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Abstract

The high cost of full-parameter fine-tuning001
(FFT) of Large Language Models (LLMs)002
has led to a series of parameter-efficient fine-003
tuning (PEFT) methods. However, it re-004
mains unclear which methods provide the best005
cost-performance trade-off at different model006
scales. We introduce ASTRAIOS, a suite of 28007
instruction-tuned OctoCoder models using 7008
tuning methods and 4 model sizes up to 16 bil-009
lion parameters. Through investigations across010
5 tasks and 8 different datasets encompassing011
both code comprehension and code generation012
tasks, we find that FFT generally leads to the013
best downstream performance across all scales,014
and PEFT methods differ significantly in their015
efficacy based on the model scale. LoRA usu-016
ally offers the most favorable trade-off between017
cost and performance. Further investigation018
into the effects of these methods on both model019
robustness and code security reveals that larger020
models tend to demonstrate reduced robustness021
and less security. At last, we explore the rela-022
tionships among updated parameters, and task023
performance. We find that the tuning effective-024
ness observed in small models generalizes well025
to larger models, and the validation loss in in-026
struction tuning can be a reliable indicator of027
overall downstream performance. We believe028
that our findings of PEFT can generalize to029
other decoder-only LLMs.1030

1 Introduction031

Large language models (LLMs) (Zhao et al.,032

2023) trained on Code (Code LLMs) have shown033

strong performance on various software engineer-034

ing tasks (Hou et al., 2023). There are three035

main model paradigms: (A) Code LLMs for code036

completion (Nijkamp et al., 2022; Fried et al.,037

2022; Li et al., 2023); (B) Task-specific fine-tuned038

Code LLMs for a single task (Hou et al., 2023);039

1The codebase (under Apache-2.0 license) and models (un-
der BigCode OpenRAIL-M license) will be publicly available.

and (C) Instruction-tuned (Ouyang et al., 2022) 040

Code LLMs that excel at following human instruc- 041

tions and generalizing well on unseen tasks (Wang 042

et al., 2023b; Muennighoff et al., 2023b). Recent 043

instruction-tuned Code LLMs, including Wizard- 044

Coder (Luo et al., 2023) and OctoCoder (Muen- 045

nighoff et al., 2024), have achieved state-of-the- 046

art performance on various tasks without task- 047

specific fine-tuning. However, with the increas- 048

ing parameters of Code LLMs, it becomes more 049

expensive to perform full-parameter fine-tuning 050

(FFT) to obtain instruction-tuned models. In prac- 051

tise, to save computational cost, parameter-efficient 052

fine-tuning (PEFT) have been applied to instruct- 053

tuned LLMs (Liu et al., 2022; Zadouri et al., 054

2023; Hu et al., 2023a; Gao et al., 2023; Muen- 055

nighoff et al., 2024). This training strategy aims 056

to achieve comparable performance to FFT by up- 057

dating fewer parameters. While there are many 058

PEFT methods (Ding et al., 2022), the predominant 059

PEFT method is still LoRA, which is proposed in 060

2021 (Hu et al., 2021). However, there is no em- 061

pirical evidence showing LoRA remains the best 062

for instruction-tuned code LLMs. In this paper, 063

we investigate instruction-tuned code LLMs with 064

the following research question: what are the best 065

PEFT methods for Code LLMs? 066

Existing analysis on PEFT methods presents 067

several opportunities for further exploration: (1) 068

Beyond Task-Specific LLMs. Most prior 069

works (Zhou et al., 2022; Ding et al., 2023) only fo- 070

cus on the model paradigm (B), where the selected 071

base models are fine-tuned on specific downstream 072

tasks. While these studies provide insights into 073

PEFT methods on task-specific LLMs, the trans- 074

ferability of their findings to the instruction tuning 075

paradigm is unclear. (2) Diverse Domains. Studies 076

on PEFT methods tend to evaluate in the predom- 077

inant domains like vision (Sung et al., 2022; He 078

et al., 2023; Hu et al., 2023b) and text (Houlsby 079

et al., 2019; He et al., 2021), leaving other do- 080
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Figure 1: Mean task performance of ASTRAIOS models across 5 representative tasks and 8 datasets. We indicate the
average percentage of total parameters updated for each PEFT method.

mains like code underexplored. (3) Inclusive081

PEFT Methods. Prior investigations on PEFT082

mainly consider a limited number of methods,083

such as adapter-based tuning (Houlsby et al., 2019)084

or reparametric tuning (Aghajanyan et al., 2021),085

which does not capture the full breadth of avail-086

able methods. (4) Multidimensional Evaluation.087

Previous works only consider limited evaluation088

on representative downstream tasks (Chen et al.,089

2022; Fu et al., 2023; Ding et al., 2023). We argue090

that other evaluation dimensions like model robust-091

ness (Han et al., 2021) and output code safety (Wei-092

dinger et al., 2021; Zhuo et al., 2023b; Pearce et al.,093

2022; Dakhel et al., 2023) are also important, es-094

pecially in the era of LLM agents (Ouyang et al.,095

2022; Xie et al., 2023). (5) Scalability. Most prior096

PEFT work has only explored LLMs with insuffi-097

cient scales of model sizes and training time, which098

makes their scalability questionable (Lester et al.,099

2021; Chen et al., 2022; Hu et al., 2023a).100

To explore these identified opportunities fur-101

ther, we introduce ASTRAIOS, a suite of 28102

instruction-tuned Code LLMs, which are fine-103

tuned with 7 tuning methods based on the Star-104

Coder (Li et al., 2023) base models (1B, 3B, 7B,105

16B). We instruction-tune the models based on106

the open-source dataset, CommitPackFT from Oc-107

toPack (Muennighoff et al., 2024), to balance their108

downstream capabilities. We utilize PEFT configu-109

rations with Hugging Face’s best practices (Man-110

grulkar et al., 2022) and integrate a few PEFT meth-111

ods from recent frameworks (Hu et al., 2023a).112

We first inspect the scalability of different tuning113

methods through the lens of cross-entropy loss114

during instruction tuning. Specifically, we assess 115

the scales of model size and training time. Our 116

main evaluation focuses on 5 representative code 117

tasks, including clone detection (Svajlenko and 118

Roy, 2021), defect detection (Zhou et al., 2019), 119

code synthesis (Muennighoff et al., 2024), code 120

repair (Muennighoff et al., 2024), and code ex- 121

plain (Muennighoff et al., 2024). We further study 122

the tuning methods from two aspects: model robust- 123

ness (Wang et al., 2023a) and code security (Pearce 124

et al., 2022). We assess how well models can gen- 125

erate code based on the perturbed examples and 126

how vulnerable the generated code can be. 127

The main experimental results can be found in 128

Figure 1, where we observe that FFT generally 129

leads to the best downstream performance across 130

all scales. In addition, we find that PEFT meth- 131

ods differ significantly in their efficacy depending 132

on the model scale. At 16B parameters, Parallel 133

Adapter (He et al., 2021) and LoRA (Hu et al., 134

2021) are the most competitive methods with FFT. 135

Meanwhile, at 1B parameters, they are both slightly 136

outperformed by P-Tuning and (IA)3. Thus, the 137

choice of the PEFT method should be considered 138

along with the model scale at hand. Nevertheless, 139

LoRA usually offers the most favourable trade-off 140

between cost and performance. 141

Meanwhile, we also observe that larger PEFT 142

Code LLMs perform better on code generation 143

tasks while they do not show such patterns on code 144

comprehension tasks like clone detection and de- 145

fect detection. In addition, increasing model size 146

improves generation task performance but exhibits 147

vulnerabilities to adversarial examples and biases 148

2



1B 3B 7B 16B

(IA)3

LoRA

P-Tuning

AdapterP

Parallel

AdapterH

0.0221 0.0170 0.0119 0.0080

0.3145 0.2417 0.1699 0.1144

1.1002 0.7786 0.6840 0.7258

2.1650 1.6769 1.1878 0.8044

2.2972 1.7518 1.2245 0.8210

4.2383 3.2985 2.3477 1.5959 0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Up
da

te
d 

Pa
ra

m
et

er
 R

at
io

Figure 2: Percentage (%) of total parameters updated
for each PEFT method in ASTRAIOS models.

towards insecure code. Additionally, we investi-149

gate the relationships among updated parameters,150

cross-entropy loss, and task performance. We find151

that the final loss of small PEFT models can be152

extrapolated to the larger ones. We also observe153

strong correlations between final loss and overall154

downstream task performance. Although the in-155

struction dataset we choose is general and is not156

directly correlated with the benchmark downstream157

tasks, we suggest that the performance on such gen-158

eral data can serve as a proxy for the downstream159

performance.160

2 The ASTRAIOS Suite and Benchmark161

In this section, we document our model choices,162

training configurations, and evaluations in detail163

for easy reproducing our experimental results in164

this paper.165

2.1 Model166

Base Model There are many Code LLMs avail-167

able that could be a suitable base model. However,168

some of them are not fully open such as Code-169

Llama (Roziere et al., 2023), where the training170

data is not discussed. To maximize transparency,171

we select the StarCoder series as our base models.172

Concretely, four model scales including 1B, 3B,173

7B and 16B parameters are selected.174

PEFT Model We focus on three kinds of PEFT175

methods (Ding et al., 2022): (1) Adapter-based176

Tuning (Houlsby et al., 2019): An early ap-177

proach, which injects small-scale neural modules178

as adapters to LLMs and only tune these adapters179

for model adaptation. (2) Prompt-based Tun-180

ing (Li and Liang, 2021): It wraps the original181

input with additional context introducing virtual 182

task-specific tokens without adding layers of mod- 183

ules like adapters. (3) Intrinsic-rank-based Tun- 184

ing (Aghajanyan et al., 2021): A representative 185

method is LoRA, which assumes that the change 186

of weights during model tuning has a low rank 187

and thus low-rank changes to the matrices suffice. 188

For all methods, we utilize the implementations 189

in the open-source PEFT library2 (Mangrulkar 190

et al., 2022) and the LLM-Adapters work (Hu 191

et al., 2023a) built on top of it. We benchmark 192

6 PEFT methods, including 4 adapter-based, 1 193

prompt-based, and 1 intrinsic-rank-based tuning 194

methods as shown in Figure 2. 195

2.2 Instruction Tuning 196

Dataset Following previous work, we select 197

the dataset CommitPackFT+OASST from Oc- 198

toPack (Muennighoff et al., 2024) as the instruction 199

tuning dataset, which helps StarCoder to achieve 200

superior performance. We note that there could be 201

other choices by utilizing other datasets (e.g., the 202

publicly available dataset CodeAlpaca (Chaudhary, 203

2023)) . However, they usually focus on a certain 204

aspect of code-related tasks and lack generality to 205

different tasks. 206

Configuration We train all models with a se- 207

quence length of 2048 tokens, with the batch size 208

as 1, the warm-up step as 12, and the global steps as 209

200. We set the learning rate as 1× 10−4 for PEFT 210

models and 1 × 10−6 FFT models with a cosine 211

scheduler in both cases. For PEFT methods, we use 212

8-bit-quantized models during training (Dettmers 213

et al., 2022). The training details and cross-entropy 214

loss are documented in Appendix D. 215

2.3 Evaluation 216

Code Comprehension To evaluate code compre- 217

hension, we select two representative tasks: clone 218

detection and defect detection. Clone detection 219

aims to identify segments of code that are either ex- 220

act duplicates or structurally similar with variations 221

in identifiers, literals, types, layout, and comments, 222

or even more broadly similar in terms of func- 223

tionality. Defect detection targets for identifying 224

bugs, vulnerabilities, or antipatterns in code. We 225

select two widely-used datasets from CodeXGLUE 226

benchmark (Lu et al., 2021): BigCloneBench (Sva- 227

jlenko and Roy, 2021) and Devign (Zhou et al., 228

2https://github.com/huggingface/peft
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2019). As the original BigCloneBench and De-229

vign are designed to evaluate classification models,230

we prepend additional instructions to prompt the231

instruction-tuned models to complete such tasks.232

We follow the evaluation settings of CodeXGLUE233

and use F1 and Accuracy for BigClone and De-234

vign, respectively. Due to the non-trivial number235

of test examples in these two datasets, we sample236

2,000 from each to save costs. As BigCloneBench237

and Devign are in the binary classification tasks,238

we use temperature 0 for model inference to get239

deterministic outputs.240

Code Generation We use HumanEval-241

Pack (Muennighoff et al., 2024), a benchmark242

recently proposed that enables easy evaluation of243

instruction-tuned Code LLMs. The benchmark is244

structured around three core tasks in code genera-245

tion, each designed to test different capabilities of246

the model. The first task, Code Synthesis, involves247

the model in synthesizing functional code given248

a function with a docstring detailing the desired249

code behavior. The second task, Code Repair,250

challenges the model to identify and fix a subtle251

bug in an otherwise correct code function, using252

provided unit tests as a guide. The third and final253

task, Code Explanation, requires the model to254

generate a clear and concise explanation for a255

correctly written code function. For the evaluation256

on HumanEvalPack, we use its Python and Java257

splits and compute Pass@1 for each task. We use258

temperature 0.2 and sample 20 outputs per test259

example.260

Model Robustness Evaluating the robustness of261

code generation models is crucial in understanding262

their real-world applicability and reliability. Mod-263

els that can maintain high-performance levels de-264

spite variations and perturbations in input data are265

more likely to be effective in diverse and dynamic266

coding environments (Bielik and Vechev, 2020;267

Henkel et al., 2022; Wang et al., 2023a). Motivated268

by such model behaviors, we utilize ReCode (Wang269

et al., 2023a), a benchmark framework designed270

to assess the robustness of Code LLMs. We use271

HumanEval (Chen et al., 2021) as the base dataset272

and curated it to mimic natural variations while273

preserving the semantic integrity of the original274

inputs. The perturbations cover a range of trans-275

formations (Zhuo et al., 2023c) on code format,276

function, variable names, code syntax, and doc-277

strings. These transformations are not arbitrary278

but represent changes occurring naturally in cod-279

ing practices. The quality of the perturbed data in 280

ReCode is verified through human evaluation and 281

objective similarity scores, ensuring the relevance 282

and reliability of the dataset for robustness assess- 283

ment. We use temperature 0.2 and 20 samples 284

per test example for the generation. To compute 285

the level of model robustness, we adopt Robust 286

Pass@k (RP@k) from ReCode and also compute 287

Robust Change@k (RC@k) as follows: 288

RP@k := Ex

[
1− n− rcs(x)(

n
k

) ]
(1) 289

290
RC@k := |Pass@k −Robust Pass@k| (2) 291

Code Security One limitation of Code LLMs is 292

their tendency to generate code with potential se- 293

curity vulnerabilities, as various studies have high- 294

lighted (Dakhel et al., 2023; Asare et al., 2023). 295

In our work, we aim to empirically examine how 296

PEFT methods can influence the security aspects 297

of Code LLM outputs. We utilize the “Asleep at 298

the Keyboard” (AATK) benchmark (Pearce et al., 299

2022), which includes 89 security-centric scenar- 300

ios, to provide a comprehensive evaluation across 301

three distinct dimensions: Diversity of Weak- 302

ness (DoW), encompassing 18 unique vulnerability 303

classes from the MITRE Common Weakness Enu- 304

meration (CWE) taxonomy, sourced from the 2021 305

CWE Top 25 Most Dangerous Software Weak- 306

nesses; Diversity of Prompt (DoP), assessing re- 307

sponses to different prompts within the SQL injec- 308

tion vulnerability class; and Diversity of Domain 309

(DoD), involving scenarios in Verilog, a hardware 310

description language. Our analysis predominantly 311

focuses on the DoW axis, comprising 54 scenarios– 312

25 in C and 29 in Python–covering 18 CWEs. This 313

focus is due to the automatic evaluation challenges 314

associated with the other two dimensions. After 315

filtering out scenarios that lack an automated test, 316

we thoroughly examine 40 scenarios, including 23 317

in C and 17 in Python. We use temperature 0.2 and 318

20 samples per test example for the generation. 319

3 Main Results: Task Performance 320

We seek to examine how well selective PEFT meth- 321

ods contribute to task performance in this section. 322

To benchmark the performance, we leverage the 323

representative code downstream tasks: (1) Defect 324

Detection, (2) Code Clone, (3) Code Synthesis, (4) 325

Code Repair and (5) Code Explanation. For the 326

first two code comprehension tasks, there is no 327
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Figure 3: Accuracy results of ASTRAIOS models on
Defect Detection.
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existing study stating that the larger code LLMs328

result in a better understanding of code. We are the329

first to study this aspect when varying the model330

sizes. Regarding the latter three code generation331

tasks, previous power-law studies (Kaplan et al.,332

2020; Hoffmann et al., 2022) have shown that in-333

creasing model sizes can also lead to better task334

performance on generation tasks. We further vali-335

date this finding on the PEFT settings.336

Code Comprehension Surprisingly, as shown in337

Figures 3 and 4, the results of both tasks are not338

well aligned with the patterns we observe on code339

generation tasks. All tuning methods consistently340

behave like the inverse scaling, which has been dis-341

cussed in (McKenzie et al., 2023). We hypothesize342

that Code LLMs have not seen enough task-specific343

training data and cannot generalize to those unseen344

tasks (Yadlowsky et al., 2023). As ASTRAIOS mod-345

els are pre-trained on various source code from346

GitHub repositories for next token prediction and347

fine-tuned on GitHub commits for code refinement,348

they may not have a profound understanding of349

defects and cloned code. We also show the results350

of the two code comprehension tasks when varying351

the model sizes in Appendix G.352

Code Generation Table 1 demonstrates the per-353

formance on three different code generation tasks354

on the Python and Java splits in HumanEvalPack.355

Over the six benchmarks, we first observe that FFT356

results in consistent gains when the model parame-357

ters increase. When examining the PEFT methods,358

We find they can also provide reasonable perfor-359

mance scalability similar to FFT. Therefore, the360

lower test loss may lead to better performance361

across various downstream generation tasks for362

Code LLMs. However, we notice that the bene- 363

fit of base model sizes may also differ from tasks 364

and languages. For instance, 1B and 3B models 365

typically underperform in code repair compared 366

to code synthesis. When the model parameters ex- 367

pand to 7B and 16B, their performance across these 368

tasks becomes more comparable. 369

Overall Performance To compare the overall 370

task performance of different tuning methods, we 371

compute the mean cumulative scores for each tun- 372

ing method per model size. We present the rankings 373

in Figure 1. We show that FFT remains the best 374

regarding overall task performance, while LoRA 375

and Parallel Adapter are comparable to FFT. How- 376

ever, there is still a huge performance gap between 377

most PEFT methods and FFT, suggesting that they 378

cannot guarantee optimal performance. Regard- 379

ing the tuning efficiency, we use updated parame- 380

ters as the metric to summarize two more findings. 381

Firstly, (IA)3 is efficient enough to perform rea- 382

sonably by updating much fewer parameters than 383

the other PEFT methods. Secondly, we notice that 384

AdapterP always performs better than AdapterH , 385

even though AdapterH updates more model param- 386

eters. The counter-intuitive observation indicates 387

that AdapterH may not be worth deploying in real- 388

world practice. 389

4 Further Analysis 390

In this section, we further study two aspects of 391

Code LLMs beyond task performance. Specifi- 392

cally, we highlight the importance of model robust- 393

ness and generated code security, which indicate 394

real-world practicality. We tend to understand the 395

trend of model behavior across tuning methods and 396

5



Table 1: Pass@1 results of ASTRAIOS models on HumanEvalPack Python and Java splits. The best performance is
highlighted in bold. The second best performance is underlined.

Method Code Synthesis Code Repair Code Explanation

1B 3B 7B 16B 1B 3B 7B 16B 1B 3B 7B 16B

Py
th

on

LoRA 17.26 25.37 32.01 38.08 3.29 11.16 21.74 27.50 20.49 22.53 25.34 30.52
P-Tuning 15.79 24.33 29.39 35.58 1.86 13.69 20.34 18.72 9.48 11.92 14.60 15.43
AdapterH 15.70 23.87 28.26 33.29 3.14 15.55 22.50 22.28 17.77 22.35 24.24 26.07
AdapterP 17.04 24.76 30.67 34.97 3.69 12.87 19.54 26.46 16.07 24.05 22.87 30.67
Parallel 15.98 26.65 28.81 35.88 4.91 8.11 16.13 26.43 19.70 23.14 23.93 31.10
(IA)3 16.13 25.34 30.52 36.80 2.01 14.05 17.07 23.60 9.51 11.86 14.30 16.19

FFT 16.95 25.21 32.38 38.47 3.26 14.45 21.40 29.88 15.37 23.45 26.13 30.85

Ja
va

LoRA 2.84 16.52 24.27 40.33 3.72 5.06 13.60 30.35 7.07 14.33 14.70 16.86
P-Tuning 10.67 14.73 20.73 37.19 0.00 7.53 11.74 22.25 6.07 9.79 17.32 13.02
AdapterH 8.99 13.45 17.53 33.41 0.12 6.89 14.70 24.91 6.74 9.57 13.99 14.85
AdapterP 10.46 16.77 21.28 33.68 3.66 6.52 15.40 32.07 6.65 11.62 14.15 16.28
Parallel 9.60 15.91 21.59 38.56 0.49 5.09 8.87 29.39 7.62 12.16 14.51 17.93
(IA)3 10.34 16.46 21.95 39.91 2.87 4.54 13.02 25.30 6.13 13.99 17.04 15.85

FFT 10.18 17.04 23.87 41.16 0.00 5.61 16.10 32.47 7.16 13.60 15.12 16.62

model sizes.397

4.1 Model Robustness398

While the performance on downstream tasks is es-399

sential, we argue that the evaluation of model ro-400

bustness is also necessary to characterize differ-401

ent tuning methods systematically. We therefore402

consider benchmarking the robustness of code syn-403

thesis, one of the most representative downstream404

tasks of source code.405

We compute each tuning method’s worst-case406

RP@1 and RC@1 of each perturbation category.407

Among the four types of perturbation, all mod-408

els perform the worst on syntax transformation,409

confirming the findings in (Wang et al., 2023a).410

Furthermore, RP@1 per tuning method increases411

when the model size is scaled up, indicating the412

generation capability is consistently improved. We413

noticed that FFT may not perform better than other414

PEFT methods on smaller models, such as 1B and415

3B. However, it results in the best RP@1 on larger416

models like 16B. By comparing different model417

sizes, we observe that RC@1 consistently increases418

when the model gets bigger, indicating that larger419

models will be less robust. To rank among the420

tuning methods through the lens of robustness, we421

compute the mean RC@1 similar to Section 3 and422

illustrate in Figure 5. We observe that FFT and423

LoRA do not show strong robustness. Instead,424

adapter-based tuning seems more robust while hav-425

ing comparable performance to FFT, which is sim-426

ilar to what Han et al. (2021) have found in NLP427

tasks. We reports all RP@1 and RC@1 of each428

perturbation category in Appendix J. 429

4.2 Code Security 430

Table 2: Valid and Insecure rates of ASTRAIOS models
on AATK benchmark. We note that the insecure rate
is calculated based on the valid programs. The best
performance is highlighted in bold. The second best
performance is underlined.

Method Valid% (↑) Insecure% (↓)

1B 3B 7B 16B 1B 3B 7B 16B

LoRA 85.9 89.1 75.9 87.1 23.1 26.2 20.9 35.0
P-Tuning 70.1 68.6 86.8 82.0 32.8 25.9 28.1 34.5
AdapterH 84.5 90.9 87.5 86.8 29.0 26.0 31.9 34.1
AdapterP 83.9 92.1 82.8 86.3 31.7 25.2 26.6 37.8
Parallel 88.9 94.1 70.0 86.0 30.2 19.3 22.3 32.6
(IA)3 78.0 62.1 77.4 86.6 34.8 25.2 23.1 30.4

FFT 82.9 93.6 80.1 84.1 22.6 27.4 21.2 38.3

Previous studies (Dakhel et al., 2023; Asare et al., 431

2023). have shown that Code LLMs can generate 432

code with security vulnerabilities, which can be 433

exploited by malicious users. However, few studies 434

have studied different tuning methods from the 435

output security perspective. In this experiment, we 436

intend to understand how tuning methods affect 437

the capability to generate secure code on AATK 438

benchmark. 439

We follow the original setting in (Pearce et al., 440

2022) and compute the valid and insecure rates, 441

which are illustrated in Table 2. When comparing 442

the valid rate of PEFT methods, it does not show 443

better performance when the model size increases, 444

indicating that current models may not learn the 445

program validity intrinsically. However, we ob- 446
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Figure 5: Mean RC@1 of ASTRAIOS on ReCode. Lower RC@1 indicates better robustness. We indicate the
percentage of total parameters updated for each PEFT method.

serve that the changes in the insecure rate show447

that larger models are more likely to generate in-448

secure code. This observation suggests that the449

growth of learning capability can result in learning450

more data, including insecure programs. The study451

on the insecure rate among tuning methods further452

shows that FFT and LoRA are still better than the453

other tuning methods regarding the security level.454

While the other methods have a similar insecure455

rate, P-Tuning may have more chances to generate456

less secure programs, which may not be suitable457

for deploying in security-sensitive scenarios.458

5 Discussion459

In this section, we seek to conduct a preliminary460

analysis of the performance of Code LLMs through461

the lens of updated parameters. Specifically, we ask462

two questions: (1) What is the relationship between463

the updated parameters and cross-entropy loss?;464

and (2) Can we utilize the performance of loss to465

predict the task performance of Code LLMs?.466

Loss of small models can be projected to larger467

ones. The relationship between the updated pa-468

rameters of ASTRAIOS models and their final loss469

is analyzed in Figure 6. Our analysis does not470

reveal a consistent pattern across different model471

sizes when it comes to the correlation between472

model loss and updated parameters. However, an473

interesting finding is the consistency in relative474

loss performance across different model sizes when475

comparing various tuning methods. This consis-476

tency suggests that the improvements achieved by477

each tuning method are likely to be similar regard-478

106 107 108 109 1010

Number of Updated Parameters

1.0

1.1

1.2

1.3

1.4
Fin

al
 Tr

ai
n 

Lo
ss

1B
3B
7B
16B

AdapterH

AdapterP

(IA)3

LoRA

Parallel
P-Tuning
FFT

106 107 108 109 1010

Number of Updated Parameters

1.1

1.2

1.3

1.4

1.5

Fin
al

 Te
st

 L
os

s

1B
3B
7B
16B

AdapterH

AdapterP

(IA)3

LoRA

Parallel
P-Tuning
FFT

Figure 6: Relationships between cross-entropy loss and
the number of updated parameters. Lower loss indicates
the bigger models, as shown in Appendix D.

less of the model’s size. Therefore, the loss ob- 479

served in smaller models, when tuned with dif- 480

ferent methods, can be a useful predictor for the 481

performance of the larger models. 482

Instruct-tuning loss is a strong predictor of 483

downstream performance. Assuming that the 484
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Figure 7: Relationships between cross-entropy loss and
overall task performance.

model has been instruction-tuned already but not485

yet done for the evaluation, we seek to understand486

if we can utilize such loss to predict its performance487

on downstream tasks. Despite our instruction data488

being derived from general sources like GitHub489

commits and broad NLP domains, which are not di-490

rectly aligned with the downstream tasks discussed491

in Section 3, we find some strong correlations. Mo-492

tivated by the aforementioned scenario, we aggre-493

gate all the data points of mean task performance494

and their corresponding final loss in Figure 7. We495

observe that the models with lower loss generally496

have better overall performance on downstream497

tasks. Specifically, the pattern is stronger on test498

loss than on train loss. We explain by the fact that499

the models do not learn to fit the test split and can500

present a more accurate determination of their ac-501

tual performance. Our observation suggests that502

general instruction data can work as a good proxy503

of downstream tasks in Code LLMs, similar to the504

prior findings in NLP (Anil et al., 2023; Wei et al.,505

2023).506

6 Related Work507

Code Large Language Models Many base Code508

LLMs have been proposed recently (Chen et al.,509

2021; Nijkamp et al., 2022; Fried et al., 2022; Al- 510

lal et al., 2023; Zheng et al., 2023; Li et al., 2023; 511

Roziere et al., 2023) mostly targeting code com- 512

pletion. With the help of these base Code LLMs, 513

there have been extensive studies fine-tuning task- 514

specific Code LLMs to perform software engineer- 515

ing tasks (Hou et al., 2023). Later, a series of works 516

has been proposed for instruction-tuning the base 517

Code LLMs (Luo et al., 2023; Shen et al., 2023; 518

Muennighoff et al., 2024; Bai et al., 2023), aim- 519

ing to enhance the generalization capabilities of 520

these models on diverse tasks. As fine-tuning Code 521

LLMs with full parameters is costly, most models 522

have been tuned with LoRA (Hu et al., 2021), a 523

parameter-efficient tuning method. In this work, 524

we seek to answer how good LoRA is and if there 525

are other comparable tuning methods. 526

Model Analysis Across Scales Understanding 527

why and how neural models behave is crucial for 528

developing more advanced ones. Existing studies 529

have investigated predictable patterns in the behav- 530

ior of trained language models across scales (Ka- 531

plan et al., 2020; Henighan et al., 2020; Hernandez 532

et al., 2021; Hoffmann et al., 2022; Wei et al., 2022; 533

Muennighoff et al., 2023a; Xia et al., 2023) and 534

their learning dynamics (McGrath et al., 2022; Tiru- 535

mala et al., 2022; Biderman et al., 2023). However, 536

they either focus on pre-training or task-specific 537

full-parameter fine-tuning. There is no attempt to 538

understand the mechanism of parameter-efficient 539

instruction tuning. In this paper, we work on this 540

perspective and analyze Code LLMs (Wan et al., 541

2022; Troshin and Chirkova, 2022; Zhuo et al., 542

2023a). 543

7 Conclusion 544

This work empirically studies the parameter- 545

efficient instruction-tuning of Code LLMs. We 546

introduce a model suite consisting of 28 instruction- 547

tuned OctoCoder across scales and PEFT methods. 548

We characterize the tuning methods on represen- 549

tative downstream tasks, model robustness, and 550

output security, highlighting the importance of un- 551

derstanding these models via comprehensive evalu- 552

ation. We also discuss the relationships between up- 553

dated parameters and task performance. We hope 554

these analyses will inspire further follow-up work 555

on understanding the mechanism of tuning methods 556

and developing new approaches. We share more 557

detailed analysis in the Appendix. 558
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Limitations559

We discuss a few limitations of our works to moti-560

vate future studies in this direction:561

Experiment Noise We observe that our empiri-562

cal results are based solely on a single run of each563

task, due to budget constraints that prevent us from564

tuning and evaluating the same Code LLMs multi-565

ple times. Although the single evaluation approach566

limits the breadth of our results and may introduce567

unexpected experiment noise, it provides a prelimi-568

nary insight into the performance and potential of569

PEFT in different scenarios. Future investigations570

with multiple runs are necessary to establish more571

robust conclusions and understand the variance and572

reliability of our results.573

Fair Evaluation To compare different PEFT574

strategies fairly, we have used the same training575

configurations described in Section 2.2. However,576

as we find that some PEFT strategies like Prompt577

Tuning may be sensitive to the training hyperparam-578

eters in Section D, the consistent configurations can579

be unfair. On the other hand, finding the optimal580

hyperparameters for each PEFT strategy is imprac-581

tical and can cost more than training with FFT. A582

more efficient approach is to reuse the hyperparam-583

eters in previous work, which motivates us to adopt584

the default settings in the PEFT library and LLM-585

Adapter framework. Meanwhile, we believe there586

may be other practical approaches to benchmark587

PEFT strategies, encouraging the community to588

investigate further.589

PEFT Strategy We notice that there are many590

more PEFT strategies (Karimi Mahabadi et al.,591

2021; Zaken et al., 2022; Wang et al., 2022; Edalati592

et al., 2022) have been proposed recently. Due to593

the limited computation budget, we do not include594

them all in our ASTRAIOS model suite. However,595

we have publicly made all our source code, data,596

and models available. We encourage future de-597

velopment in analyzing PEFT strategies on Code598

LLMs, which helps design more efficient PEFT599

strategies.600

Data Scaling One limitation of our work is that601

we do not verify the validity of data scaling on602

PEFT strategies. However, this factor has been603

well-studied in various works (Kaplan et al., 2020;604

Hoffmann et al., 2022; Muennighoff et al., 2023a)605

for model pre-training and fine-tuning. As we606

find that the performance of PEFT on Code LLMs607

monotonically increases when scaling up the model 608

size and training time, these selected PEFT strate- 609

gies are likely aligned with the previous findings 610

of data scaling. We recommend further verification 611

on this aspect. 612
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A What is ASTRAIOS? 1084

ASTRAIOS is a suite of 28 instruction-tuned StarCoder models, employing 7 different PEFT methods 1085

across 4 model sizes, with up to 16B parameters. Named after the Greek Titan god of the stars, ASTRAIOS, 1086

this model collection represents a vast array of “stars”, each model illuminating a path to understanding 1087

the cost-performance trade-offs in Code LLMs. Through extensive testing across various tasks and 1088

datasets, ASTRAIOS evaluates the efficacy of fine-tuning methods with an emphasis on understanding 1089

their performance implications at different model scales, robustness, and security aspects. The suite serves 1090

as a celestial guide in the Code LLM universe, helping to chart the most efficient and effective methods 1091

for model fine-tuning. 1092

B Artifacts 1093

Name Public Link

Base Models

StarCoderBase 1B https://huggingface.co/bigcode/starcoderbase-1b
StarCoderBase 3B https://huggingface.co/bigcode/starcoderbase-3b
StarCoderBase 7B https://huggingface.co/bigcode/starcoderbase-7b
StarCoderBase https://huggingface.co/bigcode/starcoderbase

Instruction Tuning Data

CommitPackFT + OASST https://huggingface.co/datasets/bigcode/guanaco-commits

Original PEFT Implementation

LoRA https://github.com/huggingface/peft
P-Tuning https://github.com/huggingface/peft
AdapterH https://github.com/AGI-Edgerunners/LLM-Adapters
AdapterP https://github.com/AGI-Edgerunners/LLM-Adapters
Parallel https://github.com/AGI-Edgerunners/LLM-Adapters
(IA)3 https://github.com/huggingface/peft
Prompt https://github.com/huggingface/peft
AdaLoRA https://github.com/huggingface/peft

Evaluation Framework

Code Generation LM Evaluation Harness https://github.com/bigcode-project/bigcode-evaluation-harness

Astraios Models

Astraios LoRA 1B REDACTED
Astraios P-Tuning 1B REDACTED
Astraios AdapterH 1B REDACTED
Astraios AdapterP 1B REDACTED
Astraios Parallel 1B REDACTED
Astraios (IA)3 1B REDACTED
Astraios LoRA 3B REDACTED
Astraios P-Tuning 3B REDACTED
Astraios AdapterH 3B REDACTED
Astraios AdapterP 3B REDACTED
Astraios Parallel 3B REDACTED
Astraios (IA)3 3B REDACTED
Astraios LoRA 7B REDACTED
Astraios P-Tuning 7B REDACTED
Astraios AdapterH 7B REDACTED
Astraios AdapterP 7B REDACTED
Astraios Parallel 7B REDACTED
Astraios (IA)3 7B REDACTED
Astraios LoRA 16B REDACTED
Astraios P-Tuning 16B REDACTED
Astraios AdapterH 16B REDACTED
Astraios AdapterP 16B REDACTED
Astraios Parallel 16B REDACTED
Astraios (IA)3 16B REDACTED

Table 3: Used and produced artifacts.
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Table 4: Summary of tuning methods and the trainable parameters of different model scales.

Type Name 1B 3B 7B 16B

Low-Rank LoRA (Hu et al., 2021) 3,588,096 7,372,800 12,472,320 17,776,640

Prompt P-Tuning (Liu et al., 2023) 12,650,496 23,882,496 50,466,816 113,448,960

Adapter

(IA)3 (Liu et al., 2022) 251,904 516,096 870,912 1,239,040
AdapterH (Houlsby et al., 2019) 50,331,648 103,809,024 176,160,768 251,658,240
AdapterP (Pfeiffer et al., 2020) 25,165,824 51,904,512 88,080,384 125,829,120
Parallel (He et al., 2021) 26,738,688 54,263,808 90,832,896 128,450,560

FFT FFT 1,137,207,296 3,043,311,104 7,327,263,232 15,517,456,384

C Instruction Tuning1094

All the instruction tuning experiments have been conducted on A100 80G GPUs. For all PEFT strategies,1095

we use the 8-bit quantized base models for training. For FFT, we use the original base models without1096

quantization.1097

LoRA We use the attention dimension of 8, the alpha parameter of 16, dropout probability of 0.05, and1098

target modules of "[c_proj, c_attn, q_attn]". We keep the other hyperparameters as default.1099

P-Tuning We use the 30 virtual tokens and remain the other hyperparameters as default.1100

AdapterH We use target modules of "[c_fc, mlp.c_proj]". We keep the other hyperparameters as default.1101

AdapterP We use target modules of " [mlp.c_proj]". We keep the other hyperparameters as default.1102

Parallel We use target modules of "[c_fc, mlp.c_proj]". We keep the other hyperparameters as default.1103

(IA)3 We target modules of "c_attn, mlp.c_proj]" and feedforward modules of " [mlp.c_proj]".1104

Prompt (Lester et al., 2021) We use the 30 virtual tokens and keep the other hyperparameters as1105

default.1106

AdaLoRA (Zhang et al., 2022a) We use the target average rank of the incremental matrix of 8, the1107

initial rank for each incremental matrix of 12, 200 steps of initial fine-tuning warmup, 1000 step of final1108

fine-tuning, the alpha parameter of 16, dropout probability of 0.05, the time interval between two budget1109

allocations of 10, EMA for sensitivity smoothing of 0.85, EMA for uncertainty quantification of 0.85, and1110

target modules of "[c_proj, c_attn, q_attn]". We keep the other hyperparameters as default.1111

D Preliminary Study: Cross-Entropy Loss1112

Cross-entropy loss has been used as the principal performance metric in training LLMs for NLP1113

tasks (Brown et al., 2020; Hernandez et al., 2021; Zhang et al., 2022b). Most studies on modeling1114

loss focus on either pre-training (Kaplan et al., 2020) or FFT (Chung et al., 2022). Previous studies have1115

consistent findings on loss (Kaplan et al., 2020; Hoffmann et al., 2022; Aghajanyan et al., 2023): The1116

final loss tends to decrease when the training computation (e.g., model sizes, training data and training1117

time) increases. These observations indicate that more training time and more trainable model parameters1118

can lead to better alignment with the tuning data. However, there is no systematic investigation for PEFT,1119

especially for Code LLMs. Based on the updated parameters for each tuning method in Table 4, we1120

hypothesize that each PEFT method has a similar trend to previous findings of loss. Inspired by (Kaplan1121

et al., 2020), we study the loss change for instruction tuning Code LLMs, varying two factors: (1) Model1122

Size (1B - 16B); and (2) Training Time (measured in global step, maximum 200 steps). Due to the1123

limited budget, We do not study how the amount of training data may affect the loss.1124
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Figure 8: Final loss across model sizes. We note that y-axis is in the logarithmic scale.

Model Size Scaling We present the results of final loss in Figure 8 when varying the model size from 1B 1125

to 16B. Our first observation is that train and test loss are well aligned, indicating that the models trained 1126

on the selected tuning methods are not overfitted. The second observation is that both train and test loss 1127

also strictly decrease when the model size increases. Although these observations are aligned with the 1128

aforementioned observations (Kaplan et al., 2020; Hoffmann et al., 2022), they show the different scales 1129

of loss change, suggesting different tuning methods may require different levels of power. Compared to 1130

other tuning methods, FFT demonstrates a slightly better loss performance than PEFT methods like LoRA 1131

and Parallel Adapter. As we notice that heavier PEFT methods (which update more parameters) tend 1132

to have a better final loss, we hypothesize that more trainable parameters in the model may result in a 1133

smaller loss, regardless of how the parameters are updated during training. 1134

Training Time Scaling We show the changes in test loss on the ASTRAIOS when varying the training 1135

time in Figure 9. We notice that the loss continues decreasing when the model is trained longer. Although 1136

the loss changes of (IA)3 are consistently insignificant. Notably, the loss of P-Tuning decreases drastically 1137

to 50 steps but behaves similarly to other prompt-based methods. In terms of tuning stability, we observe 1138

that P-tuning is more unstable than other methods, where the loss change appears to be a non-monotonic 1139

pattern. When comparing FFT against PEFT methods, we find that FFT tends to decrease even after 200 1140

steps, while PEFT methods do not show a decreasing trend clearly. We hypothesize that it may be due to 1141

the number of updated parameters, where FFT updates the full parameters in the model. 1142

E Evaluation Setup 1143

Devign We generate the outputs with a max length of 512 tokens in the style of greedy decoding. All 1144

other parameters are defaulted in (Ben Allal et al., 2022). For the one-shot example, we randomly sample 1145

from the train set. 1146

BigCloneBench We generate the outputs with a max length of 512 tokens in the style of greedy decoding. 1147

All other parameters are defaulted in (Ben Allal et al., 2022). For the one-shot example, we randomly 1148

sample from the train set. 1149

HumanEvalPack We generate 20 outputs per example with a max length of 2048 tokens and a 1150

temperature of 0.2. All other parameters are defaulted in (Ben Allal et al., 2022). 1151

ReCode We generate the outputs with a max length of 1024 tokens in the style of greedy decoding. All 1152

other parameters are defaulted in (Ben Allal et al., 2022). 1153

Asleep At The Keyboard We generate 20 outputs per example with a max length of 1024 tokens and a 1154

temperature of 0.2. All other parameters are defaulted in (Ben Allal et al., 2022). 1155
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Figure 9: Test loss of ASTRAIOS models across training time measured by Global Step. We note that y-axis is in the
logarithmic scale.

F Failure of Scaling1156
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Figure 11: Final loss across model sizes. We note that y-axis is in the logarithmic scale.

During the initial experiment, we also train the models with Prompt Tuning (Lester et al., 2021) and 1157

AdaLoRA (Zhang et al., 2022a). Although the loss continues decreasing when the training time increases, 1158

we observe the phenomenon of model size scales in contrast to Section 2.2. As shown in Figure 11, 1159

the final loss of these two tuning strategies consistently increases as the model size increases, which is 1160

contrary to what we observe for other PEFT methods. In the new version of LLM-Adapter (Hu et al., 1161

2023a), we notice that the learning rate has been specifically mentioned. For Prompt Tuning, the authors 1162

use 3 × 10−2 instead of 3 × 10−4, which is used in their other selected PEFT strategies. Therefore, 1163

we hypothesize that some tuning strategies may require a much higher learning rate to achieve optimal 1164

performance. We further try a few learning rates on training 1B and 3B StarCoderBase models and find 1165

that 3× 10−2 works well for Prompt Tuning. In addition, 3× 10−2 and 1× 10−3 also work much better 1166

for AdaLoRA. With the new set of learning rates, we find that these tuning strategies are aligned with our 1167

findings in Section D. Different from the conclusion of (Kaplan et al., 2020) that the choice of learning 1168

rate schedule is mostly irrelevant in language model pre-training, we suggest that hyperparameters of 1169

learning rate schedule may matter a lot for scaling parameter-efficient language model on fine-tuning. 1170

G Code Comprehension 1171

We present the detailed results on Defect Detection and Clone Detection in Table 5.

Table 5: Results of ASTRAIOS models on Defect Detection and Clone Detection. The best performance is highlighted
in bold. The second best performance is underlined.

Method Defect Detection Clone Detection

1B 3B 7B 16B 1B 3B 7B 16B

LoRA 44.15 44.90 49.05 31.95 9.30 12.05 14.10 8.80
P-Tuning 53.70 27.75 40.55 11.00 19.27 23.52 13.35 3.24
AdapterH 45.75 45.80 46.25 41.75 8.59 8.17 12.05 8.18
AdapterP 45.55 46.05 46.85 27.35 8.88 8.63 12.05 9.00
Parallel 34.50 33.50 52.55 42.30 9.55 8.94 10.16 17.21
(IA)3 53.90 33.55 37.20 23.70 8.28 11.76 23.19 8.13

FFT 50.80 44.20 48.30 43.65 8.34 12.68 8.04 12.62

1172
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H Visualization on HumanEvalPack1173
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Figure 12: Pass@1 results of ASTRAIOS models on HumanEvalPack.
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I Mitigating Inverse Scaling 1174

1B 3B 7B 16B
Model Size

30

35

40

45

50

55

Ac
cu

ra
cy

(IA)3

AdapterH

AdapterP

FFT
LoRA

P-Tuning
Parallel

Figure 13: Results on Defect Detection with 1-shot
demonstration.
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Figure 14: Results on Clone Detection with 1-shot
demonstration.

We have attempted to see if the inverse-scaling-like patterns in code comprehension tasks can be mitigated 1175

and more aligned with scaling laws. As (Wei et al., 2022) have shown that 1-shot demonstrations can 1176

make all inverse scaling tasks U-shaped or flat, we try to see if 1-shot examples can help with defection 1177

detection and clone detection. To select the 1-shot examples, we randomly sample a fixed sample from the 1178

train set of each benchmark. We re-evaluate all ASTRAIOS models on the two tasks and present the results 1179

in Figures 13 and 14. For defect detection, all PEFT strategies become flatter than the previous patterns, 1180

which is similar to what (Wei et al., 2022) observe. However, for clone detection, the patterns of some 1181

tuning strategies like LoRA and FFT do not turn flat. Although the performances of LoRA and FFT have 1182

been scaling up to 7B, they decrease at 15B. We hypothesize that our size scaling is still not significant 1183

enough to represent an increasing pattern after 15B for LoRA and FFT with 1-shot demonstrations. 1184

J Model Robustness 1185

We present the detailed results on ReCode in Table 6.

Table 6: RP@1 and RC@1 results of ASTRAIOS models on ReCode. The best performance is highlighted in bold.
The second best performance is underlined.

Method
Format Function Syntax Docstring

1B 3B 7B 16B 1B 3B 7B 16B 1B 3B 7B 16B 1B 3B 7B 16B

R
ob

us
tP

as
s

LoRA 28.05 35.98 43.29 51.22 12.80 15.24 23.78 29.27 8.54 13.41 15.85 18.29 10.98 15.24 17.68 20.73
P-Tuning 18.29 29.88 39.63 48.78 7.32 15.85 21.34 23.78 6.71 11.59 14.02 17.68 6.71 14.63 18.29 21.34
AdapterH 10.98 34.15 40.24 46.95 4.88 14.02 17.07 23.78 7.32 11.59 12.20 15.85 6.10 12.80 14.63 17.68
AdapterP 9.76 35.37 43.90 50.00 1.22 15.85 21.34 26.22 4.88 12.20 14.63 18.29 3.05 15.24 19.51 20.12
Parallel 26.22 32.32 42.68 50.00 10.37 11.59 21.95 26.83 7.93 12.80 14.63 17.07 8.54 15.24 17.68 21.95
(IA)3 26.83 33.54 42.07 50.61 12.80 17.07 21.34 26.83 7.93 12.20 14.63 17.07 10.37 15.85 18.90 22.56

FFT 20.12 35.37 45.73 53.05 5.49 15.85 21.34 30.49 7.32 14.63 15.85 19.51 6.10 14.02 18.90 22.56

R
ob

us
tC

ha
ng

e

LoRA 10.98 14.63 15.24 15.85 4.27 6.10 4.27 6.10 8.54 7.93 12.20 17.07 6.10 6.10 10.37 14.63
P-Tuning 6.10 9.76 12.80 17.68 4.88 4.27 5.49 7.32 5.49 8.54 12.80 13.41 5.49 5.49 8.54 9.76
AdapterH 0.61 15.85 15.85 15.85 5.49 4.27 7.32 7.32 3.05 6.71 12.20 15.24 4.27 5.49 9.76 13.41
AdapterP 3.66 14.63 17.68 15.85 4.88 4.88 4.88 7.93 1.22 8.54 11.59 15.85 3.05 5.49 6.71 14.02
Parallel 12.20 11.59 15.85 15.24 3.66 9.15 4.88 7.93 6.10 7.93 12.20 17.68 5.49 5.49 9.15 12.80
(IA)3 10.98 12.80 14.02 14.63 3.05 3.66 6.71 9.15 7.93 8.54 13.41 18.90 5.49 4.88 9.15 13.41

FFT 7.32 14.02 17.68 15.24 7.32 5.49 6.71 7.32 5.49 6.71 12.20 18.29 6.71 7.32 9.15 15.24

1186

K Further Discussion 1187

We further measure the correlations among final loss in Section D, overall task performance in Section 3, 1188

and numbers of updated parameters via three metrics, Kendall (τ ), Pearson (rp), and Spearman (rs) 1189
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coefficients. Kendall coefficient measures the ordinal association and is robust against outliers, making it1190

useful for non-normal data distributions. Pearson’s coefficient assesses linear correlation, which is ideal1191

for normal data distributions with expected linear relationships. Spearman’s coefficient, like Kendall1192

coefficient, is a non-parametric measure that assesses rank correlation, useful for identifying monotonic1193

but non-linear relationships.

Table 7: Correlations between trainable parameters and final loss. p-values are provided in gray.

Model Size Train Loss Test Loss

τ rp rs τ rp rs

1B .4286 .3113 .6071 .3333 .3358 .4643
3B .5238 .3433 .7143 .2381 .3835 .4286
7B .5238 .3555 .7143 .2381 .4091 .4286
16B .5238 .3524 .7143 .2381 .3986 .4286

Overall .4339 (.00) .3328 (.08) .5616 (.00) .3598 (.01) .3308 (.09) .4953 (.01)

1194
We compute the correlations between updated parameters of ASTRAIOS models and the final loss of1195

corresponding models in Table 7. From the table, we first observe that the updated parameters are more1196

correlated to the final train loss than the test loss. However, they all imply that there is a moderated1197

correlation, which can be used for cross-entropy loss in model training. We also observe that when we1198

aggregate all statistics across model sizes, the correlations may slightly decrease.1199

Table 8: Correlations between final loss and overall task performance. p-values are provided in gray.

Model Size Train Loss Test Loss

τ rp rs τ rp rs

1B -.2381 -.4319 -.285 .04 -.4328 -.0357
3B .5238 .7819 .7143 .8095 .7859 .9286
7B .5238 .7165 .6786 .8095 .8230 .9286
16B .3333 .8096 .5000 .8095 .9211 .8929

Overall .7302 (.00) .9027 (.00) .9201 (.00) .8466 (.00) .9277 (.00) .9579 (.00)

We compute the correlations between the model loss and their mean downstream scores calculated in1200

Section 3. We show the results in Table 8, where we compute correlations for each model size and the final1201

aggregated statistics. Our observation on the size-level correlations indicates that the task performance1202

of 1B models is hard to align with the final loss, while bigger models tend to be much more correlated1203

to both train and test loss. We explain the hypothesis that 1B models do not have enough capability to1204

learn instructions. When aggregating the data points, we find that correlations are much stronger than the1205

size-level prediction. The strong correlations imply that model loss on the general instruction data can1206

work as a good proxy of downstream tasks in Code LLMs. When comparing the correlations on train loss1207

to the test loss, we observe the correlations are stronger on the latter one. This can be explained by the1208

fact that models tend to FFT on the training data, where the loss on the train split can not generalize well1209

on the unseen tasks and data. Moreover, we also ask: What is the relationship between the downstream1210

task performance and the updated parameters? Therefore, We investigate the correlation between tuned1211

parameters and cumulative scores. The correlations are 0.3016 (.02), 0.4128 (.03) and 0.4138 (.03) for1212

Kendall, Pearson and Spearman correlations, respectively. We draw the conclusion – Possible.1213

L Breakdown Results of Each Task1214

Based on Table 8, we also present the breakdown results of each downstream task. Interestingly, we1215

observe that the cross-entropy loss is more correlated to overall downstream performance, compared to1216

any individual code-specific tasks. The finding suggests that the cross-entropy of instruction tuning can1217

reflect the comprehensive capability of Code LLMs.1218
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Table 9: Correlations between final loss and Defect Detection performance. p-values are provided in gray.

Model Size Train Loss Test Loss

τ rp rs τ rp rs

1B -0.1429 -0.5728 -0.3571 -0.2381 -0.6089 -0.3929
3B .6190 .8856 .7857 .3333 .8396 .5000
7B .0476 .8040 .2857 .5238 .8782 .7143
16B .5238 .8497 .6786 .6190 .7928 .7143

Overall -0.1005 (.47) -0.1394 (.48) -0.1429 (.47) -0.1217 (.38) -0.2031 (.30) -0.2074 (.29)

Table 10: Correlations between final loss and Clone Detection performance. p-values are provided in gray.

Model Size Train Loss Test Loss

τ rp rs τ rp rs

1B -0.3333 -0.6446 -0.3571 -0.2381 -0.6206 -0.3214
3B -0.4286 -0.7587 -0.5357 .0476 -0.7293 .0000
7B -0.3904 -0.6541 -0.5406 -0.3904 -0.6541 -0.5045
16B .3333 .5725 .4286 .6190 .6900 .7500

Overall -0.0452 (.74) -0.1378 (.48) -0.0942 (.63) .0133 (.92) -0.0965 (.63) -0.0049 (.98)

Table 11: Correlations between final loss and Python Code Synthesis performance. p-values are provided in gray.

Model Size Train Loss Test Loss

τ rp rs τ rp rs

1B .1429 .4799 .1071 .4286 .5474 .6429
3B -0.2381 .0568 -0.3214 .2381 .2300 .3571
7B .1429 .1659 .1071 .6190 .3790 .7143
16B -0.0476 -0.0567 -0.1429 .4286 .2544 .5357

Overall .6402 (.00) .8621 (.00) .8314 (.00) .7778 (.00) .9134 (.00) .9091 (.00)

Table 12: Correlations between final loss and Python Code Repair performance. p-values are provided in gray.

Model Size Train Loss Test Loss

τ rp rs τ rp rs

1B .2381 .7109 .3929 .4286 .5474 .6429
3B .4286 -0.0824 .4643 .2381 .2300 .3571
7B .4286 .3619 .6071 .6190 .3790 .7143
16B .4286 .6983 .4286 .4286 .2544 .5357

Overall .7354 (.00) .8902 (.00) .8933 (.00) .7672 (.00) .9182 (.00) .9119 (.00)

Table 13: Correlations between final loss and Python Code Explanation performance. p-values are provided in gray.

Model Size Train Loss Test Loss

τ rp rs τ rp rs

1B .4286 .8526 .4643 .3333 .8828 .5000
3B .3333 .9679 .5357 .6190 .9782 .7857
7B .5238 .9569 .7143 .6190 .9658 .8214
16B .3333 .9187 .4286 .6190 .9890 .7500

Overall .6772 (.00) .8576 (.00) .8604 (.00) .6667 (.00) .8291 (.00) .8380 (.00)
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Table 14: Correlations between final loss and Java Code Synthesis performance. p-values are provided in gray.

Model Size Train Loss Test Loss

τ rp rs τ rp rs

1B -0.3333 -0.3385 -0.4286 -0.4286 -0.3917 -0.5000
3B .3333 .1205 .2143 .6190 .2911 .7857
7B -0.0476 .0164 -0.0714 .4286 .3270 .6429
16B -0.0476 -0.2200 -0.1429 .4286 .0676 .5357

Overall .6349 (.00) .7552 (.00) .8331 (.00) .7407 (.00) .8050 (.00) .9015 (.00)

Table 15: Correlations between final loss and Java Code Repair performance. p-values are provided in gray.

Model Size Train Loss Test Loss

τ rp rs τ rp rs

1B .0976 .0725 .1441 .1952 .0954 .2162
3B .2381 -0.0867 .1786 -0.2381 -0.2260 -0.2857
7B .6190 .4203 .7857 .5238 .3140 .6429
16B .5238 .7295 .4643 .8095 .8971 .9286

Overall .7232 (.00) .8011 (.00) .8751 (.00) .7550 (.00) .8273 (.00) .9136 (.00)

Table 16: Correlations between final loss and Java Code Explanation performance. p-values are provided in gray.

Model Size Train Loss Test Loss

τ rp rs τ rp rs

1B .2381 .7219 .3571 .5238 .7811 .6071
3B -0.1429 .1024 -0.2143 .3333 .2680 .4643
7B -0.6190 -0.9510 -0.7500 -0.1429 -0.8729 -0.3214
16B .0476 .5829 .1429 .5238 .7734 .7143

Overall .5536 (.00) .8202 (.00) .7374 (.00) .6808 (.00) .8760 (.00) .8064 (.00)
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M More Limitations and Future Work 1219

Model Architecture Another limitation of our study is that we do not vary the model architecture of 1220

Code LLMs. It is possible that some findings may not generalize to other encoder-decoder Code LLMs 1221

like CodeT5 (Wang et al., 2021) and CodeT5+ (Wang et al., 2023b). However, as StarCoder is built upon 1222

the enhanced GPT-2 (Radford et al.) architecture, we believe that our observations can be transferred to 1223

other GPT-based LLMs. 1224

Scaling Parameter-Constrained Language Models Although we demonstrate the possibility of pre- 1225

dicting the final loss based on the updated parameters and vice versa, we note that a scaling law generally 1226

needs more than 100 models and their final loss. Ideally, the training experiments should be consistent 1227

with different PEFT strategies, meaning that training hundreds of models is needed. Furthermore, task 1228

performance is hard to predict, as there is much more noise in the downstream tasks than the final loss. 1229

We foresee that predicting such overall performance is very challenging. 1230

N Prompts 1231

The prompting format can significantly impact performance. In the spirit of true few-shot learning (Perez 1232

et al., 2021), we do not optimize prompts and go with the format provided by the respective model authors 1233

or the most intuitive format if none is provided. For each task not designed for evaluating instruction-tuned 1234

Code LLMs, we define an instruction. The instruction is to ensure that models behave correctly and that 1235

their outputs can be parsed effortlessly. 1236

Question: {context}
Is there a defect in the Code, and respond to YES or NO.

Answer:

Figure 15: Prompt for Devign.

Question: Code 1: {context_1}
.
Code 2: {context_2}
Is there a clone relation between the Code1 and Code2, and respond to YES or NO.

Answer:

Figure 16: Prompt for BigCloneBench.

Question: {instruction}
{context}

Answer:
{function_start}

Figure 17: Prompt for HumanEvalPack.
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Question: Create a Python script for this problem.

Answer: {function_start}

Figure 18: Prompt for Code Completion on ReCode.

Question: Create a script for this problem.

Answer: {function_start}

Figure 19: Prompt for Asleep At The Keyboard.

1237
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