ℓ)i (xk) are i.i.d. across i.

The conditional covariance between two features in layer one is given by:

Cov(z
(1)
j (xk), z

(1)
j (xk′) | S(1)

+ ) = Cov

(
I∑

m=1

(s
(1)
m,+)

1/2w̃
(1)
mjxm,k,

I∑
m′=1

(s
(1)
m′,+)

1/2w̃
(1)
m′jxm′,k′ | S(1)

+

)

=

I∑
m′=1

(s
(1)
m′,+)

1/2xm′,k′

I∑
m=1

(s
(1)
m,+)

1/2xm,kCov(w̃
(1)
ij , w̃

(1)
m′j | S

(1)
+ )

=

I∑
m=1

s
(1)
m,+xm,kxm,k′ .
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As such the conditional covariance matrix of z(1)j | S(1)
+ is Σ(1) = XS

(1)
+ XT . Now that we have the

first covariance matrix, we proceed by induction over ℓ, with the note that in the case ℓ = 2 what
we denote by s(1)+ corresponds to S

(1)
+ . Next we obtain the characteristic function of z(ℓ)j for a finite

Mℓ, assuming that Σ(ℓ−1), s
(ℓ)
+ , s

(ℓ−1)
+ are given. To this end, for t = (t1, . . . , tn) ∈ Rn:

ϕ
z
(ℓ)
j |Σ(ℓ−1),s

(ℓ)
+ ,s

(ℓ−1)
+

(t) = E
[
exp

{
itT z

(ℓ)
j

}
| Σ(ℓ−1), s

(ℓ)
+ , s

(ℓ−1)
+

]
= E

[
exp

{
i

n∑
k=1

Mℓ∑
i=1

tkM
−1/2
ℓ w

(ℓ)
ij f

(ℓ)
i (xk)

}
| Σ(ℓ−1), s

(ℓ)
+ , s

(ℓ−1)
+

]

= E

[
exp

{
i

n∑
k=1

Mℓ∑
i=1

tkM
−1/2
ℓ (s

(ℓ)
+ )1/2w̃

(ℓ)
ij f

(ℓ)
i (xk)

}
| Σ(ℓ−1), s

(ℓ)
+ , s

(ℓ−1)
+

]

= E

[
exp

{
i(s

(ℓ)
+ )1/2M

−1/2
ℓ

Mℓ∑
i=1

w̃
(ℓ)
ij

n∑
k=1

tkf
(ℓ)
i (xk)

}
| Σ(ℓ−1), s

(ℓ)
+ , s

(ℓ−1)
+

]

= E

[
exp

{
i(s

(ℓ)
+ )1/2M

−1/2
ℓ

Mℓ∑
i=1

w̃
(ℓ)
ij A

(ℓ)
i

}
| Σ(ℓ−1), s

(ℓ)
+ , s

(ℓ−1)
+

]
, (4)

where we define A(ℓ)
i =

∑n
k=1 tkf

(ℓ)
i (xk), which are independent and identically distributed over

i, and the expectation E(·) is over the distribution of w̃(ℓ)
ij . Next, the expectation of w̃(ℓ)

ij A
(ℓ)
i is

zero since both factors of the product are independent and the mean of one of them is zero, and the
variance is E[(

∑n
k=1 tkf

(ℓ)
i (xk))

2 | Σ(ℓ−1), s
(ℓ−1)
+ ].

Taking the limit Mℓ → ∞ of the expression inside the exponential in Equation (4), we obtain:

lim
Mℓ→∞

(s
(ℓ)
+ )1/2M

−1/2
ℓ

Mℓ∑
i=1

w̃
(ℓ)
ij A

(ℓ)
i

D→ (s
(ℓ)
+ )1/2N

0,E

( n∑
k=1

tkf
(ℓ)
i (xk)

)2

| Σ(ℓ−1), s
(ℓ−1)
+


= (s

(ℓ)
+ )1/2 × η

(ℓ)
j ,

since s(ℓ) and w̃(ℓ)
ij are independent and η(ℓ)j denotes the normal random variable on the RHS of

first line of the above display, which can be seen to be i.i.d. over j. Define the matrix Σ(ℓ) with
Σ

(ℓ)
k,h = E[f (ℓ)i (xk)f

(ℓ)
i (xh) | Σ(ℓ−1), s

(ℓ−1)
+ ], which is a valid covariance matrix and does not

depend on i. Thus, since Σ(ℓ) is a deterministic function of Σ(ℓ−1) and s(ℓ−1)
+ , we have:

lim
Mℓ→∞

ϕ
z
(ℓ)
j |Σ(ℓ)(t) = exp

{
−(1/2)(tTΣ(ℓ)t)α/2

}
,

by an application of Lévy’s continuity theorem (Billingsley, 1995, Th. 26.3). As such, z(ℓ)j | Σ(ℓ) is
an elliptical α-stable random vector.

Next, we proceed with the calculation of Σ(ℓ) | Σ(ℓ−1), s
(ℓ−1)
+ in the case of w̃(ℓ−1)

ij being standard

Gaussian weights and when gδ(ζ) = ζδ1{ζ>0}. For this, note that (z(ℓ−1)
j (xk), z

(ℓ−1)
j (xh))

T |
Σ(ℓ−1), s

(ℓ−1)
+ ∼ N (0, s

(ℓ−1)
+ Σ

(ℓ−1)
∗ ), where Σ

(ℓ−1)
∗ is a two-by-two symmetric matrix with diago-

nal (Σ(ℓ−1)
k,k ,Σ

(ℓ−1)
h,h ), and off-diagonal entries Σ(ℓ−1)

h,k . It follows that:(
b
(ℓ−1)
j + z

(ℓ−1)
j (xk), b

(ℓ−1)
j + z

(ℓ−1)
j (xh)

)T
| Σ(ℓ−1), s

(ℓ−1)
+

i.i.d.∼ N
(
0,U+ s

(ℓ−1)
+ Σ

(ℓ−1)
∗

)
,

(5)

where U is a two-by-two matrix with all entries equal to one, with the independence over the js and
conditional on (Σ(ℓ−1), s

(ℓ−1)
+ ). Then for k, h = 1, . . . , n:

Σ
(ℓ)
k,h = E[f (ℓ)j (xk)f

(ℓ)
j (xh) | Σ(ℓ−1), s

(ℓ−1)
+ ] =

∫
R2

gδ(ζ1)gδ(ζ2)p(ζ1, ζ2)dζ2dζ1,
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where in the second line p(ζ1, ζ2) is the density of the random vector in Equation (5). It follows
that:

Σ
(ℓ)
k,h =

∫
R

∫
R
ζδ11{ζ1>0}ζ

δ
21{ζ2>0}p(ζ2, ζ1)dζ2dζ1

=
1

2πv1v2
√

1− ρ2

∫ ∞

0

∫ ∞

0

ζδ1ζ
δ
2 exp

(
− 1

2(1− ρ2)

[
ζ21v

−2
1 − 2ρ

ζ1ζ2
v1v2

+ ζ22v
−2
2

])
dζ1dζ2

= vδ1v
δ
2

1

2π
√
1− ρ2

∫ ∞

0

∫ ∞

0

ηδ1η
δ
2 exp

(
− 1

2(1− ρ2)

[
η21 − 2ρη1η2 + η22

])
dη1dη2,

where the second line follows by the bivariate normal p.d.f. where vi is the standard deviation for
the i-th entry implied by Equation (5), ρ is the respective correlation and by evaluating the indicator
function. In the last line we use the change of variables ηi = ζi/vi. This last expression corresponds
to a multiple of Equation (15) of Cho & Saul (2009), where ρ2 = cos2(θ). Explicitly:

v21 = 1 + s
(ℓ)
+ Σ

(ℓ−1)
k,k , v22 = 1 + s

(ℓ)
+ Σ

(ℓ−1)
h,h , ρ =

1 + s
(ℓ)
+ Σ

(ℓ−1)
k,h

v1v2
.

Finally:

Σ
(ℓ)
k,h = π−1

[
v21v

2
2

]δ/2
Jδ(θ), θ = cos−1(ρ),

as required.

C PROOF OF PROPOSITION 2

The expressions for the conditional expectation and variance, µ∗ and Λ∗ are a direct consequence
of the posterior predictive distribution of Gaussian random vectors. We omit the details.

D SUPPLEMENTARY ALGORITHMS

The following algorithms are used in Algorithm 1. They compute the covariance matrix Σ(L) from
the random scales. The algorithm used is an independent sample Metropolis–Hastings sampler
where we propose from the prior, and accept with probability corresponding to the ratio of the
likelihoods.

Algorithm 2 A Metropolis–Hastings sampler for s(ℓ)+ | s(ℓ+1)
+ ,y

Require: Scale of the next layers s(ℓ+1)
+ , . . . , s

(L)
+ , and Σ(ℓ−1), the p.d. matrix of the previous layer.

Propose s(ℓ),∗+ ∼ S+
α/2 using the algorithm of Chambers et al. (1976).

if ℓ = 1 then
Compute (Σ(1))∗ using the formula from Theorem 1.

end if
Compute, using the proposed scale, (Σ(ℓ+1))∗, . . . , (Σ(L))∗, with the formulas in Theorem 1.
Simulate U ∼ Unif(0, 1).
if U < p(y | (Σ(L))∗)/p(y | Σ(L)) then

Return s(ℓ),∗+
else

Return s(ℓ)+
end if

E {Σ(ℓ)}Lℓ=1 IS CONSISTENT UNDER MARGINALIZATION

Consistency under marginalization means that for K1 ∼ G(K0), where both K1,K0 are p.d. n× n
matrices, then a principal P ×P submatrix K∗

0 of K0 also induces a distribution K∗
1 ∼ G(K∗

0 ), and
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Algorithm 3 A Metropolis–Hastings sampler for s(L)
+ | y

Require: Vector of observations y, α, previous iteration of s(L)
+ , and Σ(L).

Propose s(L),∗
+ ∼ S+

α/2 using the algorithm of Chambers et al. (1976).

Compute (Σ(L))∗ | s(L),∗
+ , using the formula in Theorem 1.

Simulate U ∼ Unif(0, 1).
if U < p(y | (Σ(L))∗)/p(y | Σ(L)) then

Return s(L),∗
+ .

else
Return s(L)

+ .
end if

those distributions are consistent, i.e., if we consider the full p.d.f. ofK1 and integrate out the entries
that do not belong to K∗

1 we obtain the same p.d.f. This is a property that is known for Wishart and
inverse Wishart matrices (Dawid, 1981).

First, consider the set of positive random scales in the first layer S(1)
+ fixed. Note that Σ(1) is a p.d.

matrix for any number of observations n, since the obtained cross product in Appendix B is a valid
covariance function. Similarly, for P < n any P × P principal submatrix (Σ(1))∗1:P,1:P (wlog) is a
consistent submatrix, since the random scales are fixed.

Now, consider a principal submatrix (wlog) in the ℓ layer: (Σ(ℓ))1:P,1:P , and consider s(ℓ)+ fixed.
Then (Σ(ℓ+1))1:P,1:P is a deterministic function of (Σ(ℓ))1:P,1:P , since s(ℓ)+ is fixed. This implies
that (Σ(ℓ+1))1:P,1:P is consistent under marginalization, as the only randomness comes from s

(ℓ)
+

over which we can integrate.

F PROOF OF PROPOSITION 3

First consider α < 2. The posterior of the features is given by:

p(z
(ℓ)
j | X,y) =

∫
p(z

(ℓ)
j , {s(ℓ)+ }Lℓ=2,S

(1)
+ | X,y)

L∏
ℓ=2

ds
(ℓ)
+

I∏
m=1

ds
(1)
m,+

=

∫
p(z

(ℓ)
j | {s(ℓ)+ }Lℓ=2,S

(1)
+ ,X,y)

× p({s(ℓ)+ }Lℓ=2,S
(1)
+ | X,y)

L∏
ℓ=2

ds
(ℓ)
+

I∏
m=1

ds
(1)
m,+. (6)

Employing the elliptical α-stable characterization of Theorem 1, the distribution of z(ℓ)j is given by:

z
(ℓ)
j | {s(ℓ)+ }Lℓ=2,S

(1)
+ ∼ N (0, s

(ℓ)
+ Σ(ℓ)).

As such, we have that the posterior of z(ℓ)j can depend on y only through the posterior of {s(ℓ) | y}
for ℓ = 2, . . . , L, since the Σ(ℓ) is a deterministic function of a fixed design matrix X and conditional
on the random scales s(2)+ , . . . , s

(ℓ)
+ ,S

(1)
+ .

Now, when α = 2, all s(ℓ)+ are equal to one with probability 1 (i.e., they are degenerate Dirac point
mass at one) and therefore the posterior s(ℓ)+ | y is also a degenerate point mass at 1. Thus, the
posterior of the features cannot depend on the observations when α = 2, i.e., in the Gaussian case.

G CONDITIONAL MUTUAL INFORMATION

For a bivariate Gaussian vector the mutual information is easily computed by: −(1/2) log(1− ρ2),
where ρ is the correlation coefficient between the two entries of the vector (Cover & Thomas, 2006,
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p. 252). However, recall that in our non-Gaussian setting, marginal moments or correlations are
not defined and we need a conditional construction. Consider three random variables Y1, Y2, S, the
conditional mutual information (Cover & Thomas, 2006, p. 23) is given by

I(Y1;Y2 | S) =
∫
S

∫
Y1×Y2

log

(
p(y1, y2 | s)

p(y1 | s)p(y2 | s)

)
p(y1, y2 | s)p(s)dy1dy2ds

=

∫
S
DKL[p(Y1, Y2 | s) || p(Y1 | s)p(Y2 | s)]p(s)ds,

whereDKL is the Kullback–Leibler divergence. In our case, we consider Y1, Y2 as two observations
from the deep α-kernel process, and S corresponds to the conditional scales. Since given S the
observations are conditionally-Gaussian, we can apply the formula that employs the correlation and
integrate over the scales to obtain the mutual information. Specifically, we use:

I(Y1;Y2 | S) = −(1/2)

∫
S
log(1− ρ2Y1,Y2

(s))p(s)ds.

To perform the integration we use Monte Carlo samples of {s(ℓ)+ }Lℓ=2,S
(1)
+ , and use the correlation

induced by the Σ(L).

H ADDITIONAL NUMERICAL RESULTS FOR SIMULATED DATA

H.1 TIMING OF SIMULATIONS

In Table 5 we display the running time for the six methods employed in the simulations described in
Section 3. All the times are in seconds and display CPU times. We avoid any type of parallelization
throughout our experiments.

Table 5: Average (SD) time (s) for the six methods in the numerical examples for one, two, and ten
dimensions.

Method 1D 2D 10D

Dα-KP 181.23 (15.3) 200.19 (31.16) 9713.51 (212.10)
DIWP 206.56 (10.24) 312.29 (21.17) 14509.31 (2783.10)
GP Bayes 17.26 (0.44) 21.35 (0.24) 729.78 (26.96)
GP MLE 0.08 (0.00) 0.18 (0.01) 49.89 (2.51)
NNGP 131.03 (11.99) 167.85 (6.36) 11044.99 (1927.03)
Stable 33.14 (5.64) 1456.72 (85.45) –

H.2 COVERAGE OF CREDIBLE INTERVALS

In Table 6 we display the percent of observations in the out-of-sample observations captured by the
90% credible intervals produced by the Bayesian methods. The GP MLE method is a frequentist
method and as such does not produce valid credible intervals. The Stable method is not available
for 10 dimensions. The methods that use stable random variables are the only ones that consistently
manage to be close to the nominal coverage of 90%. The other methods typically have coverage
much below 90%, especially in high dimensions.

H.3 VISUALIZATIONS OF SIMULATION RESULTS

H.3.1 PLOTS FOR TWO DIMENSIONS

Figure 4 displays the function fit for the example in two dimensions and the residuals with the
accompanying credible intervals. We do this for the first split of the dataset. Recall that the true
function is f(ξ1, ξ2) = 5× 1{ξ1>0} + 5× 1{ξ2>0}. The Dα-KP and the Stable method are the only
ones that are able to capture the jump without oversmoothing, and with narrower credible intervals.
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Table 6: Average (SD) percent of out-of-sample observations captured by the 90% credible intervals
in the twenty splits of the simulation examples.

Method 1D 2D 10D

Dα-KP 90.85% (5.12) 92.47% (5.63) 89.70% (2.42)
DIWP 92.70% (1.89) 95.86% (1.22) 60.47% (3.08)
GP Bayes 94.85% (2.43) 94.14% (3.02) 65.17% (5.82)
GP MLE – – –
NNGP 92.50% (1.79) 95.99% (1.12) 60.65% (2.82)
Stable 91.65% (4.40) 91.11% (4.63) –
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(a) Function fit for the different methods.
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(b) Residuals versus predictions for the methods
that produce valid credible intervals.

Figure 4: Function fit and residuals with 90% credible intervals for the six methods in the simulations
in two-dimensions.

H.3.2 PREDICTIONS AND UNCERTAINTY QUANTIFICATION IN HIGH DIMENSIONAL
SIMULATION

In Figure 5 we display the a scatter plot of residuals (observation - prediction) with the prediction
on the first split of the simulation example for 10 dimensions. Note that the Dα-KP and GP MLE
have the smallest range of residuals, while the other methods have a wider range of residuals.
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Figure 5: Residual plot for first split of the high dimensional example with 90% credible intervals.

H.3.3 ABLATION STUDY ON α FOR THE ONE-DIMENSIONAL EXAMPLE

In Figure 6, we display the predicted values (solid lines), along with the 25th to 75th percentiles for
the posterior predictive intervals (shaded regions) on a finer grid (1000 points) for the example in
one dimension considered in Section 3.2, for α = 0.5, 1, 1.5, 1.95, 1.99. It is apparent that values of
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Figure 6: Comparison of predictions (solid lines) and 25th to 75th percentile posterior predictive
intervals (shaded regions) in one dimension for different values of α for the DαKP.

α closer to 2 (the Gaussian limit) tend to oversmooth the fit around the jump discontinuity at zero
and in general give wider posterior predictive intervals.

H.3.4 POSTERIOR DISTRIBUTION OF THE KERNEL IN THE LAST LAYER FOR EXAMPLES IN
ONE AND TWO DIMENSIONS

In Figure 7 we display the quantiles of the posterior of the kernel matrix in the last layer for the
one and two dimensional examples shown in the main text. Recall that the training points are on
equally-spaced grids. Figure 7 serves as evidence that the kernel is indeed stochastic, with a non-
degenerate posterior. Furthermore, the values obtained in the 75th percentile are quite high relative
to the median and is an indication of a heavy-tailed distribution.
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Figure 7: Posterior quantiles (left: 25, center: 50, and right: 75) of the distribution of the kernel in
the last layer for the examples in 1 dimension (top), and 2 dimensions (bottom).
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I ADDITIONAL NUMERICAL RESULTS FOR UCI DATA

Figures 8, 9 and 10 displays a scatter plot of the predictions and residuals (observation - prediction)
of the test set in the first split of the UCI datasets, as well as the credible intervals for said obser-
vations. The predictions of the Dα-KP are much closer to the observations, while the DIWP and
NNGP present worse predictions relative to the observations. Moreover, the width of the credible
intervals of the Dα-KP vary, while the DIWP and NNGP are much more uniform. The results indi-
cate that the credible intervals of the Dα-KP capture more observations than the competing methods.
Figure 11 displays the trace plot for the log-likelihood of the fit of the deep α-kernel process in the
first split of the Boston dataset, indicating a fast mixing.
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Figure 8: Comparison of predictions and observations in the test set for the first split of the Boston
dataset, with 90% credible interval.
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Figure 9: Comparison of predictions and observations in the test set for the first split of the Energy
dataset, with 90% credible interval.

I.1 TIMING OF UCI EXPERIMENTS

In Table 7 we display the average running time for each of the methods, except the Stable method
as the input dimensions of the data sets are all greater than 2. Overall the GP MLE and GP Bayes
are faster than the kernel process methods. The kernel process methods have a similar running time
in each dataset.

I.2 COVERAGE OF CREDIBLE INTERVALS FOR UCI DATASETS

In Table 8 we display the average coverage of the 90% credible intervals for the UCI datasets in the
same splits used in Section 4. The Dα-KP consistently is close to the nominal 90% coverage, while
the other methods do not have a consistent coverage close to the nominal 90% percent.
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Figure 10: Comparison of predictions and observations in the test set for the first split of the Yacht
dataset, with 90% credible interval.
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Figure 11: Traceplot of the log-likelihood for the first split of the Boston dataset.

Table 7: Average (SD) time (s) for the methods in the three UCI datasets over twenty different splits.
Times for the Stable method are not available.

Method Boston Energy Yacht

Dα-KP 22320.89 (690.23) 36154.63 (1812.99) 4590.63 (149.31)
DIWP 20104.97 (3877.92) 41291.76 (15973.11) 22177.2 (10017.53)
GP Bayes 1047.13 (6.51) 2151.64 (12.37) 271.82 (2.21)
GP MLE 142.06 (6.68) 390.52 (9.36) 22.18 (1.20)
NNGP 18242.54 (8474.21) 36872.04 (21713.89) 9177.82 (3803.24)
Stable – – –

J FEATURE LEARNING IN ADDITIONAL DATASETS

In Figures 12 and 13 we provide the scatter plot of the features of the Boston and Yacht data sets
under Dα-KP, along with the corresponding box plots and q-q plots for each of the features. Similar
to the Energy dataset, the Boston features display a heavy-tailed behavior, while those for Yacht are
closer to normality.
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Table 8: Coverage (SD) of the 90% credible intervals for the methods in the UCI datasets over
twenty different splits. Stable method is not available, and GP MLE does not produce credible
intervals.

Method Boston Energy Yacht

Dα-KP 91.86% (5.14) 87.40% (3.91) 95.32% (2.86)
DIWP 57.35% (7.50) 48.77% (6.05) 90.00% (6.61)
GP Bayes 93.24% (4.43) 97.01% (1.79) 95.00% (3.22)
GP MLE – – –
NNGP 68.53% (8.26) 68.77% (5.45) 67.58% (7.65)
Stable – – –
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(a) Scatterplot of the first two features, with box plots
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(b) Normal q–q plot of the first two features.

Figure 12: Posterior distribution of the features for the Boston data set using 10k posterior MCMC
samples with 1k burn-in samples.
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(a) Scatterplot of the first two features, with box
plots for the marginals.
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(b) Normal q–q plot of the first two features.

Figure 13: Posterior distribution of the features for the Yacht data set using 10k posterior MCMC
samples with 1k burn-in samples.
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